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Abstract. Deterministic signature schemes are becoming more popular,
as illustrated by the deterministic variant of ECDSA and the popular
EdDSA scheme, since eliminating the need for high-quality randomness
might have some advantages in certain use-cases. In this paper we out-
line a range of differential fault attacks and a differential power analysis
attack against such deterministic schemes. This shows, contrary to some
earlier works, that such signature schemes are not naturally protected
against such advanced attacks. We discuss different countermeasures and
propose to include entropy for low-cost protection against these attacks
in scenarios where these attack vectors are a real threat: this does not
require to change the key generation or the verification methods and re-
sults in a signature scheme which offers high performance and security
for a wide range of use-cases.
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1 Introduction

The computation of cryptographically secure digital signatures is one of the cor-
nerstones in public-key cryptography. This widely used cryptographic primitive
is standardized in the digital signature standard [31]. The popular version of the
digital signature scheme which uses elliptic curves is denoted ECDSA and is a
variant of the classic signature system introduced by ElGamal [18]. This scheme
(as we recall in Section 2) requires to compute a random number used only once
(denoted nonce) when signing a message.

Since it is non-trivial to obtain a good pool of entropy in practice (cf. [29, 25])
and due to some noticeable failures [15] people started to deploy deterministic
signature schemes where such randomness is not required. One such proposal
modifies the existing ECDSA algorithm [35] while another popular digital sig-
nature approach uses recent developments in the field of elliptic curve cryptog-
raphy: this approach is called EdDSA [7] and uses a new curve model [17, 9] for
performance considerations. To illustrate, it is shown that the performance of
using Curve25519 [5] (which is used in the EdDSA proposal) is over twice as fast
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compared to state-of-the-art implementation of NIST P-256 [24] as proposed in
the digital signature standard at a comparable security level. See also [30].

The main advantage of these new deterministic digital signature proposals
is clear: they don’t need a good entropy pool during signing. However, when
such schemes are standardized this means they need to be supported in other
use-cases and settings which might have a different security model. Examples
of such use-cases include (hardware) implementations as used in smart cards
and for the Internet-of-Things (IoT). In these settings the adversary might own
(or have access to) the target device and use meta-information when execut-
ing the cryptographic implementation. Besides such passive side-channel attacks
(cf. [27]) one also has to guard the implementation against active attacks like
fault-injection attacks [13, 11] and use the potentially corrupted output to obtain
information about the secret key used.

Although this security model, where techniques such as faults and advanced
side-channel attacks are considered, is often overlooked by the cryptographic
software community (since they often do not directly apply) this is a very rel-
evant area for industry dealing with cryptographic hardware implementations
and embedded devices. The impact of this security model is expected to grow
significantly in the next few years: to illustrate, the current forecasts expect 8.4
billion connected “things” in use worldwide in 2017 and will reach 20.4 billion by
2020 [22]. If one wants to secure such devices then these need to perform, among
others, cryptographically secure digital signatures. For IoT devices which deal
with sensitive (e.g., medical or privacy related) information then such a higher
level of security protection against active and passive attacks might become a
requirement.

There is an active research community which deals with such side-channel at-
tacks and a broad amount of cryptanalytic work related to fault and side-channel
attacks on ECDSA as we recall in Section 2. Surprisingly, there is not much work
related to deterministic signatures. As far as we are aware the only published
result related to cryptographic faults and deterministic signatures is [3]. It is
demonstrated how with the help of a single correct-fault signature pair the se-
cret key can be extracted from deterministic version of DSA and ECDSA while
they conclude that the “EdDSA algorithm shows structural resistance against
such attacks”.

It should be noted that recently a side-channel attack was pointed in [23]
against Curve25519 when no validation of input points is performed as recom-
mended in the original paper. Another recent result confirms the possibility of
Rowhammer attacks on deterministic signatures. In [34] a fault attack on Ed-
DSA is described: the attack is performed in a cloud scenario, and assumes
an attacker whose virtual machine is co-located with the victim’s virtual ma-
chine. The results of this paper were already announced in comments on FIPS
186-4 [32].

Our contributions. In this work we study the impact of fault and side-channel
attacks on deterministic digital signature schemes in more details. More specif-



Differential Fault Attacks on Deterministic Signatures 3

ically, we use the popular scheme EdDSA [7] as a use-case and illustrate nine
different attacks on this scheme (but also show how these apply similarly to the
deterministic ECDSA algorithm) in Section 3. This contradicts the conclusions
from [3] where structural resistance against such attacks is claimed. We apply
(single) faults in a different manner (compared to [3]) which results in a family
of fault attacks against these new types of deterministic signature schemes.

In Section 4 we discuss practical countermeasures against these new fault
attacks. However, these new safe-guards come at the price of a significant per-
formance impact which completely annihilates the benefits when using such new
digital signature approaches. We also propose a countermeasure which is not
fully compliant with the current specification of the signature. The idea is to
add some random noise to the input of the hash computation on platforms
where such fault attacks are relevant. The verification method of the signature
scheme remains unchanged but the signature scheme is no longer deterministic
(in the sense that two messages always generate the same signature). We hope
that this proposal can serve as additional input to the ongoing discussion and
preparations for a new digital signature standard.

2 Preliminaries

The main idea behind fault attacks is to introduce a fault during the execution
of the cryptographic algorithm and hope that this incorrect behavior leaks infor-
mation about the secret key used. Examples related to digital signatures include
introducing a fault in one of the coefficients of the elliptic curve equation such
that computations are performed on a different (weak) curve or using a different
base point [16, 20]. Another possibility is a sign change attack where the sign
change of intermediate points can be used to recover the secret scalar factor [12,
36, 2].

Another type of fault attack is known as differential fault attack (DFA) where
the idea is to use the difference between a faulty and a correct result to determine
information about the secret key used (see [10] for the application of DFA to the
elliptic curve scalar multiplication). This is the type of attack we are concerned
with in this paper. The interested reader is referred to [26] and the surveys [19,
Section 4] and [14] for more references and related work.

We consider two types of fault: either an uncontrolled or a controlled fault
during some target operation. With a controlled fault we mean the ability to
inject a fault in a target memory range. For instance, flipping a bit in a byte,
word or any range. These types of attacks are more difficult and expensive but
still realistic (cf. [1]).

2.1 (Deterministic) ECDSA

In the digital signature standard [31] the randomized version of ECDSA is out-
lined together with some pseudo-random curves of prime order n. These curves
are defined in their a = −3 short Weierstrass form Eb : y2 = x3 − 3x + b. These
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Algorithm 1 ECDSA signature generation of a message m with the secret key
d. The signature related parameters are as recalled in Section 2.1.

1: function ECDSA sign(m, d)
2: e = H(m)
3: repeat
4: repeat
5: Select u ∈ [1, n− 1] uniform random
6: (x, y) = uG ∈ Eb(Fp)
7: r = x mod n
8: until r 6= 0
9: s = u−1(e + dr) mod n

10: until s 6= 0
11: return (r, s)

Algorithm 2 Deterministic ECDSA signature generation of a message m with
the secret key d. The signature related parameters are as recalled in Section 2.1.

1: function DetECDSA sign(m, d)
2: e = H(m)
3: repeat
4: repeat
5: u = GenerateU(d, e) using HMAC as building block (stateful)
6: (x, y) = uG ∈ Eb(Fp)
7: r = x mod n
8: until r 6= 0
9: s = u−1(e + dr) mod n

10: until s 6= 0
11: return (r, s)

curves are defined over prime field Fp where p > 3. A generator G ∈ Eb(Fp)
of order n is specified. The private key is a uniform random non-zero residue
d ∈ Zn, in the range [1, n − 1], which defines the public key point Q = dG.
The exact algorithm is outlined in Algorithm 1 where H is a cryptographic hash
function. If we refer to ECDSA we mean this version which uses randomized
nonces as selected in Line 5 in Algorithm 1.

A deterministic variant of ECDSA is described in an Internet Engineering
Task Force (IETF) request for comments (RFC) [35]. The keys used are the
same as in the randomized version of ECDSA and signatures remain valid with
ECDSA: hence, no change to the verification is needed. The only change is
how the nonce u is generated; in the deterministic variant this is done by a
(complicated) procedure using HMAC as building block which ensures that given
the same message and secret key the same value u is generated.

We note that this RFC [35] explicitly acknowledges side-channel attacks as a
serious threat and states that the implementer should “use defensive measures
to avoid leaking the private key through a side channel” without stating how
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Algorithm 3 EdDSA signature generation of a message m with the secret key
k. The signature related parameters are as recalled in Section 2.2.

1: function EdDSA sign((m, k))
2: m′ = H1(m)
3: Retrieve or compute (hb, . . . , h2b−1) from H2(k) = (h0, h1, . . . , h2b−1)
4: r = H2(hb, . . . , h2b−1,m

′) mod `
5: R = rB ∈ Ea,d(Fq)
6: t = H2(EncPoint(R),EncPoint(A),m′)
7: S = (r + ts) mod `
8: return (EncPoint(R),EncInt(S))

this should be done. Active attacks such as fault attacks are not addressed or
considered.

2.2 EdDSA

The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of a
Schnorr signature system [37] and specifies a deterministic digital signature al-
gorithm using Edwards curves [17, 9]. A generalized description of EdDSA takes
the following eleven parameters [8]. One needs an odd prime (power) q which is
used to define the finite field Fq. Two elements a, d ∈ Fq which define the twisted
Edwards curve Ea,d : ax2 + y2 = 1 + dx2y2 with an element B ∈ Ea,d(Fq) dif-
ferent from the neutral element. An integer c and odd prime ` which define the
cardinality of the curve (2c` = #Ea,d), an integer n which determines the scalar
size, an encoding of the finite field elements, and a “prehash” function H1. More-
over, an integer parameter b is chosen such that 2b−1 > q. This determines the
size of the signature (2b bits) and the length of the output of a cryptographic
hash function H2 (2b bits). How to properly choose these parameters is outside
the scope of this document. It should be noted that besides the encoding of fi-
nite field elements (which we denote with EncInt) one also encodes elliptic curve
points (in order to reduce the number of bytes required to represent elliptic curve
points) which we denote with EncPoint.

An EdDSA secret key is a b-bit value k while the public key is the b-bit
EncPoint(A). The elliptic curve point is defined as A = sB ∈ Ea,d(Fq), the
scalar s = 2n +

∑
c≤i<n 2ihi where the hi are in turn obtained from the output

of the hashed secret key as H2(k) = (h0, h1, . . . , h2b−1).
The deterministic signature generation procedure is outlined in Algorithm 3.

3 Attacks against Deterministic Signature Schemes

In this section we describe several differential fault attacks and one side-channel
attack on the deterministic signature scheme EdDSA. It should be noted that
these attacks are not EdDSA specific but apply to any deterministic signature
scheme (following the same design approach). The main difference between the
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deterministic and randomized signature schemes is how the nonce is generated.
While this is done using a (truly) random number generator when using a ran-
domized version this is typically a function of the input message and the private
key for deterministic schemes. This immediately highlights the problems between
the typical hardware and software platforms: randomness is difficult to get and
expensive from a performance point of view in software while not a problem in
hardware (with some notable exceptions [6]). While computing a function on
the secret key can be done trivially in software this needs very careful and ex-
pensive countermeasures in the security model used in cryptographic hardware
implementations.

There are sophisticated lattice attacks on signature schemes which only re-
quire that the attacker is able to recover some bits of the ephemeral key for a
certain number of signatures [33]. Typically one tries to recover the three least
significant bits of the ephemeral key for, say, 300 signatures and one is then able
to compute the victim’s secret key.

Our high-level idea when performing a fault attack against EdDSA is to in-
troduce a single fault at some point in the computation. Depending on the attack
scenario this could be an uncontrolled fault somewhere during the computation
or a controlled fault introduced in a pre-determined range (e.g., multiple bits,
byte, or word). This fault alters the output of the signature generation proce-
dure and allows an attacker to solve a (simple) system of equations and extract
the secret key. We also present a passive attack where based on the power or
electromagnetic information a side-channel attack might be mounted on the
hash-function used in the deterministic signature scheme.

An overview of the points of attack, the type of attack and the number
of faults needed to extract the secret key against EdDSA is given in Table 1.
Similar attacks can be mounted on deterministic ECDSA as listed in Table 2
These attacks are outlined in more detail in the next subsections.

Table 1. Overview of the different proposed attacks against EdDSA which result in
extracting the private key s.

where attack type number of faults

Import point B fault uncontrolled ≥ 1
Import point A fault controlled ≥ 1
Hash computation of r fault controlled ≥ 1
Hash computation of r {

fault uncontrolled ≥ 1
}

with fixed (unknown) output
Scalar multiplication rB fault uncontrolled ≥ 1
Hash computation of t fault controlled ≥ 1
Hash computation of t {

fault controlled ≥ 2
}

with fixed (unknown) output
Computation of S fault controlled ≥ 1
Hash computation of r DPA/DEMA – –
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Table 2. Overview of the different possible attacks against deterministic ECDSA which
result in extracting the private key d.

where attack type number of faults

Import point G fault uncontrolled ≥ 1
Hash computation of u fault controlled ≥ 1
Hash computation of u {

fault uncontrolled ≥ 1
}

with fixed (unknown) output
Scalar multiplication uG fault uncontrolled ≥ 1
Computation of s fault controlled ≥ 1
Generation of u DPA/DEMA – –

3.1 DFA on Base Point B During Import

At some stage in the cryptographic implementation the generator or base point B,
which is public and given in the EdDSA signature definition, is loaded in order
to perform the elliptic curve scalar multiplication with the deterministic nonce.
If a fault is introduced in this generator (potentially resulting in a value which
is not a valid point on the curve anymore) then one could obtain a valid signa-
ture values (R,S) and an invalid one (R′, S′) for the same input message which
represent

(R,S) = (rB, r + ts mod `)

(R′, S′) = (rB′, r + t′s mod `)

where t′ = H2(EncPoint(R′),EncPoint(A),m′). All input values for the hash
computation of t and t′ are either known (A and m′) or output by the algorithm
(R and R′). Hence, both t and t′ are known as well. This means the adversary
can compute the secret key s from

S − S′ ≡ s(t− t′) mod `

where all other values are known.

3.2 DFA on Public Key A During Import

The idea here is similar to the one described in Section 3.1 but requires additional
effort. The point of attack is the public key A during the import in the digital
signature computation. If one can introduce a controlled fault in A in a restricted
range, say ranging from bits i to j (where 0 ≤ i ≤ j ≤ blog2(q)c) then one could
generate two signatures (R,S) and (R,S′), one with the original public key A
and one with another (modified) public key A′ for the same input message which
represent

(R,S) = (rB, r + ts mod `)

(R,S′) = (rB, r + t′s mod `)
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where t′ = H2(EncPoint(R),EncPoint(A′),m′). If the number of bits j− i+ 1 in
the range where we introduced a fault is small enough (can be computationally
enumerated) then the adversary can try all possible values for A′ and hence t′.
Hence, the adversary can compute the candidate secret key s from

S − S′ ≡ s(t− t′) mod `

and check if the right A′ was used by verifying if A = sB. If so, the secret key
has been successfully extracted.

3.3 DFA on Hash Computation of r

The point of attack is the hash computation of the nonce value r. Similar as in
Section 3.2 the assumption is that the adversary can introduce a fault in the
hash function computation which modifies only a limited number of bits in the
digest value. More specifically, we assume the introduced fault ê results in a
nonce r′ = r + ê. Hence, if one manages to generate two signatures (R,S) and
(R′, S′), one with the original scalar r and one with such scalar r′, for the same
input message then we have the following equations

(R,S) = (rB, r + ts mod `)

(R′, S′) = (r′B, r′ + t′s mod `)

with t′ = H2(EncPoint(R′),EncPoint(A),m′). If the introduces error ê in r′ is
limited then one could exhaustively try all possibilities for ê and hence R′ =
R + êB and t′. This results (again) in a simple system of equations which can
be solved and checked if the right ê was used (by checking A = sB). If so, the
secret key has been extracted successfully.

3.4 DFA on Hash Computation of r with Fixed Output

The fault attack described here is a variation of the one described in Section 3.3.
The point of attack is still the deterministic nonce r but now we assume an
adversary can introduce one or more faults which result in the same value of r′

which could be unknown to the adversary. One can think of multiple scenarios to
achieve this in practice: examples include skipping the call of the hash function,
during loading of the hash input, update of the hash state or copy of the hash
result. Once this has been achieved the adversary has the equations

(R′, S1) = (r′B, r′ + t1s mod `)

(R′, S2) = (r′B, r′ + t2s mod `)

with t2 = H2(EncPoint(R′),EncPoint(A),m′2). Again one can compute the se-
cret key from S1 − S2 since all other values except s are known.
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3.5 DFA on Scalar Multiplication

Another possible point for a fault attack is the elliptic curve scalar multipli-
cation rB. If the adversary could introduce an uncontrolled fault during this
computation then it could generate two signatures with the same input

(R,S) = (rB, r + ts mod `)

(R′, S′) = (r′B, r + t′s mod `)

with t′ = H2(EncPoint(R′),EncPoint(A),m′) and some R′. Please note that we
have the correct r in the equation of S′ instead of r′ since the fault was introduced
in the scalar multiplication and not in the value of r. Again the secret key can
be extracted from S − S′ since all values are known in this equation except s.

3.6 DFA on Hash Computation of t

One could also introduce a controlled fault in the computation of the value t. If
one can introduce this fault such that the faulty t′ differs in a restricted range,
say ranging from bit i to j (where 0 ≤ i ≤ j ≤ blog2(q)c) then one could generate
two signatures (R,S) and (R,S′) as follows

(R,S) = (rB, r + ts mod `)

(R,S′) = (r′B, r + t′s mod `)
.

Hence, the adversary can compute the candidate secret key s from S − S′ ≡
s(t − t′) mod ` and check if the right t′ was used by verifying if A = sB. If so,
the secret key has been successfully extracted.

3.7 DFA on Hash Computation of t with Fixed Output

In the same vein as in Section 3.4 one could introduce two controlled faults to
generate digital signatures (R1, S1) and (R2, S2) for two different messages m1

and m2, both with an unknown but fixed value t′. Such faults could be introduced
in multiple places: for example, skipping the call of the hash function, during
loading of the hash input, update of the hash state or copy of the hash result.
Next, generate the original two signatures (R3, S3) and (R4, S4) for the same
messages m1 and m2. Then one obtains the following four equations

S1 = r1 + t′s

S2 = r2 + t′s

S3 = r1 + t1s

S4 = r2 + t2s

.

Given this information one can compute

S3 − S4 − (S1 − S2) = (r1 − r2) + (t1 − t2)s− (r1 − r2) = (t1 − t2)s

and the secret key s can be extracted.



10 Christopher Ambrose et al.

3.8 DFA on Computation of S

If the adversary manages to generate two signatures (R,S) and (R,S′), one with
the correct computation of S and one with faulty computation of S, then the
secret key can be extracted. The faulty value S′ is obtained by skipping one of
the elementary arithmetic operations in S = r + ts. Hence, depending on the
fault one obtains

S′ = ts

S′ = r + t

S′ = r + s

.

Depending on the case the adversary can compute S −S′ = r, S −S′ = t(s− 1)
or S−S′ = (t− 1)s, respectively. In all three cases one can compute r or s (and
then s or r).

3.9 DPA/DEMA on hb, . . . , h2b−1 during Hash Computation of r

Instead of using an active attack, such as inserting fault(s), one could mount
a passive attack based on either power consumption (such as the differential
power analysis (DPA) attack [28]) or electromagnetic usage (such as differential
electromagnetic analysis (DEMA) attacks [21]). In order for such an attack to
be successful one needs to target a point in the algorithm where computation is
performed on the secret together with some known data such that a differential
attack can be mounted.

The main idea for such a passive attack is to target the computation of
the message digest H2(hb, . . . , h2b−1,m

′) where both secret key derived material
and user provided data are used as input. If such a passive attack is feasible
depends on the exact choice of the hash function and the value of b. In EdDSA
the hash function H used is SHA-512 and b = 256, hence the input to the hash
function is processed in chunks of 128 bytes (or 1024 bits). Since 256 bits of
secret-key derived material is used as input this means the first 1024-bit chunk
processed by the SHA-512 contains both secret key and user controlled input.
Hence, a DPA/DEMA attack in the usual way should be possible and the bits
hb, . . . , h2b−1 can be extracted one at-a-time. This seems indeed feasible since a
similar approach on HMAC based on SHA-256 is presented in [4].

4 Countermeasures for EdDSA

In this section we describe two different sets of countermeasures against the
attacks we presented in Section 3. The first countermeasure does fully comply
to the EdDSA specification while the second one does not: however, this last
set of countermeasures does generate valid EdDSA signatures. This can only be
distinguished from fully compliant signatures by the signer or by seeing the same
message with two different signatures.
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4.1 Fully Compliant Countermeasures

For some of the proposed attacks it might be sufficient to check if the targeted
elliptic curve points are valid by checking the curve equation: this is true for
the attacks from Section 3.1, Section 3.2, and Section 3.5. However, in order
to protect against the other fault attacks (from Section 3.3, Section 3.4, and
Section 3.6 to Section 3.8) it seems double computation and a comparison of
results seems the only practical countermeasure. In order to protect against the
side-channel attack from Section 3.9 one needs to harden the hash computation,
which will result on much slower hash computation. A guesstimate, based on our
experience implementing such countermeasures, of the practical impact of these
countermeasures on the performance is around two to three times slower.

4.2 Not Fully Compliant Countermeasures

In this section we outline effective countermeasures against our proposed attacks.
These attacks do not fully comply with the way how the deterministic signature
algorithm states one needs to generate the nonces (see Algorithm 3). However,
the proposed techniques are significantly faster compared to the compliant coun-
termeasures considered in Section 4.1.

A much simpler countermeasure, which randomized the signature algorithm,
is to include some noise in the computation of r = H2(hb, . . . , h2b−1,m

′) mod `.
By adding some uniform random noise one ensures some variable unknown data
is introduced in the various equations from Section 3. One way of achieving this
is by splitting the input to the hash function into three hash input blocks:

1. random noise (and/or counter),
2. secret input (hb, . . . , h2b−1) and
3. prehashed message m′.

The amount of random noise depends on the needs and the targeted security
level: hence, for SHA-512 noise with 256 bit of entropy is needed, but also less
might be sufficient to actually protect against collisions for practical real world
attacks. If there is no random source available but non-volatile memory, one
could also use an unknown counter. This of course leads to a stateful signing
operation, but still stateless verification. This way the first input block to the
hash function generates “unique” unknown (random) data to combine with the
secret second block. The second block only consists of unknown secret data
(hb, . . . , h2b−1) and known public fixed (padding zeros) data. After processing
the second block the hash state has full entropy coming from the secret data
(but same for all signatures) and is different for each signature including some
entropy coming from the noise. That means no easy collisions can be obtained
and one cannot predict values easily.

This countermeasure protects against DFA and DPA/DEMA attacks but of
course one is still vulnerable against SPA and template attacks on the hash
computation of r. One possible solution to this would be to simply use a fully
random nonce r provided by an RNG. For this solution an RNG of sufficient
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“good” quality is required, which might not be available on all platforms. How-
ever, in settings where such a level of security is often mandatory, e.g. on smart
cards, one typically has access to a high-quality-RNG on board. This makes it
significantly easier and faster to use the RNG instead of doing any hash compu-
tation.

Hence, the best solution (in terms of performance) would actually be an
adaptive solution depending on the availability of a high-quality-RNG. Such
a solution would offer high-security garantuess on platforms where active and
passive attacks can be expected (and where often acquiring good entropy is not
a problem) while it offers the same performance and security advantages in the
pure software setting for the deterministic schemes as used today.

5 Conclusions and Future Work

We have presented a number of active and one passive side-channel attack
against deterministic signature schemes. This highlights that removing random-
ness from the equation does necessarily eliminate all attack vectors. Counter-
measures which need to comply with the current specification of, for instance,
EdDSA seem to have a significant performance impact: the resulting protected
schemes seem to have no real performance benefits over the current standardized
(randomized) ECDSA algorithm. However, if one is willing to slightly deviate
from the specification and introduce high-quality randomness on platforms where
this is possible then relatively cheap countermeasures can be constructed without
affecting either the key generation and signature verification procedures.

In this work we only looked at “simple” single differential fault attacks. Fu-
ture work include more advanced attacks (active and passive attacks) as well
as introducing multiple faults. Of course it would be very interesting to study
other more advanced countermeasures which either do comply directly with the
current deterministic signature specification or can be computed more efficiently.

We hope this work serves as valuable input when the community and the
various standardization bodies start to define new cryptographic digital signature
algorithms. In our opinion such a hybrid scheme (where the user can choose to
include randomness or not) is a valuable addition to achieve a higher level of
security.
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20. Fouque, P.A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve
Montgomery ladder implementation. In: FDTC 2008. pp. 92–98. IEEE Computer
Society (2008)

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
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