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Abstract

Linear regression with 2-norm regularization (i.e., ridge regression) is an important
statistical technique that models the relationship between some explanatory values and
an outcome value using a linear function. In many applications (e.g., predictive mod-
elling in personalized health-care), these values represent sensitive data owned by several
different parties who are unwilling to share them. In this setting, training a linear regres-
sion model becomes challenging and needs specific cryptographic solutions. This problem
was elegantly addressed by Nikolaenko et al. in S&P (Oakland) 2013. They suggested
a two-server system that uses linearly-homomorphic encryption (LHE) and Yao’s two-
party protocol (garbled circuits). In this work, we propose a novel system that can train
a ridge linear regression model using only LHE (i.e., without using Yao’s protocol). This
greatly improves the overall performance (both in computation and communication) as
Yao’s protocol was the main bottleneck in the previous solution. The efficiency of the
proposed system is validated both on synthetically-generated and real-world datasets.

1 Introduction

Linear regression is an important statistical tool that models the relationship between some
explanatory values (features) and an outcome value using a linear function. Despite its simple
definition, a linear regression model is very useful. Indeed, it can be used to quantify the
relationship between the features and the outcome (e.g., identify which features influence
more directly the outcome) and for future prediction (e.g., if a new vector of features with
no known outcome is given, the model can be used to make a prediction about it). Ridge
regression is one of the most widely-used forms of regression, because it lessens the overfitting
of ordinary least squares regression without adding computational cost. In practice, this is
achieved giving preference to models with small Euclidean norm. This method is extremely
popular (see the survey in [McD09]) and has found applications in several different fields,
from biology [PQCF07] and medicine [NJFM14, War09] to economics and finance [LD15].
To enhance the efficacy of the learned model, prior experience in model training suggests
using training data from a large and diverse set. Indeed, it is known that having more data
(more relevant features and/or more data points) typically improves the ability to learn a
reliable model. A simple way to obtain such training dataset is to merge data contained in

∗This paper is a merge of [Joy17, GJPY17]
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“data silos” collected by different entities. However, in many applications (e.g., personalized
medicine [War09]) the data points encode sensitive information and are collected by possibly
mutually distrustful entities. Often, these entities will not (or cannot) share the private data
contained in their silos, making collaborative analysis on joint data impossible.

Consider the following example: We would like to use a given linear regression method in
order to predict the weight of a baby at birth on the basis of some ultrasound measurements
made during last month of pregnancy (e.g., head circumference, femur length, . . . ). On
one hand, in order to avoid computing a biased model, we would like to run the selected
learning algorithm on data points collected in different hospitals in various locations. On
the other hand, each hospital legally cannot share (in the clear) patients’ sensitive data (the
measurements) with other hospitals or with a third party (e.g., a cloud-computing server).
This real-life case exemplifies the challenge on which we focus on: training a linear regression
model on joint data that must be kept confidential and/or are owned by multiple parties.
Moreover, we want to run such collaborative analysis without exposing an entity’s sensitive
data to any other party in the system (i.e., no entity in the system is trusted to handle the
data in the clear).

If we assume the existence of a third-party trusted by all entities in the system, then
this party can collect the data from each entity (in the clear) and performs collaborative
analysis. However, finding agreement among all participants on trusting one third-party can
be challenging. To avoid the need of trusting the third-party, we could use fully-homomorphic
encryption [Gen09]: this allows to encrypt the data before outsourcing them to the third-party,
that can still compute an arbitrary function on them. Unfortunately, fully-homomorphic
encryption still has a large cost nowadays, making this strategy impractical for real-world
applications. Here, we want to look to efficient solutions that limit the amount of trust to be
placed on such third-party.

Our paper takes up the above challenge and proposes an efficient solution in the two-
server model [KMR11], where no party needs to be trusted to handle the data in the clear.
In this setting, the computation of the model from the merged data is outsourced to two
non-colluding (but not necessarily trusted) third-parties. After a first phase of collecting
private data in encrypted form from possibly many data-owners, the two third parties then
engage in a second phase for the computation of the model itself. The system is designed in
such a way that no extra information (beside that released by the model itself)1 is revealed
to these two parties if they do not collude (condition that can, for example, be enforced by
law). Our solution is based only on a simple cryptographic primitive that can be implemented
via efficient constructions. Indeed, our system is designed using just a linearly-homomorphic
encryption (LHE) scheme, that is, an encryption scheme that enables computing the sum of
encrypted messages. Previous solutions to the problem considered here are based on multi-
party computation protocols (e.g., secret-sharing based protocols like BGW [BGW88] or the
2-party protocol by Yao [Yao86]) or on somewhat-homomorphic encryption (i.e., encryption
schemes that support a limited number of arithmetic operations on encrypted messages). A
hybrid approach that uses both homomorphic encryption and Yao’s scheme was presented in
[NWI+13]. In this work, we present the first approach to privacy-preserving ridge regression
that uses only linearly-homomorphic encryption. We believe that this result is interesting
both from the theoretical and the practical points of view. Indeed our system can be seen as
a new black-box application of LHE and shows that this basic crypto-primitive can be used
alone to handle involved tasks (i.e., ridge regression over distributed data). Furthermore,
our system achieves practical performances when implemented using a standard encryption
scheme as Paillier’s cipher [Pai99]. We show this via an evaluation of our system that uses
synthetically-generated and real-world data. Overall, our experiments show that, for many

1Another line of research focuses on studying and preventing the privacy threats that arise from releasing a
model trained using private data. This is known as the differential privacy paradigm [Dwo06]. Our approach
is orthogonal to differential privacy since we consider a different threat model.
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real scenarios, LHE is all you need to privately yet efficiently train a ridge regression model
on distributed data. As illustrative example, consider the following existing medical scenario:
the Warfarin dosing model. Warfarin is a popular anticoagulant for which the International
Warfarin Pharmacogenetics Consortium proposed an accurate dosing model trained using
linear regression on a medical database that was the merge of the data silos collected by 21
research groups. Using a commodity machine, our system can compute the same model in
less than 3 minutes with the guarantee of confidentiality for the data silos of each research
group involved (details can be found in Appendix A.4).

Related work The question of privacy-preserving machine learning was introduced in 2000
by two pioneering works [LP00, AS00]. Later on, privacy-preserving linear regression was con-
sidered in a number of different works (e.g., [KLSR04, DHC04, SKLR04, KLSR05, KLSR09,
HFN11, CDNN15, AHPW]). In 2013, Nikolaenko et al. [NWI+13] introduced the scenario we
consider in this paper: privacy-preserving linear regression protocol in the two-server model.
The solution in [NWI+13] considers ridge regression on a horizontally-partitioned dataset in
which each party has some of the data points that form the training set (e.g., two or more
hospitals, each of which collects the same medical data on different sets of patients). Their
solution is based on LHE and Yao’s protocol. The latter is a two-party protocol that allows
the evaluation of a circuit C on a pair of inputs (a, b) such that one party knows only a and
the other party knows only b. At the end of the protocol, the value C(a, b) is revealed but
no party learns extra information beyond what is revealed by this value. In [NWI+13], the
ridge regression model is computed using Yao’s protocol to compute the solution of a linear
system of the form Aw = b where the entries of A and b are encrypted (and must be kept
private). The solution w∗ is the model. The circuit C is the one that solves a linear system
computing the Cholesky decomposition of the coefficient matrix. Recently, in [GSB+17], the
system presented in [NWI+13] was extended to vertically-partitioned datasets in which the
features in the training dataset are distributed among different parties (e.g., two or more
hospitals, each of which collects different medical data on the same set of patients). Gascón
et al.[GSB+17] achieve this result using multiparty computation techniques to allow the data-
owners to distribute shares of the merged datasets to the two parties active in the second
phase. Moreover, Gascón et al.also improve the running time of the second phase of the
protocol presented in [NWI+13] by designing a new conjugate gradient descent algorithm
that is used as circuit C in the place of Cholesky decomposition. This approach was subse-
quently further improved by Mohassel and Zhang [MZ17] using mini-batch stochastic gradient
decedent, and extended to logistic regression and neural networks on arbitrarily partitioned
datasets.

Our contribution Our paper follows this line of work and presents a novel system for
ridge regression in the two-server model. For the first phase, we extend the approach used by
Nikolaenko et al.to datasets that are arbitrarily partitioned using the techniques of labeled-
homomorphic encryption [BCF17] to support multiplications among pairs of ciphertexts en-
crypted via an LHE scheme. In this way we show that a solution based only on LHE can han-
dle scenarios more complicated than the horizontally-partitioned case. For the second phase,
we avoid Yao’s protocol by designing an ad-hoc two-party protocol that solves Aw = b using
only the linear homomorphic property of the underlying encryption scheme. This allows to
boost the overall performance and, in particular, to considerably reduce the communication
overhead.2 As a highlight, if we horizontally partition (into ten equal-sized parts) a dataset
of 10 millions instances and 20 features, our privacy-preserving regression method runs in un-
der 2 minutes3 and produces a communication overhead of 1.3 MB. The system presented in

2Size of the messages exchanged among the parties running the system.
3Timing on a 2.6 GHz 8 GB RAM machine running Linux 16.04; 80-bit security.
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[NWI+13] needs more than 50 minutes and 270 MB exchanged data to perform a similar com-
putation.4 Finally, we notice that gradient descent based solutions (e.g., [GSB+17, MZ17])
use iterative algorithms and present the problem of estimating the number of iterations t.
Either t is fixed to a high value that ensures finding a good approximation of the model,
which incurs higher complexity for the protocol, either t is chosen adaptively based on the
dataset, which can be infeasible in the privacy-preserving setting. Our solution for solving
Aw = b does not present this problem.

Roadmap In Section 2 we recall ridge linear regression and the cryptographic primitives
involved in the design of our system. In Section 3 we describe the general framework of
our system (e.g., parties involved, security assumptions, security definitions, etc.). We also
provide an overview of its design. In Section 4 we describe in detail the protocols that form
our two-phase system. Finally, Section 5 reports on our implementation and experimental
results.

2 Background

Linear regression

A linear regression learning algorithm is a procedure that on input n points {(x1, y1), . . . , (xn, yn)}
(where xi ∈ Rd and yi ∈ R) outputs a vector w∗ ∈ Rd such that w∗

ᵀ
xi ≈ yi for all

i = 1, . . . , n. One common way to compute such a model w∗ is to use the squared-loss func-
tion and the associated empirical error function (mean squared error): fX,y(w) = ‖Xw−y‖22.
Here X ∈ Rn×d is the matrix with the vector x

ᵀ
i as ith row and y ∈ Rn is the vector with

the value yi as ith component. We assume that X is always full-rank (i.e., rk(X) = d).
Specifically, w∗ is computed by minimizing a linear combination of the aforementioned error
function and a regularization term, that is w∗ ∈ argminw∈Rd fX,y(w) + λR(w) where λ ≥ 0
is fixed. The regularization term is added to avoid over-fitting the training dataset and to
bias toward simpler models. In practice, one of the most common regularization terms is
the 2-norm (R(w) = ‖w‖22), which generates a model with overall smaller components. In
this case (called ridge regression), the model w∗ is computed by minimizing the function
Fridge(w) = ‖Xw − y‖22 + λ‖w‖22. Since, ∇Fridge(w) = 2X

ᵀ
(Xw − y) + 2λw, we have that

w∗ is computed solving the linear system

Aw = b (1)

where A = X
ᵀ
X + λI (symmetric d × d matrix) and b = X

ᵀ
y (vector of d components).

Notice that since X is full-rank, A is positive definite and therefore det(A) > 0 (in particular
A is invertible).

Cryptographic tools

To design our privacy-preserving system, we utilize homomorphic encryption. Let (M,+)
be a finite group. A linearly-homomorphic encryption (LHE) scheme for messages in M is
defined by three algorithms:

1. the key-generation algorithm Gen takes as input the security parameter κ and outputs
the pair of secret and public keys, (sk , pk)← Gen(κ).

2. the encryption algorithm Enc is a randomized algorithm that uses the public key to
transform a message m from M (plaintext space) into a ciphertext, c← Encpk (m).

4Timing on a 1.9 GHz 64 GB RAM machine running Linux 12.04; 80-bit security.
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3. the decryption algorithm Dec is a deterministic function that takes as input a ciphertext
and the secret key and recovers the original plaintext (i.e., Pr[Decsk (c) = m] = 1 where
the probability is taken over the encryption algorithm’s random choice).

The standard security property (semantic security) says that it is infeasible for any compu-
tationally bounded algorithm to gain extra information about a plaintext when given only
its ciphertext and the public key pk . Moreover, we have the homomorphic property: Let C
be the set of all possible ciphertexts, then there exists an operation � on C such that for
any a-tuple of ciphertexts c1 ← Encpk (m1), . . . , ca ← Encpk (ma) (a positive integer), it holds
that Pr[Decsk (c1 � · · · � ca) = m1 + · · · + ma] = 1. This implies that, if c = Encpk (m),
Decsk (cMult(a, c)) = am, where cMult(a, c) = c � · · · � c (a times). Known instantiations
of this primitive include Paillier’s scheme [Pai99], and its generalization by Damg̊ard and
Jurik [DJ01], Regev’s scheme [Reg09] and Joye-Libert scheme [JL13].

In some cases being able to perform only linear operations on encrypted messages is not
sufficient. For example, when considering arbitrarily partitioned datasets, we will need to
be able to compute the encryption of the product of two messages given the encryptions of
the individual messages. An LHE scheme cannot directly handle such operation. On the
other hand, a general solution to the problem of computing on encrypted data can be ob-
tained via the use of fully-homomorphic encryption [Gen09]. Since full fledged constructions
of fully-homomorphic encryption are still inefficient, more efficient solutions have been de-
signed for evaluating low-degree polynomials over encrypted data functionalities (somewhat-
homomorphic encryption). In a recent work, Barbosa et al. [BCF17] introduce the concept
of labeled-homomorphic encryption (labHE); this new primitive significantly accelerates ho-
momorphic computation over encrypted data when the function that is being computed is
known to the party that decrypts the result. Since in this paper we consider that the machine-
learning algorithm and the data distribution among the participants is publicly known, the
previous assumption is satisfied and we can make use of labHE. In particular, Barbosa et al.
show how to design an homomorphic encryption scheme that supports evaluation of degree-
two polynomials using only an LHE and a pseudo-random function. The new scheme is
public-key and works in the multi-user setting: two or more users encrypt different messages,
an encryption of the evaluation of a degree-two polynomial on these messages can be con-
structed by any party having access to the public key and the ciphertext. Then the party
holding the secret key can decrypt and reveal the result of the evaluation (the polynomial is
public, the correspondence user-ciphertext is known). We briefly recall here their construc-
tion [BCF17, Section 5] in the case that the polynomial is evaluated on messages encrypted
only by two different users.

Let (Gen,Enc,Dec) be an LHE scheme with security parameter κ and message space
M. Assume that a multiplication operation is given in M, i.e., (M,+, ·) is a ring, and let
F : {0, 1}s×L →M be a pseudo-random function with seed space {0, 1}s (s = poly(κ)) and
input space L. Define:

• labGen(κ): On input κ, it runs Gen(κ) and outputs (sk , pk).

• localGen(pk): For each user i and with the public key as input, it samples a random
seed σi in {0, 1}s and computes pk i = Encpk (σi). It outputs (σi, pk i).

• labEncpk (σi,m, τ): On input a message m ∈ M with label τ ∈ L from the user i, it
computes b = F (σi, τ) and outputs the labeled ciphertext c = (a, c) ∈ M × C with
a = m− b in M and c = Encpk (b).

• labMult(c, c′): On input two labeled ciphertexts, c = (a, c) and c′ = (a′, c′), it computes
a “multiplication” ciphertext d as d = Encpk (a · a′)� cMult(a, c′)� cMult(a′, c).

Observe that Decsk (d) = m · m′ − b · b′. Moreover, notice that given two or more
multiplication ciphertexts d1, . . . , dn, we can “add” them using the operation of the
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underlying LHE scheme: d1 � · · · � dn. Assume that user i and user j have both
encrypted n messages, m1, . . . ,mn and m′1, . . . ,m

′
n, respectively. Let c̃ ∈ C be the

ciphertext obtained as

n⊙
t=1

labMult
(
labEncpk (σi,mt, τt), labEncpk (σj ,m

′
t, τ
′
t)
)
.

• labDecsk (pk i, pk j , c̃): On input c̃, it computes σi = Decsk (pk i) and σj = Decsk (pk j).
Then, it computes bt = F (σi, τt) and b′t = F (σj , τ

′
t) for all t = 1, . . . , n. Finally,

it computes b̃ =
∑n
t=1 bt · b′t and m̃ = Decsk (c̃) − b̃. It is easy to verify that m̃ =∑n

t=1mt ·m′t.

Data representation

In order to use the cryptographic tools described in the former section, we need to represent
the real values that form the input datasets as elements in the finite set M (the message
space). Without loss of generality, we assume thatM = ZN for some big integer N and that
the entries of X and y are numbers from the real interval [−δ, δ] (with δ > 0)5 with at most `
digits in their fractional part. In this case, the conversion from real values to elements in M
can be easily done by rescaling all the entries of X and y and then mapping the integers in
ZN using the modular operation. For this reason, from now on we consider that the entries
of X and y are integers from 0 to N − 1. This implies that we consider the matrix A and
the vector b having positive integer entries6 and, finally, that we assume that the model
w∗ is a vector in Qd. Notice that for the integer representation of A and b it holds that
‖A‖∞, ‖b‖∞ ≤ 102`(nδ2 +λ). Therefore, if 102`(nδ2 +λ) ≤ N−1

2 , then A and b are embedded
in ZN without overflow for their entries. However, if the linear system (1) is now solved over
ZN , then clearly the entries of the solution are given as modular residues of ZN and may
be different from the entries of the desired model w∗ in Qd. In order to solve this problem
and recover the model in Qd from the model computed over ZN , we can apply the rational
reconstruction technique component-wise. With rational reconstruction [WGD82, FSW02]
we mean the application of the Lagrange-Gauss algorithm to recover a rational t = r/s from
its representation in ZN as t′ = r s−1 mod N , for N big enough (see (2) in Section 4).

3 Threat Model and System Overview

We consider the setting where the training dataset is not available in the clear to the entity
that wants to train the ridge regression model. Instead, the latter can access encrypted copies
of the data and, for this reason, needs the help of the party handling the cryptographic keys
in order to learn the desired model. More precisely, protocols in this paper are designed for
the following parties:

• The Data-Owners: there are m data-owners DO1, . . . ,DOm; each data-owner DOi has
a private dataset Di and is willing to share it only if encrypted.

• The Machine-Learning Engine (MLE): this is the party that wants to run a linear re-
gression algorithm on the dataset D obtained by merging the local datasets D1, . . . ,Dm,
but has access only to the encrypted copies of them. For this reason, MLE needs the
help of the Crypto Service Provider.

5In other words, δ = max{‖X‖∞, ‖y‖∞} for the original X and y.
6We assume that λ ∈ R has at most 2` digits in the fractional part.
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• The Crypto Service Provider (CSP) takes care of initializing the encryption scheme used
in the system and interacts with MLE to help it in achieving its task (computing the
linear regression model). CSP manages the cryptographic keys and is the only entity
capable of decrypting.

We assume that MLE and CSP do not collude and that all the parties involved are honest-
but-curious. That is, they always follow the instructions of the protocol but try to learn
extra information about the dataset from the messages received during the execution of the
protocol (i.e., passive security). Moreover, we assume that for each pair of parties involved
in the protocol there exists a private and authenticated peer-to-peer channel. In particular,
communications between any two players cannot be eavesdropped.

The goal is to ensure that MLE obtains the model while both MLE and CSP do not learn
any other information about the private datasets Di beyond what is revealed by the model
itself. Even in the case that one of the two servers (MLE or CSP) colludes with some of
the data-owners, they should learn no extra information about the data held by the honest
data-owners. In order to achieve this goal we design a system that can be seen as multi-party
protocol run by the m+2 parties mentioned before and specified by a sequence of steps. This
system (described in Section 4) has the following two-phase architecture:

Phase 1 (merging the local datasets): CSP generates the key pair (sk , pk), stores sk and
makes pk public; each DOi sends to MLE specific ciphertexts computed using pk and
the values in Di. MLE uses the ciphertexts received and the homomorphic property of
the underling encryption scheme in order to obtain encryptions of A and b (coefficient
matrix and vector in (1)).

Phase 2 (computing the model): MLE uses the ciphertexts Encpk (A) and Encpk (b) and
private random values in order to obtain encryptions of new values that we call “masked
data”; these encryptions are sent to the CSP; the latter decrypts and runs a given
algorithm on the masked data. The output of this computation (“masked model”) is a
vector w̃ that is sent back from the CSP to the MLE. The latter computes the output
w∗ from w̃.

Informally, we say that the system is correct if the model computed by the MLE is equal to
the model computed by the learning algorithm in the clear using D as training data. And
we say that the system is private if the distribution of the masked data sent by the MLE to
the CSP is independent of the distribution of the local inputs. Thus, no information about
D1, . . . ,Dm is revealed by the messages exchanged during Phase 2.

As we will see in Section 4, the specific design of the protocol realizing Phase 1 depends
on the distributed setting: horizontally- or arbitrarily-partitioned datasets. However, in both
cases, the data-owners input encryptions of local values and the MLE gets the encryptions of
A and b. The CSP simply takes care of initializing the cryptographic primitive and generates
the relative key. Phase 2 is realized by an interactive protocol for MLE and the CSP that
takes on input the encryptions of A and b from the MLE and returns the solution of the
system Aw = b following this pattern (we refer to this as the “masking trick”):

• The MLE samples a random invertible matrix R and a random vector r and it uses the
linear homomorphic property of the underlying encryption scheme to compute C ′ =
Encpk (AR) and d′ = Encpk (b + Ar). The values C = AR and d = b + Ar are the
“masked data”.

• The CSP decrypts C ′ and d′ and computes w̃ = C−1d. The vector w̃ is the “masked
model” sent back to the MLE.

• The MLE computes the desired model as w∗ = Rw̃ − r. Indeed, it is easy to verify
that Rw̃ − r = R(AR)−1(b +Ar)− r = A−1b.

7



Informally, the security of the encryption scheme assures privacy against an honest-but-
curious MLE. On the other hand, if R and r are sampled uniformly at random, then the
distribution of the masked data is independent of A and b. This guarantees privacy against
an honest-but-curious CSP. Similar masking tricks have been previously used in different
settings. In [BB89], a similar method is used to design a secret-shared based MPC protocol
for the evaluation of general functions. In this work, we tailor the masking trick for the
goal of solving the linear system Aw = b gaining in efficiency. In [WRWW13], masking
with random values is used to outsource a large-scale linear system to an untrusted cloud
server. They assume that the coefficient matrix A and vector b of the linear system are
known to a cloud customer seeking the solution w. In this work, A and b are encrypted
and the masking is applied inside the encryption; to make the masking trick, which works in
Q, compatible with the encryption and the modular arithmetic used for it, we make use of
rational reconstruction.7

Notice that the two-server model allows for different implementations in practice. If
we consider applications in which the majority of data-owners are willing to help to run
collaborative analysis but don’t want to (or cannot) spend to much resources to execute
it, then the role of MLE and CSP can be taken by two semi-trusted8 third-parties (e.g.,
two independent research institutions). This setting offers the practical advantage that the
involvement of all data-owners is minimal. Otherwise, since CSP and MLE are only required
to be non-colluding, their role can be taken by two disjoint subsets of data-owners (e.g., for
m ≥ 2, we can have DO1 and DO2 playing the role of MLE and CSP, respectively). In this
case, no third-parties are required to implement the system.

We assume that the data parameters (i.e., n, d, and δ), the system parameters (i.e., `, m
and κ) and the regularization parameter λ are public values.

4 Protocols Description

In this section we describe how to implement Phase 1 and Phase 2. Let (Gen,Enc,Dec) be an
LHE scheme with security parameter κ and message space ZN .

4.1 Phase 1: Merging the dataset

Horizontally-partitioned setting Assume that the dataset represented by the matrix X
and the vector y is horizontally-partitioned in m datasets. That is, the data-owner DOk

holds Dk =
{

(xnk−1+1, ynk−1+1), . . . , (xnk , ynk)
}

, for k = 1, . . . ,m (0 = n0 < n1 < · · · <
nm = n). In this case, as already noticed in [NWI+13], defining Ak =

∑nk
i=nk−1+1 xix

ᵀ
i and

bk =
∑nk
i=nk−1+1 yixi, we have that A =

∑m
k=1Ak +λI and b =

∑m
k=1 bi. In Protocol Π1,hor,

each data-owner DOk computes and sends to MLE encryptions of the entries of Ak and bk;
then MLE computes encryptions of the entries of A and b using the above formulas and the
operation � (details in Fig. 1).

Arbitrarily-partitioned setting Assume that each DOk holds some elements of X and
y. That is, DOk holds Dk =

{
X[i, j] = xi[j] | (i, j) ∈ Dk

}
∪
{
y[i] = yi | (i, 0) ∈ Dk

}
,

where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d}. Assume that each data-owner sends encryptions of
the elements it knows to MLE. Then, in order to compute encryptions of the entries of A
and b, MLE needs to multiply two ciphertexts. Indeed, we have b[i] =

∑n
t=1 xt[i]y[t] and

A[i, j] =
∑n
t=1 xt[i]xt[j] if j 6= i, otherwise A[i, i] =

∑n
t=1 xt[i]xt[j]+λ. To allow this, we use

7Notice that the system presented in [WRWW13] fails because no techniques are used to make the arith-
metic over Q compatible with the modular arithmetic used by the underling LHE (i.e., Paillier’s scheme).
See [CL16] for more details on this.

8That is, trusted to be non-colluding.
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Protocol Π1,hor

– Parties: CSP and MLE with no input, DOk with input Dk (as defined in (3)).

– Output : MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk)← Gen(κ) and makes pk public, while it keeps
sk secret.

Step 2 : (local computation) For all k = 1, . . . ,m, DOk computes Ak =
∑
i xix

ᵀ
i and

bk =
∑
i yixi with nk−1 + 1 ≤ i ≤ nk; next, DOk encrypts them, A′k[i, j] =

Encpk (Ak[i, j]), b′k[i] = Encpk (bk[i]) for all i, j = 1, . . . , d and j ≥ i; finally, DOk

sends all A′k and b′k to MLE.

Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{
(
⊙m

k=1A
′
k[i, i])� Encpk (λ) if j = i⊙m

k=1A
′
k[i, j] if j > i

, b′[i] =
m⊙
k=1

b′k[i] .

Figure 1: Protocol Π1,hor implements Phase 1 in the horizontally-partitioned setting.

labeled-homomorphic encryption. As we recalled in Section 2, the latter can be constructed
on top of any LHE scheme and it enhances the underlying scheme with the multiplication
command labMult. In particular, after having received labeled-encryptions of the input from
the data-owners9, MLE can compute the encryptions of the entries of A and b using formulas
of the form

⊙n
t=1 labMult

(
labEnc(xt[i]), labEnc(xt[j])

)
. Remember that the output of the

command labMult used to compute the encryption of the product of two messages, m1 and
m2, is in fact an encryption of m1m2 − b1b2 where b1, b2 are two random values used to
compute the labeled-encryptions of the values m1 and m2. For this reason, at the end of the
procedure described before, MLE obtains encryptions of A−B and b−c, instead of encryption
of A and b, where B and c depend on the random values used to encrypt the entries of the
local datasets using the labeled-homomorphic scheme. The matrix B and the vector c can be
reconstructed by the party handling the decryption key (i.e., CSP). The decryption procedure
of the labeled-homomorphic scheme, labDec, accounts for this. However, in the application
we consider here (training a ridge regression model) it is necessary that at the end of Phase 1
the MLE has proper encryptions for A and b. Indeed, only in this case we can proceed to
Phase 2 and use the masking trick (using the masking trick with labeled-encryptions of A and
b doesn’t work). For this reason, we need to add one round of communication where CSP
sends to MLE encryptions of the entries of B and c. This can be done before the beginning
of the actual computation (Step 1 of Phase 1) since B and c do not depend on the actual
data used to train the regression model. In this way, the MLE can finally gets encryptions of
A and b. Protocol Π1,arb in Fig. 2 describes this in detail.

4.2 Phase 2: Computing the model

At the end of Phase 1, MLE knows component-wise encryption of the matrix A and the vector
b (both with entries represented in ZN , the message space of the LHE scheme used in Phase

9If xt[i] and xt[j] are both held by one DOk, then the former can send Encpk (xt[i]xt[j]) to MLE, who
updates the formulas in Step 3 of Π1,arb accordingly.
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Protocol Π1,arb

– Parties: CSP and MLE with no input, DOk with input Dk (as defined in (4)).

– Output : MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk) ← labGen(κ) and makes pk public, while it
keeps sk secret. For k = 1, . . . ,m, DOk runs (σk, pkk)← localGen(pk) and makes
pkk public, while it keeps σk secret.

(setup) For k = 1, . . . ,m, CSP computes σk = Decsk (pkk) and bij = F (σk, (i, j))
with (i, j) ∈ Dk. For i, j = 1, . . . , d and j ≥ i, CSP computes B′[i, j] =
Encpk (

∑n
t=1 btibtj) and c′[i] = Encpk (

∑n
t=1 btibt0). These are sent to MLE.

Step 2 : (local computation) For k = 1, . . . ,m, DOk computes labeled-encryptions of
the known entries of X and y. That is, for all (i, j) ∈ Dk, DOk computes
cij = (aij , cij) = labEncpk (σk,xi[j], (i, j)) when j > 0 and ci0 = (ai0, ci0) =
labEncpk (σk,y[i], (i, 0)).

For all k = 1, . . . ,m, DOk sends all labeled-ciphertexts cij to MLE.

Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{
(
⊙n

t=1 labMult(cti, cti))�B′[i, i]� Encpk (λ) if j = i

(
⊙n

t=1 labMult(cti, ctj))�B′[i, j] if j > i
,

b′[i] =

(
n⊙
t=1

labMult(cti, ct0)

)
� c′[i] .

Figure 2: Protocol Π1,arb implements Phase 1 in the arbitrarily-partitioned setting.

1). Recall that the final goal of our system is computing w∗ ∈ Qd solution of (1). In order to
do this in a privacy-preserving manner, in Phase 2 we implement the masking trick described
in Section 3 and compute w̃∗ that solves (1) in ZN . Then we use rational reconstruction
to find w∗. All the details of this are reported in Protocol Π2 (Fig. 3). The correctness is
easy to verify, indeed we have: Rw̃− r ≡ R(AR)−1(b +Ar)− r ≡ A−1b (mod N). Security
is also straightforward: Protocol Π2 is secure against a honest-but-curious CSP because the
values seen by it (the masked data AR mod N and b+Ar mod N) have a distribution that
is unrelated with the input datasets. Moreover, Protocol Π2 is secure against a honest-but-
curious MLE because of the security of the underlying encryption scheme. Indeed, the MLE
sees only an encrypted version of A and b. See Appendix A.6 for the formal security proof.

In some applications, a desirable property is that the model is delivered only to the data-
owners. If the role of MLE and CSP is taken by third-parties, this can be achieved using a
standard tool as threshold encryption [DJ01]. In this case, the key generation step of Phase 1
is enhanced with the sharing of sk (i.e., CSP knows sk and each DOi knows a share for sk).
Then, Step 2 of Protocol Π2 is modified in such a way that CSP sends to MLE the value
Encpk (w̃), instead of the vector w̃ in the clear. MLE computes Encpk (w̃∗) and broadcasts it
to all data-owners. Finally, the DOi collaborates to jointly decrypt and compute w∗.
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Protocol Π2

– Parties: CSP knows sk , MLE knows A′ = Encpk (A) and b′ = Encpk (b).

– Output : MLE gets w∗.

Step 1 : (data masking) MLE samples R← (Zd×dN )∗ and r ← ZdN and computes

C ′[i, j] =
⊙d

k=1 cMult(R[k, j], A′[i, k])

d′[i] = b′[i]�
(⊙d

k=1 cMult(r[k], A′[i, k])
)

for all i, j = 1, . . . , d; next, MLE sends C ′ and d′ to CSP.

Step 2 : (masked model computation) CSP first decrypts C ′ and d′ obtaining C and d
(C[i, j] = Decsk (C ′[i, j]), d[i] = Decsk (d′[i]) for all i, j = 1, . . . , d); then it com-
putes w̃ ≡ C−1d mod N and sends it w̃ to MLE.

Step 3 : (model reconstruction) MLE computes w̃∗ ≡ Rw̃ − r mod N and uses rational
reconstruction on each component of w̃∗ to compute w∗ ∈ Qd.

Figure 3: Protocol Π2 implements Phase 2.

4.2.1 Choice of parameters

In the last step of Π2 we use rational reconstruction to recover the components of w∗ ∈ Qd
from the solution of Aw = b computed in ZN . According to [WGD82, FSW02] if a rational
t = r/s with −R ≤ r ≤ R, 0 < s ≤ S and gcd(s,N) = 1 is represented as t′ = rs−1

mod N in ZN , then the Lagrange-Gauss algorithm uniquely recovers r and s provided that
2RS < N . Since w∗ = A−1 b = 1

det(A) adj(A)b ∈ Qd, in order to choose N that satisfies the

condition stated before, we need to bound the det(A) and the entries of the vector adj(A)b.
Let α = max{‖A‖∞, ‖b‖∞}, using the Hadamard’s inequality (see Appendix A.1), we have

that 0 < det(A) ≤ αd (A is a positive definite matrix) and ‖ adj(A)b‖∞ ≤ d(d − 1)
d−1
2 αd.

Using the same assumptions of Section 2 on the entries of X and y (that is, the entries of X
and y are real number in [−δ, δ] with at most ` digits in the fractional part), we have that
α ≤ 102`(nδ2 + λ). It follows that the condition 2RS < N is fulfilled when

2d(d− 1)
d−1
2 104`d (nδ2 + λ)2d < N . (2)

4.2.2 Communication complexity

The messages sent during Protocol Π1,hor and Protocol Π2 contain Θ(d2) elements from ZN ,
while the ones in Protocol Π1,arb contain Θ(dn) elements. This implies a communication cost
of O(d3 log(nd)) bits for Π1,hor and Π2, and of O((nd2 + d3) log(nd)) bits for Π1,arb (details
in Appendix A.3). In particular, our approach significantly improves the communication
complexity compared to the previous solutions that use Yao’s scheme [NWI+13, GSB+17].
Indeed, the latter requires CSP sending the garbled representation of a boolean circuit of
millions of gates (see [NWI+13, Fig. 5] and [GSB+17, Fig. 7]) to MLE. In [NWI+13] the
authors show that the garbled representation of one gate is a lookup table of around 30 bytes
(80-bit security). This means that a privacy-preserving system based on Yao’s scheme, only for
sending the garbled circuit and without considering the other steps needs at least hundreds
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of megabytes. On the other hand, even for large values of n and d, the communication
complexity of Π2 is much smaller than 100 MB (see Fig. 4). For example, in the horizontally-
partitioned setting [NWI+13] uses same techniques we deploy in Π1,hor and Yao’s protocol.
In particular, [NWI+13] reports that the garbled representation of the circuit that solves (1)
with d = 20 using Cholesky decomposition (24-bit integer representation) has size 270 MB.
On the other hand, for a dataset with 10 millions instances and d = 20, the overall overhead10

of Π1,hor + Π2 is less than 1.3 MB. In the arbitrarily-partitioned setting, the communication
overheard of our system is dominated by the cost of Phase 1 (Protocol Π1,arb) because of its
linear dependency on the number of instances n. However, this seems to be the case also
in other approaches. For example, in [GSB+17], a secure inner-product protocol based on
additive secret-sharing and Beaver’s triples [Bea91] is used to compute the inner product of
the columns of the matrix X vertically-partitioned among two or more users. The complexity
of this approach for Phase 1 is Θ(nd2 log(n)) bits (comparable with the complexity of Π1,arb).
In Phase 2, [GSB+17] use Yao’s protocol and conjugate gradient descent (CGD) algorithm
to solve (1). They do not report the concrete size of the circuit, but they show the number of
gates. For d = 100 and only 5 iterations of the CGD, more than 108 gates are used: this gives
an overhead of at least 3 GB only for sending the garbled circuit during Phase 2 (assuming
a garbled gate is 30 bytes). On the other hand, the overall overhead of Π1,arb + Π2 when
d = 100 for a dataset of 5 thousands instances is less than 1.3 GB.

50 100 150 200 250

100

300

500

700

d

n = 105

n = 107

n = 109

Figure 4: Communication overhead in MB of
Π2 (δ = 1, 80-bit security, ` = 3, Paillier’s
scheme, λ = 0).

The SecureML paper [MZ17] uses only
additive secret-sharing and Beaver’s triples
to design a system that assumes an arbi-
trary partitioning of the dataset. When
the pre-processing needed for the triples is
implemented via LHE, the linear regres-
sion training system proposed in [MZ17]
has complexity Θ(nd + n). Thus, in
terms of communication complexity, [MZ17]
performs better than our solution in the
arbitrarily-partitioned case. Our system,
however, is preferable if the training dataset
is horizontally-partitioned and n >> d (e.g.,
n = Θ(d2.5)). For example, if d = 100 and
n = 105 the system in [MZ17] has an over-
heard of 200 MB for the pre-processing phase only (see [MZ17, Table II]), while the total cost
of Π1,hor + Π2 is less than 120 MB.

5 Implementation

In this section we describe our implementation case study of the system described in Section 4.
Our goal is to evaluate the effect of the public parameters on the system’s accuracy and
efficiency, and to test our system on real-world datasets. In particular, the experiments we
run are designed to answer the following questions:

1. Evaluate accuracy : How does the system parameter ` (number of digits in the fractional
part of the input data) influence the accuracy of the output model w∗? Recall that we
assume that the values in X and y are real number with at most ` digits in the fractional
part. In practice, this means that each user must truncate all the entries in the local
dataset after the `th digit in the fractional part. This is done before inputting the

10In this section, for our system we assume ` = 3 and Paillier’s scheme with 80-bit security as underlying
LHE.
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values in the privacy-preserving system. On the other hand, in the standard machine
learning-setting this requirement is not necessary, and the model is computed using
floating point arithmetic on values with more than ` digits in the fractional part. For
this reason, the model w∗, which is trained using our privacy-preserving system, can
differ from the model w̄∗ learned in the clear (same regularization parameter λ is used).
To evaluate this difference we use

RMSE =

∣∣∣∣MSE(w∗)−MSE(w̄∗)

MSE(w̄∗)

∣∣∣∣
where MSE is the mean squared error of the model computed on a test dataset (this
is a common measure of model accuracy in the machine learning setting). The value
RMSE tells the loss in accuracy caused by using the vector w∗ instead of w̄∗ as model.

2. Evaluate running-time: How do the data parameters n and d influence in practice the
running time of each step in our privacy-preserving system? In Appendix A.3 we report
the number of different elementary operations (e.g., , encryptions, modular additions,
etc.) for each step in the system, while in this section we report the total running time
of each step.

3. Evaluate efficiency in practice: how does our system behave when is run on real-world
data? In particular, we run our system on datasets download from the UCI repository11,
which is commonly used for evaluating new machine-learning algorithms in the standard
setting (i.e., no privacy guarantees).

Setup

We implemented our system using Paillier’s scheme with message spaceM = ZN where N is
a large RSA modulus (see Appendix A.2). In order to assure a security level of at least 100
bits12, decrease the running time and the communication overhead, and satisfy (2), we choose
N such that log2(N) = max{2048, bβc+1} where β is the logarithm in base 2 of the left-hand
side of (2). We wrote our software in Python3 5.2 using the phe1.3 library13 to implement
Paillier encryption/decryption and operations on ciphertexts. We use the gmpy2 library14 to
implement arithmetic operations with large integers. To compute the determinant function
and to solve linear systems, we use the Gaussian elimination. To test the system composed by
Π1,hor + Π2, we run experiments in the horizontally-partitioned (HP) setting, splitting n data
points evenly among 10 data-owners. To test the system Π1,arb + Π2, we run experiments
in the vertically-partitioned (VP) setting, where we assume that d features are evenly split
among 3 data-owners and DO3 also has y. In both cases, after having implemented Phase 1,
we release variables no longer needed and we run the garbage collector to clean up memory
before running Π2.

Experiments results

All experiments whose results are reported in this section were run on a machine with the
following specifics. OS : Scientific Linux7.4, CPU : 40 core (Intel(R) Xeon(R) CPU E5-2660
v2 2.20GHz), Memory: 500GB. All the timings are reported in seconds, all the values are
averaged on 5 repetitions of the same experiment.

11https://archive.ics.uci.edu/ml/datasets.html
12According to NIST standard, a factoring modulus of 2048 bits gives 112-bit security.
13http://python-paillier.readthedocs.io
14https://pypi.python.org/pypi/gmpy2
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Table 1: Running times (secs) for synthetic data in the HP and VP setting (` = 3).

n d log2(N) RMSE
Phase 1 Phase 2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

HP

1000

10 2048 7.21E-05 0.21 1.10 0.03 1.21 0.56 0.04

20 2048 1.54E-04 0.32 3.88 0.12 7.96 2.15 0.14

30 2048 1.58E-04 0.18 8.34 0.26 24.76 4.80 0.29

40 2504 2.01E-04 0.38 26.13 0.62 100.94 14.72 0.67

10000

10 2048 5.45E-05 0.16 1.11 0.03 1.21 0.57 0.04

20 2048 1.29E-04 0.09 3.93 0.12 7.99 2.14 0.15

30 2072 1.90E-04 0.36 8.83 0.26 25.96 5.17 0.32

40 2768 1.84E-04 0.39 29.81 0.72 120.43 19.34 0.86

100000

10 2048 1.05E-04 0.13 1.17 0.03 1.22 0.57 0.05

20 2048 1.08E-04 0.20 4.13 0.12 7.99 2.15 0.16

30 2270 1.38E-04 0.23 11.65 0.31 33.19 6.26 0.40

40 3034 1.76E-04 0.61 38.38 0.86 151.37 24.82 1.08

VP

1000
10 2048 1.50E-04 1.41 62.06 135.09 1.22 0.56 0.04

15 2048 8.90E-05 2.52 90.36 220.32 3.51 1.22 0.08

20 2048 1.78E-04 4.08 118.73 327.48 8.10 2.16 0.14

2000
10 2048 1.08E-04 1.92 124.35 276.13 1.23 0.59 0.04

15 2048 6.64E-05 3.54 181.09 443.78 3.56 1.31 0.09

20 2048 1.67E-04 5.62 236.54 653.06 8.03 2.17 0.14

3000
10 2048 6.46E-05 2.31 185.89 402.53 1.21 0.57 0.04

15 2048 1.06E-04 4.38 270.12 659.67 3.52 1.22 0.08

20 2048 1.36E-04 7.00 355.12 979.89 8.12 2.14 0.14

Table 2: Running times (secs) for UCI datasets in the HP and VP setting.

Dataset n d ` log2(N) RMSE
Phase 1 Phase 2

Time kB Time kB

HP

air 6252 13 1 2048 4.15E-09 1.99 53.24 3.65 96.51

beijing 37582 14 2 2048 5.29E-07 2.37 60.93 4.26 110.10

boston 456 13 4 2048 2.34E-06 2.00 53.24 3.76 96.51

energy 17762 25 3 2724 5.63E-07 12.99 238.26 37.73 451

forest 466 12 3 2048 3.57E-09 1.66 46.08 2.81 82.94

student 356 30 1 2048 4.63E-07 9.36 253.44 30.40 483.84

wine 4409 11 4 2048 2.62E-05 1.71 39.42 2.38 70.40

VP
boston 456 13 4 2048 2.34E-06 123.76 1.5 103 3.73 96.51

forest 466 12 3 2048 3.57E-09 115.04 1.4 103 2.92 82.94

student 356 30 1 2048 4.63E-07 297.52 2.7 103 30.54 483.84

1 3 5 7
10−8

10−5

10−2

`

HP

VP

Figure 5: Error rate RMSE (log scale)
in function of ` (n = 103, d = 10).

To answer question 1, we measure RMSE for dif-
ferent values of ` for synthetically-generated data (see
Appendix A.4) in both the HP and VP setting (see
Fig. 5). With the increasing of `, regardless of the
values of n and d, the value of RMSE decreases very
rapidly, while the efficiency degrades. Indeed, because
of (2) the value of this parameter has effect on the
bit-length of the plaintexts and ciphertexts. For this
reason, we recommend to choose ` equal to a small
integer (e.g., ` = 3). This choice allows to have a
negligible error rate (e.g., RMSE of order 10−4) with-
out degrading system efficiency.

To answer question 2 and assess the effect of the parameters n and d on our system’s
performance, we report in Table 1 the running time of each step of the system when it is
run on synthetic data. The advantage of this approach is that we can run experiments for a
wide range of parameters values. For Step 2 in Phase 1 (Protocol Π1,hor in the HP setting,
Protocol Π1,arb in the VP setting) we report the average running time for one data-owner. In
Protocol Π1,hor, Step 2 is the most expensive one. Here, the data-owner DOk computes the
d × d matrix Ak and encrypts its entries. In our setting (n data points evenly split among
the ten data-owners), this costs Θ(nd2) arithmetic operations on plaintext values and Θ(d2)

14



encryptions for one data-owner. We verified that the costs of the encryptions is dominant
for all values of n considered here15. In Step 3 of Π1,hor, the MLE computes the encryption
of A and b using approximately Θ(d2) ciphertexts additions (i.e., multiplications modulo
N), which turns out to be fast. In Π1,arb, Step 3 is the most expensive step, here the MLE
performs Θ(nd2) ciphertexts operation to compute Encpk (A) and Encpk (b). In particular, the
running time of Π1,arb is more influenced by the value of n than the running time of Π1,hor

and Π2. Finally, for Π2 the results in Table 1 show that Step 1 requires longer time respect
to the other two steps because of the Θ(d3) operations done on ciphertexts. Step 2 and 3
require Θ(d2) decryptions and Θ(d2) operations on plaintexts and therefore are faster (e.g.,
less then 27 seconds for both the steps for a dataset of one hundred thousands instances with
40 features).

To answer question 3 and show the practicality of our system we report in Table 2 the
total running time and communication overhead for seven different UCI datasets (references in
Table 5 in Appendix A.4). Some of these datasets were used also in [NWI+13] and [GSB+17].
For example, [NWI+13] reports a running time of 45 seconds and a communication overhead
of 83 MB (69 MB, resp.) for the Phase 2 of their system run on the dataset “forest” (“wine”,
resp.) ([NWI+13, Table I]). Our protocol Π2 for the same datasets has a running time of
about 3 seconds with less then 83 kB sent. Phase 2 of the system presented in [GSB+17] runs
on the dataset “student” in 19 seconds ([GSB+17, Table 3]) and we estimate an overhead of
3 GB (20 iterations for the CGD). Protocol Π2 on the same dataset runs in about 40 seconds
with 484 kB of overhead.
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A Appendix

A.1 Standard notations

For any integer N > 1, ZN denotes the ring of integers modulo N and Z∗N denotes its group
of units. For an integer a, a mod N represents the smallest integer in {0, 1, . . . , N −1} that is
congruent to a modulo N . We use bold notation for vectors and capital letters for matrices
(e.g., x ∈ Rn is a column vector, X ∈ Rn×d is matrix with n rows and d columns, both
with real-value entries). We indicate the i-th component of a vector x with x[i] and the i-th
component of the j-th column of a matrix X with X[i, j]. The p-norm of a vector x ∈ Rn is
defined by ‖x‖p = p

√∑n
i=1 |x[i]|p. The sup-norm of a matrix (or vector) X ∈ Rn×d is defined

by ‖X‖∞ = maxi,j{|X[i, j]|}. If A is a d × d matrix, then the adjunct of A is defined as
adj(A) = C

ᵀ
with C[i, j] = (−1)i+jAij and Aij is the determinant of the (d − 1) × (d − 1)

matrix that results from deleting row i and column j of A (i.e., the (i, j) minor of A).
Note that adj(A) = det(A)A−1. Finally, we recall that Hadamard’s inequality implies that
|det(A)| ≤ (

√
d ‖A‖∞)d, and det(A) ≤ ‖A‖d∞ if A is positive definite.

A.2 Paillier’s scheme

We briefly recall here Paillier’s scheme [Pai99] used in the implementation presented in Section
5. Given a security parameter κ, Gen samples p and q, two prime integers of same bit-length,
and defines N = pq and ν = lcm(p−1, q−1). It sets pk = N , sk = ν andM = ZN , C = Z∗N2 .
To encrypt m ∈M, Enc randomly chooses r in Z∗N and computes c = (1 +mN)rN mod N2.

To decrypt c ∈ C, Dec first computes m̄ = (cν mod N2)−1
N and returns m = m̄/ν mod N .

The correctness follows by observing that c ≡ (1 + N)m rN (mod N2) and that (rN )ν ≡ 1
(mod N2).

For Paillier’s scheme, � is the standard product in Z∗N2 ; indeed: c1 · c2 ≡ [(1 +N)m1rN1 ] ·
[(1+N)m2rN2 ] ≡ (1+N)m1+m2 (r1r2)N (mod N2) and cMult(a, c1) ≡ (c1)a ≡ [(1+N)m1rN1 ]a ≡
(1 +N)am1(ra1)N (mod N2).

A.3 Complexity analysis

Table 3 presents the communication complexity in terms of number of plaintexts and cipher-
texts sent at each step. We use the following public parameters: n (number of instances), d
(total number of features) and dk (in the arbitrarily-partitioned setting, the data-owner DOk

holds dk entries of X,y. That is dk is the size of Dk). Notice that
∑m
k=1 dk = d(n+1). Notice

that because of the use of rational reconstruction, the bit-length of a plaintext (and therefore
also the bit-length of a ciphertext) depends on the parameters n and d (see Eq. (2)). It
follows that both Protocol Π1,hor and Protocol Π2 have complexity O(d3 log(nd)) bits, while
Protocol Π1,arb has complexity O((nd2 + d3) log(nd)) bits (we assume ` and m constant).

Table 4 summarizes the computational complexity in terms of number of elementary
operations (e.g., arithmetic operations on plaintexts, arithmetic operations on ciphertexts,
encryptions, decryptions, etc.). Beside the aforementioned public parameters n and d we use
m (number of data-owners) and nk (in the horizontally-partitioned setting, the data-owner
DOk holds the instances from nk−1+1 to nk). The notation “mult.” (resp.“add.”) represents
a multiplication (resp. an addition) on plaintext messages (i.e., with the arithmetic of ZN );
“enc-add.” represents for one operation � on ciphertexts. Notice that the number of features
d influences the computational complexity of all the steps of our system, while the parameter
n influences the complexity of some of the steps in Phase 1 only (specifically, Step 2 of Π1,hor

and Step 2 and 3 of Π1,arb). Since, each operation considered for Table 4 has a different
execution time (e.g., operation on plaintexts are much faster than operation on ciphertexts),
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Table 3: Summary of communication complexity.

Π1,hor (Fig. 1) – CSP sends pk to each party

– DOk sends d(d+1)
2 + d ciphertexts to MLE

Π1,arb (Fig. 2) – CSP sends pk to each party

– DOk sends pkk to CSP and MLE

– CSP sends d(d+1)
2 + d ciphertexts to MLE

– DOk sends dk ciphertexts and dk plaintexts to MLE

Π2 (Fig. 3) – MLE sends d2 + d ciphertexts to CSP

– CSP sends d plaintexts to MLE

Table 4: Summary of computational complexity.

Step 1 Step 2 (DOk) Step 3 (MLE)

CSP DOk (nk − nk−1)
(
d(d+1)

2 + d
)

mult. m
(
d(d+1)

2 + d
)

enc-add.

Π1,hor 1 execution of Gen (nk − nk−1)
(
d(d+1)

2 + d
)

add.

d(d+1)
2 + d enc.

1 execution of Gen 1 enc. dk add. n
(
d(d+1)

2 + d
)

mult.

Π1,arb m dec. dk enc. n
(
d(d+1)

2 + d
)

enc.

d(d+1)
2 + d enc. 2n

(
d(d+1)

2 + d
)
cMult

(3n+ 1)
(
d(d+1)

2 + d
)

enc-add.

Step 1 (MLE) Step 2 (CSP) Step 3 (MLE)

Π2 d3 + d2 + d enc-add. d2 + d dec. d2 + d add.

d3 + d2 cMult 1 solution of d× d linear system d2 mult.

d rational reconstruction

for concrete running times we refer to Section 5, where results of the implementation of our
system are presented.

A.4 More details on experiments

Computational resource All experiments were executed on a machine with 500 GB of
RAM and 40 core CPU. Our goal was to simulate a setting where the CSP and data-owners
have available only commodity servers, whereas MLE use a more powerful machine. Thus,
we run CSP and each DOk using a single core of the machine, and we run MLE using parallel
computing through multi-core processors.

Synthetic datasets To evaluate the effect of the parameters on our system’s performance
we run experiments on synthetically generated datasets. For any pair of n and d, each xi is
sampled from a standard d-dimensional Gaussian distribution (i = 1, . . . , n). The coefficients
of the vector w∗ are sampled independently and uniformly at random from the real interval
[0, 1]. Finally yi = x

ᵀ
iw
∗+εi, where εi is sampled from a Gaussian distribution with zero mean

and variance σ2 = 0.1. As suggested by the statistical theory, the regularization parameter
λ is set to σ2d/n‖w∗‖22. The error rate RMSE is computed using a test set sampled from the
same distribution and with size equal to n/10.
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Table 5: References for the UCI datasets.
Dataset Reference
forest https://archive.ics.uci.edu/ml/datasets/Forest+Fires
boston https://archive.ics.uci.edu/ml/datasets/housing
facebook https://archive.ics.uci.edu/ml/datasets/Facebook+metrics
air https://archive.ics.uci.edu/ml/datasets/Air+Quality
energy https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
beijing https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
wine https://archive.ics.uci.edu/ml/datasets/Wine+Quality
bike https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
student http://archive.ics.uci.edu/ml/datasets/student+performance

UCI datasets In Section 5, we ran our system on different real-world datasets downloaded
from the UCI repository. References about each one of the datasets are given in Table 5. For
each dataset, we removed the data points with missing values and we use 1-of-k encoding to
convert nominal features to numerical ones. Moreover we split the dataset in two subset: the
first one, with 90% of the total instances, is used for training and the complement is used
to compute RMSE. The regularization parameter λ is computed using cross-validation. The
results of our experiments on the UCI datasets are reported in Table 2 in Section 5. For
Phase 1 in the HP setting, we report the total running time (in seconds) of Π1,hor assuming
that the 10 data-owners execute Step 2 in parallel, and the size in kilobytes of the message
sent from one data-owner to MLE. For Phase 1 in the VP setting, we report the total running
time (in seconds) of Π1,arb assuming that the 3 data-owners execute Step 2 in parallel, and
the average size in kilobytes of the message sent from one data-owner to MLE (in Step 2) plus
the message sent from CSP to MLE (setup in Step 1). In both cases, for Phase 2 we report
the total running time (in seconds) of Π2 and the overall communication required between
CSP and MLE (in kilobytes).

Warfarin experiment We want to prove the concrete utility of our system considering
here its application to an existing medical scenario: the Warfarin dosing model. Warfarin is
a popular anticoagulant, used for instance to prevent stokes in patients suffering from atrial
fibrillation. In 2009 the International Warfarin Pharmacogenetics Consortium (IWPC 2009)16

proposed an accurate dosing model trained using linear regression on a database containing
clinical and genetic information of 4043 patients. The database was the result of the merge
of the data of different patients collected by 21 research groups. The model proposed by
IWPC 2009 was tested on a validation cohort of 1009 patients, on which it achieved a MAE
(mean absolute error) of 8.5 mg per week (as baseline, notice that a fixed-dose approach of
35 mg per week has a MAE of 13 mg per week). We downloaded17 the database used for this
study and, after removing the instances with missing values, we randomly split it in a training
set (80%) and validation set (20%). We run our system (Protocol Π1,hor + Protocol Π2) with
m = 21 and ` = 5 on the training set and we compute the MAE of the learned model using
the validation set. The average result of this experiment on 30 repetitions is a MAE of 8.8 mg
per week. That is, the MAE increases of 3.35% only. Notice that our system in this setting
runs in less than 3 minutes on a commodity server18 and produces an overall communication
overhead of less then 2.5 MB.

16https://www.pharmgkb.org/page/iwpc
17https://www.pharmgkb.org/downloads
18Timing on a 2.6 GHz 8 GB RAM machine running Linux 16.04. 80-bit security.
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A.5 Further optimization

When the logarithm in base 2 of the left-hand of (2) is greater or equal to 4095 (i.e., β ≥ 4095),
in order to reduce the communication overhead of all the protocols and the running time of
the steps involving operations on ciphertexts (� and cMult) we can use Damg̊ard and Jurik’s
scheme [DJ01]. This cryptosystem is a generalization of the Paillier’s scheme cryptosystem
that has message space ZNs and ciphertext space ZNs+1 where N is an RSA modulus and s
is (positive) natural number (Paillier’s scheme is the special case with s = 1). If β ≥ 4095 we

can use Damg̊ard and Jurik’s scheme with s =
⌊
β+1
2048

⌋
≥ 2 and log2(N) = 2048. With this

choice of parameters, Damg̊ard and Jurik’s still guarantees 100-bit security and works with
ciphertexts of bit length ≤ β + 2049. While Paillier’s scheme with log2(N) = bβc+ 1 works
with ciphertexts of bit length 2(bβc+ 1).

A.6 Security proof

Let
(
Md×d)∗ be the set of all invertible matrices with coefficients in the ring M.

Lemma A.1. Let (A, b) ∈
(
Md×d)∗×Md. Assume that R is sampled uniformly at random

from
(
Md×d)∗ and that r is sampled uniformly at random fromMd. Then, the distribution

of (AR, b +Ar) is the uniform distribution over
(
Md×d)∗ ×Md.

Proof. Fix (M,v) ∈
(
Md×d)∗ ×Md, then

Pr[AR = M, b +Ar = v] = Pr[R = A−1M, r = A−1(v − b)]

=
1

| (Md×d)
∗ ×Md|

.

To formally prove security, we use the standard simulation-based definition [Gol04]. Con-
sider a public function φ : ({0, 1}k)n → {0, 1}` and let P1, . . . , Pn be n players modelled
as PPT machines. Each player Pi holds the value ai ∈ {0, 1}k and wants to compute the
value φ(a1, . . . ,an) while keeping his input private. The players can communicate among
them using point-to-point secure channels in the synchronous model. If necessary, we also
allow the players to use a broadcast channel. To achieve their goal, the players jointly run
a n-party MPC protocol Π. The latter is a protocol for n players that is specified via the
next-message functions: there are several rounds of communication and in each round the
player Pi sends to other players a message that is computed as a deterministic function of the
internal state of Pi (his initial input ai and his random tape ki) and the messages that Pi has
received in the previous rounds of communications. The view of the player Pj , denoted by
ViewPj (a1, . . . ,an), is defined as the concatenation of the private input aj , the random tape
kj and all the messages received by Pj during the execution of Π. Finally, the output of Π
for the player Pj can be computed from the view ViewPj . In order to be private, the protocol
Π needs to be designed in such a way that a curious player Pi cannot infer information about
aj with j 6= i from his view ViewPi(a1, . . . ,an).

More precisely, we have the following definition.

Definition A.1 ([Gol04, Definition 7.5.1]). We say that the protocol Π realizes φ with correct-
ness if for any input (a1, . . . ,an), it holds19 that Prφ(a1, . . . ,an) 6= output of Π for Pi = 0
for all i ∈ [n]. Let A a subset of at most n − 1 players, the protocol Πf realizes φ
with privacy against A if it is correct and there exists a PPT algorithm Sim such that
(ViewPi(a1, . . . ,an))Pi∈A and Sim((ai)Pi∈A, φ(a1, . . . ,an)) are computationally indistinguish-
able for all inputs.

19The probability is over the choice of the random tapes ki.
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Protocol Π

– Parties: CSP and MLE with no input, DOi with input Di for i = 1, . . . ,m.

– Output : each party gets w∗

Phase 1 : MLE, CSP and DO1, . . . ,DOm jointly run Π1,hor or Π1,arb.

Phase 2 : – MLE and CSP jointly execute Π2;

– MLE sends w∗ to the other parties.

Figure 6: Protocol Π implements our system.

The protocol Π described in Fig. 6, which summarizes the privacy preserving system
described in Section 4, can be seen as an MPC for m+ 2 parties: DO1, . . . ,DOm, MLE and
CSP. The input of DOk is Dk defined by:

Dk =
{

(xnk−1+1, ynk−1+1), . . . , (xnk , ynk)
}

(3)

with 0 = n0 < n1 < · · · < nm = n for the horizontally-partitioned (HP) setting, and by:

Dk =
{
X[i, j] = xi[j] | (i, j) ∈ Dk

}
∪
{
y[i] = yi | (i, 0) ∈ Dk

}
(4)

where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d} for the arbitrarily-partitioned setting. MLE and CSP
have no input. Notice that we assume here that all the entries in the local dataset are
integers number in in the interval [−10`δ, 10`δ] (see Section 2). Moreover we assume that
(Gen,Enc,Dec) is a LHE scheme with plaintext space M = ZN and that Eq. (2) is satisfied.
Finally define φ the function that computes the ridge regression model from the data in the
clear (φ(D1, . . . ,Dm) = A−1b). With this assumption we have the following.

Theorem 1. Let D ⊂ {1, . . . ,m}, then Π (Fig. 6) realizes φ with correctness and privacy
against the adversaries A1 = {MLE} ∪ {DOi | i ∈ D} and A2 = {CSP} ∪ {DOi | i ∈ D}.

Proof. Correctness: Using the homomorphic properties of the underlying encryption scheme,
it easy to verify that at the end of Phase 1 of Π, the MLE knows A′ and b′ such that
Decsk (A′) = A and Decsk (b′) = b. It is also easy to verify that in Step 3 in Π2 we have

w̃∗ = Rw̃ − r = R(C−1d)− r mod N = R((AR)−1 + (b +Ar)) mod N

= A−1b mod N

Since Eq. (2) is satisfied, applying the rational reconstruction to w̃∗ we obtain the model
w∗ = A−1b in Qd.

Privacy: To prove privacy we construct two simulators Sim1 and Sim2 which simulate the
view of the parties in A1 and A2, respectively. Let w̄∗ = φ(D1, . . . ,Dm).

Sim1({Di}i∈D,w∗) in the HP setting is defined by the following steps:

1. Run (pk , sk)← Gen(κ);

2. For all k = 1, . . . ,m, if k ∈ D compute A′k and b′k as in Step 2 of Π1,hor. Otherwise
compute A′k and b′k as component-wise encryption of the identity d× d matrix and the
zero vector (d components) (i = nk−1 + 1, . . . , nk);
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3. Sample R and r as in the protocol;

4. Compute w̃ = R−1(w∗ + r) mod N ;

5. Output ({Di}i∈D, pk , enc, w̃,w∗) where enc contains the encryptions of step (2).

Sim1({Di}i∈D,w∗) in the arbitrarily-partitioned setting is defined by the following steps:

1. Run (pk , sk)← Gen(κ) and run (pk i, sk i)← labGen(κ) for i = 1, . . . ,m;

2. For all k = 1, . . . ,m, if k ∈ D compute cij for all (i, j) ∈ Dk as in Step 2 of Π1,arb.
Otherwise compute cij as encryption of 0.

3. Sample R and r as in the protocol;

4. Compute w̃ = R−1(w∗ + r) mod N ;

5. Output ({Di}i∈D, pk , {pk i}i=1,...,m, enc, w̃,w
∗) where enc contains the encryptions of

step (2).

It follows from the semantic security of the encryption scheme that the simulation output has
the same distribution of the views of the corrupted parties in A1 in the protocol Π.

Sim2({Di}i∈D,w∗) is defined by the following steps:

1. Run (pk , sk)← Gen(κ);

2. Sample R and r as in the protocol;

3. Compute Encpk (R) and Encpk (r);

4. Output ({Di}i∈D, pk ,Encpk (R),Encpk (r),w∗)

It follows from Lemma A.1 that the simulation output has the same distribution of the
views of the corrupted parties in A2 in the protocol Π.

A.7 Beyond passive security

The protocols described in Sections 4.1 and 4.2 guarantee privacy when all the parties follow
the protocol (passive security). Here we briefly discuss the security of these protocols in the
case when the CSP or the MLE are corrupted and arbitrarily deviate from the protocol. We
still assume that they do not collude.

If we have the guarantee that MLE always follows the protocol and only the CSP can
be malicious, an easy solution is possible. First of all, notice that we can assume that the
encryption scheme is initialized in the correct way and that all users obtain a valid public
key using standard techniques as Certificate Authorities. Nevertheless, if CSP is corrupted,
in Phase 2 (Protocol Π2) it can send to the MLE a faulty w̃ causing the computation of a
wrong model. To prevent this, it is enough to add a simple verification step run by the MLE
at the end of Π2. Assume that w̃∗ is the model in ZdN computed by MLE during Step 3 in
Π2. In other words, w̃∗ = Rw̃ − r mod N where w̃ is the –possibly wrong– masked model
sent by the CSP. Since in ridge regression the model is computed as solution of the system
(1), if w̃∗ satisfies Aw̃∗ − b = 0 in ZdN , then the MLE has the correct model. Recall that
at the end of Phase 1 the MLE gets the encryptions of the entries of the matrix A and the
vector b. Therefore, the MLE can easily compute the encryption of the components of the
vector Aw̃∗−b in ZdN using the homomorphic property of the underlying encryption scheme.
At this point the problem of checking the validity of w̃∗ is equivalent to the following problem:
the MLE (honest party) has a ciphertext Encpk (x) and it needs to be convinced that x = 0
by interacting with the CSP who knows sk but is malicious. This can be easily solved in
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the following manner: MLE samples r ← ZN , computes c = Encpk (x) � Encpk (r) and sends
c to CSP. The latter decrypts and sends the result back to MLE, who accepts the proof if
and only if the received value is equal to r. If x 6= 0, the probability of a malicious CSP to
convince MLE of the opposite is 1/N .

The case when also the MLE can be malicious is more involved. If the MLE is corrupted,
then it can decide to ignore (o replace with encryption of dummy values) the ciphertexts
received during Phase 1 from some of the m data-owners. In this way, at the end of Phase 2
the MLE learns a model that is trained only on the data from a small subset of the m
data-owners (potentially only one them); such a model may reveal extra information about
the private datasets held by these users. Moreover, if the verification step described before
is implemented, then a malicious MLE could use the CSP as decryption oracle and break
the privacy of the data-owners. Therefore, we need to find another solution that guarantees
the correctness of w̃∗. These issues can be mitigated considering the modification of our
system described at the end of Section 4.2. There we show how to use threshold LHE to
avoid releasing the model to MLE. In this case, the data-owners use the shared decryption
functionality to compute w∗, while MLE only sees Encpk (w∗). In particular, 1) since MLE
does not see the model in the clear, it can not use it to gain information about the private
training datasets, 2) each data-owner can locally check the model on a local validation set.
In this way, they indirectly check the computation of w̃∗.
If we prefer not to modify the system, active security can be achieved by a mechanism that
requires 1) CSP to prove in zero knowledge to MLE the correctness of w̃∗, 2) MLE to prove in
zero knowledge to CSP that Encpk (C) and Encpk (d) are computed in the correct way using the
ciphertexts from all the DOs (e.g., Encpk (A1), . . . ,Encpk (Am) for the horizontally-partitioned
case). A mechanism with this property can be obtained using a zero-knowledge argument
protocol for proving generic statements (e.g., [PHGR13]). Investigating this enhancement in
details is left for future work.
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