
Mind the Gap: Where Provable Security and Real-World Messaging Don’t Quite Meet

Extended Abstract

Katriel Cohn-Gordon, Cas Cremers
me@katriel.co.uk, cas.cremers@cs.ox.ac.uk

Department of Computer Science, University of Oxford

Abstract

Secure messaging apps have enjoyed huge uptake, and with the headline figure of one billion active
WhatsApp users there has been a corresponding burst of academic research on the topic. One might
therefore wonder: how far is the academic community from providing concrete, applicable guarantees
about the apps that are currently in widespread use?

We argue that there are still significant gaps between the security properties that users might expect
from a communication app, and the security properties that have been formally proven. These gaps arise
from dubious technical assumptions, tradeoffs in the name of reliability, or simply features out of scope
of the analyses. We survey these gaps, and discuss where the academic community can contribute. In
particular, we encourage more transparency about analyses’ restrictions: the easier they are to understand,
the easier they are to solve.

In the past few years, secure messaging apps have enjoyed explosive growth in uptake, perhaps best
exemplified by WhatsApp’s headline figure of a billion active users. There has been a corresponding
burst of academic research into these secure messaging protocols [7, 10, 12, 18, 24], and in particular
into Open Whisper Systems’ Signal Protocol, which is fast becoming an industry standard. Kobeissi,
Bhargavan, and Blanchet [18] and Cohn-Gordon et al. [7] both give formal security proofs of Signal.

One might imagine that, armed with the certainty provided by a mathematical proof of security, users
could rest assured that their messages are only readable by the right people. In this extended abstract
we discuss the myriad ways in which this may fail to hold despite these proofs. We aim (i) to clarify
the limits of existing analyses, and (ii) to show how new research and collaboration can help bridge
this gap.

We focus here on three main areas. In §I we discuss issues with the security theorems themselves,
in §II topics out of scope of most analyses but necessary to deploy a practical protocol, and in §III
additional features added by implementers.

I. LIMITATIONS AND ASSUMPTIONS IN SECURITY MODELS

Every security model makes some assumptions on the cryptographic primitives that it uses. In the
symbolic methodology, these assumptions are generally clear, simple and too strong; for example, that
encryption is a black box revealing no information about the plaintext, or that it provides message
integrity. It is also not uncommon to perform bounded verification, in which the relevant property is
checked only for a small number of agents or sessions (often as few as two or three).

Computational models use more fine-grained assumptions; sometimes these are fairly standard (e.g.
given Diffie-Hellman values gx and gy, it is hard to compute gxy, an assumption known as CDH),
but modern key exchange protocols with complex key derivations often require assumptions such as
Gap-DH, PRF-ODH [5], XDH or similar. These assumptions are much less well-understood and rely
on internal properties of the underlying group, which may well not be true when instantiated. However,
if the chosen assumptions does not hold in the chosen group, then the security proof does not prove
anything. Computational models also often assume that hash functions are random oracles, despite the
well-known problems with this assumption [6].

Computational reductions also merit highlighting, since they are “loose” for almost all protocol
proofs [2]. This implies that the concrete security parameters needed to invoke a security theorem with
reasonable guarantees on its protocol are generally much, much larger than those actually used when



the protocol is deployed. Seen one way, this is a technicality; seen another, it means that most proofs
do not apply to actual instantiations of their protocols.

Almost all protocol security models assume that every agent knows its peers’ public keys; this
distribution must actually be performed when protocols are deployed. TLS uses the well-loved X.509
PKI, with all its attendant quirks, but messaging protocol implementations generally just nominate
the service provider as a trusted third party for key distribution. (The Signal app includes an out-of-
band “fingerprint” or “safety number” channel—but many users will not understand or perform this
verification.) Of course, a malicious or coerced service provider could intercept Alice’s messages by
giving her malicious keys.

There are some new and exciting designs attempting to remove some trust in the service provider,
based on Google’s original Certificate Transparency [13]. Perhaps the closest to being in widespread
use is Key Transparency [14], which is in turn based on CONIKS [21] but with some changes made by
Google; other examples include [3, 17, 25, 26, 27]. However, one downside of the Merkle-tree family
of solutions is that they are generally very complex, with a number of different subsystems: log servers,
monitors, auditors, and gossip between clients.

Recent work on detection by Milner et al. [22] considers techniques for users to detect disagreement,
for example, on the keys they have been provided. Their work could provide a simpler way for users to
notice malicious key distributions, assuming a weaker-than-Dolev-Yao adversary.

II. ANALYSIS SCOPE IS ALWAYS LIMITED

We turn now to practical considerations which apply to all deployed secure messaging apps but are
generally excluded from the scope of formal analyses.

Although there are a number of ways to measure and quantify resistance to side channel attacks,
most widely-used protocol models do not consider them, restricting the adversary to “legitimate”
communication channels with participants. However, many of the most significant reported vulnerabilities
of the past few years fall into this category; padding oracles are a particularly fruitful class.

Some models allow the adversary to learn or affect the output of agents’ random number generators,
which overapproximates certain types of side channel attacks. However, many protocols assume that
the random numbers generated during executions are perfect, and indeed fail if they are not. Signal and
(all versions of) TLS fall into this category, although there is some research on how to do better.

On the implementation side, the app installed on users’ devices does not necessarily correctly
implement the abstract protocol it uses. Errors here are a major concern and source of employment for
red teams: the Debian patch removing OpenSSL’s entropy source is a famous example, but others abound.
Many implementations of the Signal protocol use the Open Whisper Systems libsignal-protocol
codebases in Java, Objective-C or Javascript (and thus will share any bugs that arise), but this has
licensing restrictions and some vendors have reimplemented Signal from scratch. (This is a common
pattern: Beurdouche et al. [4] reveal many different and buggy state machines arising from vendor
reimplementations of TLS.)

Perhaps equally worrying, though, is the fact that the code actually executing on devices is generally
an opaque binary compiled by the operating system vendor. This means that there is no way for a
user to be certain that the code running on their device is actually the open-source code that they might
trust. Indeed, even the Signal app uses Google’s closed-source Play Services library to handle push
notifications: if Google deployed or were coerced to deploy malicious code in this library, they could
easily access message plaintexts in a way that would not be easy to detect.

There is a significant amount of research in this area, but few ideas have achieved widespread
deployment. One simple approach is to allow users who do not trust OS-provided binaries to compile
and run their own clients, but (for a different reason) the Signal developers do not allow federation [19].



REFERENCES

III. IMPLEMENTERS REALLY LIKE FEATURES

Finally, real-world messaging applications need to support more features than are usually described
in basic protocol models, not just because users expect them but also because service providers wish
to differentiate themselves in features. This leads to a large variety of extra options which, in formal
analyses, are often described as outside the “cryptographic core” (in part because analyses of real-world
protocols are already approaching the limits of scalability without them).

1) Retries: Abu-Salma et al. [1] conclude from multiple interviews that users actually value reliability
over security, to the extent of using the former as a proxy for the latter. This has not gone unnoticed by
service providers, who often implement retry logic to hide transient failures from users. This logic can
go further than might be expected: WhatsApp will silently re-encrypt a sent message to a new key if it
believes that the recipient has changed device, a feature originally branded a backdoor by the Guardian
[11] but now referred to as a “tradeoff” [16].

2) Backups: For mass-market communication apps, users do not want to lose their message histories
when they lose or replace a device; thus, some apps allow users to export or back up their messages.
For example, WhatsApp allows scheduled (encrypted) backups to Google Drive, and Signal allows
plaintext but not encrypted XML exports. Scheduled cloud backup in particular, while very user-friendly,
means that an adversary who compromises the backup key can eavesdrop on users’ later conversations
via the backup, even though the frequent re-keying in Signal (leading to post-compromise security [8])
means that they cannot necessarily intercept messages in transit.

3) Franking: Any sufficiently popular messaging system will come with its share of abusive messages,
which service providers wish to to detect and prevent. However, in an end-to-end encrypted context,
providers cannot simply inspect messages to classify them as abusive. This led Facebook to build a
franking system for their deployment of Signal, subsequently studied as an example of “committing
authenticated encryption” by Grubbs, Lu, and Ristenpart [15].

4) GIF search: The Signal app currently supports privacy-aware GIF search [20], by proxying a
TLS connection from the Signal app through Signal’s servers to Giphy. This nominally allows users to
maintain their privacy while still communicating with an external service. In a related feature, WhatsApp
displays URL previews when users enter a URL and before sending a message, in the process revealing
URLs character-by-character [23] to anyone on the network.

5) Group and Multidevice: It turns out that many Signal implementations allow users to send
messages to multiple entities (either sets of users, or multiple devices of a single user) but provide,
without notification, a weaker security property for these conversations. Specifically, apps using Signal’s
“sender key” design permit an adversary who compromises a single group member to intercept all of
their subsequent communications.

There are many systems for secure group messaging, but generally these are inspired by the instant-
messaging paradigm and require interactive, online broadcast rounds. In [9], we give a novel method
for group messaging to achieve Signal’s post-compromise security guarantees without interactivity or
synchronicity, building on known tree-based designs but avoiding their broadcast rounds.

IV. CONCLUSION

In the abstract, we asked how far the community is from providing concrete guarantees about
real-world messaging protocols. The many examples above show that there is still quite some distance to
cover before we can truly claim to have proofs about deployed systems: many features that are frequently
written off as “just engineering” or “out of scope” are in fact vitally important for a mass-market
protocol

However, our key takeaway is that although there are many problems, there are also plenty of solutions
coming from both industry and academia, and the frequent crossovers between the two domains paint
an encouraging picture. Overall, we feel that there is scope for significant advances in the state of the
art, and we hope that future research continues to address the challenges we describe.

Finally, we wish to encourage researchers once more to be transparent about the limitations of their
analyses: the easier it is to understand the scope of a proof or the assumptions in a theorem, the easier
it is to improve on the state of the art.



REFERENCES

[1] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena Naiakshina, and Matthew Smith. “Obstacles
to the Adoption of Secure Communication Tools”. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2017, pp. 137–153.

[2] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. “On the Impossibility of Tight Cryptographic Reductions”. In:
EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg,
May 2016, pp. 273–304. DOI: 10.1007/978-3-662-49896-5_10.

[3] David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski. “ARPKI:
Attack Resilient Public-Key Infrastructure”. In: ACM CCS 14. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li. ACM
Press, Nov. 2014, pp. 382–393.

[4] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. “A Messy State of the Union: Taming the Composite State
Machines of TLS”. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2015,
pp. 535–552. DOI: 10.1109/SP.2015.39.

[5] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. “PRF-ODH: Relations, Instantiations, and
Impossibility Results”. In: CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 651–681.

[6] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodology, Revisited (Preliminary Version)”. In:
30th ACM STOC. ACM Press, May 1998, pp. 209–218.

[7] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A Formal Security Analysis of
the Signal Messaging Protocol. Cryptology ePrint Archive, Report 2016/1013. http://eprint.iacr.org/2016/1013. 2016.

[8] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-Compromise Security. Cryptology ePrint Archive, Report
2016/221. http://eprint.iacr.org/2016/221. 2016.

[9] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On Ends-to-Ends Encryption:
Asynchronous Group Messaging with Strong Security Guarantees. Cryptology ePrint Archive, Report 2017/666. http:
//eprint.iacr.org/2017/666. 2017.

[10] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg Schwenk, and Thorsten Holz. How Secure is
TextSecure? Cryptology ePrint Archive, Report 2014/904. http://eprint.iacr.org/2014/904. 2014.

[11] Manisha Ganguly. WhatsApp design feature means some encrypted messages could be read by third party. 2017-01-13.
URL: https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages.

[12] Ian Goldberg, Berkant Ustaoglu, Matthew Van Gundy, and Hao Chen. “Multi-party off-the-record messaging”. In: ACM
CCS 09. Ed. by Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis. ACM Press, Nov. 2009, pp. 358–368.

[13] Google. Certificate Transparency. URL: https://www.certificate-transparency.org/ (visited on 10/2017).
[14] Google. Key Transparency. 2017. URL: https://github.com/google/keytransparency.
[15] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. “Message Franking via Committing Authenticated Encryption”. In:

CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017,
pp. 66–97.

[16] Frederic Jacobs. On the "WhatsApp backdoor", Trade-Offs and Opportunistic Authentication. Jan. 20, 2017. URL:
https://www.fredericjacobs.com/blog/2017/01/20/whatsapp-backdoor/.

[17] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and Virgil Gligor. “Accountable Key Infrastructure
(AKI): A Proposal for a Public-key Validation Infrastructure”. In: ACM, 2013. DOI: 10.1145/2488388.2488448.

[18] N. Kobeissi, K. Bhargavan, and B. Blanchet. “Automated Verification for Secure Messaging Protocols and their
Implementations: A Symbolic and Computational Approach”. In: IEEE European Symposium on Security and Privacy
(EuroS&P). to appear. 2017.

[19] Moxie Marlinspike. Reflections: The Ecosystem is Moving. May 10, 2016. URL: https://signal.org/blog/the-ecosystem-is-
moving/.

[20] Moxie Marlinspike. Signal and GIPHY. 2016-11-01. URL: https://signal.org/blog/giphy-experiment/.
[21] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman. CONIKS: Bringing

Key Transparency to End Users. Cryptology ePrint Archive, Report 2014/1004. http://eprint.iacr.org/2014/1004. 2014.
[22] Kevin Milner, Cas Cremers, Jiangshan Yu, and Mark Ryan. Automatically Detecting the Misuse of Secrets: Foundations,

Design Principles, and Applications. Cryptology ePrint Archive, Report 2017/234. http://eprint.iacr.org/2017/234. 2017.
[23] Twitter post. @mulander. 2017. URL: https://twitter.com/mulander/status/874370124932943874.
[24] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: How Group Chats Weaken the Security of Instant

Messengers Signal, WhatsApp, and Threema. Cryptology ePrint Archive, Report 2017/713. http://eprint.iacr.org/2017/713.
2017.

[25] Mark D. Ryan. “Enhanced certificate transparency and end-to-end encrypted mail”. In: In Network and Distributed System
Security Symposium (NDSS). Internet Society. 2014.

[26] Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI: a new formalized PKI with no trusted parties. Cryptology ePrint
Archive, Report 2014/600. http://eprint.iacr.org/2014/600. 2014.

[27] Jiangshan Yu, Mark Ryan, and Cas Cremers. “DECIM: Detecting Endpoint Compromise In Messaging”. In: IEEE
Transactions on Information Forensics and Security PP.99 (Aug. 2017). DOI: 10.1109/TIFS.2017.2738609.

http://dx.doi.org/10.1007/978-3-662-49896-5_10
http://dx.doi.org/10.1109/SP.2015.39
http://eprint.iacr.org/2016/1013
http://eprint.iacr.org/2016/221
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2014/904
https://www.theguardian.com/technology/2017/jan/13/whatsapp-design-feature-encrypted-messages
https://www.certificate-transparency.org/
https://github.com/google/keytransparency
https://www.fredericjacobs.com/blog/2017/01/20/whatsapp-backdoor/
http://dx.doi.org/10.1145/2488388.2488448
https://signal.org/blog/the-ecosystem-is-moving/
https://signal.org/blog/the-ecosystem-is-moving/
https://signal.org/blog/giphy-experiment/
http://eprint.iacr.org/2014/1004
http://eprint.iacr.org/2017/234
https://twitter.com/mulander/status/874370124932943874
http://eprint.iacr.org/2017/713
http://eprint.iacr.org/2014/600
http://dx.doi.org/10.1109/TIFS.2017.2738609

	Limitations and Assumptions in Security Models
	Analysis Scope is Always Limited
	Implementers Really Like Features
	Retries
	Backups
	Franking
	GIF search
	Group and Multidevice

	Conclusion



