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Abstract. We put forward the notion of self-guarding cryptographic
protocols as a countermeasure to algorithm substitution attacks. Such
self-guarding protocols can prevent undesirable leakage by subverted al-
gorithms if one has the guarantee that the system has been properly
working in an initialization phase. Unlike detection-based solutions they
thus proactively thwart attacks, and unlike reverse firewalls they do not
assume an online external party. We present constructions of basic prim-
itives for (public-key and private-key) encryption and for signatures. We
also argue that the model captures attacks with malicious hardware to-
kens and show how to self-guard a PUF-based key exchange protocol.

1 Introduction

Classical security notions in cryptography, such as indistinguishability of encryp-
tions, assume that the involved cryptographic algorithms behave in the specified
way. In the real world, however, we have little control over, or insights into, the
design criteria or the software implementing the algorithms, even on our own
systems. The idea that an adversary may tamper with the implementation, or
embed a backdoor in the specification, was suggested already 20 years ago by
Young and Yung under the name of kleptography [28,29]. In a kleptographic set-
ting the adversary interacts with an implementation of the cryptographic scheme
which may be faulty, or let alone malicious, such that subliminal leakage of con-
fidential data may even go unnoticed. In terms of security, in such settings all
bets are off.

1.1 Detecting Substitution Attacks

Recently, the topic of malicious implementations as a potential mean for mass
surveillance has received a lot of attention. The formal study of the so called
algorithm substitution attacks (ASAs) was initiated by Bellare et al. [6] with
the example of symmetric encryption schemes. The adversary’s goal is roughly
formalized as being able to break security while remaining undetectable from
the users. Viewed the other way, resistance against ASAs therefore means that
either data is not leaked, or the leakage is detectable. The detectors were later
given the catchy name watchdogs [24].
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Detecting algorithm substitution attacks can be hard, and sometimes even
be impossible. It was shown that randomized symmetric encryption is prone
to ASAs that can leak the secret key, while avoiding detection by any efficient
watchdog with black-box access to the algorithm [6,5]. Advanced attacks, exploit-
ing techniques such as input-triggered misbehavior and imperfect decryptability,
indicate that reliable detection is indeed hard to achieve [13]. Taking into ac-
count the impossibility results, some works have suggested to use deterministic
schemes with unique ciphertexts such that one can compare against the expected
values [6,4,5,13].

Even in situations where detection is theoretically possible, it is arguably
very difficult to design proper watchdogs in practice. A watchdog gets access to
an implementation which, due to the nature of the attack, may be arbitrarily
subverted, and the watchdog has to decide if any efficient adversary is able
to violate its security. At the same time, different (algorithmic and software)
versions do not allow to easily check against a specific code. In other words, it is
unclear which kinds of irregularities the watchdog should look for. For instance,
deterministic schemes are considered detectable by online watchdogs, since they
can compare the output of the possibly subverted algorithm with the expected
output at runtime [13]. Aside from being rather inefficient, this assumes that the
watchdog has a good implementation of the same algorithm at hand and that
scans are performed while the system is active.

Furthermore, the perhaps trickiest attack arises when implementations be-
have honestly only as long as they are under scrutiny, say, through an offline
watchdog. A malicious behavior can be triggered to wake up at a later point in
time. Such attacks are called time bombs and become active in some state, or at
some point in time. They have been discussed in the context of software and also
in the domain of cryptographic hardware backdoors and trojans, e.g., [27,17].

Conceptually, a malicious software update can also be thought of as a time
bomb. Two prominent testimonies are the heartbleed vulnerability in the open
source library OpenSSL and the Juniper Dual EC incident. The heartblead bug
has been introduced with version 1.0.1 in 2011 and went unnoticed for approxi-
mately two years (see heartbleed.com). In 2015, Juniper Networks announced
that the source code of ScreenOS, the operating system of their VPN routers,
was maliciously modified in 2012 [11]. Although one can speculate about whether
these and similar attacks were inadvertent or not, they showcase the possibility
of substitution attacks being performed in the real world as a mean of mass-
surveillance.

The problem of checking is even more acute if hardware components are
involved. For example, in case of physically unclonable functions (PUFs) this
seems to be impossible: A good PUF ideally implements a random function, but
the internal computations are not assessable. It is unclear what the watchdog
should check for, maybe except for basic properties such as the absence of colli-
sions. Furthermore, the watchdog may not be able to check output values later
if it does not have access to the PUF anymore. The infeasiblility of verifying
security of hardware tokens recently motivated Camenisch et al. [10] to design

2



an anonymous attestation protocol which achieves privacy even with subverted
trusted platform modules (TPM).

Another issue with watchdogs is that they need to be trustworthy entities
(if external) and their implementations also need to be reliable. If the watchdog
colludes with a mass-surveillance agency or is subverted itself, then detection
may fail. Even worse, in some scenarios the detection algorithm requires access
to the secret key to check [6,13], introducing other potential security risks. The
latter may make detection also hard in case of hardware components, if keys are
stored on devices.

1.2 Preventing Subliminal Channels

Considering the difficulty of detecting algorithm substitution attacks, a question
that comes to mind is if we can neutralize attacks without requiring to detect
them first. While the watchdog approach is reactive, it cannot obscure loss of
crucial information, but only allows to detect it, we would expect a solution which
proactively prevents leakage in the first place. Although neutralizing algorithm
substitution attacks is still a highly challenging task, it can be more promising
than detection-based approaches in terms of both security and efficiency.

Indeed cryptographic reverse firewalls follow the approach of prevention [20,16].
The idea of reverse firewalls is to distribute the trust between the party and a
firewall. The outgoing communication, say, a signature, is first routed through
the firewall which may take further cryptographic steps, such as verifying the
signature and re-randomizing it, in order to prevent subliminal channels. As long
as one of the two parties is trustworthy and has a proper implementation, no
information can be transferred through the firewall.

Reverse firewalls may not be readily applicable to every existing protocol.
In fact, the goal of [20,16] is to design protocols that can be used with reverse
firewalls. How to design amenable protocols for symmetric-key primitives, or
when using hardware tokens, remains open.

Another important work in the line of protection mechanisms instead of de-
tection techniques is the study of backdoored pseudorandom generators (BPRGs)
by Dodis et al. [15]. They showed that BPRGs can be immunized by applying a
non-trivial function (e.g., a PRF or an extractor) to the outputs of a possibly ma-
licious pseudorandom generator. The setting, however, disallows the adversary
to replace the PRG algorithm, except for injecting a backdoor.

In two recent works by Russel et al. [24,25] the watchdog model is combined
with some prevention mechanism. Their approach is based on a split-program
methodology, where an algorithm is split into deterministic and probabilistic
blocks that can be individually tested by the watchdog. This allows prevention
of for instance rejection-sampling attacks by combining two independent sources
of randomness, and prevention of input-triggered attacks by adding a random
value to the input. Despite remarkable improvements regarding the power that a
watchdog in the split-program model gains, some of our criticisms, e.g., requiring
a good implementation and failing to detect state-dependent attacks, remain.
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1.3 Self-Guarding Schemes
Our contribution is to provide an alternative defense mechanism to reverse fire-
walls which, too, proactively thwarts ASAs, but does not depend on external
parties. We focus on a setting where the party at some point holds a genuine
version of the algorithm, before the algorithm gets substituted by e.g., a mali-
cious software update, or before a time bomb triggers the malicious behavior of
the algorithm. In other words, our “security anchor” is the assumption of hav-
ing a secure initial phase. We call a cryptographic scheme that is secure despite
making black-box use of possibly subverted underlying schemes self-guarding.
Such a scheme uses information gathered from its underlying primitives during
their good initial phase in addition to basic operations to prevent leakage later
on, or to implement a new protocol securely without implementing the required
primitives securely from scratch.

Related Approaches. Our approach shares the idea of a trusted initializa-
tion phase with several other methods in the literature. In the area of program
self-correction [8] an algorithm can take advantage of a program which computes
incorrectly on a small fraction to always output correct answers with high proba-
bility. This bootstrapping is similar to our idea here, only that we use temporary
correctness (and security) of the program. In self-correction, as well as program
checking [7], it is important to not trivialize the problem by implementing a
trusted program oneself. Instead, one should only use basic operations on top.
The same austerity principle applies in our setting.

The concept also appears in the context of digital certificates. A technique
called HTTP Public Key Pinning (HPKP) [18], albeit argued about, is a trust-
on-first-use technique for checking the validity of certificates. On first usage
certificates are declared as trustworthy (“pinned”) such that substitution of cer-
tificates in subsequent executions becomes infeasible.

Finally, in interactive protocols involving physical unclonable functions (PUFs)
or other hardware tokens, the question of security in the presence of malicious
tokens has been brought up (e.g., [21,3,23]). Here, the sender of the token typ-
ically first holds a genuine version of the token. The adversary may substitute
the token later, when in transmission. This corresponds to our setting with a
trusted initialization phase and subversion afterwards, only that the protocol
involves two parties and hardware tokens.

Comparison to Watchdogs and Reverse Firewalls. As mentioned before,
self-guarding schemes, as well as reverse firewalls, prevent leakage by construc-
tion. The difference is how the security anchor is provided: In reverse firewalls it
is ensured by trust distribution, in self-guarding schemes it is based on a tempo-
rary trust phase. Self-guarding applies more smoothly to symmetric primitives
and hardware tokens, but for other primitives currently comes with a inferior
performance to today’s reverse firewall solutions.

At first glance one might think that the initialization phase of self-guarding
schemes could simply be executed by the watchdog with the specified program,
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such that we immediately get a detecting solution. However, our self-guarding
schemes will pass state between the phases, whereas watchdogs typically do not
forward data to individual users. Furthermore, although one could in principle
combine our approach with some detection mechanism, self-guarding does not
allow to spot malicious behavior innately. Another noteworthy difference be-
tween self-guarding and the watchdog model is that self-guarding schemes do
not even need the subverted algorithm in the beginning.

1.4 Constructions

We show how to build self-guarding solutions for some basic primitives, including
public-key and private-key encryption, and signatures. To show that our model
applies to hardware tokens, too, we also discuss how to self-guard PUF-based
key exchange protocols if the adversary can substitute tokens in transmission.
While the general idea of passing samples of the primitive in question from the
initialization phase to the execution is shared by all solutions, the techniques
differ in details and also in terms of security guarantees and efficiency.

We first give a simple and efficient construction for a self-guarding IND-CPA-
secure public-key encryption scheme from any homomorphic encryption scheme,
e.g., ElGamal encryption. Our scheme is self-guarding even against stateful sub-
versions of the underlying scheme. Yet, the downside is that we can only encrypt
as many messages securely as we have sample ciphertexts from the first phase.
Our construction is based on an elegant idea by Russel et al. [25] to prohibit
input-triggered attacks in encryption schemes. This is achieved by adding a ran-
dom message to the input of an encryption algorithm and sending the random
message along with the ciphertext.

The second construction provides a self-guarding symmetric-key encryption
scheme for IND-CPA-security, starting with any regular IND-CPA-secure scheme.
Here the number of encryptions is again limited by the number of available sam-
ples, and, moreover, the message space is bounded. Despite these limitations,
we find this construction quite intriguing, since the only other proposal for
subversion-resisting randomized symmetric encryption is in the split-program
model [25].

Our third construction is a self-guarding signature scheme. It is built upon
any deterministic EUF-CMA-unforgeable signature scheme. This time, however,
the overhead is bigger than in case of encryption, and it only self-guards against
stateless subversion of the underlying scheme. In contrast, it can be securely used
to sign arbitrarily often after the substitution took place. Moreover, contrary to
re-randomizing reverse firewalls for signatures, as proposed in [2], it does not rely
on an honest implementation of the verification algorithm for signing. Moreover,
for our self-guarding signatures we neither need to restrict the adversarial queries
to random messages, nor do we rely on a (relaxed or perfect) verifiability con-
dition, a property roughly stating that signatures under the subverted signing
algorithm must still be verifiable. The latter property has been used in [2]. In
our case only basic operations and black-box calls to the signing algorithm are
required.
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Finally we give a PUF-based key-exchange protocol that is self-guarding
against subversion of the PUF with malicious, stateful, and encapsulated PUFs.
This is noteworthy as for more complex tasks such as oblivious transfer there are
negative results concerning such malicious PUFs [14,12,23]. Our key-exchange
protocol has 4 rounds and uses only a single genuine sample from the initial-
ization phase for deriving each key. It thus matches the non-self-guarding PUF-
based protocols in terms of samples.

2 Security Model for Self-Guarding

2.1 Preliminaries

Notation. A string s is an element of {0, 1}∗. By |s| we denote the length of
s, and s||s′ is the concatenation of strings s, s′. By {0, 1}` we denote the set of
strings of length `. A special symbol ⊥ 6∈ {0, 1}∗ indicates an error. For a finite
set S we let s $←− S denote a uniformly and independently sampled element s
from S. A queue Q is an abstract collection of ordered elements. A new element
e can be added to the queue using an enqueue function enq(Q, e), and the oldest
element in the queue can be accessed and removed from it using a dequeue
function e← deq(Q). This makes queues a first-in-first-out collection. Using the
function {0, 1} ← is-empty(Q) we can check whether the queue is empty, where
we denote an empty queue by [ ].

Syntax. To distinguish genuine from potentially malicious implementations, we
use a notation similar to [24,25], i.e, we use indices genuine for a trusted and
genuine implementation, and subv for a possibly malicious implementation.

We are interested in protocols Π which use a possibly subverted primitive
Σ. We require Π to obey a specific interface. In particular, it should provide
means for generating parameters for the scheme and sampling their algorithm
interfaces. More formally, given a cryptographic scheme Σ, we define ΠΣ :=
(Π.GenΣ , Π.SampleΣ , Π.XΣ

1 , . . . ,Π.X
Σ
n ) for some n ∈ N, where

– Π.GenΣ(1λ) $−→ κ = (κs, κp). On input of a security parameter 1λ, this prob-
abilistic algorithm outputs secret parameters κs and public parameters κp.

– Π.SampleΣ(κ) $−→ Ω. On input of parameters κ = (κs, κp), this probabilistic
algorithm outputs a collection Ω of N input-output samples of Π.XΣ

i for
some 1 ≤ i ≤ n. The overall number N of samples is determined by the
protocol Π and may depend on the security parameter.

– Π.XΣ
i are placeholders for other functionalities of Π, for all i with 1 ≤ i ≤ n.

We remark here that Π can basically take two different roles. It can either
attempt to provide a different, possibly more complex functionality, while re-
maining secure despite using the subverted algorithm Σsubv, or it can simply
immunize a possible attack in Σsubv. For the former role, one may think of Π be
a key exchange protocol using some cryptographic primitive Σ, and the security
game may capture the indistinguishability of the derived keys. Intuitively, the

6



adversary’s goal is now to take advantage of the algorithm substitution attack
to break the security game. As an example of the latter case, Π and Σ can have
a similar functionality, for example providing the usual interfaces for encryption
and decryption. In this case, Π’s task is to neutralize a potential subversion
attack on Σ.

Simplicity. In principle, preventing an attack is trivial to achieve in real ex-
ecutions, simply by having Π deploy its own secure implementation of Σgenuine,
ignoring the potentially substituted implementation Σsubv. To avoid such issues
we assume that Π makes only black-box use of Σ and only implements very ba-
sic extra steps for the immunization. In other words, in a practical construction
the internal part of Π concerning the immunization, i.e., excluding the queries
to Σ and possibly an own functionality, must be as simple as possible. This as-
sumption is important in order to keep the trusted component, i.e., Π, as small
as possible, such that it is easy to implement correctly and hence too hard for
an adversary to subvert.

Correctness. For a meaningful definition we require the genuine implementa-
tions, i.e., ΠΣgenuine , to be correct. Since our main objective here is preventing
ASAs, we generally do not expect a correct functionality from ΠΣsubv , i.e., in
the event of subversion. In particular, if Π detects subversion of Σsubv, it may
simply output an error message ⊥.

2.2 Cryptographic Games

The advantage of a subverting adversary can be measured against its advantage
in breaking the security of a scheme Π (with primitive Σ) with respect to a
security game Sec by substituting the original and genuine implementation of
the primitive Σgenuine by a malicious implementation Σsubv.

We follow [19] and [24] in defining the security of standard cryptographic
schemes. Our definition will be general enough to capture both regular security
games as well as subversion games, such that we already include parameters κ
and samples Ω as part of the input of the security game. For an ordinary security
game one may think of parameters κp and κs as being the public and secret key,
respectively, and Ω being empty.

Definition 1 (Cryptographic Game). A cryptographic game for a scheme Π
is defined by a probabilistic algorithm Sec and an associated constant δ ∈ [0, 1).
On input of scheme parameters κ and potentially a set of samples Ω, the algo-
rithm Sec(κ,Ω) interacts with an adversary A(1λ) and outputs a Boolean won.
We denote the result of this interaction by won $←− SecΠA(κ,Ω). The advantage
of an adversary A in the game Sec is defined as:

AdvSec
Π,A(κ,Ω) = Pr

[
SecΠA(κ,Ω) = true

]
− δ.
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Here the probability is over the random choices of the game, the adversary, and
the values κ $←− Π.Gen(1λ) and Ω $←− Π.Sample(κ).

We say that the scheme Π is Sec-secure if for any PPT adversaries A, the
advantage AdvSec

Π,A(κ,Ω) is negligible.

As explained in the introduction we assume that users in the security game
have access to a genuine version of algorithm Σ in the beginning. Hence, our
subversion game allows the user to initially query the correct (with respect to
the intended behavior) algorithm Σgenuine and provide Π with some samples Ω
that can be used to prohibit the adversary from winning Sec. The substitution
may only happen after the first phase.

2.3 Self-Guarding Schemes

To proceed to the definition of self-guarding schemes, we need to investigate
more closely the role of the parameter and sample generation step. In the sub-
version game Subv we consider two phases. During the first phase the challenger
has access to a genuine version of algorithm Σgenuine. There, the challenger can
initialize ΠΣgenuine and have N samples from Σgenuine be created and stored in
a collection Ω (which are meant to be chosen and used by the user in the real
execution).

Afterwards, the challenger starts the second phase of the subversion game
by calling the adversary A(subst, κp), giving A the opportunity to provide an
arbitrary implementation Σsubv for Σ and a state st ∈ {0, 1}∗, based on the
public parameters κp and the knowledge about algorithm Σgenuine, of course. In
the subsequent steps the challenger will use the original algorithm Σgenuine or the
subverted version Σsubv. The choice is made according to a fixed value β. In
either case the challenger will have the adversary A(sec, κp, st) play the security
game Sec for the scheme ΠΣβ with parameters (κ,Ω).

The self-guarding ability of Π under subversion of Σ now states that the
adversary’s success probabilities in winning the game Sec should not increase
significantly with the subverted algorithm, i.e., should not depend significantly
on the value of β, which indicates if the original or the subverted algorithm is
used.

Definition 2 (Self-guarding against Subversion). Let Σ and Π be cryp-
tographic schemes, and let Sec be a security game for Π. The advantage of an
adversary A in the subversion game of Figure 1 is defined by:

AdvSubv,Sec
ΠΣ ,A (λ) := Pr

[
SubvΠ

Σ ,subv
Sec,A (1λ) = true

]
− Pr

[
SubvΠ

Σ ,genuine
Sec,A (1λ) = true

]
.

We say that Π is self-guarding with respect to Sec against subversion of Σ, if
for all PPT adversaries A, the advantage AdvSubv,Sec

ΠΣ ,A (λ) is negligible.

Intuitively, the above definition requires that the security of a self-guarding
scheme Π should not significantly decrease if an adversary subverts the under-
lying primitive Σ. As discussed before, the simplicity of the guarding performed
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SubvΠ
Σ ,β

Sec,A (1λ) with β ∈ {genuine, subv}

—— trusted setup phase ——

1 : κ = (κs, κp) $←− Π.GenΣgenuine (1λ)

2 : Ω $←− Π.SampleΣgenuine (κ)

—— subversion phase ——

3 : Σsubv, st $←− A(subst, κp)

4 : won $←− SecΠ
Σβ

A(sec,κp,st)(κ,Ω)
5 : return won

Fig. 1: Game for self-guarding of Π against subversion of Σ.

by Π is crucial in practical applications. In particular, we assume that Π does
not implement its own secure version of Σ, nor implement “heavy” detection
procedures. This also implies that Π is usually not able to verify correctness of
Σ itself, still allowing the adversary to modify Σ at will.

Our definition is (almost) non-adaptive in the sense that the subverted al-
gorithm is chosen before the actual security game starts, but it may depend on
the public parameters. This complies with some efforts in the literature, such
as the subversion-resistant signature scheme in [24] where the subverted algo-
rithm may not even depend on the signer’s public key. The subversion attacks
on symmetric encryption schemes in [6,13] are also non-adaptive in nature. Such
notions provide a basic level of robustness in the setting of mass surveillance
where dedicated attacks may be too cumbersome to mount. At the same time,
targeted attacks may still be an important aspect, e.g., when the signer is a
certification authority such that forging signatures allows to create arbitrary
certificates. We stress that there are adaptive notions in the literature, for ex-
ample for the subversion-resistant signature schemes by Ateniese et al. [2], but
in general the distinction is not explicit.

Our notion is strong enough to capture time bombs and logical bombs in
software. The former ones are code parts which get executed at, or after, a
certain point in time; the latter ones get executed if some specific condition is
met. The input-triggered subversion of Degabriele et al. [13] is a special case of
the concept of logical bombs. While we do not have a notion of time in our model,
the adversary in our model can in principle provide an algorithm which uses the
original algorithm as a subroutine and only enters a special mode after some
calls, if the algorithm can be stateful and, say, keep a counter value. Logical
bombs, such as input-triggers, can be implemented directly in the subverted
algorithm.
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3 Self-Guarding Public-Key Encryption

In this section we show how to build a self-guarding encryption scheme from
any homomorphic encryption scheme, to achieve substitution resistance against
IND-CPA attacks. Its guarding mechanism is simple, efficient, and for typical
instantiations such as under ElGamal encryption it does not need to perform
any modular exponentiation, nor to change anything on the decryptor’s side.
Another advantage is that the solution enjoys security even in the case that the
subverted encryption algorithm keeps state, a property which is usually hard to
achieve. The downside is that we can only encrypt as long as a sufficient number
of fresh samples is still available, since a stateful subverted algorithm can store
the old samples.

3.1 Preliminaries

Informally, homomorphic encryption schemes allow one to perform operations on
encrypted messages by performing efficient computations on their ciphertexts.
Here we recall the formal definition. Below we assume that the message space
M with some efficiently computable operation “◦” forms a group (where the
message space usually depends on the security parameter or the public key, but
we omit this reference for sake of simplicity). Analogously, we assume that the
ciphertext space C forms a group with some efficiently computable operation “�”.
Furthermore, one can efficiently compute inverses in the group.

Definition 3 (Homomorphic Encryption Scheme). A homomorphic public-
key encryption scheme HE = (Gen,Enc,Dec) with associated message group
(M, ◦) and ciphertext group (C, �) consists of three probabilistic polynomial-time
algorithms:

– Gen(1λ) $−→ (sk, pk): On input the security parameter 1λ this algorithm gen-
erates a secret key sk and a public key pk.

– Enc(pk,m) $−→ c: On input a public key pk and a message m ∈ M this
algorithm outputs a ciphertext c ∈ C.

– Dec(sk, c)→ m: On input a secret key sk and a ciphertext c ∈ C, this deter-
ministic algorithm outputs a message m ∈M.

For any λ ∈ N, any (sk, pk) $←− Gen(1λ), any messages m,m′ ∈M the following
conditions hold:

Correctness: Dec(sk,Enc(pk,m)) = m.
Homomorphism: Enc(pk,m ◦ m′) has the same distribution as Enc(pk,m) �

Enc(pk,m′).

The classical example is the ElGamal encryption scheme, where ciphertexts
c = (gr, pkr · m) are pairs of elements from a group G = 〈g〉 of prime order
q, and messages are from G as well. The operations are multiplication in G for
messages, and component-wise multiplication in G for ciphertexts.
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3.2 Construction

The idea of our generic construction of a self-guarding scheme HEsg, described
formally in Figure 2, is as follows. In the sampling phase we generate multiple
ciphertexts of random messages m$,i. At this point, the encryption algorithm
still complies with the specification, such that the samples are valid encryptions.
Since we do not need any specific order of these samples, we will assume that
they are stored in a queue structure and that we access the queue with the usual
enq and deq commands, and check if the queue is empty via is-empty.

Next, when encrypting a given message m, we call the (potentially now sub-
verted) encryption algorithm to encrypt the message m◦m$,i for a fresh message
m$,i from the sample list. The idea is that the subverted algorithm then only
gets to see a random message for producing the ciphertext. Once we obtain the
ciphertext we aim to undo the message blinding via the homomorphic property,
dividing out the ciphertext for m$,i. For instance, when we use ElGamal encryp-
tion this corresponds to two modular multiplications and an inversion in the
group. Remarkably, we do not need to be able to distinguish valid and invalid
ciphertexts returned by the encryption algorithm, which saves us for example
from performing an exponentiation for such a check for ElGamal encryption.
Note that although re-randomizing samples allows for an unlimited number of
secure encryptions, such involved techniques, which quasi means to implement
one’s own encryption algorithm, should be avoided.

HEsg.Gen(1λ)

(sk, pk) $←− HE .Gen(1λ)
return (sk, pk)

HEsg.Dec(sk, c)

m← HE .Dec(sk, c)
return m

HEsg.Sample(pk)

Ω ← []
for i = 1..N do
m$,i

$←−M
c$,i

$←− HE .Enc(pk,m$,i)
enq(Ω, (m$,i, c$,i))

return Ω

HEsg.Enc(pk, Ω,m)

if is-empty(Ω) then
return ⊥

(m$, c$)← deq(Ω)
c $←− HE .Enc(pk,m ◦m$)
csg ← c � c−1

$

return csg

Fig. 2: Self-guarding encryption scheme HEsg from homomorphic encryption
scheme HE .

Correctness. As long as fresh samples are available and the underlying scheme
HE is not under a subversion attack, correctness of our encryption scheme HEsg

follows immediately from correctness and the homomorphic property ofHEgenuine.
Considering that the encryption algorithm HEsg.Enc practically stops working
afterwards, correctness beyond that point is clearly not provided.
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3.3 Security

The notion of IND-CPA follows the common left-or-right security game and is
given in Appendix A.2.

Theorem 1. The encryption scheme HEsg from Figure 2 is self-guarding with
respect to IND-CPA-security against subversion of HE, if HE is an IND-CPA-
secure homomorphic encryption scheme.

Proof. Assume that adversary A plays the subversion game SubvHE
sgHE ,β

IND-CPA,A de-
fined in Figure 1. We argue that A’s probabilities for predicting the secret bit b
in the two settings, β = genuine and β = subv, are almost equal.

The case β = genuine. Consider first the case that the security game uses
the actual scheme HEgenuine. Then A’s probability of predicting b is negligible
close to 1

2 . To see this note that A, upon receiving pk, provides the subverted
algorithm HE subv. This encryption algorithm is then ignored. It follows that in
each challenge query mleft,mright of A, where the remaining number of samples
is not exhausted yet, the adversary receives an encryption of mleft or of mright,
only computed as the product of genuine ciphertexts, derived via Encgenuine. But
since the homomorphic property says that this has the same distribution as a
fresh encryption of the message, it follows immediately that the probability of
predicting b is negligibly close to 1

2 by the IND-CPA-security of HE .

The case β = subv. Next, consider the case that the security game now uses
the subverted algorithm HE subv in the challenge queries. In each such query for a
pair of messages mleft,mright we use a random message m$ to mask the challenge
message and encrypt the masked message under the subverted algorithm. The
message m$ has been encrypted under the genuine algorithm Encgenuine(pk,m$)
in the sampling phase. The final ciphertext csg is derived by multiplying the first
ciphertext with the inverse of the second one.

Suppose now that, instead of encryption m$ under Encgenuine for the second
ciphertext in each challenge query, we encrypt an independent random message
m′$ in the second ciphertext and compute the final ciphertext from that encryp-
tion. Then the adversary would only learn the random message m$ ◦ mleft or
m$ ◦ mright, possibly leaked through the subverted algorithm Encsubv, and the
encryption of an independent random messagem′$. This also covers the case that
the ciphertext in the challenge phase is malformed, e.g., does not belong to the
correct subgroup. In other words, each challenge query yields an answer which
is independently distributed from the bit b. The adversary’s success probability
for predicting b is then at most the guessing probability of 1

2 .
It remains to argue that encrypting m′$ instead of m$ does not signifi-

cantly add to A’s success probability. But this follows straightforwardly from
the IND-CPA-security of HE . For this we use A to build an adversary B against
HE . The adversary B initially receives a public key pk and forwards it to A.
Adversary A then provides the subverted algorithm HE subv. Then B simulates
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the rest of the subversion game, picking the bit b $←− {0, 1} itself, but trying to
predict an external secret bit b′ in its IND-CPA-game.

Adversary B answers each challenge query mleft,mright of A for a message
with a ciphertext csg, computed as follows. Adversary B picks a random message
m$

$←− M, computes m$ ◦ mleft (for b = 0) resp. m$ ◦ mright (for b = 1). It
encrypts this message under Encsubv and pk to get a ciphertext c. It picks another
random message m′$ and forwards m$ and m′$ to its own challenge oracle to get
a ciphertext c$. It returns csg ← c � c−1

$ to adversary A.
When A eventually outputs a guess for bit b, adversary B checks if the guess

is correct. If so, it outputs the prediction 0 for bit b′, else it outputs 1.
For the analysis note that, if A’s success probability drops significantly from

the case that one correctly encrypts m$ to the case where one encrypts m′$, then
this would immediate a contradiction to the IND-CPA-security of HE . That is,
letting B = 0 and B = 1 denote the events that B outputs 0 and 1, respectively,
and wonA denote the event that A predicts b correctly, we have:

Pr[B = b′ ] = 1
2 · Pr[B = 0 | b′ = 0 ] + 1

2 · Pr[B = 1 | b′ = 1 ]

= 1
2 + 1

2 · (Pr[B = 0 | b′ = 0 ]− Pr[B = 0 | b′ = 1 ])

= 1
2 + 1

2 · (Pr[wonA | b′ = 0 ]− Pr[wonA | b′ = 1 ]) .

The difference in the parentheses is non-negligible, by assumption, such that our
algorithm B has a non-negligibly larger prediction probability than 1

2 .

4 Self-Guarding Symmetric Encryption

In this section we present a self-guarding mechanism for randomized symmetric
encryption. We do not assume any restriction on the attack strategy. In partic-
ular, our construction is self-guarding against biased-ciphertext attack (cf. [6])
and stateful subversions. Interestingly, although the subverted algorithm now
has access to the symmetric key, also used for encryption, we can thwart leakage
by using a random message to mask the output and appending the encryption
of this random message.

The computational overhead of the proposed scheme is small. For encryp-
tion we basically need a reliable ⊕-operation, and for decrypting we need two
calls to the decryption of the underlying scheme, and again a trustworthy im-
plementation of ⊕. On the downside, we can only encrypt securely as long as
a fresh sample is available. Moreover, the self-guarding decryption algorithm
differs from the underlying decryption algorithm, and also we can only encrypt
messages that are shorter than the sample messages.

4.1 Construction

Our construction Esg from Figure 3 is built upon an arbitrary IND-CPA-secure
encryption scheme E that has a maximum ciphertext expansion e. Here, the

13



ciphertext expansion describes the maximum number of extra bits in the cipher-
text to encrypt a message, e.g., to store a random IV.

In the sampling phase we generate multiple ciphertexts of random messages
m$,i of bit length `. At this point, the encryption algorithm still complies with
the specification, such that the samples are valid encryptions c$,i. Similar to the
previous section, we store the samples in a queue structure, where we can access
the queue with the usual enq and deq commands, and check if it is empty via
is-empty. The sample messages are used as a one-time-pad key to hide the cipher-
text produced by a potentially malicious implementation. This is intuitively the
reason why we need sample messages that are at least as long as the ciphertexts
produced by E . To deal with potentially shorter ciphertexts we use the common
padding 10 . . . 0 to expand all ciphertexts to equal length. To make sure that the
receiver is able to decrypt, the honest encryption of the sample message is sent
along with the actual encryption.

In theory we are able to lift the restriction on the new message space by
using a pseudorandom function to expand the sample messages. However we
decided to keep the construction simple and minimize the number of trusted
components.

Esg.Gen(1λ)

k $←− E .Gen(1λ)
return k

Esg.Dec(k, (csg, c$))

m$ ← E .Dec(k, c$)
c||10 . . . 0← csg ⊕m$

m← E .Dec(k, c)
return m

Esg.Sample(k)

Ω ← []
for i = 1..N do

m$,i
$←− {0, 1}`

c$,i
$←− E .Enc(k,m$,i)

enq(Ω, (m$,i, c$,i))
return Ω

Esg.Enc(k, Ω,m)

c $←− E .Enc(k,m)
if is-empty(Ω)

or |m| > `− e− 1
or |c| > `− 1 then

return ⊥
(m$, c$)← deq(Ω)

csg ← [c||10`−|c|−1]⊕m$

return (csg, c$)

Fig. 3: Self-guarding symmetric encryption scheme Esg built from a symmetric
encryption scheme E with maximum ciphertext expansion of e bits for each
message.

Correctness. As long as fresh samples are available and the construction is not
under a subversion attack, correctness of our symmetric encryption scheme Esg

for messages with maximum length of `−e−1, follows immediately from correct-
ness of the underlying symmetric encryption scheme Egenuine. Since the encryption
algorithm Esg.Enc essentially aborts if no more samples are left, correctness is
not given afterwards.
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4.2 Security

Theorem 2. The symmetric encryption scheme Esg from Figure 3 is self-guarding
with respect to IND-CPA-security against subversion of E, if E is a IND-CPA-
secure symmetric encryption scheme.

Proof. Consider an adversary A playing the subversion game SubvE
sgE ,β

IND-CPA,A
defined in Figure 1. We again show that A’s probability for predicting the secret
bit b in the two settings, β = genuine and β = subv, cannot differ significantly.

The case β = genuine. Consider first the case that the security game uses the
actual scheme Egenuine. Then A’s probability of predicting b is negligible close to
1
2 , because the subverted algorithm Esubv is ignored, such that each in challenge
query mleft,mright of A (of at most ` − e − 1 bits) the adversary receives an
encryption of mleft or of mright, where the (padded) ciphertext is xored with a
random message m$, which is at least as long as the ciphertext. The adversary
also receives the genuine encryption of m$ (i.e., c$), derived via Encgenuine.

For the genuine encryption algorithm Encgenuine we actually get a “twofold”
secure encryption. First, and this suffices for the formal argument, the encryption
of the challenge message under the IND-CPA-secure scheme Encgenuine already
hides the secret bit b. This can be straightforwardly formalized by simulating
the extra layer of the encryption with m$ and creating the ciphertext c$ with
the help of the encryption oracle in the IND-CPA game, also keeping track of
the number of available samples. At the same time, we could also argue along
the security of c$, hiding m$, which in turn is then used to mask the ciphertext.
Hence, we can conclude that the probability of predicting b in the subversion
game for Encgenuine is negligibly close to 1

2 by the IND-CPA-security of E .

The case β = subv. Next, consider the case that the security game uses the
subverted algorithm Esubv in the challenge queries. In each such query for a
pair of messages mleft,mright we hence encrypt the message under the subverted
algorithm to get a possibly malicious ciphertext c. We check the validity of
the length of the ciphertext, and then add the message m$ to the (padded)
ciphertext to obtain csg. This result, together with the genuine encryption c$

$←−
Encgenuine(k,m$), which was computed during the sampling phase, is output as
the final ciphertext (csg, c$).

Suppose now that, instead of encryption m$ under Encgenuine for the second
ciphertext component in each challenge query, we encrypt an independent ran-
dom message m′$

$←− {0, 1}`. Then the adversary would only learn the encryption
of an independent random message m′$, since csg is hidden by another random
message m$. In other words, each challenge query yields an answer which is in-
dependently distributed from the bit b. The adversary’s success probability for
predicting b is then at most the guessing probability of 1

2 .
We are once more left to argue that encrypting m′$ instead of m$ does not

significantly contribute to A’s success probability. But this follows once more
straightforwardly from the IND-CPA-security of E . From adversary A we build
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an adversary B against E . Adversary A first provides the subverted algorithm
Esubv. Then B simulates the rest of the subversion game, picking the bit b $←− {0, 1}
itself, but playing against an external secret bit b′ in its IND-CPA-game.

Adversary B answers each challenge query mleft,mright of A of length at
most ` − e − 1 as follows. Adversary B checks the length restrictions and that
the number of samples is not exceeded yet. If so, B encrypts the message under
Encsubv and xors the padded result with a randomly chosen messagem$ ← {0, 1}`
to get a ciphertext csg. It picks another random message m′$ of the same length
and forwards m$ and m′$ to its own challenge oracle to get a ciphertext c$. It
returns (csg, c$) to adversary A.

When A eventually outputs a guess for bit b, adversary B checks if the pre-
diction is correct. If so, it outputs 0 for bit b′, else it outputs 1.

The analysis is now identical to the case of the public-key scheme and omit-
ted here. By assumption, our algorithm B therefore has a non-negligibly larger
prediction probability than 1

2 .

5 Self-Guarding Signatures

A substituted signing algorithm may try to leak information about the secret
key, or a different signature. In the domain of reverse firewalls, where one of
the parties is trustworthy, the idea of Ateniese et al. [2] is to let the signer
create a signature with the secret key. Then the firewall verifies the signature
with respect to the public key and, if correct, re-randomizes it before sending
it out.1 Re-randomization prevents leakage through subliminal channels. For
unique signatures, which have only one valid signature for each message under
the public key, this step is trivial and can be omitted.

We can apply the same idea in our self-guarding setting, if the verification
step and the re-randomization step can be implemented robustly. In this case, the
signer generates the signatures, verifies it with the trustworthy verification step,
and re-randomizes it securely. This approach may be viable in some settings, e.g.,
when verifying FDH-RSA signatures with low exponents such as e = 216 + 1,
where only a few modular multiplications and, more critical, a hash evaluation
would need to be carried out safely. Still, in other scenarios implementing the full
verification procedure securely may be beyond the signer’s capabilities, whereas
storing a number of message and signature pairs reliably is usually a much
easier task than implementing cryptographic code perfectly correct. We therefore
propose an alternative solution below.

5.1 Construction

The idea of our construction is as follows. We will use a regular deterministic
signature scheme and consider only stateless subversions. In the initialization
1 Interestingly, Ateniese et al. [2] define re-randomization with respect to the origi-
nal signature algorithm, but the solution presumably requires re-randomization of
maliciously generated signatures under the subverted algorithm.

16



phase we sign a random message m$ under this scheme to get a signature sample
σ$. We store this sample and then, if we are supposed to create a signature for
a given message m later, then we will have the (now potentially substituted)
signing algorithm create one signature form$ and one form$⊕[m||σ$]. Including
the signature σ$ in the second message prevents combination attacks against
unforgeability, and requires that m$ is long enough to range over m||σ$.2

We will hand over the two messages m$ and m$ ⊕ [m||σ$] in random or-
der to the subverted signing algorithm such that if the algorithm deviates for
one of the two signatures, we will detect this with probability 1

2 and abort for-
ever. Recall that we assume that the substituted algorithm is stateless such that
both messages look equally random to it, even if we re-use the random mes-
sage across multiple signature creations. To increase the detection probability to
overwhelming we will repeat the above λ times with independent key pairs. The
independence of the keys ensures that, even if the adversary manages to leak
information about some signing keys, the other keys are still fresh.

More formally, our self-guarding signature scheme Ssg = (KGensg,Sigsg,Vfsg)
is based on a regular deterministic signature scheme S = (KGen,Sig,Vf) and
works as follows. The key generation algorithm KGensg(1λ) creates λ key pairs
(ski, pki) $←− S.KGen(1λ) of the underlying signature scheme. It sets sksg ←
(sk1, . . . , skλ) and pksg ← (pk1, . . . , pkλ) and outputs them together with a
flag err initially set to false, indicating that no invalid signature was detected.

In the initialization phase we pick λ random messages m$,1, . . . ,m$,λ ←
{0, 1}` and create the signatures σ$,1, . . . , σ$,λ for all messages. We store the pairs
(m$,i, σ$,i) in the sample queue Ω. The common bit length ` of the messages
m$,i determines an upper bound on the messages m which can later be signed.
Namely, any message m can be at most the length of m$,i, minus the bit length
for signatures, where we assume without loss of generality that all signatures
are of equal length s. Reserving some space for the mandatory padding 10 · · · 0
of shorter messages, we must have that messages are of length ` − s − 1 at
most. Longer messages m may be hashed first, outside of the signing algorithm.
For sake of a cleaner presentation we assume below that all input messages are
tightly of length ` − s. The proof can be transferred to the general case with
padding easily.

Later, when signing a message m under the possibly subverted algorithm Sig,
with the key sksg and the samples Ω, do the following. If no invalid signatures
were detected so far, i.e., err is still false, for each i = 1, 2, . . . , λ pick a random
bit bi $←− {0, 1} and call the signing algorithm twice, one time for ski,m$,i and
the other time for ski,m$,i ⊕ [m||σ$,i]. Use this order if bi = 0 and the reverse
order if bi = 1. Let σi be the returned signature for the message m$,i⊕ [m||σ$,i].
For each i check that the provided signature for m$,i equals σ$,i. If not, abort
after setting err to true. Else output σsg ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ) as
the signature.

2 Note that deterministic signatures can produce shorter signatures, e.g., if first hash-
ing the message; only the signature value for a given message must be deterministi-
cally computed.
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Verification is straightforward. For each i build the message m$,i ⊕ [m||σ$,i]
from the given message m and the data in the signature, and verify the signa-
ture σi with respect to pki, as well as the signature σ$,i for m$,i. Accept iff all
verification steps succeed.

Ssg.Gen(1λ)

for i = 1..λ do

(ski, pki) $←− S.KGen(1λ)
(sksg, pksg)← ((sk1, . . . , skλ), (pk1, . . . , pkλ))
err ← false
return (sksg, pksg, err)

Ssg.Sig(sksg,m,Ω, err)

if err = true or |m| 6= `− s then
return ⊥

Ω′ ← Ω

for i = 1..λ do
(m$,i, σ$,i)← deq(Ω′)
bi

$←− {0, 1}
if bi = 0 then

(m0,m1)← (m$,i,m$,i ⊕ [m||σ$,i])
else

(m0,m1)← (m$,i ⊕ [m||σ$,i],m$,i)
σ0 ← S.Sig(ski,m

0)
σ1 ← S.Sig(ski,m

1)

if σbi 6= σ$,i then
err ← true
return ⊥

σi ← σ1−bi

if |σi| 6= s then return ⊥
σ ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
return σ

Ssg.Sample(sksg)

Ω ← []
for i = 1..λ do

m$,i
$←− {0, 1}`

σ$,i ← S.Sig(ski,m$,i)
enq(Ω, (m$,i, σ$,i))

return Ω

Ssg.Vf(pksg,m, σ)

σ = (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
d← [|m| = `− s]
for i = 1..λ do
d← d ∧ |m$,i| = ` ∧ |σ$,i| = s

d← d ∧ S.Vf(pki,m$,i, σ$,i)
d← d ∧ S.Vf(pki,m$,i ⊕ [m||σ$,i], σi)

return d

Fig. 4: Self-guarding signature scheme Ssg with message space {0, 1}`−s built
from signature scheme S producing signatures of length s.
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5.2 Security

For the security proof we need another property of the underlying signature
scheme, namely, that the (equal length) signature strings are not all zero. This
can be easily achieved by prepending or appending a bit ‘1‘ to any signature and
verifying that this bit really appears in the signature. We call such signature
schemes zero evading.

The notion of EUF-CMA unforgeability is given by the standard security
game and is given in Appendix A.2.

Theorem 3. The signature scheme Ssg from Figure 4 is self-guarding with re-
spect to EUF-CMA-unforgeability against stateless subversion of S, if S is a
deterministic, EUF-CMA-unforgeable, and zero-evading signature scheme.

Proof. Consider an adversary A playing the subversion game. We can show that
the advantage of A is negligible by the security of the underlying signature
scheme, implying that A cannot increase its success probability noticeably with
the help of substitutions.

In the attack, as well as in the reduction below, we denote the message in the
j-th signature query by mj . The i-th signature component in the j-th query for
message m$,i⊕ [mj ||σ$,i] is denoted as σi,j . We assume that A makes q signature
queries. The forgery attempt is denoted bym∗ and (m∗$,1, σ∗$,1, σ∗1 , . . . ,m∗$,λ, σ∗$,λ, σ∗λ).

Reduction to Signature Scheme. We construct an adversary B against the un-
forgeability of the underlying signature scheme S via a black-box reduction. Al-
gorithm B receives as input a verification key pk. It first picks k $←− {1, 2, . . . , λ}
at random and sets pkk ← pk. It generates all the other key pairs (ski, pki) $←−
S.KGen(1λ) for i 6= k itself. Then B picks the messages m$,i and creates the
signatures σ$,i, for i 6= k with the help of the signing key ski, and for i = k by
calling the signature oracle. It starts the attack of A.

Whenever B is supposed to create a signature it executes the same steps as
the self-guarding algorithm for any index i 6= k. In particular, it checks if the
returned signature components for m$,i match the previously sampled value. For
the k-th index it uses the previously obtained oracle value σ$,k and it now calls
the external oracle to get a signature for m$,k ⊕ [m||σ$,k]; it does not need to
check these answers. Algorithm B uses all these data to assemble the signature
in the same way our signing algorithm does.

If the adversary eventually outputs a forgery for message m∗ and signature
(m∗$,1, σ∗$,1, σ∗1 , . . . ,m∗$,λ, σ∗$,λ, σ∗λ), then B does the following:

– If m∗$,k = m$,k then output the message m∗$,k ⊕ [m∗||σ∗$,k] together with σ∗k
as the signature.

– Else, if m∗$,k 6= m$,k ⊕ [mj ||σ$,k] for all j = 1, 2, . . . , q, then output the
message m∗$,k with signature σ∗$,k.

– Else, if m∗$,k = m$,k⊕ [mj ||σ$,k] for some j, then output the message m∗$,k⊕
[m∗||σ∗$,k] with the signature σ∗k.
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Analysis. We first argue that the subverted signing algorithm, with overwhelm-
ing probability, must output only valid signatures for one of the keys pki in the
actual attack. To this end, call the i-th entries σ$,i,j and σi,j in the j-th signa-
ture reply valid if they correspond to the signature for the messages under the
specified signature algorithm. Then we claim that, with overwhelming probabil-
ity, there must be some index i such that the signature entries in all queries are
valid. In case of an abort, this refers to all signatures created up to the aborting
query (exclusively), and else this refers to all queries.

Suppose that for each i the subverted algorithm outputs an invalid signature
in some query j. This query may vary with the index i. Since the algorithm
is stateless, the input messages m$,i,j and message m$,i,j ⊕ [mj ||σ$,i,j ] both
look random to the algorithm. Furthermore, the order of the signing request
is determined by a random bit bi, such that the algorithm creates an invalid
signature for the sampled message m$,i,j with probability 1

2 . Hence, our self-
guarding signature algorithm will detect this with probability 1

2 and abort after
setting err to true.

Any detected invalid signature will lead to an immediate abort and prohibits
computing future signatures, and for each key pki the detection probability is
independent of the other case. Hence, if the adversary tries to output an invalid
signature in some query for any key pki, our algorithm will detect this, except
with probability 2−λ. We can therefore from now on condition on the event
that for some index i all signature entries in all queries are valid, losing only a
probability 2−λ in A’s success probability.

If there is a good index i for which the subverted algorithm never outputs a
wrong signature, then B picks this index k = i with probability 1

λ . Given this,
all signatures created via the external oracle perfectly mimic the values returned
by the subverted algorithm. From now on assume that this is the case. Since
any values of invalid length will lead to an abort, we assume that the signature
values are of correct length.

It remains to analyze the probability that, in a good simulation, adversary B
creates a valid signature for a fresh message. Note that a valid forgery of A must
be for a new message m∗ and must consist of a vector of valid signatures, such
that each component carries a valid signature. We distinguish the three cases for
A’s output as in the output generation of B:

– If m∗$,k = m$,k (and, by determinism, therefore σ∗$,k = σ$,k for a valid
signature), then we must have that B’s output message satisfies

m∗$,k ⊕ [m∗||σ∗$,k] = m$,k ⊕ [m∗||σ$,k] 6= m$,k ⊕ [mj ||σ$,k]

for all j, since m∗ 6= m1, . . . ,mq for a successful forgery of A. Furthermore,
since σ∗$,k = σ$,k 6= 0 by assumption about the zero-evasion of the signature
scheme, B’s output message cannot match m$,k either. We conclude that
B has never queried its signing oracle about this message, neither in the
sampling phase, nor in a signing step. But since this message is checked
against σ∗k under pkk, adversary B would also win if A does.
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– Else, if m∗$,k 6= m$,k⊕ [mj ||σ$,k] for all j = 1, 2, . . . , q, then the message m∗$,k
is new; it is distinct from all queries in the signing step and also different
from the query m$,k in the sampling step, by the first case.

– Else, ifm∗$,k = m$,k⊕[mj ||σ$,k] for some j, the adversary A has swapped this
message part from the j-th query to the other signature position for the k-th
entry. But in the signature verification one checks in the other component
that the message

m∗$,k ⊕ [m∗||σ∗$,k] = m$,k ⊕ [(m∗ ⊕mj)||(σ$,k ⊕ σ∗$,k)]

is valid. Since m∗ 6= mj this message cannot match m$,k for which B has
called the oracle for the sampling step. Moreover, zero evasion implies that
σ∗$,k is not zero, and therefore σ$,k ⊕ σ∗$,k 6= σ$,k. It follows that B has not
called its oracle about the output message in any of the signing requests
either.

In summary, we have

Pr
[
SubvS

sgS ,subv
EUF-CMA,A(1λ)

]
≤ λ · AdvEUF-CMA

S,B (1λ) + λ · 2−λ.

This is negligible if we presume unforgeability of S.

6 PUF-based Key Exchange

In a key-exchange protocol two parties interact to derive a shared secret key,
which they can use subsequently for example for establishing a confidential
channel. The interesting aspect of using PUFs for such protocols is that one
can achieve information-theoretic security, when the PUF is ideal and one lim-
its the number of accesses of the adversary to the PUF. There have been some
proposals for PUF-based key-exchange protocols in this line [26,22,9,14]. These
schemes do not withstand substitution attacks as we briefly exemplify for the
case of [14] in Appendix A.3.

6.1 Preliminaries

A physically unclonable function (PUF) is a physical entity that is easy to evalu-
ate, if one is in possession of the PUF, and hard to predict otherwise. A PUF can
be stimulated with so-called challenges to which it responds with slightly noisy
values, called responses. A fuzzy extractor can be applied to the response to
eliminate the noise. Hence, in our setting, we assume that PUFs (with a suitable
fuzzy extractor) deterministically return consistent answers. Moreover, we only
consider PUFs that have exponential challenge and response spaces and hence
cannot be learned entirely in a short time. In fact, we assume that the PUF has
super-logarithmic input bit size and output size 5λ. If we have a PUF with only
λ output bits, then we can expand the output size via domain separation, and
evaluate the PUF at points 000||x, . . . , 100||x, and concatenates the responses.
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Due to uncontrollable variations in the manufacturing process, it is even
for the manufacturer practically infeasible to clone a PUF. This property is
referred to as unclonability. In our scenario we assume an initialization procedure,
create(), which creates a new PUF and returns a unique PUF identifier pid. We
denote the concrete PUF then as PUFpid, or following our subversion notations,
as PUFgenuine.

Only the party (including the adversary) in possession of the PUF (identifier)
can evaluate the PUF. Besides the parties, another PUF may be “in possession”
of the PUF, called encapsulated PUFs [3] or PUF-inside-PUFs [23]. This outer
PUF may then exclusively evaluate the inner PUF. The possibility to encapsulate
PUFs allows for example to bypass simple checks, such as challenge-response
validation, before evaluating the PUF on the actual data; a malicious PUF may
switch only to a skewed mode after the checks. We therefore also allow create
to be called with a malicious algorithm A in which case the PUF evaluates A
on the input, or with an algorithm A and previously created PUF identifiers
pid1, . . . ,pidn in which case algorithm A may also call the PUFs with these
identifiers as subroutine. We consequently sometimes refer to such a malicious
PUF as PUFsubv. We say that a PUF pid′ encapsulates a PUF pid if pid′ has
been created by including pid.

PUFs can have various properties that make them attractive for crypto-
graphic schemes. A property that we take advantage of is pseudorandomness of
PUF responses [1]. This means that the PUF approximates a random function.
In some works PUFs are also treated as random functions per se, but we prove
the result to hold more generally also for (computationally) pseudorandom func-
tions. In Figure 5, we give a simplified and intuitive game for pseudorandomness
that suffices for this paper. Note that the uncloneability is basically ensured by
allowing the adversary to internally create further PUFs. The PUF is pseudoran-
dom if the probability of predicting the bit b is negligibly close to 1

2 in the game.
A hybrid argument implies that the same is true if we use N challenge-response
values instead of only one, where the advantage over 1

2 grows by the factor N .

INDPUF
A (1λ)

pid← create()

(done, st)← APUFpid,create(1λ)
c $←− C
r0 ← PUFpid(c)

r1
$←− {0, 1}|r0|

b $←− {0, 1}
b′ $←− Acreate(st, c, rb)
return (b = b′)

Fig. 5: Game for pseudorandomness of PUF responses.
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For a more comprehensive and formal definition of PUFs and their security
properties we refer to [9] and [1].

6.2 Construction

In a simple PUF-based key-exchange protocol, Alice measures the PUF at a
random challenge point and sends her PUF to Bob. After assuring that Bob
has received the PUF, she sends him the challenge through an authenticated
channel.3 Both parties use the PUF’s response on this challenge as their shared
secret key. An adversary, not yet knowing the challenge when getting access
during transmission of the PUF, may measure the PUF for at most polynomial
many challenges. Then the adversary delivers the PUF to the other party, there-
fore loses access, and only then learns the challenge used by the parties. With
high probability this challenge will not be among the ones used by the adversary
before, implying that the derived key looks random to the adversary. Instead of
sending a fresh PUF for each key derivation, the PUF may also be used multiple
times. We denote this number of derived keys by N .

Considering that the physical channel used for transmitting the PUF may not
be authenticated, the adversary is now not only able to measure the PUF, but
also replace it with a malicious one, potentially even encapsulating the original
PUF into the malicious one, e.g., send PUFpid∗ for pid∗ ← create(A,pid). Even
with an authenticated physical channel, a more powerful adversary may be able
to gain physical access to the PUF while it is in possession of one of the parties
for a short time, just enough to replace it.

Motivated by the above attack, we draw connections to algorithm-substitution
attacks, which in this scenario can be more accurately described as token-
substitution attacks. In Figure 6 we propose a PUF-based key-exchange protocol
that self-guards against subversion of the PUF. It intuitively does so by splitting
the initially derived key y into a test part and an evaluation part. This splitting
is done via universal hash functions huniv, h′univ, where huniv(y) and h′univ(y) act
as authentication codes of the key (towards Bob resp. towards Alice), and an
extractor hextr which is used to extract sufficiently many random bits hextr(y)
from the remaining bits. The sending party transmits huniv, h

′
univ, hextr, and

huniv(y) over the authenticated channel, and the receiving party checks that the
authentication part matches its initially derived key. The receiver replies with
its authentication tag.

In the protocol we denote by H5λ,λ[p] a family of hash functions with input
bit size 5λ and output bit size λ, having some property p. Here, p is either
being 2−λ-universal, saying that for fixed x 6= x′ ∈ {0, 1}5λ we have huniv(x) =
huniv(x′) with probability at most 2−λ over the choice of huniv from the family.
Similarly, for property p being a (3λ, 2−λ)-extractor we have that (hextr, hextr(y))
has statistical distance 2−λ from (hextr, z) for uniform z ∈ {0, 1}λ, as long as
y has min-entropy at least 3λ. Since the loss of at most 2λ bits through the
3 See [9] for a discussion that an authenticated digital channel is necessary for reason-
able protocols.
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authentication tag huniv(y) and h′univ(y), we still have this min-entropy left in
the uniform value y.

Our result holds with respect to malicious, stateful, and encapsulated PUFs.
This is not subsumed by any of the previous results, nor does it contradict any
of the impossibility results so far. As for positive results note that the oblivi-
ous transfer protocol of Brzuska et al. [9], in the version of Dachman-Soled et
al. [12], from which one could build a key exchange protocol, does not withstand
encapsulating and stateful PUFs. The impossibility result to build key exchange
protocols by van Dijk and Rührmair [14] only applies to PUFs which are acces-
sible by the adversary after the execution, a property which we do not consider
here.

6.3 Security

For our security claim we need to specify the security game. Since we assume
authenticated (digital) transmissions, the adversary may read but not tamper
with the transmissions (beyond replacing the PUF). We are interested in key
confidentiality, namely, that the adversary cannot distinguish keys from random,
and robustness in the sense that, if both parties accept, then they also hold the
same key. In the security game we therefore give the adversary a transcript of
a run of the key exchange protocol (where the adversary may have replaced
the PUF before, however), and hand over the N keys derived by one party, or
random values instead. The choice made according to some secret bit b. We
declare the adversary to win if it either manages to predict b, or to make both
parties accept with different keys (in which case we hand over b, unifying the
threshold to the guessing probability of 1

2 for both cases).
The game is formally described in Figure 7. Note that this part corresponds

to the second phase of the attack. In the first phase, one creates the PUF, then
possibly samples challenge and responses, and the adversary may substitute the
PUF.

Theorem 4. Our key-exchange protocol KEsg from Figure 6 is self-guarding
with respect to the robust key indistinguishability game IND-KEY, against sub-
version of PUF, if the initial PUF is pseudorandom.

Proof. Consider an adversary A playing the subversion game SubvKE
sgPUF,β

IND-KEY,A de-
fined in Figure 1. We argue that A’s success probability in distinguishing keys,
established by the protocol, from random strings is negligible, regardless of which
value β takes. We let q denote the number of queries which A makes to the orig-
inal PUFgenuine itself.

We first note that, instead of using a pseudorandom PUFgenuine, we may
equally well use a truly random PUF. If this would decrease A’s success prob-
ability significantly, then we would immediately derive a contradiction to the
pseudorandomness of the PUF.

Next, we argue that, if the adversary does not encapsulate PUFgenuine in
PUFsubv then, except with negligible probability, neither party will accept in any
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KEsg.Sample(pid)

Ω ← []
for i = 1..N do
x$,i

$←− C
y$,i ← PUFpid(x$,i)
enq(Ω, (x$,i, y$,i))

return Ω

KEsg.Gen(1λ)

pid← create()

where PUFpid : {0, 1}λ → {0, 1}5λ

return pid

KEsg.KE(Ω)

Alice(Ω) Bob

PUFpid

“ok”

for i = 1..N do
(x, y)← deq(Ω)

huniv
$←− H5λ,λ[2−λ-universal]

h′univ
$←− H5λ,λ[2−λ-universal]

hextr
$←− H5λ,λ[(3λ, 2−λ)-extractor]

a← huniv(y)

x, huniv, h
′
univ, a, hextr

y ← PUFpid(x)
if a 6= huniv(y) then abort
a′ ← h′univ(y)

a′

if a′ 6= h′univ(y) then abort
k← hextr(y) k← hextr(y)

Fig. 6: Self-guarding PUF-based key-exchange protocol KEsg, where PUF has
challenge and response space C = {0, 1}λ and R = {0, 1}5λ. Solid arrows denote
authenticated digital transmissions, while the dashed arrow denotes a physical
transmission.
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IND-KEYKEA (κ,Ω)

(k0
1, . . . , k

0
N , transc) $←− KE .KE(κ,Ω)

b $←− {0, 1}
if k0

i,Alice 6= k0
i,Bob and k0

i,Alice, k
0
i,Bob 6= ⊥ for some i then a← b else a← ⊥ fi

(k1
1, . . . , k

1
N ) $←− KN

b′ ← A(κp, kb1, . . . , k
b
N , transc, a)

return (b = b′)

Fig. 7: IND-KEY game for key exchange with associated constant δ = 1
2 . Here

k0
i = k0

i,Alice denotes the key output by Alice in the i-th execution, and k0
i,Bob

denotes Bob’s key in this execution, where we assume that keys are set to ⊥ for
non-accepting executions; transc denotes the communication exchanged by all
parties in all executions; K denotes the key space.

of the N runs. To see this note that the probability that A queries the PUF
PUFgenuine on any of the N challenge values x, before some PUFsubv is delivered
to Bob, is at most Nq · 2−λ. Condition now on the event that such a query has
not happened.

In the moment when PUFsubv is handed over, and by the authenticated “ok”-
acknowledgement sent by Bob this happens before the adversary gets to learn
the challenges, each value y ← PUFgenuine(x) is distributed independently of the
function in PUFsubv. Here we use that PUFsubv does not encapsulate PUFgenuine.
Hence, for each challenge, except with probability 2−λ, the random response y is
different from the response y′ computed by PUFsubv. In this case, with probability
at most 2 · 2−λ by the property of the universal hash functions huniv, h

′
univ (also

chosen independently of y, y′), either of the authentication tags a or a′ complies
with the expected answer. Summing over all N challenges implies that only with
negligible probability A can afford to not encapsulate PUFgenuine and still make
either party accept in any execution.

If, on the other hand, PUFsubv encapsulates PUFgenuine, then the adversary
cannot determine any of the random value y ← PUFgenuine(x), since we have
already ruled out that it has queried x before. Since the value contains 5λ bits
of min-entropy, and we lose at most 2λ bits through the two hash values a, a′,
the extractor ensures that k is 2−λ close to uniform, given hextr. The statistical
distance of all N independent samples is then given by N · 2−λ.

The same line of reasoning for the case that the substituted PUF does not
encapsulate the original one, shows that the adversary cannot make Alice and
Bob accept but for different keys, except with negligible probability. For this
note that they can only derive distinct keys if they end up with different values
y 6= y′. Here, the universality of huniv and h′univ and the fact that the responses
are determined independently of the choice of the hash function again imply
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that the probability of such a collision with the expected value a or a′ is at most
2 · 2−λ.

In conclusion, we obtain that the success probability of any adversary A in
winning IND-KEY against KEsg is negligibly close to 1

2 .

Note that the hashing steps are crucial for security. If one would, say, sim-
ply divide y into strings a||a′||k of lengths λ, λ and 3λ, respectively, then the
adversary could send an encapsulated PUF which agrees upon the first 2λ bits
but returns a different part k. In this case both parties would accept, but with
distinct keys. Even worse, Bob’s key part k may be easy to predict for the ad-
versary.

7 Conclusion

Our results show that basic tasks can be made self-guarding. Protection against
ASAs is a challenging task. Currently, the biggest concern is to improve the
efficiency of constructions. For our self-guarding public-key and symmetric en-
cryption schemes it is less the computational overhead, but rather that one can
only perform secure encryption as long as fresh samples are still available. Recall
that involved techniques such as sample re-randomization, which quasi means to
implement one’s own encryption procedure, should be avoided. Thus, a viable
option may be to consider restricted subversion attacks, such as stateless algo-
rithms Σsubv. One can also study the possibility of reusing samples after each
system reboot to protect against stateful subversions that can only use a volatile
memory to store their states.

The idea of relaxing the admissible attack strategy works for our self-guarding
signature scheme. It can be applied an unbounded number of times for stateless
subverted algorithms Σsubv. At the same time, it requires many calls to the
signature algorithm and produces large signatures. Here, using specific signature
schemes may be helpful in overcoming these limitations.

In terms of efficiency, our self-guarding PUF-based key exchange protocol
is reasonably fast. It remains an interesting open question if other PUF-based
protocols, e.g., for oblivious transfer (OT), can be self-guarded. As for negative
results, Rührmair [23] argues that the strategy of interleaving test and evaluation
challenges fails for the oblivious transfer protocol of Dachman-Soled et al. [12].
But this attack is based on the specific oblivious transfer protocol where the
adversary has some control over the input to the PUFs. An option may be to
use a different OT protocol where the adversary has less influence on the inputs
fed into the PUF.
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A Supplementary Material
A.1 Security Degradation
Roughly speaking, self-guarding of a scheme states that a scheme Π does not
become insecure if the underlying scheme Σ is substituted by a malicious im-
plementation. However, it does not guarantee that the security is not degraded.
Consider for instance a substitution attack that manages to leak half of the se-
cret key to the adversary. Although the advantage from Definition 2 with respect
to a full key recovery game may remain negligible, the success probability grows
exponentially. For scenarios, where one needs to quantify an adversary’s gain
more precisely, we suggest using the security degradation factor defined below.
Definition 4 (Security degradation under subversion). Let Σ and Π be
cryptographic schemes, and let Sec be a security game for Π with associated
constant δ ∈ [0, 1) (used in defining the advantage). The security degradation
factor for an adversary A in the subversion game of Figure 1 is defined by:

ΘSubv,Sec
ΠΣ ,A (λ) :=

Pr
[
SubvΠ

Σ ,subv
Sec,A (1λ) = true

]
− δ

Pr
[
SubvΠΣ ,genuine

Sec,A (1λ) = true
]
− δ

.

We say that subverting Σ does not substantially degrade security of Π with re-
spect to Sec, if for all PPT adversaries A, we have ΘSubv,Sec

ΠΣ ,A (λ) ≤ poly(λ).

A.2 Omitted Security Games
In this section we state the security games of IND-CPA for (public-key and
private-key) encryption and of EUF-CMA for signature schemes in our termi-
nology. For example, in the encryption case in Figure 8 we capture both public-
key and private-key encryption simultaneously, by setting κp = pk and κs = sk
resp. κp = ⊥ and κs = k. Recall once more that the game basically describes the
second phase of substitution attacks. Also, in the subversion game of Figure 1,
if the adversary always chooses Encsubv = Encgenuine and we have an empty list
Ω we obtain the standard security notions without substitution attacks.

IND-CPAEA(κ,Ω)

b $←− {0, 1}

b′ $←− A∨(κ,Ω,b,·,·)(κp)
return (b = b′)

∨(κ,Ω, b,mleft,mright)

if |mleft| 6= |mright| then return ⊥
m0 ← mleft,m1 ← mright

c $←− E .Enc(κ,Ω,mb)
return c

Fig. 8: IND-CPA game for encryption.

The common EUF-CMA unforgeability game for signatures is given in Fig-
ure 9.
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EUF-CMASA(κ,Ω)

M ← ∅

(m∗, σ∗) $←− ASig(κ,Ω,·)(κp)
if m∗ 6∈M and S.Vf(κp,m∗, σ∗) then

return true
return false

Sig(κs, Ω,m)

M ←M ∪ {m}
σ $←− S.Sig(κs, Ω,m)
return σ

Fig. 9: EUF-CMA game for signatures.

A.3 Example Attack on PUF-based Key Exchange Protocol

Here we briefly argue that the common technique of checking validity of the
PUF by verifying a challenge-response pair is vulnerable to substitution attacks.
The derived PUF is stateless and encapsulates the original PUF. We describe
the attack on the concrete protocol in [14].

KE

Alice Bob

c $←− C, r ← PUF(c)
c∗ $←− C, r∗ ← PUF(c∗)

PUF

ok

(c, r), c∗

if r 6= PUF(c) then abort
k← r∗ else k← PUF(c∗)

Fig. 10: PUF-based key-exchange protocol from [14], vulnerable to PUF-
substitution attack.

The attacker builds the substituted PUF by encapsulating the original PUF.
When stimulated, the malicious PUF flips a coin and either returns the original
response, or the all-zero string. Then, with probability 1

4 it will pass the check
and make Bob output the all-zero key, thus breaking both robustness and key
indistinguishability. This process can be derandomized by using a 2-wise inde-
pendent hash function h outputting a single bit, returning the original response
on challenge c if h(c) = 1, and the zero string if h(c) = 0.
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