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Abstract. Multi-input functional encryption is a very useful generaliza-
tion of Functional Encryption, which has been motivated by Goldwasser
et al. from Eurocrypt ’14. All the constructions, however, rely on non-
standard assumptions. Very recently, at Eurocrypt ’17, Abdalla et al.
considered a restricted case and proposed an efficient multi-input inner-
product functional encryption scheme.
In this paper, regarding the case of inner product, we argue that the
multi-client setting (MCFE, for Multi-Client Functional Encryption),
which borrows techniques from both Functional Encryption and Private
Stream Aggregation, is better suited to real-life applications because
of the strong restrictions implied by linear relations. We then propose
a practical solution for Multi-Client Inner-Product Functional Encryp-
tion (IP-MCFE) which relies on the sole DDH assumption and supports
adaptive corruptions.
In MCFE schemes, each data input is encrypted by a different client, and
the clients might not trust anybody for the functional decryption keys.
It thus seems quite important to remove any authority, while allowing
corruptions of the clients by the adversary. We thus propose the notion of
Decentralized Multi-Client Functional Encryption (DMCFE) and provide
a generic construction from two MCFE schemes with particular properties.
More concretely, combining two instantiations of our previous IP-MCFE,
we can build an efficient and non-interactive decentralized scheme for
inner product. Our construction relies on the SXDH assumption, and
supports adaptive corruptions in the random oracle model.

Keywords. Functional Encryption, Inner Product, Private Stream Ag-
gregation, Multi-Client, Decentralized.

1 Introduction

Functional Encryption (FE) [8,12,16,25] is a new paradigm for encryption which
extends the traditional “all-or-nothing” requirement in a much more flexible way.
FE allows users to learn specific functions of the encrypted data: for any function
f from a class F , a secret functional decryption key dkf can be computed such
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that, given any ciphertext c with underlying plaintext x, using dkf , a user can
efficiently compute f(x), but does not get any additional information about x.

FE is the most general form of encryption as it encompasses identity-based
encryption, attribute-based encryption, broadcast encryption, depending on the
function f . However, the basic definition of FE implies that all the input data
come from one party. In many practical applications, the data is an aggregation
of information that comes from different parties and they may not trust each
other. In order to deal with this scenario, two approaches have been introduced:
Multi-Input FE (MIFE) [13, 14, 18] and Multi-Client Functional Encryption
(MCFE) [13,18].

Multi-Input Functional Encryption. Goldwasser et al. [13, 14, 18] introduced the
notion of Multi-Input Functional Encryption (MIFE) which extends a single
input x to an input vector (x1, . . . , xn) where the components are independent.
This allows many users to input their own data: user i can enter xi and encrypt it
as ci = Encrypt(xi). Anyone owning a functional decryption key dkf , for an n-ary
function f and multiple ciphertexts c1 = Encrypt(x1), . . . , cn = Encrypt(xn), can
compute f(x1, . . . , xn) but nothing else about the individual xi’s. Numerous
applications of MIFE have been given in detail in [13].

The security notion for FE and MIFE requires that no one should be able
to guess which messages (between two lists) have been encrypted, under the
restriction that the outputs of the functions for which the adversary has asked for
a functional decryption key are the same for both lists of plaintexts. This excludes
functional decryption keys that could trivially tell apart which ciphertexts have
been encrypted. No security notion can do better, but even just n ciphertexts
for an n-ary function might exclude the adversary from knowing any functional
decryption key. This is particularly significant in the case of MIFE, where
permutations and mix-and-match combinations can generate many valid vectors
of ciphertexts.

Multi-Client Functional Encryption. For Multi-Client Functional Encryption
(MCFE), as defined in [13, 18], both an index i for the client and a time-
based counter t are used for the encryption: (c1 = Encrypt(1, x1, t), . . . , cn =
Encrypt(n, xn, t)). Therefore, the combination of different ciphertexts, generated
at different time periods, does not give a valid ciphertext and the adversary learns
nothing from it. This makes possible to relax the restriction on the functional
decryption keys the adversary can ask for in the security game, which becomes
much more useful in practice. More generally, we can allow distinct clients that
do not trust each other to submit their ciphertexts ci = Encrypt(i, xi, `) for any
label `, so that any vector under the same label with all the ordered indexes
i = 1, . . . , n can be decrypted with a functional decryption key. But since they
do not trust anybody, they should not trust any authority either to generate the
keys. We would thus be interested in a decentralized version of MCFE, where no
authority is involved, but the generation of decryption keys remains an efficient
process.
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1.1 Related work

In the more general form, FE, MIFE, and MCFE schemes have been proposed [4,5,
9,13,15–17,24,27] but unfortunately, they all rely on non standard cryptographic
assumptions (indistinguishability obfuscation, single-input FE for circuits, or
multilinear maps). However, it is more important in practice, and this is an
interesting challenge, to build FE for restricted (but concrete) classes of functions,
satisfying standard security definitions, under well-understood assumptions.

Inner Product. In 2015, Abdalla, Bourse, De Caro, and Pointcheval [1] considered
the question of building FE for inner-product functions. In their paper, they show
that inner-product functional encryption (IP-FE) can be efficiently realized under
standard assumptions like the Decisional Diffie-Hellman (DDH) and Learning-
with-Errors (LWE) assumptions [23], but for the selective security model only.
Later on, Agrawal, Libert and Stehlé [3] considered adaptive security for IP-FE
and proposed constructions the security of which is based on DDH, LWE or
Paillier’s Decisional Composite Residuosity (DCR) [22] assumptions.

The extension from IP-FE to IP-FE in the multi-input or multi-client settings
is not simple. No construction from the DDH, LWE or DCR assumptions had
been proposed until this year: at Eurocrypt ’17, Abdalla et al. [2] proposed an
efficient Multi-Input Inner-Product Functional Encryption (IP-MIFE) scheme
that relies on the k-Lin assumption in prime-order bilinear groups.

Private Stream Aggregation (PSA). This notion, also referred to as Privacy-
Preserving Aggregation of Time-Series Data, is an older notion introduced by Shi
et al. [26]. It is quite similar to a natural decentralization of the MCFE scheme as
just discussed above, with the main distinction being that PSA doesn’t consider
the possibility of generating different keys for different inner products, but only
enables the aggregator to compute the sum of the clients’ data for each time
period. PSA also typically involves a Differential Privacy component, which has
yet to be studied in the larger setting of MCFE. Further research on PSA has
focused on achieving new properties or better efficiency [7, 10,11, 19–21] but not
on enabling new functionalities.

1.2 Limitations of Multi-Input Functional Encryption

When considering the multi-input setting, the standard security notion has to deal
with mix-and-match challenge ciphertexts in the security game: the adversary can
input the ciphertexts in any order it wants and one must take into account the
fact that the adversary can learn a lot from all the possible combinations of the
challenge ciphertexts, even with one functional decryption key. Then, the security
model might exclude the adversary from knowing any functional decryption key
to avoid trivial attacks: the security notion becomes void.

If we assume an index when encrypting the messages: c1 = Encrypt(1, x1), . . . ,
cn = Encrypt(n, xn), one can only compute f(x1, . . . , xn) from c1, . . . , cn, without
the possibility of using xi at some other position. The security notion becomes
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more realistic, but even with a strict ordering, one can still ask for another
series of ciphertexts c′1 = Encrypt(1, x′1), . . . , c

′
n = Encrypt(n, x′n), and then mix-

and-match the xi’s and the x′i’s, which leads to 2n possible vectors: again, this
likely excludes the adversary from asking for any functional decryption key. As
mentioned above, almost all the constructions of MIFE rely on indistinguishability
obfuscation or multilinear maps which we do not know how to instantiate under
standard cryptographic assumptions. An exception is the construction of MIFE
for inner product from Abdalla et al. [2], where the function Fy is the inner
product 〈x,y〉 of the message x and the key y, both seen as n-vectors of scalars.

Let us elaborate on Inner-Product Functional Encryption (IP-FE). We first
look at the n−ary inner-product function: for a y = (y1, . . . , yn) which specifies
the function fy, on the message x = (x1, . . . , xn), we define fy(x) = 〈x,y〉 =∑
i〈xi, yi〉. We observe that the input message x is already a vector and a

natural extension into the multi-input setting is to allow each user to enter his
data xi, at a specific position. However, in case of MIFE, due to the security
requirements, when considering standard notions of multiple challenge-ciphertexts
in the case of inner-product functions, from just two different n−ary ciphertexts,
any combination leads to 2n valid ciphertexts, and as many linear equations from
just one functional decryption key on y, unless all of its components are 0. The
decryption key for y = (0, . . . , 0) is the only allowed query. This makes MIFE for
Inner Product a completely void primitive.

In order to overcome this issue, Abdalla et al. [2] introduced another extension
of IP-MIFE, by encrypting vectors of vectors, and then the functions takes vectors
as individual inputs:

Fy1,...,yn(x1, . . . ,xn) =
∑
i

〈xi,yi〉

where each xi,yi are also vectors. They argue then that an exponential number
of constraints on the whole vectors of vectors y = (y1, . . . ,yn) can be succinctly
characterized by a quadratic constraint on the components y1, . . . ,yn and because
the yi are now vectors (of dimension strictly larger than 1), the space of decryption
keys the adversary is allowed to query can still be large. But this does not solve
the issue for 1-vectors xi’s, which is the situation we are interested in.

1.3 Multi-Client Functional Encryption

In the model of Multi-Client Functional Encryption, the above combination is
avoided. MCFE is similar to MIFE but each ciphertext is associated to both an
index and a time period t that we call and denote a label ` in this paper, thus a
ciphertext vector is of the form (c1 = Encrypt(1, x1, `), . . . , cn = Encrypt(n, xn, `))
for a label `. Therefore, the combination of different ciphertexts, under different
labels, does not give a valid ciphertext and the adversary learns nothing in doing
so. In contrast to IP-MIFE, IP-MCFE supports the natural initial extension
where the xi’s and yi’s can be scalars and not vectors. It fits more practical
applications. MCFE also seems to fit real-life applications as, in practice, it is
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natural to associate data of the same record with a label: the users know which
computation they need to perform on their specific joint data and it does not
really make sense to combine different parts from different ciphertexts.

We also remark that, for MCFE, as explained in [13], counter-intuitively, the
private-key setting is much more relevant than the public-key setting. Indeed,
let us consider the case where Encrypt(.) is a public function and suppose that
the adversary receives a challenge ciphertext (c∗1 = Encrypt(1, xb1, `), . . . , c

∗
n =

Encrypt(n, xbn, `)) from its two chosen plaintexts x0 = (x01, . . . , x
0
n) and x1 =

(x11, . . . , x
1
n). Then the adversary can combine any part c∗i of the challenge cipher-

text with ciphertexts ci = Encrypt(i, xi, `) it could generate itself, to make an
acceptable ciphertext and use a functional decryption key to evaluate the function
on the underlying vector. In order to prevent the adversary from a trivial win, one
should make the restriction that the adversary is only allowed to ask functional
decryption keys dkf for functions f that satisfy f(x01, ·, . . . , ·) = f(x11, ·, . . . , ·),
f(·, x02, . . . , ·) = f(·, x02, . . . , ·), . . . , f(·, ·, . . . , x0n) = f(·, ·, . . . , x1n). Again, this
would essentially exclude any function. A private encryption solves this issue.

In this paper, we will thus consider this private-key setting which naturally
fits the MCFE model as each component in the plaintext is separately provided by
a client. In such a case, the corruption of some clients is an important issue, since
several of them could collude to learn information about other clients’ inputs.

1.4 Decentralized Multi-Client Functional Encryption

MCFE (like MIFE) assumes the existence of a trusted third-party who runs the
SetUp algorithm and distributes the functional decryption keys. This third-party,
if malicious or corrupted, can easily undermine any client’s privacy. We are thus
interested in building a scheme in which such a third-party is entirely removed
from the equation.

We introduce the notion of Decentralized Multi-Client Functional Encryption
(DMCFE), in which the setup phase and the generation of functional decryption
keys is decentralized. We are interested in minimizing interaction during those
operations. While a natural decentralization of our first MCFE scheme boasts a
non-interactive setup phase, it requires interactions every time the clients agree
to generate a new key. A scheme in which the setup phase is interactive but
no interaction is required when generating new keys would arguably be more
interesting.

1.5 Our contributions

Practical constructions of functional encryption for specific classes of functions is
of high interest. In this paper, we focus on MCFE and DMCFE for Inner Product.

We propose the first solution for Inner-Product Functional Encryption in the
Multi-Client setting that enjoys many interesting properties:

1. Efficiency: the proposed scheme is highly practical as it is as efficient as the
DDH-based IP-FE scheme from [1]. A value xi is encrypted as a unique group
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element Ci. We stress that, in the multi-client setting, this is optimal because
each input value xi is independently added in a ciphertext by a client and
therefore, for an n-ary input vector, the ciphertext should contain at least
O(n) elements.

2. Security under a standard assumption: our scheme is selectively secure under
the classical DDH assumption.

In addition, we consider corruptions of users, and even adaptive corruptions,
which Goldwasser et al. [13] outline as an “intersting direction”.

We also formalize the new notion of Decentralized Multi-Client Functional
Encryption, and then focus on DMCFE for Inner Product:

– We give a generic transformation for building DMCFE schemes from MCFE
schemes that satisfy some reasonable properties.

– Whereas our above MCFE for Inner Product does not satisfy all these as-
sumptions, we still manage to instantiate the first DMCFE for Inner Product
from it, at the cost of introducing pairings. We prove that our scheme en-
joys selective security and supports adaptive corruptions under the SXDH
assumption.

We leave open the problems of considering LWE-based constructions and of
extending this work beyond inner-product functions.

2 Definitions

2.1 Multi-Client Functional Encryption

A MCFE scheme encrypts vectors of data from several senders and allows the
controlled computation of functions on these heterogeneous data. The information
is structured in a table of n-vectors (which can thus be seen as an m×n-matrix),
where each component (each column of the matrix) is provided by one of the n
distinct and independent senders. Since each component of the vectors should be
provided by a specific sender only, a secret encryption key will be given to each
sender. We thus define a secret-encryption MCFE as in [13,18]:

Definition 1 (Multi-Client Functional Encryption). A multi-client func-
tional encryption onM over a set of n senders is defined by four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public
parameters mpk, the master secret key msk and the n encryption keys eki;

– Encrypt(eki, xi, `): Takes as input a personal encryption key eki, a value xi
to encrypt, and a label `, and outputs the ciphertext C`,i;

– DKeyGen(msk, f): Takes as input the master secret key msk and a function
f :Mn → R, and outputs a functional decryption key dkf ;

– Decrypt(dkf , `,C): Takes as input a decryption key dkf , a label `, and a
n-vector ciphertext C, and outputs f(x), if C is a valid encryption of x =
(xi)i ∈Mn for the label `, or ⊥ otherwise.
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We make the assumption that mpk is included in msk and in all the encryption
keys eki as well as the functional decryption keys dkf . The correctness property
states that, given (mpk,msk, (eki)i) ← SetUp(λ), for any label `, any function
f :Mn → R, and any vector x = (xi)i ∈ Mn, if C`,i ← Encrypt(eki, xi, `), for
i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then Decrypt(dkf , `,C` = (C`,i)i) =
f(x = (xi)i) with overwhelming probability.

Definition 2 (IND-Security Game for MCFE). Let us consider a MCFE
scheme over a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

– Initialization: the challenger C runs the setup algorithm (mpk,msk, (eki)i)←
SetUp(λ) to receive the parameters mpk, the master secret key msk, and the
n encryption keys eki. It also chooses a random bit b $← {0, 1}. It provides
mpk to the adversary A;

– Encryption queries QEncrypt: A has unlimited and adaptive access to a Left-
or-Right encryption oracle, which on input (i, x0, x1, `) runs Encrypt(eki, xb, `),
and outputs the ciphertext C`,i. We note that a second query for the same
pair (`, i) will later be ignored;

– Functional decryption key queries QDKeyGen: A has unlimited and adaptive
access to the DKeyGen algorithm for any input function f of its choice. It is
given back the functional decryption key dkf ;

– Corruptions queries QCorrupt: A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any
sender i of its choice.

– Finalize: A provides its guess b′ on the bit b.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt), and HS the set of
honest (non-corrupted) senders:

1. if, for some encryption query QEncrypt(i, x0i , x
1
i , `), for an index i ∈ CS,

x0i 6= x1i , then β
$← {0, 1};

2. if, for some label ` and pair of vectors x0 = (x0i )i and x1 = (x1i )i, where
(i, x0i , x

1
i , `) has been input to QEncrypt for all i ∈ HS and x0i = x1i for

all i ∈ CS, for some function f input to QDKeyGen, f(x0) 6= f(x1), then
β

$← {0, 1};
3. otherwise, β ← b′.

We say this MCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1]− P [β = 1|b = 0]| is negligible.

Informally, this is the usual Left-or-Right indistinguishability [6], but where the
adversary should not be able to get ciphertexts or functional decryption keys
that trivially help distinguish the encrypted vectors:

1. since the encryption might be deterministic, if we allow Left-or-Right encryp-
tion queries even for corrupted encryption keys, these queries should be on
identical messages;



8 J. Chotard, E. Dufour Sans, D. H. Phan, and D. Pointcheval

2. for any functional decryption key, since the adversary can generate any
ciphertext for the corrupted components, any such value should not help
distinguishing the ciphertexts generated through QEncrypt (on honest com-
ponents);

in which cases the guess of the adversary is not considered (a random bit β is
output). Otherwise, this is a legitimate attack, and the guess b′ of the adversary
is output. We stress that we bar the adversary from querying several ciphertexts
under the same pair (`, i). In real life, it is of course the responsibility of the
senders not to encrypt under the same label twice.

One may define weaker variants of indistinguishability, where some queries
can only be sent before the initialization phase:

– Selective Security (sel-IND): the encryption queries (QEncrypt) are sent
before the initialization;

– Static Security (sta-IND): the corruption queries (QCorrupt) are sent before
the initialization.

2.2 Decentralized Multi-Client Functional Encryption

In MCFE, an authority owns msk to generate the functional decryption keys. We
would like to avoid requiring such an authority, and make the scheme totally
decentralized among the senders. We thus define DMCFE, for Decentralized
Multi-Client Functional Encryption. In this context, there are n senders (Si)i,
for i = 1, . . . , n, who will play the role of both the encrypting players and the
decryption key generators for a functional decrypter FD. Of course, the senders
do not trust each other and they want to control the functional decryption keys
that will be generated. There may be several functional decrypters, but since
they could combine all the functional keys, in the description below, and in the
security model, we will consider only one functional decrypter FD.

Definition 3 (Decentralized Multi-Client Functional Encryption). A
decentralized multi-client functional encryption onM between a set of n senders
(Si)i, for i = 1, . . . , n, and a functional decrypter FD is defined by two protocols
and two algorithms:

– SetUp(λ): This is a protocol between the senders (Si)i that eventually generate
their own secret keys ski and encryption keys eki, as well as the public
parameters mpk;

– Encrypt(eki, xi, `): Takes as input a personal encryption key eki, a value xi
to encrypt, and a label `, and outputs the ciphertext C`,i;

– DKeyGen((ski)i, f): This is a protocol, with a function f : Mn → R as
common input to each sender Si, in addition to their own secret key ski,
which eventually outputs the functional decryption key dkf ;

– Decrypt(dkf , `,C): Takes as input a decryption key dkf , a label `, and a
n-vector ciphertext C, and outputs f(x), if C is a valid encryption of x =
(xi)i ∈Mn for the label `, or ⊥ otherwise;
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As above, we make the assumption that mpk is included in all the secret and en-
cryption keys, as well as the functional decryption keys. The correctness property
states that, given (mpk, (ski)i, (eki)i)← SetUp(λ), for any label `, any function
f : Mn → R, and any vector x = (xi)i ∈ Mn, if C`,i ← Encrypt(eki, xi, `),
for i ∈ {1, . . . , n}, and dkf ← DKeyGen((ski)i, f), then Decrypt(dkf , `,C` =
(C`,i)i) = f(x = (xi)i) with overwhelming probability.

The security model is quite similar to the previous one, but corrupt-queries
are important since the senders do not trust each other, and they now reveal the
secret keys ski’s:

Definition 4 (IND-Security Game for DMCFE). Let us consider a DMCFE
scheme between a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

– Initialization: the challenger C runs the setup protocol (mpk, (ski)i, (eki)i)←
SetUp(λ) to receive the parameters mpk, and the n pairs of secret and en-
cryption keys (ski, eki)i. It also chooses a random bit b $← {0, 1}. It provides
mpk to the adversary A;

– Encryption queries QEncrypt: A has unlimited and adaptive access to a Left-
or-Right encryption oracle, which on input (i, x0, x1, `) runs Encrypt(eki, xb, `),
and outputs the ciphertext C`,i. We note that a second query for the same
pair (`, i) will later be ignored;

– Functional decryption key queries QDKeyGen: A has unlimited and adaptive
access to the (non-corrupted) senders running the DKeyGen protocol for any
input function f of its choice. It is given back the functional decryption key
dkf ;

– Corruptions queries QCorrupt: A can make an unlimited number of adaptive
corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt), and HS the set of
honest (non-corrupted) senders:

1. if, for some encryption query QEncrypt(i, x0i , x
1
i , `), for an index i ∈ CS,

x0i 6= x1i , then β
$← {0, 1};

2. if, for some label ` and pair of vectors x0 = (x0i )i and x1 = (x1i )i, where
(i, x0i , x

1
i , `) has been input to QEncrypt for all i ∈ HS and x0i = x1i for all

i ∈ CS, for some function f obtained from the QDKeyGen protocol, f(x0) 6=
f(x1), then β $← {0, 1};

3. otherwise, β ← b′.

We say this DMCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1]− P [β = 1|b = 0]| is negligible.

Similarly to MCFE, we can define the weaker sel-IND and sta-IND security
notions for DMCFE.
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3 A Centralized Construction for the Inner Product

3.1 Description

In this section, we present a first MCFE scheme for inner product. It is inspired
by Abdalla et al.’s scheme [1]:

– SetUp(λ): Takes as input the security parameter, and generates a group G of
prime order p ≈ 2λ, g ∈ G a generator, and H a full-domain hash function
onto G. It also generates the encryption keys si

$← Zp, for i = 1, . . . , n,
and sets s = (si)i. The public parameters mpk consist of (G, p, g,H), while
the master secret key is msk = s and the encryption keys are eki = si for
i = 1, . . . , n (in addition to mpk, which is omitted);

– Encrypt(eki, xi, `): Takes as input the value xi to encrypt, under the key
eki = si and the label `, and outputs the ciphertext C`,i = H(`)si · gxi ;

– DKeyGen(msk,y): Takes as input msk = s and an inner-product function
defined by y as fy(x) = 〈x,y〉, and outputs the functional decryption key
dky = (y, 〈s,y〉);

– Decrypt(dk, `,C): Takes as input a decryption key dk = (y, dk), a label `, and
a ciphertext C = (Ci)i, to compute gα = (

∏
i C

yi
i )×H(`)−dk, and eventually

solve the discrete logarithm to extract and return α.

We stress that, as for Abdalla et al.’s scheme [1], the result α should not be too
large to allow the final discrete logarithm computation.

Correctness : if the scalar dk in the decryption functional key dky = (y, dk) is
indeed dk = 〈s,y〉, then

(
∏
i

Cyii )×H(`)−dk = (
∏
i

Cyii )×H(`)−〈s,y〉 =
∏
i

(H(`)si · gxi)yi ×H(`)−〈s,y〉

= H(`)〈s,y〉 · g〈x,y〉 ×H(`)−〈s,y〉 = g〈x,y〉.

3.2 Selective Security

Like Abdalla et al.’s original scheme [1], our protocol can only be proven secure in
the weaker security model, where the adversary has to commit in advance to all
the pairs of messages for the Left-or-Right encryption oracle (QEncrypt-queries).
However, he can adaptively ask for functional decryption keys (QDKeyGen-queries)
and encryption keys (QCorrupt-queries). Concretely, the challenger is provided
with the two m-row matrices X0 = (x0

j )j , X1 = (x1
j )j , with a vector of labels ` =

(`j)j , all with j = 1, . . . ,m. The challenge ciphertexts Cj,i = Encrypt(`j , eki, x
b
j,i),

for the random bit b, are returned to the adversary.
Note that the adversary can keep some messages void, but necessarily the

global pair, x0j,i = x1j,i = ⊥, which means that the adversary does not ask for this
ciphertext Cj,i. Since in the security model we exclude two encryption queries
for the same pair (`, i), the vector ` must have distinct components (`j 6= `j′ , for
any j 6= j′).
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Definition 5 (Selective Security for MCFE). Let us consider an MCFE over
a set of n senders. No adversary A should be able to win the following security
game against a challenger C:

– Initialization with (`, X0 = (x0
j)j , X

1 = (x1
j)j): the challenger C runs the

setup algorithm (mpk,msk, (eki)i)← SetUp(λ) to receive the parameters mpk,
the master secret key msk, and the n encryption keys eki. It also chooses a
random bit b $← {0, 1} and runs Cj,i ← Encrypt(`j , eki, x

b
j,i), if both x0j,i 6= ⊥

and x1j,i 6= ⊥, otherwise Cj,i ← ⊥, for j = 1, . . . ,m and i = 1, . . . , n.
Eventually, C provides mpk, and all the ciphertexts Cj,i to the adversary A;

– Functional decryption key queries QDKeyGen: A has unlimited and adaptive
access to the DKeyGen algorithm for any function f of its choice. It is given
back the functional decryption key dkf ;

– Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice. The index i is added to the set CS of corrupted senders;

– Finalize: A provides its guess b′ on the bit b.

The output β of the game depends on the same conditions as above:

– if, for some i ∈ CS and some j, x0j,i 6= ⊥, and x0j,i 6= x1j,i (otherwise
x0j,i = x1j,i ∈M∪ {⊥} for any i ∈ CS), then β $← {0, 1};

– if, for some j, there are vectors x0 and x1 that are equal to x0
j and x1

j

respectively, except for the indexes i ∈ CS, where any common value can be
set, such that for some function f asked to QDKeyGen, f(x0) 6= f(x1), then
β

$← {0, 1};
– otherwise, β ← b′.

We say this MCFE is sel-IND-secure if for any adversary A, Advsel-IND(A) =
|P [β = 1|b = 1]− P [β = 1|b = 0]| is negligible.

3.3 Security Analysis

We will show below that the above scheme is secure under the DDH assumption:

Definition 6 (Decisional Diffie-Hellman Assumption (DDH)). In a group
G of prime order p, with a generator g, the DDH assumption states that the two
following distributions are computationally indistinguishable:

D = {(X = gx, Y = gy, Z = CDH(X,Y ) = gxy) | x, y $← Zp}
D′ = {(X = gx, Y = gy, Z = gz) | x, y, z $← Zp}.

We denote Advddh
G (A) the advantage of an adversary A in distinguishing the two

distributions: Advddh
G (A) = PrD′ [A(X,Y, Z) = 1]−PrD[A(X,Y, Z) = 1]. We also

use the notation Advddh
G (t) for the advantage of the best distinguisher running

within time t.

This assumption implies a Multi-DDH version:
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Lemma 7. Under the DDH assumption in any group G, the two following dis-
tributions are indistinguishable:

D0 =
{
(Ai, Bj ,CDH(Ai, Bj))i,j | Ai, Bj $← G

}
D1 =

{
(Ai, Bj , Ci,j)i,j | Ai, Bj , Ci,j $← G

}
More precisely, the advantage of the best distinguisher between these two distribu-
tions within time t is Advmddh

G (n,m, t) ≤ n× Advddh
G (t+ 4mtG), where tG is the

time for an exponentiation in G, n is the maximum number of indexes i, and m
is the maximum number of j.

The full proof of this classical lemma can be found in the Appendix A. We now
state the security level of the MCFE scheme presented in Section 3.1:

Theorem 8. The MCFE scheme presented in Section 3.1 is sel-IND-secure
under the DDH assumption, in the random oracle model. More precisely, for
any adversary A within running time bounded by t, and m selective encryption
queries (but any adaptive corruption queries and adaptive functional decryption
key queries),

Advsel-IND(A) ≤ Advmddh
G (m,n, t) ≤ m× Advddh

G (t+ 4ntG),

where tG is the time for an exponentiation in G.

Proof (Sketch of Proof). Since we are dealing with Inner Product functions, for a
corrupted key eki = si, the adversary can compute yi · si by itself for any vector
y, so we just have to consider restrictions to the sub-space with the components
of non-corrupted indexes. The conditions (for not setting β at random) can sum
up to:

– for any i ∈ CS, the i-th column of X0−X1 is 0 (we assume that x0j,i−x1j,i = 0
if they are both equal to ⊥);

– for any y asked to QDKeyGen, (X0 −X1) · y = 0.

It is interesting to note that in this scheme, we have QCorrupt(i) = eki =
DKeyGen(msk, ei) where ei = (δij)j , so the corruption resiliency is ensured
by a similar condition as the adaptivity of functional decryption key queries:
(X0−X1) ·ei = 0. The remaining issue could be the adaptivity of such corruption
queries. But since in the selective security model, the messages X0 = (x0

j )j and
X1 = (x1

j )j are chosen byA before having seen any other parameter, the simulator
can generate keys in order to explicitly know all the keys eki for the i-th columns
of X0 −X1 equal to 0: no other key can be asked.

The ciphertext is essentially a label-dependent one-time pad: k`+xb`. Because
of the restrictions on the functional decryption keys, if the simulator S adds a
random vectorw ∈ 〈X0−X1〉 to the ciphertext, this will not change anything from
the view of the adversary after functional decryption since 〈xb`+w,y〉 = 〈xb`,y〉 for
any y in the sub-space orthogonal to 〈X0−X1〉. Thus, choosing w` = x

b
` −x

1−b
`
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makes the encryption of xb` perfectly indistinguishable from that of x1−b
` . Our

proof shows that for any label `, S can alter the 〈X0 −X1〉-projection of the
mask k` to make such random vectors, independent from each other, appear. We
make this possible under the DDH assumption, by making k` a vector of CDH
values. We then show that this change does not affect the view of the adversary
A.

Since this proof is simpler, but in the same vein as the proof of Theorem 15,
it is postponed to the Appendix B.

4 From MCFE to Efficient DMCFE

4.1 The Interactivity of DMCFE Schemes

Any MCFE can generically be decentralized by distributing the SetUp and
DKeyGen algorithms into protocols between the Si’s. However, while it may
be reasonable to require many interactions during the setup phase, since it is only
executed once, such a decentralization might make the key generation process
costly and inconvenient: every time the functional decrypter FD wants to be able
to evaluate a new function, he needs to get all the Si’s to interactively generate
a new functional decryption key.

We call a DMCFE scheme non-interactive if its DKeyGen protocol is non-
interactive between the Si’s, but just requires one round between the functional
decrypter and the senders (As explained above, we only focus on efficient DKeyGen
since the SetUp is run once only. But of course, the less interactive the latter is,
the better it is for the global protocol).

4.2 MCFE-Enabled MCFE and Self-Enabling MCFE

We notice that our above IP-MCFE scheme has a very remarkable property: it
enables the computation of inner products on each client’s input using functional
decryption keys which are themselves inner products on each client’s secret key
with the function. This suggests we might be able to provide the functional
decryption key to the functional decrypter using the same scheme. We now
formalize this notion in a more general way.

Definition 9 (Ẽ-Enabled MCFE). Let E and Ẽ be two MCFE schemes. We
say that E is Ẽ-enabled if

– the master key msk of E is simply the union of the encryption keys eki;
– there are a function T onto M̃ and a function F̃ : M̃n → R̃ in the set of

functions of Ẽ such that for any function f :Mn → R in the set of functions
of E,

dkf = E .DKeyGen(msk, f) = F̃ ((T (E .eki, f))i∈1,...,n).
.

Definition 10 (Self-Enabling MCFE). Let E be an MCFE scheme. We say
that E is self-enabling if it is E-enabled.
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4.3 A Generic Construction

Let us consider any pair (E , Ẽ) of MCFE schemes such that E is Ẽ-enabled, with
the functions T and F̃ defined as above. We can construct a non-interactive
DMCFE scheme for the set of functions of E :

– SetUp(λ): The n senders (Si)i execute E .SetUp(λ) and Ẽ .SetUp(λ) via MPC
to generate the encryption keys (E .eki)i and (Ẽ .eki)i and the shares (m̃ski)i
of the master secret Ẽ .msk. Recall that we don’t need to share E .msk since
this is already E .msk = (E .eki)i. They also execute Ẽ .DKeyGen(Ẽ .msk, F̃ ) via
MPC to generate d̃kF̃ .
We set mpk = (E .mpk, Ẽ .mpk, d̃kF̃ ), ski = (m̃ski, Ẽ .eki), and eki = E .eki. FD
receives mpk;

– Encrypt(eki, xi, `) = E .Encrypt(eki, xi, `);
– DKeyGen((ski)i, f): Each Si computes C̃i = Ẽ .Encrypt(Ẽ .eki, T (eki, f), f).

The functional decryptor FD can compute

dkf = Ẽ .Decrypt(d̃kF̃ , f, (C̃i)i∈{1,...,n});

– Decrypt(dk, `,C) = E .Decrypt(dk, `,C).

Correctness follows from the correctness of E and the relation

Ẽ .Decrypt(d̃kF̃ , f, (C̃i)i) = Ẽ .Decrypt(d̃kF̃ , f, (Ẽ .Encrypt(Ẽ .eki, T (eki, f), f))i)

= F̃ ((T (eki, f))i) = dkf

4.4 Security Analysis

To prove the security of our scheme we first need to define the following property:

Definition 11 (Samplability of F̃ ). Given a function T , a distribution D of
n-vectors, and a function f from a set of functions F , we define:

DT,D(f) =
{
(T (ek′i, f))i∈{1,...,n}

∣∣∣(ek′i)i∈{1,...,n} $← D
}
.

A function F̃ is said to be samplable with regards to T and D if, for all f , for
all X ⊂ {1, . . . , n}, for any x ∈ Im(F̃ ) and set (eki)i∈X , there is an efficient
sampler SAF̃ ,T,D(X,x, (eki)i∈X , f) from the conditional distribution{

(T ′i )i
$← DT,D(f) | x = F̃ ((T ′i )i) and ∀i ∈ X,T ′i = T (eki, f)

}
.

In practice, DST,D(f) is the distribution of the shares of dkf that can be re-
combined by the function F̃ , since the distribution D is the distribution of the
encryption keys generated by the SetUp phase of E . The conditional distribution
will simply consider the shares (T ′i )i that still recombine to dkf , but for some fixed
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values: the corrupted ones. Then the set X will be the set CS of the corrupted
senders and x = dkf . We will be interested in the sampling

SAF̃ ,T,E.SetUp(CS, dkf , (eki)i∈CS , f).

This appears in the proof because we are trying to prove indistinguishability on
the ciphertexts that are sent during DKeyGen. We cannot simply replace those
ciphertexts at random since the adversary would then get a random decryption
key, which it would easily notice when decrypting: decryption would fail! We need
to encrypt plaintexts that are chosen randomly but under the constraint that
the adversary still recovers the correct decryption key, and that the decryption
keys of the corrupted senders are unchanged.

Security Model. We will limit ourselves to proving static security (sta-IND): we
will show that under certain conditions, our scheme is secure in a game with
adaptive queries but static corruptions. This means the attacker must decide
which senders to corrupt before the initialization phase. Without this condition,
every client is at risk of being corrupted at some point in the future. Using
the client’s secret key, the adversary could trivially detect that the (T ′i )i’s were
chosen at random. Note that we will be able to prove security against adaptive
corruptions for a practical instantiation for inner product later on.

Theorem 12. Let (E , Ẽ) be a pair of sta-IND-secure MCFE schemes such that
E is Ẽ-enabled via functions F̃ and T such that F̃ is samplable with regards to
T and the set of functions of E. Then the non-interactive DMCFE scheme from
Section 4.3 is itself sta-IND-secure. More precisely:

Advsta-INDDMCFE(t) ≤ Advsta-INDE (t+ qts) + Advsta-INDẼ (t+ qts)

where ts is the time associated with a sampling using SAF̃ ,T,E.SetUp and q is the
number of adaptive functional decryption key queries.

Proof. The security proof follows a series a games. We start from the real game.
Then, we apply the sampling algorithm to generate random ciphertexts that hide
the encryption keys of E under the indistinguishability of Ẽ . Then, we simply
apply the security of E :

Game G0: The first game is the real game where the simulator S perfectly
simulates the view of the adversary.
– Initialization: A chooses a set of corrupt senders CS. S runs the setup

protocol (mpk, (ski)i, (eki)i)← SetUp(λ) to receive the parameters mpk =

(E .mpk, Ẽ .mpk, d̃kF̃ ), and the n pairs of secret and encryption keys (ski =
(m̃ski, Ẽ .eki), eki = E .eki)i. It chooses a random bit b $← {0, 1}. It finally
provides mpk and the secret and encryption keys (ski, eki) of sender i,
for i ∈ CS, to the adversary A;

– Encryption queries QEncrypt: A sends a request (i, x0, x1, `) and receives
C`,i = Encrypt(eki, x

b, `) from S. We note that a second query for the
same pair (`, i) will later be ignored;
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– Functional decryption key queries QDKeyGen: A requests a decryption
key for a function f of its choice. It is given, for all i ∈ {1, . . . , n}, the

C̃i = Ẽ .Encrypt(Ẽ .eki, T (eki, f), f)

from which it recovers the functional decryption key dkf ;
– Finalize: A provides its guess b′ on the bit b and S filters the cases

were A requested unauthorized decryption keys or corruptions by setting
β

$← {0, 1}. In the other cases, S sets β ← b′.
We define the advantage of A at the end of this game as

AdvG0(A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| = AdvIND(A).

The conditions for not setting β at random are
– for any i ∈ CS (the set of corrupt senders), for any x0, x1 such that for

some `, QEncrypt(i, x0, x1, `) was requested, x0 = x1;
– for any f asked to QDKeyGen, for any pair of vectors (X0, X1) ∈ Z2n

p such
that for all i ∈ CS X0

i = X1
i and for all i ∈ HS (the set of non-corrupted

senders, and thus honest senders) and for some `, QEncrypt(i,X0
i , X

1
i , `)

was requested, f(X0) = f(X1).
Game G1: In this game S randomly replaces his response for i ∈ HS when

answering a request for a functional decryption key.
– Functional decryption key queries: A requests a decryption key for a

function f of its choice. S computes dkf , sets

(T ′i )i
$← SAF̃ ,T,E.SetUp(CS, dkf , (eki)i∈CS , f)

and sends C̃i
′
= Ẽ .Encrypt(Ẽ .eki, T ′i , f) for all i ∈ {1, . . . , n} to A, who

can then recover dkf .
Since Ẽ is sta-IND-secure, this game is indistinguishable from the previous
one, with: AdvG0(A)− AdvG1(A) ≤ Advsta-INDẼ (t+ qts). We indeed toke care
not to alter evaluation of the function F̃ on the plaintexts (T ′i )i with the
sampling algorithm.

Game G2: In this game S will use A’s guesses to try to attack a challenger C
that simulates the real game for scheme E .
– Initialization: A chooses a set of corrupt senders CS, which it sends to S

who forwards it to C. C runs the setup protocol (E .mpk, (E .ski)i, (E .eki)i)←
E .SetUp(λ), chooses a random bit b $← {0, 1}, and provides E .mpk and
the secret and encryption keys (E .ski, E .eki) of sender i, for i ∈ CS, to S.
S runs (Ẽ .mpk, (Ẽ .ski)i, (Ẽ .eki)i)← Ẽ .SetUp(λ), and combines the

(E .mpk, (E .ski)i∈CS , (E .eki)i∈CS , Ẽ .mpk, (Ẽ .ski)i∈CS , (Ẽ .eki)i∈CS)

to form (mpk, (ski)i∈CS , (eki)i∈CS) which it sends to A;
– Encryption queries QEncrypt: A sends a request (i, x0, x1, `), which S

forwards to C. C responds with C`,i = Encrypt(eki, x
b, `) which S forwards

to A. A second query for the same pair (`, i) will later be ignored;
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– Functional decryption key queries QDKeyGen: A requests a decryption
key for a function f of its choice. S forwards the request to C and receives
dkf . S then sets

(T ′i )i
$← SAF̃ ,T,E.SetUp(CS, dkf , (eki)i∈CS , f)

and sends C̃i
′
= Ẽ .Encrypt(Ẽ .eki, T ′i , f) for all i ∈ {1, . . . , n} to A, who

recovers dkf ;
– Finalize: A provides its guess b′ on the bit b and S forwards it to C, who

filters the cases were S (and thus A) requested unauthorized decryption
keys or corruptions by setting β $← {0, 1}. In the other cases, C sets
β ← b′.

This reduction shows that

AdvG1(A) = AdvG2(A) = AdvG2(S) ≤ Advsta-INDE (t+ qts)

and it follows that

AdvG0 ≤ Advsta-INDE (t+ qts) + Advsta-INDẼ (t+ qts)

Corollary 13. From any sta-IND-secure MCFE scheme E which is self-enabling
via functions F̃ and T such that F̃ is samplable with regards to T and the set of
functions of E, we can construct a non-interactive DMCFE scheme for the set of
functions of E that is also sta-IND-secure.

5 A DMCFE for Inner Product

5.1 Introduction

Our construction of MCFE for inner product uses functional decryption keys
dky = (y, 〈s,y〉) = (y, dky), where dky = 〈s,y〉 =

∑
i siyi = 〈t,1〉, with

ti = siyi, for i = 1, . . . , n, and 1 = (1, . . . , 1). Hence, one can split msk = s into
mski = si, define T (mski,y) = ti = siyi and F (t) = 〈t,1〉. We could thus wish
to use the above generic construction with our MCFE for inner product, that is
self-enabling, to describe a DMCFE for inner product.

However, this is not straightforward:

– our MCFE supports adaptive corruptions, while the generic construction can
just achieve security for static corruptions. This would be a big loss from our
security goal;

– our MCFE only supports selective security, which means that all the messages
to be encrypted have to be known from the beginning. Of course, this could
just lead to a selectively-secure DMCFE, but the second level of encryption
has to encrypt the ti’s, that are derived from the functional decryption key
queries. Hence, our MCFE seems to limit to functional decryption key queries
known from the beginning too. This would also be a strong limitation;
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– our MCFE only allows small results for the function evaluations, since a
discrete logarithm has to be computed. While, for real-life applications, it
might be reasonable to assume the plaintexts and any evaluations on them are
small enough, it is impossible to recover such a large scalar as dky = 〈s,y〉,
which comes up when we use our scheme to encrypt encryption keys.

Nevertheless, following the idea from the generic construction, we can overcome
the concerns above:

– One can only recover gdky , but using pairings, say e : G1 ×G2 → GT , one
can use our MCFE for both E and Ẽ . The former running in G1 while the
latter runs in G2. This allows us to compute the functional decryption in GT ,
to get g〈x,y〉T , which is decryptable as 〈x,y〉 is small enough;

– Since the choice of the two sets of messages X0 and X1 specifies the possibly
corrupted senders and the set of authorized functional decryption keys, the
selective security of the two MCFE’s is enough to achieve the selective security
of our DMCFE, and we can still support adaptive corruptions.

5.2 Construction

Let us describe the new construction, in a type 3 pairing-friendly structure
(G1,G2,GT ):

– SetUp(λ): Choose a type 3 pairing-friendly structure, with a bilinear map
e : G1 ×G2 → GT , where the groups G1,G2,GT are of prime order p ≈ 2λ,
and g ∈ G1, g̃ ∈ G2 and gT = e(g, g̃) ∈ GT are three generators. One also
needs two full-domain hash functions H and H̃ onto G1 and G2 respectively.
Each Si generates two encryption keys si, s̃i

$← Zp, for i = 1, . . . , n. The
(Si)i then interactively compute d̃k1 = 〈s̃,1〉 =

∑n
i=1 s̃i. One then sets

mpk ← (G1,G2,GT , e, g, g̃, gT ,H, H̃, d̃k1), and for i = 1, . . . , n, eki = si,
ski = (si, s̃i);

– Encrypt(eki, xi, `) outputs the ciphertext C`,i = H(`)si · gxi ;
– DKeyGen((ski)i,y): from y that defines the function fy(x) = 〈x,y〉, each

sender Si with his secret key ski = (si, s̃i) computes C̃y,i = H̃(y)s̃i · g̃si·yi .
The functional decrypter can compute dky ←

∏
i C̃y,i × H̃(y)−d̃k1 and build

dky = (y, dky);
– Decrypt(dk, `,C): Takes as input a decryption key dk = (y, dk), a label `,

and a ciphertext C = (Ci)i, to compute

gαT = e(
∏
i

Cyii , g̃)/e(H(`), dk),

and eventually solve the discrete logarithm in basis gT to extract and return
α.
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Correctness : let us first show that the functional key is similar to that of the
previous scheme, the only difference being an added basis g̃:

dk =
∏
i

C̃y,i × H̃(y)−d̃k1 =
∏
i

H̃(y)s̃i · g̃si·yi × H̃(y)−
∑
i s̃i

= H̃(y)
∑
i s̃i · g̃

∑
i si·yi × H̃(y)−

∑
i s̃i = g̃〈s,y〉.

The functional decryption of a ciphertext of x thus leads to the correct inner
product:

e(
∏
i

Cyii , g̃)/e(H(`), dk) = e(
∏
i

(H(`)si · gxi)yi , g̃)/e(H(`), g̃〈s,y〉)

= e(H(`)〈s,y〉 · g〈x,y〉, g̃)/e(H(`), g̃)〈s,y〉

= e(H(`), g̃)〈s,y〉 · e(g, g̃)〈x,y〉/e(H(`), g̃)〈s,y〉 = g
〈x,y〉
T .

5.3 Security Analysis

We will show below that the above scheme is secure under the SXDH assumption:

Definition 14 (Symmetric eXternal Diffie-Hellman Assumption). In a
type 3 pairing-friendly structure (G1,G2,GT ), the Symmetric eXternal Diffie-
Hellman (SXDH) Assumption states that both the DDH assumption in G1 and
the DDH assumption in G2 hold. We then denote by Advsxdh(t) the maximum of
Advddh

G1
(t) and Advddh

G2
(t).

Theorem 15. The DMCFE protocol for Inner Product presented in Section 5,
with n senders, is sel-IND-secure under the SXDH assumption, in the random
oracle model. More precisely, for any adversary A within running time bounded
by t, m selective encryption queries, q adaptive functional decryption key queries
but any adaptive corruption queries,

Advsel-IND(A) ≤ Advmddh
G1

(n, q, t) + Advmddh
G2

(n,m, t)

≤ n× Advddh
G1

(t+ 4qtG1
) + n× Advddh

G2
(t+ 4mtG2

)

≤ 2n× Advsxdh(t+ 4max{qtG1 ,mtG2}),

where tG1 and tG2 are the times for an exponentiation in G1 or G2 respectively.

Again, the game for selective security is similar to the IND security game, except for
the fact that the labels ` = (`i)i and the plaintexts X0 = (x0

j )j and X1 = (x1
j )j)

are chosen in advance by the adversary.

Proof (Sketch of Proof). While this scheme does not exactly follow the black-box
construction described previously, it uses the same idea of combining two MCFE
schemes: the first one in G1 to encrypt messages and the second one in G2 to
generate functional decryption keys. So, even if we cannot re-use the proof of the
original scheme, the main idea is the same.
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Unlike in the original scheme, the adversary ends the security game with
the data of the two schemes: the usual information of the functional encryption
scheme, and n×q encryptions C̃yj ,i of the si ·yj,i as well as the key d̃k1 =

∑n
i=1 s̃i.

We can show these informations do not leak anything on s̃ by modifying it into
s̃+w with a particular w without A being able to detect it.

We provide the full proof in Section 6.

6 Proof of Theorem 15

The main issue in DMCFE from MCFE is that the functional decryption key
generation protocol leaks more than just the functional decryption key. It addi-
tionally encrypts (under the keys of Ẽ) data related to the encryption keys of
E . We thus first show how to remove any information about the E-keys in the
Ẽ-ciphertexts, and then the proof follows like the previous one to show that E
does not leak any information about the plaintexts.

Game G0: The first game is the real game where the simulator S perfectly
simulates the view of the adversary honestly generating the secret keys,
given the pairing-friendly structure (G1,G2,GT ) of prime order p, generators
g ∈ G1, g̃ ∈ G2, gT = e(g, g̃) ∈ GT with full-domain hash functions H and H̃
onto G1 and G2 respectively, modeled as random oracles:
– Hash function queries: since we are in the random oracle model, S sets

two empty lists Λ and Λ̃ of triples. For any query ` to H, S looks for
a triple (`, ?, h) ∈ Λ. If such a triple exists, it outputs h, otherwise it
chooses a random h

$← G1, stores (`,⊥, h) in Λ, and outputs h. The
process is the same for any query to H̃ except that the values h̃ are
chosen in G2 instead;

– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : S sets msk = (s, s̃)

with s, s̃ $← Znp , S extracts the n encryption keys eki = (si, s̃i), for i =
1, . . . , n, computes d̃k1 =

∑n
i=1 s̃i, and sets the public parameter msk =

(G1,G2,GT , p, g, g̃, gT = e(g, g̃),H, H̃, d̃k). It also chooses a random bit
b

$← {0, 1}. It also emulates Encrypt by setting and outputting Cj,i =
H(`j)si · gx

b
j,i , for valid inputs, for j = 1, . . . ,m and i = 1, . . . , n;

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y, S computes and sends C̃y,i = H̃(y)s̃i · g̃si·yi for all the honest
senders;

– Corruption: for a sender i, S sends back eki = (si, s̃i);
– Finalize: A provides its guess b′ on the bit b and S filters the cases

were A requested unauthorized decryption keys or corruptions by setting
β

$← {0, 1}. In the other cases, S sets β ← b′.
We define the advantage of A at the end of this game as

AdvG0
(A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| = Advsel-IND(A).

As already noted for the basic scheme, the conditions for not setting β at
random are
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– for any i ∈ CS (the set of corrupted senders), the i-th column of X0−X1

is 0 (we assume that x0j,i − x1j,i = 0 if they are both equal to ⊥);
– for any y input to QDKeyGen, (X0 −X1) · y = 0.

However, now, a corruption leaks both si and s̃i: si is still the decryption
functional key for the vector ei = (δi,j)j , and s̃i is just conditioned by the
property d̃k1 =

∑n
i=1 s̃i.

We thus know that the corrupted senders can only be among the set PCS of
indexes i such that the i-th column of X0 −X1 is 0: CS ⊆ PCS. We can say
that PCS is the set of potentially corrupted senders, which is known from
the beginning, while CS will only be known at the end of the game, because
of the adaptive corruptions.

Game G1: In this game, we simply modify the simulation of the random
oracles.
– Hash function queries: S sets two empty lists Λ and Λ̃ of triples. For any

query ` to H, S looks for a triple (`, ?, h) ∈ Λ. If such a triple exists, it
outputs h, otherwise it chooses a random r

$← Zp, sets h ← gr, stores
(`, r, h) in Λ, and outputs h. The same modifications applies for H̃, with
a random r̃ and h̃ = g̃r̃.

This simulation is perfectly indistinguishable from the previous one:

AdvG1
(A) = AdvG0

(A).

But one can note that, now, for every ciphertext on valid inputs, for i =
1, . . . , n and j = 1, . . . ,m,

Cj,i = H(`j)si · gx
b
j,i = grjsi · gx

b
j,i , since H(`j) = grj .

Similarly, in G2:

C̃y,i = H̃(y)s̃i · g̃siyi = g̃r̃y s̃i · g̃siyi , since H̃(y) = g̃r̃y .

Game G2: In this game, we split the vector space S = Znp according to the set
PCS, with cardinal c, of potentially corrupted senders. More precisely, we
consider the space S = Znp of all the possible secret keys s̃, and S̃0 is the space
spanned by the c+1 n-vectors {1, (ei)i∈PCS} while S̃1 is the orthogonal. We
know that S is the orthogonal direct sum of S̃0 and S̃1. The dimension of S̃0

is c+ 1, while the dimension of S̃1 is n− c− 1. We now apply a change of
basis in the initialization:
– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : S choose a (n−c−1)-

basis (µη)η of S̃1 and s̃ is randomly chosen as a random linear combination
of (µη)η, (eη)η and 1: for random scalar γη, εη, ε

$← Zp

s̃ =
∑

γηµη +
∑

η∈PCS
εηeη + ε1,

and so each component is defined as

s̃i =
∑

γη〈µη, ei〉+
∑

η∈PCS
εη〈eη, ei〉+ ε.
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We will omit the sets for the sums when there is no ambiguity, for the
sake of clarity: for S̃1 basis-elements, η = 1, . . . , n − c − 1, while for
S̃0 basis-elements, η ∈ PCS: For i ∈ PCS, s̃i = εi + ε mod p, while
for i 6∈ PCS, s̃i =

∑
γηµη,i + ε mod p. S then sets msk = (s, s̃) with

s
$← Znp , extracts the n encryption keys eki = (si, s̃i), for i = 1, . . . , n,

and computes

d̃k1 =

n∑
i=1

s̃i = 〈
∑

γηµη +
∑

η∈PCS
εηeη + ε1,1〉

=
∑

γη〈µη,1〉+
∑

η∈PCS
εη + nε =

∑
η∈PCS

εη + nε mod p,

since µη ⊥ 1 for all η. S then sets the public parameters mpk =

(G1,G2,GT , p, g, g̃, gT = e(g, g̃),H, H̃, d̃k1). It also chooses a random
bit b $← {0, 1}. It also emulates Encrypt by setting and outputting
Cj,i = H(`j)si · gx

b
j,i , for valid inputs, for j = 1, . . . ,m and i = 1, . . . , n;

This simulation is perfectly indistinguishable from the previous one:

AdvG2
(A) = AdvG1

(A).

Game G3: We still use a (c+ 1)-basis 1 ∪ (eη)η of S̃0 and an (n− c− 1)-basis
(µη)η of S̃1. But for the master secret key, one just chooses random scalars
ε, εη

$← Zp, while the scalars γη ∈ Zp are implicitly defined by random group
elements L̃η

$← G2, since the scalars are not used anymore:
– Initialization with (`, X0, X1), forX0, X1 ∈ Zm×np : S chooses a (n−c−1)-

base (µη)η of S̃1 and s̃ is randomly and implicitly chosen as a random
linear combination of (µη)η, (eη)η and 1: for random scalar εη, ε

$← Zp,
we define the γη as the discrete logarithm of the random group elements
L̃η

$← G2: s̃ =
∑
γηµη +

∑
η∈PCS εηeη + ε1. Then S computes d̃k1 =∑

η∈PCS εη + nε mod p with the explicit values only.
– Functional decryption key queries: for any query QDKeyGen(y), for a

vector y and for i = 1, . . . , n, S computes

C̃y,i =

{
g̃r̃y(εi+ε) × g̃siyi if i ∈ PCS∏
L̃
r̃yµη,i
η × g̃r̃yε × g̃siyi if i 6∈ PCS

– Corruption: for any sender i ∈ PCS, S sends eki = (si, s̃i = εi + ε);
– Finalize: same as in G2.

Since the explicit values of the scalars (γη)η are not needed, and

C̃y,i = g̃r̃y(εi+ε) × g̃siyi = (g̃r̃y )s̃i × g̃siyi = H̃(y)s̃i × g̃siyi , if i ∈ PCS

C̃y,i =
∏

L̃r̃yµη,iη × g̃r̃yε × g̃siyi =
∏

g̃r̃yγηµη,i × g̃r̃yε × g̃siyi , if i 6∈ PCS

= (g̃r̃y )
∑
γηµη,i+ε × g̃siyi = (g̃r̃y )s̃i × g̃siyi = H̃(y)s̃i × g̃siyi ,

this simulation is perfectly indistinguishable from the previous one:

AdvG3
(A) = AdvG2

(A).
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Game G4: Now, we are given L̃η
$← G2 for η = 1, . . . , n− c− 1, H̃y

$← G2 for
any y queried to H̃, and we denote by M̃η,y the Diffie-Hellman value of any
pair L̃η and H̃y in basis g̃. The initialization is kept unchanged, but uses the
above L̃η. This only impacts the hash function queries and the functional
decryption key queries:
– Hash function queries: for any new query y to H̃, one outputs H̃y and

adds (y,⊥, H̃y) to Λ̃;
– Functional decryption key queries: for any query QDKeyGen(y), for a

vector y and for i = 1, . . . , n, S computes

C̃y,i =

{
H̃εi+ε

y × g̃siyi if i ∈ PCS∏
M̃

µη,i
η,y × H̃ε

y × g̃siyi if i 6∈ PCS

Everything else remains the same, and thus this simulation is perfectly
indistinguishable from the previous one:

AdvG4
(A) = AdvG3

(A).

Game G5: This game is exactly as above, except that M̃η,y
$← G2 for η =

1, . . . , n − c − 1 and any query y. As a consequence, under the MDDH
assumption in G2, G5 is indistinguishable from the previous one:

AdvG5(A)− AdvG4(A) ≤ Advmddh
G2

(n, q, t),

where t is an upper-bound on the execution time of A.
Game G6: In this game, we once again split the vector space S = Znp for the

key s: we consider S = Znp the space of all the possible secret keys s, and
S1 is the space spanned by the m n-vectors in X0 − X1, while S0 is the
orthogonal. We know that S is the orthogonal direct sum of S0 and S1. Let
us denote by k the dimension of S0, then the dimension of S1 is n− k. We
do another change of basis in the initialization phase:
– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : S chooses a k-basis
(ση)η of S0 and an (n− k)-basis (τ η)η of S1. The vector s is randomly
chosen as a random linear combination of (ση)η and (τ η)η: for random
scalars αη, βη

$← Zp,

s =
∑

αηση +
∑

βητ η,

and so each component is defined as

si =
∑

αη〈ση, ei〉+
∑

βη〈τ η, ei〉

=

{ ∑
αηση,i if i ∈ PCS∑
αηση,i +

∑
βητη,i if i 6∈ PCS

Indeed, elements in S1 are combinations of the columns of X0 −X1 at
the (possibly) corrupted positions: these columns are all zeroes. So, for
any η, for all i ∈ PCS, τη,i = 0.



24 J. Chotard, E. Dufour Sans, D. H. Phan, and D. Pointcheval

Again, for the sake of clarity, we omit the sets for the sums: for S1

basis-elements, η = 1, . . . , n− k, while for S0 basis-elements, η = 1, . . . , k.
Then, S processes as in G5, for the explicit and implicit values of s̃i, as
well as for d̃k1 =

∑
η∈PCS εη+nε mod p. It sets eki = (si, s̃i) for i ∈ PCS.

It then computes the ciphertexts, for i = 1, . . . , n and j = 1, . . . ,m, as

Cj,i =
∏

grjαηση,i ·
∏

grjβητη,i · gx
b
j,i .

Again, for all i ∈ PCS, Cj,i =
∏
grjαηση,i · gx

0
j,i =

∏
grjαηση,i · gx

1
j,i .

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y and for i = 1, . . . , n, S computes

C̃y,i =

{
H̃εi+ε

y × g̃yi
∑
αηση,i if i ∈ PCS∏

M̃
µη,i
η,y × H̃ε

y × g̃yi(
∑
αηση,i+

∑
βητη,i) if i 6∈ PCS

– Finalize: same finalization as in G5.
Since modifications are just formal rewriting,G6 is perfectly indistinguishable
from the previous one:

AdvG6(A) = AdvG5(A).

Game G7: We still use orthogonal bases for S0 and S1 as well as for S̃0 and S̃1,
but while one chooses explicit random scalars αη

$← Zp, one implicitly defines
βη ∈ Zp as the discrete logarithms of random group elements Bη

$← G1.
– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : S chooses random

bases: (ση)η for S0, (τ η)η for S1, (µη)η for S̃1 while S̃0 is spanned by
(eη)η and 1. For random scalars αη

$← Zp and random group elements
Bη

$← G1, one defines βη as the discrete logarithm of the Bη in basis g
to implicitly define s =

∑
αηση +

∑
βητ η, or equivalently

si =

{ ∑
αηση,i if i ∈ PCS∑
αηση,i +

∑
βητη,i if i 6∈ PCS

S then computes the ciphertexts as follows, for i = 1, . . . , n and j =
1, . . . ,m:

Cj,i =
∏

grjαηση,i ·
∏

Brjτη,iη · gx
b
j,i .

Again, for all i ∈ PCS, Cj,i =
∏
grjαηση,i · gx

0
j,i =

∏
grjαηση,i · gx

1
j,i .

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y and for i = 1, . . . , n, S computes

C̃y,i =

{
H̃εi+ε

y × g̃yi
∑
αηση,i if i ∈ PCS∏

M̃
µη,i
η,y × H̃ε

y × g̃yi
∑
αηση,i if i 6∈ PCS

– Corruption: for any sender i ∈ PCS, S sends eki = (si =
∑
αηση,i, s̃i =

εi + ε);
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– Finalize: same as in G6.
Actually, whereas the ciphertext C̃y,i is unchanged for i ∈ PCS, it should be
different for i 6∈ PCS. Following the formula from the previous game:

C̃y,i =
∏

M̃
µη,i
η,y × H̃ε

y × g̃yi(
∑
αηση,i+

∑
βητη,i)

=
∏

M̃
µη,i
η,y × H̃ε

y × g̃yi(
∑
αηση,i)

∏
g̃βηyiτη,i

=
(∏

M̃
µη,i
η,y

)
×
(∏

(g̃βη )yiτη,i
)
× H̃ε

y × g̃yi
∑
αηση,i

Let us study Ay,i =
∏
M̃

µη,i
η,y . If we write M̃η,y = gmη,y , then Ay,i =

g
∑
mη,yµη,i , where the mη,y’s are fresh and random scalars (different for any

y). However, one can remark that µη ∈ S̃1 for any η:
∑
i µη,i = 0. Then∏

i

Ay,i =
∏
i

∏
η

M̃
µη,i
η,y =

∏
η

∏
i

M̃
µη,i
η,y =

∏
η

M̃
∑
i µη,i

η,y =
∏
η

M̃0
η,y = 1.

Let us consider a random list (Ai) of group elements in G1 that additionally
satisfy

∏
Ai = 1: if Ai = gai , we have the system ai =

∑
mη,yµη,i, for

i ∈ PCS. Since (µη)η is a basis of S̃1, there is a unique set of (mη,y)η that
satisfies this system of linear equations. As a consequence, (Ay,i)i follows a
perfectly uniform distribution among the vectors of group elements such that
their product is 1.
If we additionally note (By,i =

∏
η g̃

βηyiτη,i)i, similarly, any y being orthogo-
nal to S1, then

∑
i yiτη,i = 0:∏

i

By,i =
∏
i

∏
η

g̃βηyiτη,i =
∏
η

(g̃βη )
∑
i yiτη,i =

∏
η

(g̃βη )0 = 1.

As a consequence, if one defines Cy,i = Ay,iBy,i, the Cy,i’s follow exactly the
same distribution as the Ay,i’s. Therefore, the C̃y,i’s in this game (defined
as Cy,i × H̃ε

y × g̃yi
∑
αηση,i) follow exactly the same distribution as in the

previous game (defined as Ay,i × H̃ε
y × g̃yi

∑
αηση,i):

AdvG7
(A) = AdvG6

(A).

In addition, one can note that in this game, the simulation does not use the
implicit βη’s.

Game G8: Now, we are given Bη
$← G1 for η = 1, . . . , n−k, as well asHj

$← G1,
for j = 1, . . . ,m, and we denote by Dη,j the Diffie-Hellman value of any pair
Bη and Hj in basis g:
– Hash function queries: for any new query `j to H, one outputs Hj and

adds (`j ,⊥, Hj) to Λ);
– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : S chooses random

bases: (ση)η for S0, (τ η)η for S1, (µη)η for S̃1 while S̃0 is spanned by
(eη)η and 1. For random scalars αη

$← Zp, one defines si =
∑
αηση,i for
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all i ∈ PCS. S then computes the ciphertexts as follows, for i = 1, . . . , n
and j = 1, . . . ,m:

Cj,i =
∏

H
αηση,i
j ·

∏
D
τη,i
η,j · g

xbj,i .

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y and for i = 1, . . . , n, S computes

C̃y,i =

{
H̃εi+ε

y × g̃yi
∑
αηση,i if i ∈ PCS∏

M̃
µη,i
η,y × H̃ε

y × g̃yi
∑
αηση,i if i 6∈ PCS

– Corruption: for any sender i ∈ PCS, S sends eki = (si =
∑
αηση,i, s̃i =

εi + ε);
– Finalize: same as in G7.

For all j, if we write Hj = grj , then Dη,j = B
rj
η , and thus the ciphertexts

Cj,i follow exactly the same distribution as in the previous game:

AdvG8(A) = AdvG7(A).

Game G9: This game is exactly as above, except that Dη,j
$← G1, for η =

1, . . . , n − k and j = 1, . . . ,m. Using the MDDH assumption in G1, G9 is
indistinguishable from the previous one:

AdvG9
(A)− AdvG8

(A) ≤ Advmddh
G1

(n,m, t),

where t is an upper-bound on the execution time of A.

Let us now summarize this last game:

– Hash function queries: S sets two empty lists Λ and Λ̃ of triples. For any
query ` to H, S looks for a triple (`, ?, h) ∈ Λ. If such a triple exists, it
outputs h, otherwise it chooses a random h

$← G1, stores (`,⊥, h) in Λ, and
outputs h. The process is the same for any query to H̃ except that the values
h̃ are chosen in G2 instead;

– Initialization with (`, X0, X1), for X0, X1 ∈ Zm×np : we denote by PCS the set
of possibly corrupted senders (this set is that of the indexes of zero-columns
in X0 −X1), which is of cardinal c.
• We denote by S1 the space spanned by the m n-vectors in X0 − X1,
while S0 is the orthogonal in S = Znp ;
• We denote by S̃0 the space spanned by the c+1 n-vectors {1, (ei)i∈PCS},
while S̃1 is the orthogonal in S = Znp ;
• We denote by k the dimension of S0, then the dimension of S1 is n− k;
• S chooses a k-basis (ση)η of S0 and an (n− k)-basis (τ η)η of S1, as well

as k random scalars αη
$← Zp, for η = 1, . . . , k;

• S chooses a (n− c−1)-basis (µη)η of S̃1, while {1, (ei)i∈PCS} is a (c+1)-
basis of S̃0, as well as c random scalars εη

$← Zp, for η = 1, . . . , c and
ε← Zp;
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• S then computes the ciphertexts as follows, for i = 1, . . . , n and j =
1, . . . ,m:

Cj,i =
∏

H
αηση,i
j ·

∏
D
τη,i
η,j · g

xbj,i .

where Hj = H(λj) $← G1, and Dη,j
$← G1, for η = 1, . . . , n− k.

– Functional decryption key queries: for any query QDKeyGen(y), for a vector
y and for i = 1, . . . , n, S computes:

C̃y,i =

{
H̃εi+ε

y × g̃yi
∑
αηση,i if i ∈ PCS∏

M̃
µη,i
η,y × H̃ε

y × g̃yi
∑
αηση,i if i 6∈ PCS

where H̃y = H̃(y) $← G2, and M̃η,y
$← G2, for η = 1, . . . , n− c− 1.

– Corruption: for any sender i ∈ PCS, S sends eki = (si =
∑
αηση,i, s̃i =

εi + ε);
– Finalize: A provides its guess b′ on the bit b and S filters the cases were A

requests unauthorized dk or corruptions by setting β $← {0, 1}. In the other
cases, S sets β ← b′.

Finally, the only leakage about b from this last game is in the ciphertexts {Ci,j}:

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

xbj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

x1−b
j,i · gx

b
j,i−x

1−b
j,i .

But xbj − x
1−b
j ∈ S1, and can thus be written as

∑
η ξητ η:

gx
b
j,i−x

1−b
j,i = g

∑
η ξητη,i =

∏
η

(gξη )τη,i .

As a consequence,

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

(Dη,j · gξη )τη,i · gx
1−b
j,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

E
τη,i
η,j · g

x1−b
j,i

where Eη,j = Dη,j · gξη for η = 1, . . . , n− k and j = 1, . . . ,m. When the (Dη,j)’s
all follow independent uniform distributions in G1, the (Eη,j)’s all do so as well.
As a consequence, the ciphertexts from honest senders do not leak any information
about b, and thus the advantage of any adversary (even powerful) in this game is
0: AdvG9

(A) = 0.
Eventually, by combining all the gaps, one gets

AdvG0
(A) ≤ Advmddh

G1
(n,m, t) + Advmddh

G2
(n, q, t).
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7 Conclusion

Multi-Client/Multi-Input Functional Encryption and Decentralized Cryptosys-
tems are invaluable tools for many emerging applications such as cloud services
or big data. These applications often involve many parties who contribute their
data to enable the extraction of knowledge, while protecting their individual
privacy with minimal trust in the other parties, including any central authority.
We make an important step towards combining the desired functionalities and
properties by introducing the notion of Decentralized Multi-Client Functional
Encryption. It opens some interesting directions:

– Our generic construction of Decentralized Multi-Client Functional Encryption
is quite general, and not restricted to the inner-product setting. Therefore,
new constructions of Multi-Client Functional Encryption schemes can benefit
from our work by immediately yielding efficient decentralized schemes. When
considering the inner-product function, existing constructions would almost
fit the requirements of the generic construction, except some restrictions on
the plaintext. In particular, it is often required the inner-product to be small.
We overcome this issue in DDH-based IP-DMCFE by using pairings. It is
an interesting problem to consider whether the LWE-based and DCR-based
schemes can be adapted to fit our generic construction.

– Getting all the desired properties, namely efficiency, new functionalities and
the strongest security level, is a challenging problem. One of the main chal-
lenges is to construct an efficient, non-interactive DMCFE which is adaptively
secure, for a larger class of functions than that of inner-product functions.
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A Proof of Lemma 7

In order to prove this Lemma, one can first note the indistinguishability of

D = {(X,Y, Z = CDH(X,Y )) | X,Y $← G}
D′ = {(X,Y, Z) | X,Y, Z $← G}.

under the DDH assumption. Then, we also have the indistinguishability of
multiple-distribution, with j = 1, . . . ,m:

Dm = {(X, (Yj = gujY vj , Zj = Xuj · CDH(X,Y )vj )j) | X,Y $← G, uj , vj $← Zp}
D′m = {(X, (Yj = gujY vj , Zj = Xuj · Zvj )j) | X,Y, Z $← G, uj , vj $← Zp}.

More precisely, the generation of these distributions for the above distribution of
(X,Y, Z) requires 4 additional exponentiations per index j. But distinguishing
the latter distributions is equivalent to distinguish the former distributions.

AdvDm,D
′
m(A) ≤ Advddh

G (t+ 4m× tG),

where tG is the time for an exponentiation in G, and t is an upper-bound on the
running time of any distinguisher A. Furthermore, we can rewrite Dm and D′m:

Dm = {(X, (Yj , Zj = CDH(X,Yj))j) | X,Yj $← G}
D′m = {(X, (Yj , Zj)j) | X,Yj , Zj $← G}.



Decentralized Multi-Client Functional Encryption for Inner Product 31

Let us now consider the distributions

D0 = {((Xi)i, (Yj)j , (Zi,j = CDH(Xi, Yj))i,j) | Xi, Yj
$← G}

Dn = {((Xi)i, (Yj)j , (Zi,j)i,j) | Xi, Yj , Zi,j
$← G}.

as well as the hybrid distribution

Dk =

{(
(Xi)i, (Yj)j ,

(
CDH(Xi, Yj))i,j) for i > k
Zi,j for i ≤ k

)
i,j

)∣∣∣∣∣Xi, Yj , Zi,j
$← G

}
.

This distribution is indeed the above D0 for k = 0 and Dn for k = n.
Let us be given a tuple (X, (Yj , Zj)j) that comes either from Dm or from D′m,

and we build the tuple
 Xi with Xi

$← G
X

gxi with ri
$← Zp


i

, (Yj)j ,

 Zi,j with Zi,j
$← G

Zj
Y xij


i,j

 for i < k
for i = k
for i > k

.

One can remark that if the initial tuple comes from D′m, then the new tuple
follows distribution Dk, whereas if it comes from Dm, the new tuple follows
distribution Dk−1. Hence, for any distinguisher A against the distributions D0

and Dn, within running time bounded by t, and for any k,

AdvDk−1,Dk(A) ≤ Advddh
G (t+ 4m× tG).

Using the triangular inequality:

AdvD0,Dn(A) ≤ n× Advddh
G (t+ 4m× tG).

Taking the maximum among all the adversaries withing running time bounded
by t:

Advmddh
G (n,m, t) ≤ n× Advddh

G (t+ 4m× tG).

B Proof of Theorem 8

The proof consists of a series of games, that starts with the real game, in the
random oracle model. In G1, the simulator takes total control of the random
oracle. In G2, the simulator splits the vector space into two orthogonal subspaces
for describing the keys: 〈X0 − X1〉 ⊕ 〈X0 − X1〉⊥. G3 and G4 make appear
CDH tuples, and the DDH assumption is applied for G5. In the last game, the
advantage of any adversary is 0.

Game G0: The first game is the real game where the simulator S perfectly
simulates the view of the adversary honestly generating the secret keys, with
a given group G of prime order p, and a generator g, in the random oracle
for the full-domain hash function H:
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– Hash function queries: since we are in the random oracle model, S sets
an empty list Λ of triples. For any query ` to H, S looks for a triple
(`, ?, h) ∈ Λ. If such a triple exists, it outputs h, otherwise it chooses a
random h

$← G, stores (`,⊥, h) in Λ, and outputs h;
– Initialization with (`, X0, X1), with X0, X1 ∈ Zm×np : S sets msk =

(G, p, g,H, s) for s $← Znp to emulate the SetUp algorithm. Then, S
extracts the n encryption keys eki = si, for i = 1, . . . , n and chooses a
random bit b $← {0, 1}. It also emulates Encrypt by setting and outputting
Cj,i = H(`j)si · gx

b
j,i , for valid inputs, for j = 1, . . . ,m and i = 1, . . . , n;

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y, S computes dky = (G, p, g,H,y, 〈s,y〉);

– Corruption: for a sender i, S sends back eki;
– Finalize: A provides its guess b′ on the bit b and S filters the cases were
A requests unauthorized dk or corruptions queries by setting β $← {0, 1}.
In the other cases, S sets β ← b′.

We define the advantage of A at the end of this game as

AdvG0(A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| = Advsel-IND(A).

Game G1: In this game, we just modify the simulation of the random oracle.
– Hash function queries: S sets an empty list Λ of triples. For any query `

to H, S looks for a triple (`, ?, h) ∈ Λ. If such a triple exists, it outputs
h, otherwise it chooses a random r

$← Zp, sets h← gr, stores (`, r, h) in
Λ, and outputs h.

This simulation is perfectly indistinguishable from the previous one:

AdvG1
(A) = AdvG0

(A).

But one can note that, now, for every ciphertext on valid inputs, for i =
1, . . . , n and j = 1, . . . ,m,

Cj,i = H(`j)si · gx
b
j,i = grjsi · gx

b
j,i , since H(`j) = grj .

Game G2: In this game, we split the vector space according to the two matrices
X0 and X1. More precisely, we consider S = Znp the space of all the possible
master secret keys s, and S1 is the space spanned by the m n-vectors in
X0−X1 while S0 is the orthogonal. We know that S is the orthogonal direct
sum of S0 and S1. Let us denote by k the dimension of S0, then the dimension
of S1 is n− k. This change of basis principally affects the initialization, but
we add some remarks about consequences on the other phases:
– Initialization with (`, X0, X1), with X0, X1 ∈ Zm×np : S chooses a k-basis
(ση)η of S0 and an (n− k)-basis (τ η)η of S1. The master secret key is
randomly chosen as a random linear combination of (ση)η and (τ η)η: for
random scalars αη, βη

$← Zp,

s =

k∑
η=1

αηση +

n−k∑
η=1

βητ η : for i = 1, . . . , n, si =

k∑
η=1

αηση,i +

n−k∑
η=1

βητη,i.



Decentralized Multi-Client Functional Encryption for Inner Product 33

Then, S processes as in G1, setting the keys eki = si and computing
the ciphertexts as above. One can note that, for every ciphertext, for
i = 1, . . . , n and j = 1, . . . ,m, we have:

Cj,i = grjsi · gx
b
j,i = grj(

∑k
η=1 αηση,i+

∑n−k
η=1 βητη,i) · gx

b
j,i

=

k∏
η=1

grjαηση,i ·
n−k∏
η=1

grjβητη,i · gx
b
j,i

=

k∏
η=1

(grj )αηση,i ·
n−k∏
η=1

(grjβη )τη,i · gx
b
j,i .

– Functional decryption key queries: same key query as in G1. One should
note that for any authorized query y, (X0 −X1) · y = 0, and so y ∈ S0.
Thus the functional keys only uses the ση vectors and the αη coefficients,
since any query y ∈ S0 = S⊥1 :

〈s,y〉 = 〈
k∑
η=1

αηση +

n−k∑
η=1

βητ η,y〉

=

k∑
η=1

αη〈ση,y〉+
n−k∑
η=1

βη〈τ η,y〉 =
k∑
η=1

αη〈ση,y〉

– Finalize: same finalization as in G1. One should note the Finalize counts
the game if, for any corrupted sender i ∈ CS, the i-th column of X0−X1

is 0. This condition implies τη,i = 0 for η = 1, . . . , n − k, and the
corresponding eki is:

eki = si =

k∑
η=1

αηση,i

Thus, if the corruption is valid, it does not leak any information about
the S0 components αη of s.

All the rest remains unchanged, so this simulation is perfectly indistinguish-
able from the previous one:

AdvG2
(A) = AdvG1

(A).

Game G3: We still use a k-basis (ση)η of S0 and an (n − k)-basis (τ η)η of
S1. But for the master secret key, one just chooses random scalars αη

$← Zp,
while the scalars βη ∈ Zp are implicitly defined by random group elements
Bη

$← G.
– Initialization with (`, X0, X1), with X0, X1 ∈ Zm×np : S chooses a k-basis
(ση)η of S0 and an (n− k)-basis (τ η)η of S1. The master secret key is
randomly chosen as a random linear combination of (ση)η and (τ η)η: for
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random scalars αη
$← Zp and random group elements Bη

$← G, we define
βη as the discrete logarithm of the Bη in basis g to implicitly describe:

s =

k∑
η=1

αηση +

n−k∑
η=1

βητ η : for i = 1, . . . , n, si =

k∑
η=1

αηση,i +

n−k∑
η=1

βητη,i.

S then computes the ciphertexts as follows, for i = 1, . . . , n and j =
1, . . . ,m,:

Cj,i =

k∏
η=1

(grj )αηση,i ·
n−k∏
η=1

(Brjη )τη,i · gx
b
j,i

=

k∏
η=1

(grj )αηση,i ·
n−k∏
η=1

(grjβη )τη,i · gx
b
j,i

– Functional decryption key queries: for any query QDKeyGen(y), for a
vector y, S computes dky = (G, p, g,H,y, 〈s,y〉 =

∑k
η=1 αη〈ση,y〉). S

computes 〈s,y〉 with the explicit part of the key only.
– Corruption: for a sender i, S sends eki =

∑k
η=1 αηση,i

– Finalize: same as in G2.
Since the explicit values of the scalars (βη) are not needed, this simulation is
perfectly indistinguishable from the previous one:

AdvG3(A) = AdvG2(A).

Game G4: Now, we are given random group elements Bη
$← G, for η =

1, . . . , n− k, as well as Hj
$← G, for j = 1, . . . ,m. In addition, we denote by

Dη,j the Diffie-Hellman value of Bη and Hj in basis g, for η = 1, . . . , n−k and
j = 1, . . . ,m. During the initialization, we program the random oracle, with
H(`j)← Hj , for j = 1, . . . ,m (and add (`j ,⊥, Hj) to Λ), and the ciphertexts
use theses hash values:
– Initialization with (`, X0, X1), with X0, X1 ∈ Zm×np : S chooses msk

and sets the eki as in G3, then computes the ciphertexts as follows, for
i = 1, . . . , n and j = 1, . . . ,m,:

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

xbj,i =

k∏
η=1

(grj )αηση,i ·
n−k∏
η=1

(Brjη )τη,i · gx
b
j,i ,

if rj is the discrete logarithm of Hj in basis g. Everything else remains the
same, and so this simulation is perfectly indistinguishable from the previous
one:

AdvG4
(A) = AdvG3

(A).
Game G5: This game is exactly as above, except that Dη,j

$← G, for η =
1, . . . , n− k and j = 1, . . . ,m. As a consequence, under the DDH assumption,
G5 is indistinguishable from the previous one:

AdvG5(A)− AdvG4(A) ≤ n× Advddh(t+ 4mte),

where t is an upper-bound on the execution time of A.
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Let us now recapitulate the description of this last game:

– Hash function queries: since we are in the random oracle model, S sets an
empty list Λ of triples. For any query ` to H, S looks for a triple (`, ?, h) ∈ Λ.
If such a triple exists, it outputs h, otherwise it chooses a random h

$← G,
stores (`,⊥, h) in Λ, and outputs h;

– Initialization with (`, X0, X1), with X0, X1 ∈ Zm×np : We denote by S1 the
space spanned by the m n-vectors in X0 −X1 while S0 is the orthogonal.
Let us denote by k the dimension of S0, then the dimension of S1 is n− k. S
chooses a k-basis (ση)η of S0 and an (n− k)-basis (τ η)η of S1, as well as k
random scalars αη

$← Zp, for η = 1, . . . , k. S then computes the ciphertexts
as follows, for i = 1, . . . , n and j = 1, . . . ,m,:

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

xbj,i ,

where Hj = H(λj) $← G, and Dη,j
$← G, for η = 1, . . . , n− k.

– Functional decryption key queries: for any query QDKeyGen(y), for a vector
y, S computes dky = (G, p, g,H,y,

∑k
η=1 αη〈ση,y〉).

– Corruption: for a sender i, S sends eki =
∑k
η=1 αηση,i

– Finalize: A provides its guess b′ on the bit b and S filters the cases were A
requests unauthorized dk or corruptions queries by setting β $← {0, 1}. In the
other cases, S sets β ← b′.

Finally, the only leakage about b from this last game is in the ciphertexts {Ci,j}:

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

xbj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

D
τη,i
η,j · g

x1−b
j,i · gx

b
j,i−x

1−b
j,i .

But xbj − x
1−b
j ∈ S1, and so can be written as

∑
η ξητ η:

gx
b
j,i−x

1−b
j,i = g

∑
η ξητη,i =

∏
η

(gξη )τη,i .

As a consequence,

Cj,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

(Dη,j · gξη )τη,i · gx
1−b
j,i =

k∏
η=1

H
αηση,i
j ·

n−k∏
η=1

E
τη,i
η,j · g

x1−b
j,i

where Eη,j = Dη,j · gξη for η = 1, . . . , n− k and j = 1, . . . ,m. When the (Dη,j)
all follow independent uniform distributions in G, the (Eη,j) all do so too. As a
consequence, the ciphertexts from honest senders do not leak any information
about b, and so the advantage of any adversary (even powerful) in this game is 0:
AdvG5

(A) = 0.
The differences between the advantages sum up to (n−k)×Advddh(T +4mte),

which can be upper-bounded by n× Advddh(T + 4mte).
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