
Decentralized Multi-Client Functional Encryption
for Inner Product

Jérémy Chotard1,2,3, Edouard Dufour Sans2,3, Romain Gay2,3,
Duong Hieu Phan1, and David Pointcheval2,3

1 XLIM, University of Limoges, CNRS
2 DIENS, École normale supérieure, CNRS,

PSL University, Paris, France
3 INRIA

Abstract. We consider a situation where multiple parties, owning data
that have to be frequently updated, agree to share weighted sums of these
data with some aggregator, but where they do not wish to reveal their
individual data, and do not trust each other. We combine techniques
from Private Stream Aggregation (PSA) and Functional Encryption
(FE), to introduce a primitive we call Decentralized Multi-Client Func-
tional Encryption (DMCFE), for which we give a practical instantiation
for Inner Product functionalities. This primitive allows various senders
to non-interactively generate ciphertexts which support inner-product
evaluation, with functional decryption keys that can also be generated
non-interactively, in a distributed way, among the senders. Interactions
are required during the setup phase only. We prove adaptive security of
our constructions, and give a variant that is function-hiding.
Keywords. Decentralized, Multi-Client, Functional Encryption, Inner
Product, Function-Hiding.

1 Introduction

Functional Encryption (FE) [10,17,20,31] is a new paradigm for encryption which
extends the traditional “all-or-nothing” requirement of Public-Key Encryption
in a much more flexible way. FE allows users to learn specific functions of the
encrypted data: for any function f from a class F , a functional decryption key
dkf can be computed such that, given any ciphertext c with underlying plaintext
x, using dkf , a user can efficiently compute f(x), but does not get any additional
information about x.

FE is the most general form of encryption as it encompasses identity-based
encryption, attribute-based encryption, broadcast encryption.

However, the basic definition of FE implies that the input data come from
only one party. In many practical applications, the data are an aggregation of
information that comes from different parties that may not trust each other.

A naive way to distribute the ciphertext generation would be to take an FE
scheme and to have a trusted party handling the setup and the key generation
phases, while the encryption procedure would be left to many clients to execute by

2 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Multi-Party Computation (MPC). This straw man construction has two obvious
weaknesses: generating any ciphertext requires potentially heavy interactions,
with everybody simultaneously on line, and some authority (the trusted third
party) reserves the power to recover every client’s private data. Multi-Client
Functional Encryption [18, 22] addresses the former issue, and we introduce
Decentralized Multi-Client Functional Encryption to address the latter.

Multi-Client Functional Encryption. In Multi-Client Functional Encryption
(MCFE), as defined in [18, 22], the single input x to the encryption procedure
is broken down into an input vector (x1, . . . , xn) where the components are
independent. An index i for each client and a (often time-based) label ` are used
for every encryption: (c1 = Encrypt(1, x1, `), . . . , cn = Encrypt(n, xn, `)). Anyone
owning a functional decryption key dkf , for an n-ary function f and multiple
ciphertexts for the same label `, c1 = Encrypt(1, x1, `), . . . , cn = Encrypt(n, xn, `),
can compute f(x1, . . . , xn) but nothing else about the individual xi’s. The com-
bination of ciphertexts generated for different labels does not give a valid global
ciphertext and the adversary learns nothing from it. MCFE is similar to the naive
construction describe above with MPC, except that ciphertext generation now
simply takes one round.

Decentralized Multi-Client Functional Encryption. Still, MCFE requires a trusted
party to generate a master key msk and to distribute the encryption keys eki
to the clients and the functional decryption keys dkf to the decryptors. In our
scenario, however, the clients do not want to rely on any authority. We would thus
be interested in a decentralized version of MCFE, where no authority is involved,
but the generation of functional decryption keys remains an efficient process under
the control of the clients themselves. We introduce the notion of Decentralized
Multi-Client Functional Encryption (DMCFE), in which the authority is removed
and the clients work together to generate appropriate functional decryption keys.
We stress that the authority is not simply distributed to a larger number of
parties, but that the resulting protocol is indeed decentralized : each client has
complete control over their individual data.

1.1 Related Work

In their more general form, FE and MCFE schemes have been introduced in [6, 7,
11,18–21,30,34] but unfortunately, they all rely on non standard cryptographic
assumptions (indistinguishability obfuscation, single-input FE for circuits, or
multilinear maps). It is more important in practice, and this is an interesting
challenge, to build FE for restricted (but concrete) classes of functions, satisfying
standard security definitions, under well-understood assumptions.

Inner-Product Functional Encryption. In 2015, Abdalla, Bourse, De Caro, and
Pointcheval [1] considered the question of building FE for inner-product functions.
In their paper, they show that inner-product functional encryption (IP-FE) can

Decentralized Multi-Client Functional Encryption for Inner Product 3

be efficiently realized under standard assumptions like the Decisional Diffie-
Hellman (DDH) and Learning-with-Errors (LWE) assumptions [29], but in a weak
security model, named selective security. Later on, Agrawal, Libert and Stehlé [5]
considered adaptive security for IP-FE and proposed constructions whose security
is based on DDH, LWE or Paillier’s Decisional Composite Residuosity (DCR) [28]
assumptions.

Private Stream Aggregation (PSA). This notion, also referred to as Privacy-
Preserving Aggregation of Time-Series Data, is an older primitive introduced
by Shi et al. [33]. It is quite similar to our target DMCFE scheme, however
PSA does not consider the possibility of generating different keys for different
inner-product evaluations, but only enables the aggregator to compute the sum
of the clients’ data for each time period. PSA also typically involves a Differential
Privacy component, which has yet to be studied in the larger setting of DMCFE.
Further research on PSA has focused on achieving new properties or better
efficiency [9, 12,15,23,25,26] but not on enabling new functionalities.

Multi-Input Functional Encryption. Goldwasser et al. [18] introduced the notion
of Multi-Input Functional Encryption (MIFE) which extends a single input x to an
input vector (x1, . . . , xn) where the components are independent (as does MCFE),
but for which there is no notion of ciphertext index or label: user i can enter xi
and encrypt it as ci = Encrypt(xi). Anyone owning a functional decryption key
dkf , for an n-ary function f and multiple ciphertexts c1 = Encrypt(x1), . . . , cn =
Encrypt(xn), can compute f(x1, . . . , xn) but nothing else about the individual
xi’s. Numerous applications of MIFE have been given in detail in [18].

As with MCFE, general purpose MIFE schemes rely on indistinguishability ob-
fuscation or multilinear maps, which we currently do not know how to instantiate
under standard cryptographic assumptions. Extending IP-FE to the multi-input
setting has proved technically challenging. [3] builds the first Multi-Input IP-FE,
that is, each input slot encrypts a vector xi ∈ Zmp for some dimension m, each
functional decryption key is associated with a vector y, and decryption recovers
〈x,y〉 where x := (xi‖ · · · ‖xn), y ∈ Zn·mp , and n denotes the number of slots,
which can be set up arbitrarily. They prove their construction secure under
standard assumptions (SXDH, and in fact, k-Lin for any k > 1) in bilinear groups.
Concurrently, [24] build a two-input (i.e. n = 2) using similar assumptions in
bilinear groups. Very recently, [2, 14] gave a function-hiding multi-input FE for
inner products, where the functional decryption keys do not reveal their underly-
ing functions. [2] also gives a generic transformation from single to multi-input
for IP-FE, which gives the first multi-input constructions whose security rely on
DDH, LWE, or DCR.

In multi-input FE, every ciphertext for every slot can be combined with any
other ciphertext for any other slot, and used with functional decryption keys
to decrypt an exponential number of values, as soon as there are more than
one ciphertext per slot. This “mix-and-match” feature is crucial for some of the
applications of MIFE, such as building Indistinguishability Obfuscation [18].
However, it also means the information leaked about the underlying plaintext

4 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

is enormous, and in many applications, the security guarantees simply become
void, especially when many functional decryption keys are queried. In the case of
inner product, as soon as m well-chosen (i.e. for linearly independent vectors)
functional decryption keys are queried, the plaintexts are completely revealed. In
the multi-client setting however, since only ciphertexts with the same label (think
of it as a time-stamp, for instance) can be combined for decryption, information
leakage of the plaintext is much reduced.

The fact that clients can control better which information is leaked about
their data, and that we remove the need of central authority for the case of
DMCFE, makes our schemes better suited for real-world use.

1.2 Multi-Client Functional Encryption

We remark that, as for MIFE, private-key MCFE is more relevant that its public-
key counterpart (this is explained in [18], or [3] in the context of IP-FE).

Essentially, in a public-key MCFE, an encryption of unknown plaintext xi
(for some label `) can be used together with encryptions of arbitrary, chosen
values x′j for each slot j ∈ [n] (for the same label `) and a functional decryption
key for some function f , to obtain the value f(x′1, · · · , x′i1 , xi, x

′
i+1, , ·, x′n). Since

the values x′j for j 6= i are arbitrarily chosen, this reveals typically too much
information on xi for practical uses. In the case of inner product, that means
that from Enc(i, xi, `), dky, and the public key, one can efficiently extract the
values xiyi +

∑
j 6=i x

′
jyj for chosen x′j , which exactly reveals the partial inner

product xiyi (see [3] for more details on the limitations of public-key IP-FE in
the multi-input setting).

Security is defined with an indistinguishability game, where the adversary has
to distinguish between encryptions of chosen plaintexts (x0i)i∈[n] and (x1i)i∈[n].
The inherent leakage of information about the plaintext given by functional
decryption keys dkf is captured by a Finalize procedure in the security game,
where the advantage is set to zero if the adversary performed a trivial attack,
in the sense that correctness allows the adversary to distinguish encryptions
of (x0i)i∈[n] from (x1i)i∈[n], simply because the underlying functions f of the
decryption keys tell apart these plaintexts, i.e. f(x01, · · · , x0n) 6= f(x11, · · · , x1n).

In the public-key setting, in order to prevent the adversary from a trivial win,
one should make the restriction that the adversary is only allowed to ask functional
decryption keys dkf for functions f that satisfy f(x01, ·, . . . , ·) = f(x11, ·, . . . , ·),
f(·, x02, . . . , ·) = f(·, x02, . . . , ·), . . . , f(·, ·, . . . , x0n) = f(·, ·, . . . , x1n). Again, this
would essentially exclude any function. A private-key encryption solves this issue,
and is still well-suited for practical applications.

In this paper, we will thus consider this private-key setting which naturally fits
the MCFE (and DMCFE) model as each component in the plaintext is separately
provided by a different client. In such a case, the corruption of some clients is an
important issue, since several of them could collude to learn information about
other clients’ inputs. More precisely, we propose such an MCFE for Inner-Product
functions in Section 4, that is secure even against adaptive corruptions of the
senders.

Decentralized Multi-Client Functional Encryption for Inner Product 5

1.3 Decentralized Multi-Client Functional Encryption

While it allows independent generation of the ciphertexts, MCFE (like MIFE)
still assumes the existence of a trusted third-party who runs the SetUp algorithm
and distributes the functional decryption keys. This third-party, if malicious
or corrupted, can easily undermine any client’s privacy. We are thus interested
in building a scheme in which such a third-party is entirely taken out of the
equation.

We thus introduce the notion of Decentralized Multi-Client Functional En-
cryption (DMCFE), in which the setup phase and the generation of functional
decryption keys are decentralized among the same clients as the ones that gener-
ate the ciphertexts. We are interested in minimizing interactions during those
operations. While one can do it, in a generic way, using MPC, our target is
at least a non-interactive generation of the functional decryption keys, that we
achieve in Section 5, again for Inner-Product functions. The one-time setup phase
might remain interactive, but this has to be done once only.

1.4 Technical Overview

We briefly showcase the techniques that allow us to build efficient MCFE and
DMCFE schemes. The schemes we introduce later enjoy adaptive security (aka
full security), where oracle queries are made adaptively by the adversary against
the security game, but for the sake of clarity, we will here give an informal
description of a selectively-secure scheme from the DDH assumption, where
queries are made beforehand. Namely, the standard security notion for FE is
the indistinguishability-based, where the adversary has access to a Left-or-Right
oracle, that on input (m0,m1) either always encrypts m0 or always encrypts m1.
While for the adaptive security, the adversary can query this oracle adaptively,
in the selective setting, all queries are made at the beginning, before seeing the
public parameters.

We first design an MCFE scheme building up from the FE scheme introduced
by Abdalla et al. [1] (itself a selectively-secure scheme) where we replace the
global randomness with a hash function (modeled as a random oracle for the
security analysis), in order to make the generation of the ciphertexts independent
for each client. The comparison is illustrated in Figure 1. Note that for the
final decryption to be possible, one needs the function evaluation γ to be small
enough, within this discrete logarithm setting. This is one limitation, which is
still reasonable for real-world applications that use concrete numbers, that are
not of cryptographic size.

If we write c0 = gr in the single input case and c0 = H(`) in the Multi-Client
case, we have ci = gxic0

si for i ∈ [n] in both cases. In the public-key scheme
from [1], si was private, and only vi = gsi was known to the encryptor. Since we
are now dealing with private encryption, the encryptor can use si. Correctness
then follows from

gγ =

∏
i c
yi
i

c0dky
=

∏
i (g

xic0
si)

yi

c0dky
=
g
∑

i xiyic0
∑

i yisi

c0dky
=
g
∑

i xiyic0
dky

c0dky
= g〈x,y〉.

6 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Scheme MCFE ABDP15 [1]

SetUp
Pick (si)i∈[n]
at random.

Pick (si)i∈[n] at random
and set vi = gsi .

Encrypt
On input (xi, si, `),

return ci = gxi · H(`)si .
On input ((xi)i, (vi)i), pick r $← Zp,
return (c0 = gr, (ci = gxi · vri)i).

DKeyGen
On input ((yi)i, (si)i),
return dky =

∑
i yisi.

On input ((yi)i, (si)i),
return dky =

∑
i yisi.

Decrypt
Discrete logarithm on

gγ =
∏

i c
yi
i

H(`)dky
.

Discrete logarithm on

gγ =
∏

i c
yi
i

c
dky
0

.

Fig. 1. Comparison of the Inner-Product FE scheme from Abdalla et al. [1] and a
similar MCFE obtained by introducing a hash function H.

We further define this MCFE scheme and prove it selectively secure under the
DDH assumption in Appendix B.

We can easily decentralize the above protocol using standard MPC techniques,
but as we mentioned, our main goal is to minimize interactions during the
DKeyGen protocol. This simple protocol can illustrate our main insight: we need
to provide the aggregator with the decryption key 〈s,y〉. Since the si’s are owned
individually by the clients, we are interested in a protocol that would let them
send shares from which the decryptor would recover an agreed upon Inner Product
on their individual inputs. This sounds like a job for MCFE.

More precisely, sending Ẽncrypt(si) under some other key ti would not solve
our problem, because we would still need to provide 〈t,y〉 to enable decryption,
so we send Ẽncrypt(yisi) under ti. Now we only need to compute one decryption
key: the key for the inner product with vector 1 = (1, . . . , 1), namely

∑
i ti.

There is one final caveat. The result of the inner product evaluation requires a
final discrete logarithm computation, and we are no longer operating on real-world
data, but on random elements from Zp. Any attempt to recover the discrete
logarithm is hopeless, and we are stuck with g〈s,y〉. We work around this issue
by using pairings, which effectively enable us to decrypt using only g〈s,y〉. Our
fully-secure DMCFE from pairings, that inherits from this approach, is described
in Section 5.

1.5 Contributions

Practical constructions of functional encryption for specific classes of functions is
of high interest. In this paper, we focus on MCFE and DMCFE for Inner Product.

Decentralized Multi-Client Functional Encryption for Inner Product 7

We present the first solutions for Inner-Product Functional Encryption in the
Multi-Client and Decentralized Multi-Client settings and additional constructions
that support many interesting properties:

1. Efficiency: the proposed schemes are highly practical as their efficiency is
comparable to that of the DDH-based IP-FE scheme from [5]. A value xi
is encrypted as a unique group element Ci (three for the function-hiding
scheme). The setup phase, key generation and decryption all take time linear
in the number of participants, and encryption takes time linear in its input.

2. Security under a standard assumption: our schemes are all adaptively
secure under either the classical DDH assumption or the standard SXDH
assumption.

3. Security against adaptive corruptions: In addition, we successfully ad-
dress corruptions of clients, even adaptive ones in the MCFE setting, exploring
what Goldwasser et al. [18] highlighted as an “interesting direction”.

4. Non interactivity: The DMCFE scheme we present in Section 5 has a key
generation protocol that does not require interactions.

5. Function hiding: The MCFE scheme presented in Section 6 is function
hiding.

Refer to Figure 2 for a comparison of the different schemes mentioned here. We

Scheme
Arbitrary

Inner Products
Non Interactive

Setup
Non Interactive

Encrypt
Non Interactive

KeyGen Decentralized Function
Hiding

PSA [33] 7 3 3 N/A 3 7
Section 1: Straw man

Distributed FE 3 3 7 3 7 7
Section 4: MCFE 3 3 3 3 7 7
Section 5: DMCFE 3 7 3 3 3 7

Section 6: Function Hiding MCFE 3 3 3 3 7 3

Fig. 2. Comparison of different cryptographic solutions to the problem of linearly
aggregating Private Multi-Client data.

leave open the problems of considering LWE-based or Paillier-based constructions
and of extending this work beyond inner-product functions.

2 Definitions and Security Models

This section is devoted to defining the MCFE and DMCFE and the security models
that are appropriate for those primitives, in the indistinguishability setting.

8 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

2.1 Multi-Client Functional Encryption

An MCFE scheme encrypts vectors of data from several senders and allows the
controlled computation of functions on these heterogeneous data. We now define
a private-key MCFE as in [18,22]:

Definition 1 (Multi-Client Functional Encryption). A multi-client func-
tional encryption onM over a set of n senders is defined by four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public
parameters mpk, the master secret key msk and the n encryption keys eki;

– Encrypt(eki, xi, `): Takes as input a personal encryption key eki, a value xi
to encrypt, and a label `, and outputs the ciphertext C`,i;

– DKeyGen(msk, f): Takes as input the master secret key msk and a function
f :Mn → R, and outputs a functional decryption key dkf ;

– Decrypt(dkf , `,C): Takes as input a functional decryption key dkf , a label `,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈Mn for the label `, or ⊥ otherwise.

We make the assumption that mpk is included in msk and in all the encryption
keys eki as well as the functional decryption keys dkf . The correctness property
states that, given (mpk,msk, (eki)i) ← SetUp(λ), for any label `, any function
f :Mn → R, and any vector x = (xi)i ∈ Mn, if C`,i ← Encrypt(eki, xi, `), for
i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then Decrypt(dkf , `,C` = (C`,i)i) =
f(x = (xi)i).

The security model is quite similar to the one defined for FE, but as noted
in [18,22], one has to consider corruptions, since the senders do not trust each
other, and they can collude and give their secret keys to the adversary who will
play on their behalf.

Definition 2 (IND-Security Game for MCFE). Let us consider an MCFE
scheme over a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

– Initialization: the challenger C runs the setup algorithm (mpk,msk, (eki)i)←
SetUp(λ) and chooses a random bit b $← {0, 1}. It provides mpk to the
adversary A;

– Encryption queries QEncrypt(i, x0, x1, `): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C`,i generated
by Encrypt(eki, x

b, `). We note that any further query for the same pair (`, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(f): A has unlimited and adap-
tive access to the DKeyGen(msk, f) algorithm for any input function f of its
choice. It is given back the functional decryption key dkf ;

– Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

Decentralized Multi-Client Functional Encryption for Inner Product 9

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β $← {0, 1}:

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with

x0i 6= x1i ;
2. for some label `, an encryption-query QEncrypt(i, x0i , x

1
i , `) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been

asked for all j ∈ HS;
3. for some label ` and for some function f asked to QDKeyGen, there exists a

pair of vectors (x0 = (x0i)i,x
1 = (x1i)i) such that f(x0) 6= f(x1), when

– x0i = x1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this MCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1]− P [β = 1|b = 0]| is negligible.

Informally, this is the usual Left-or-Right indistinguishability [8], but where the
adversary should not be able to get ciphertexts or functional decryption keys
that trivially help distinguish the encrypted vectors:

1. since the encryption might be deterministic, if we allow Left-or-Right encryp-
tion queries even for corrupted encryption keys, these queries should be on
identical messages;

2. intuitively, if some input is missing, no function evaluation can be done by
the adversary, so we enforce the adversary to ask QEncrypt-queries for all the
non-corrupted keys (since the adversary can generate any ciphertext itself
for the corrupted components) as soon as one label is used;

3. for any functional decryption key, all the possible evaluations should not
trivially allow the adversary to distinguish the ciphertexts generated through
QEncrypt-queries (on honest components).

In all these cases, the guess of the adversary is not considered (a random bit β is
output). Otherwise, this is a legitimate attack, and the guess b′ of the adversary
is output. We stress that we bar the adversary from querying several ciphertexts
under the same pair (`, i). In real life, it is of course the responsibility of the
senders not to encrypt under the same label twice.

Remark 3. While the third constraint aims at preventing the adversary from
trivially winning by guessing the bit b from the evaluation of a functional
decryption, the two first might look artificial, but they are required for our proof
to go through with our constructions:

– with a probabilistic encryption scheme, one could hope to remove the first
one, but up to now, we only have deterministic constructions;

10 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

– depending on the scheme, an encryption on an “inactive” component (a
component that has no impact on the value of a function f) might not be
needed for a complete evaluation, but this might not be the case in general,
and “inactivity” is relative to a function, while many functions might be
involved. We thus require that ciphertexts be obtained for every component
for a given label (either through an explicit query to QEncrypt or thanks to
the encryption key obtained from QCorrupt).

Weaker Notions. One may define weaker variants of indistinguishability, where
some queries can only be sent before the initialization phase:

– Selective Security (sel-IND): the encryption queries (QEncrypt) are sent
before the initialization;

– Static Security (sta-IND): the corruption queries (QCorrupt) are sent before
the initialization.

2.2 Decentralized Multi-Client Functional Encryption

In MCFE, an authority owns a master secret key msk to generate the functional
decryption keys. We would like to avoid such a powerful authority, and make the
scheme totally decentralized among the owners of the data (the senders). We
thus define DMCFE, for Decentralized Multi-Client Functional Encryption. In
this context, there are n senders (Si)i, for i = 1, . . . , n, who will play the role
of both the encrypting players and the functional decryption key generators,
for a functional decryptor FD. Of course, the senders do not trust each other
and they want to control the functional decryption keys that will be generated.
There may be several functional decryptors, but since they could collude and
combine all the functional decryption keys, in the description below, and in the
security model, we will consider only one functional decryptor FD. As already
noticed, we could simply use the definition of MCFE [18,22], where the setup and
the functional decryption key algorithms are replaced by MPC protocols among
the clients. But this could lead to a quite interactive process. We thus focus
on efficient one-round key generation protocols DKeyGen that can be split in a
first step DKeyGenShare that generates partial keys and the combining algorithm
DKeyComb that combines partial keys into the functional decryption key.

Definition 4 (Decentralized Multi-Client Functional Encryption). A
decentralized multi-client functional encryption onM between a set of n senders
(Si)i, for i = 1, . . . , n, and a functional decrypter FD is defined by the setup
protocol and four algorithms:

– SetUp(λ): This is a protocol between the senders (Si)i that eventually generate
their own secret keys ski and encryption keys eki, as well as the public
parameters mpk;

– Encrypt(eki, xi, `): Takes as input a personal encryption key eki, a value xi
to encrypt, and a label `, and outputs the ciphertext C`,i;

Decentralized Multi-Client Functional Encryption for Inner Product 11

– DKeyGenShare(ski, `f): Takes as input a personal secret key ski and a label
`f , and outputs the partial functional decryption key dkf,i for a function
f :Mn → R that is more or less explicit in `f ;

– DKeyComb((dkf,i)i, `f): Takes as input the partial functional decryption keys
and eventually outputs the functional decryption key dkf ;

– Decrypt(dkf , `,C): Takes as input a functional decryption key dkf , a label `,
and an n-vector ciphertext C, and outputs f(x), if C is a valid encryption
of x = (xi)i ∈Mn for the label `, or ⊥ otherwise;

We make the assumption that mpk is included in all the secret and encryption keys,
as well as the (partial) functional decryption keys. Similarly, the function f might
be included in the (partial) functional decryption keys. The correctness property
states that, given (mpk, (ski)i, (eki)i)← SetUp(λ), for any label `, any function
f : Mn → R, and any vector x = (xi)i ∈ Mn, if C`,i ← Encrypt(eki, xi, `),
for i ∈ {1, . . . , n}, and dkf ← DKeyComb((DKeyGenShare(ski, `f))i, `f), then we
have Decrypt(dkf , `,C` = (C`,i)i) = f(x = (xi)i).

The security model is quite similar to the one defined above for MCFE, except
that for the DKeyGen protocol, the adversary has access to transcripts of the
communications and can make some senders play maliciously. Corrupt-queries
additionally reveal the secret keys ski.

Definition 5 (IND-Security Game for DMCFE). Let us consider a DMCFE
scheme between a set of n senders. No adversary A should be able to win the
following security game against a challenger C:

– Initialization: the challenger C runs the setup protocol (mpk, (ski)i, (eki)i)←
SetUp(λ) and chooses a random bit b $← {0, 1}. It provides mpk to the
adversary A;

– Encryption queries QEncrypt(i, x0, x1, `): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C`,i generated
by Encrypt(eki, x

b, `). We note that any further query for the same pair (`, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(i, f): A has unlimited and adap-
tive access to the (non-corrupted) senders running the DKeyGenShare(ski, f)
algorithm for any input function f of its choice. It is given back the partial
functional decryption key dkf,i;

– Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β $← {0, 1}:

12 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with

x0i 6= x1i ;
2. for some label `, an encryption-query QEncrypt(i, x0i , x

1
i , `) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been

asked for all j ∈ HS;
3. for some label ` and for some function f asked to QDKeyGen, there exists a

pair of vectors (x0 = (x0i)i,x
1 = (x1i)i) such that f(x0) 6= f(x1), when

– x0i = x1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this DMCFE is IND-secure if for any adversary A, AdvIND(A) = |P [β =
1|b = 1]− P [β = 1|b = 0]| is negligible.

We define sel-IND (selective) and sta-IND (static) security for DMCFE as we
did for MCFE.

3 Notations and Assumptions

3.1 Groups

Primer Order Group. We use prime-order group generator GGen, a proba-
bilistic polynomial time (PPT) algorithm that on input the security parameter
1λ returns a description G = (G, p, P) of an additive cyclic group G of order p
for a 2λ-bit prime p, whose generator is P .

We use implicit representation of group elements as introduced in [16]. For a ∈
Zp, define [a] = aP ∈ G as the implicit representation of a in G. More generally,
for a matrix A = (aij) ∈ Zn×mp we define [A] as the implicit representation of A
in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be
an element in G. Note that from a random [a] ∈ G it is generally hard to compute
the value a (discrete logarithm problem in G). Obviously, given [a], [b] ∈ G and a
scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and [a+ b] = [a] + [b] ∈ G.

Pairing Group. We also use a pairing group generator PGGen, a PPT algorithm
that on input 1λ returns a description PG = (G1,G2, p, P1, P2) of asymmetric
pairing groups where G1, G2, GT are additive cyclic groups of order p for a
2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and e :
G1×G2 → GT is an efficiently computable (non-degenerate) bilinear map. Define
PT := e(P1, P2), which is a generator of GT . We again use implicit representation
of group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the
implicit representation of a in Gs . Given [a]1, [a]2, one can efficiently compute
[ab]T using the pairing e. For two matrices A, B with matching dimensions define
e([A]1, [B]2) := [AB]T ∈ GT .

Decentralized Multi-Client Functional Encryption for Inner Product 13

Compatibility. Our construction from Section 4 uses prime-order group, while
that of Section 5 and Section 6 use pairing group. Since the latter uses the former
as a building block, we must use groups that are compatible with each other,
namely, one can generate a prime-order group either with G := (G, p, P) $←
GGen(1λ), but also using PG := (G1,G2, p, P1, P2, e)

$← PGGen(1λ), and setting
G := G1. Note that this is possible in particular because we use asymmetric
pairings, thus, we can use the SXDH assumption in the pairing group, which is
DDH in G1 and G2. More details about computational assumptions follow.

3.2 Computational Assumptions

Definition 6 (Decisional Diffie-Hellman Assumption). The Decisional
Diffie-Hellman (DDH) Assumption states that, in a prime-order group G $←
GGen(1λ), no PPT adversary can distinguish between the two following distribu-
tions with non-negligible advantage:

{([a], [r], [ar]) | a, r $← Zp} and {([a], [r], [s]) | a, r, s $← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a
random element from the span of [a] for a =(1

a
) , from a random element in G2:

[a] · r = [ar] = ([r]
[ar]

) ≈ ([r]
[s]
) .

Definition 7 (Symmetric eXternal Diffie-Hellman Assumption). The
Symmetric eXternal Diffie-Hellman (SXDH) Assumption states that, in a pairing
group PG $← PGGen(1λ), the DDH assumption holds in both G1 and G2.

4 A Fully-Secure MCFE for Inner Product

After the first construction drafted in the introduction, from the Abdalla et
al. [1] selectively-secure FE, we propose another construction of MCFE for inner
product adapted from the Agrawal et al. [5] scheme. We also provide the full
security analysis under the DDH assumption, since the security proof of our
DMCFE construction will rely on it.

Overview of the Construction. This construction is an extension of the previous
one proposed in the introduction: we first extended the scheme from Abdalla et
al. [1] in the multi-client setting with a hash function. Because of the selective
security of the underlying scheme, our first proposal was just selectively secure
too. We now adapt the Agrawal et al. [5] scheme, in the same manner. This
construction and its proof of adaptive security are for the sake of clarity, since
the proof of our next DMCFE we will be made clearer when reducing to this one.

4.1 Description

We use prime-order group, and the bracket notation, as defined in Section 3.1.

14 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

– SetUp(λ): Takes as input the security parameter, and generates prime-order
group G := (G, p, P) $← GGen(1λ), and H a full-domain hash function onto
G2. It also generates the encryption keys si

$← Z2
p, for i = 1, . . . , n. The

public parameters mpk consist of (G, p, g,H), while the encryption keys are
eki = si for i = 1, . . . , n, and the master secret key is msk = ((eki)i), (in
addition to mpk, which is omitted);

– Encrypt(eki, xi, `): Takes as input the value xi to encrypt, under the key
eki = si and the label `. It computes [u`] := H(`) ∈ G2, and outputs the
ciphertext [ci] = [u>` si + xi] ∈ G;

– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function
defined by y as fy(x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i si · yi) ∈ Znp × Z2

p;
– Decrypt(dky, `, ([ci])i∈[n]): Takes as input a functional decryption key dky =
(y,d), a label `, and ciphertexts. It computes [u`] := H(`), [α] =

∑
i[ci] · yi−

[u>`] · d, and eventually solves the discrete logarithm to extract and return α.

Note that, as for [5], the result α must be polynomially bounded to efficiently
compute the discrete logarithm in the last decryption step: let x,y ∈ Znp , we
have:

[α] =
∑
i

[ci] · yi − [u>`] · d =
∑
i

[u>` si + xi] · yi − [u>`] ·
∑
i

yisi

=
∑
i

[u>`] · siyi +
∑
i

[xi] · yi − [u>`] ·
∑
i

yisi = [
∑
i

xiyi].

4.2 Security Analysis

Theorem 8 (IND-Security). The above MCFE protocol (see Section 4.1) is IND-
secure under the DDH assumption, in the random oracle model. More precisely,
we have

AdvIND(A) ≤ 2Q · Advddh
G (t) + Advddh

G (t+ 4Q× tG) +
2Q

p
,

for any adversary A, running within time t, where Q is the number of (direct
and indirect) queries to H (modeled as a random oracle). It is asked by QEncrypt-
queries.

We stress that this Theorem supports both adaptive encryption queries and
adaptive corruptions.

Proof Technique. To obtain adaptive security, we use a technique that consists
of first proving perfect security in the selective variant of the involved games,
then, using a guessing (a.k.a. complexity leveraging) argument, which incurs an
exponential security loss, we obtain the same security guarantees in the adaptive
games. Since the security in the selective game is perfect (the advantage of
any adversary is exactly zero), the exponential security loss is multiplied by a

Decentralized Multi-Client Functional Encryption for Inner Product 15

zero term, and the overall adaptive security is preserved. This technique has
been used before in [35] in the context of Attribute-Based Encryption, or more
recently, in [2,3] in the context of multi-input IP-FE. We defer to [35, Remark 1]
and [3, Remark 5] for more details on this proof technique.

Proof. We proceed using hybrid games, described in Fig. 3. Let A be a PPT
adversary. For any game Gindex, we denote by Advindex := |Pr[Gindex(A)|b =
1]− Pr[Gindex(A)|b = 0]|, where the probability is taken over the random coins of
Gindex and A, and by event Gindex(A), or just Gindex when there is no ambiguity,
we mean that the Finalize procedure in game Gindex (defined as in Definition 2)
returns β = 1 from the adversary’s answer b′ when interacting with A.

Games G0, G1, G2, (G3.q.1)q∈[Q+1], (G3.q.2, G3.q.3)q∈[Q]

G ← GGen(1λ), for all i ∈ [n], si $← Z2
p, eki := si, msk := (si)i, mpk := (G, p, g).

a
$← Zp, a := (1

a
) , a⊥ := (−a

1
)

Sample a full-domain hash function H onto G2, and a bit b $← {0, 1}.
b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·),QCorrupt(·),RO(·)(mpk).
Run Finalize on b′.

RO(`): // G0, G1 , G2, G3.q.1, G3.q.2, G3.q.3

[u`] := H(`), [u`] := RF(`) , [u`] := [a · r`], with r` := RF′(`)

On the q’th (fresh) query: [u`] := RF′(`) · a+ RF′′(`) · a⊥

Return [u`].

QEncrypt(i, x0i , x
1
i , `): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

[u`] := RO(`),
[ci] := [u>`] · si + [xbi]

If [u`] is computed on the j RO-query, for j < q: [ci] := [u>`] · si + [x0i]

If [u`] is computed on the q-th RO-query: [ci] := [u>`] · si + [x0i]

Return [ci]

QDKeyGen(y): //G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

Return
∑
i yisi.

QCorrupt(i): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

Return si.

Fig. 3. Games for the proof of Theorem 8. Here, RF, RF′, RF′′ are random functions
onto G2, Zp, and Z∗p, respectively, that are computed on the fly. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 2.

16 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Game G0: This is the IND-security game as given in Definition 2. Note that
the hash function H is modeled as a random oracle RO onto G2. This is
essentially used to generate [u`] = H(`).

Game G1: We simulate the answers to any new RO-query by a truly random
pair in G2, on the fly. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: We simulate the answers to any new RO-query by a truly random
pair in the span of [a] for a := (1

a
) , with a $← Zp. This uses the Multi-DDH

assumption, which tightly reduces to the DDH assumption using the random-
self reducibility (see Lemma 14): Adv1 − Adv2 ≤ Advddh

G (t+ 4Q× tG), where
Q is the number of RO-queries and tG the time for an exponentiation.

Game G3: We simulate any QEncrypt query as the encryption of x0i instead of
xbi and go back for the answers to any new RO query by a truly random pair
in G2.

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G2 and G3 will be proven
using a hybrid technique on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since a
second similar query is answered as the first one. We detail this proof because
the technique is important.

G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 G3.q.2: We first change the distribution of the output of the q-th RO-

query, from uniformly random in the span of [a] to uniformly random over
G2, using the DDH assumption. Then, we use the basis ((1

a
) ,(−a

1
)) of Z2

p,
to write a uniformly random vector over Z2

p as u1 · a + u2 · a⊥, where
u1, u2

$← Zp. Finally, we switch to u1 · a + u2 · a⊥ where u1
$← Zp, and

u2
$← Z∗p, which only changes the adversary view by a statistical distance of

1/p: Adv3.q.1 − Adv3.q.2 ≤ Advddh
G (t) + 1/p. The last step with u2 ∈ Z∗p will

be important to guarantee that u>` a
⊥ 6= 0.

G3.q.2 G3.q.3: We now change the generation of the ciphertext [ci] := [u>`] ·si+
[xbi] by [ci] := [u>`] · si + [x0i], where [u`] corresponds to the q-th RO-query.
We then prove this does not change the adversary’s view.
Note that if the output of the q-th RO-query is not used by QEncrypt-queries,
then the games G3.q.2 and G3.q.3 are identical. But we can show this is
true too when there are RO-queries that are really involved in QEncrypt-
queries, and show that Adv3.q.2 = Adv3.q.3 in that case too, in two steps. In
Step 1, we show that there exists a PPT adversary B? such that Adv3.q.t =
(p2 + 1)n · Adv?3.q.t(B?), for t = 2, 3, where the games G?3.q.2 and G?3.q.3 are
selective variants of games G3.q.2 and G3.q.3 respectively (see Fig. 4), where
QCorrupt queries are asked before the initialization phase. In Step 2, we show
that for all PPT adversaries B?, we have Adv?3.q.2(B?) = Adv?3.q.3(B?). This
will conclude the two steps.

Step 1. We build a PPT adversary B? playing against G?3.q.t for t = 2, 3, such
that Adv3.q.t = (p2 + 1)n · Adv?3.q.t(B?).

Decentralized Multi-Client Functional Encryption for Inner Product 17

Games (G?3.q.2, G?3.q.3)q∈[Q]:(
state, (zi ∈ Z2

p ∪ {⊥})i∈[n]
)
← A(1λ, 1n)

G ← GGen(1λ), for all i ∈ [n], si $← Z2
p, eki := si, msk := (si)i, mpk := (G, p, g).

a
$← Zp, a := (1

a
) , a⊥ := (−a

1
) , b $← {0, 1}.

b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·),QCorrupt(·),RO(·)(mpk, state).
Run Finalize on b′.

RO(`): // G?3.q.2, G?3.q.3
[u`] := [a · r`], with r` := RF′(`)
On the q’th (fresh) query: [u`] := [RF′(`) · a+ RF′′(`) · a⊥]
Return [u`].

QEncrypt(i, x0i , x
1
i , `): // G?3.q.2 , G?3.q.3

[u`] := RO(`),
[ci] := [u>`] · si + [xbi]

If [u`] is computed on the j-th RO-query with j < q: [ci] := [u>`] · si + [x0i].
If [u`] is computed on the q-th RO-query, then:
• if (x0i , x1i) 6= zi, the game ends and returns β $← {0, 1}.
• otherwise, [ci] := [u>`] · si +[xbi] +[x0i] , S := S ∪ {i}.
Return [ci].

QDKeyGen(y): //G?3.q.2, G?3.q.3
Return

∑
i yisi.

QCorrupt(i): // G?3.q.2, G?3.q.3
If zi = (x0i , x

1
i) with x0i 6= x1i , the game ends, and returns β $← {0, 1}.

Return si.

Fig. 4. Games G?3.q.2 and G?3.q.3, with q ∈ [Q], for the proof of Theorem 8. Here, RF,
RF′ are random functions onto G2, and Zp, respectively, that are computed on the fly.
In each procedure, the components inside a solid (gray) frame are only present in the
games marked by a solid (gray) frame.

18 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Adversary B? first guesses for all i ∈ [n], zi
$← Z2

p ∪ {⊥}, which it sends
to its selective game G?3.q.t. That is, each guess zi is either a pair of values
(x0i , x

1
i) queried to QEncrypt, or ⊥, which means no query to QEncrypt. Then,

it simulates A’s view using its own oracles. When B? guesses successfully
(call E that event), it simulates A’s view exactly as in G3.q.t. If the guess
was not successful, then B? stops the simulation and outputs a random bit β.
Since event E happens with probability (p2 + 1)−n and is independent of the
view of adversary A: Adv?3.q.t(B?) is equal to∣∣∣Pr[G?3.q.t|b = 0, E] · Pr[E] +

Pr[¬E]

2
− Pr[G?3.q.t|b = 1, E] · Pr[E]− Pr[¬E]

2

∣∣∣
= Pr[E] · |Pr[G?3.q.t|b = 0, E]− Pr[G?3.q.t|b = 0, E]| = (p2 + 1)−n · Adv3.q.t.

Step 2. We assume the values (zi)i∈[n] sent by B? are consistent, that is, they
don’t make the game end and return a random bit, and Finalize on b′ does
not return a random bit independent of b′ (call E′ this event).
We show that games G?3.q.2 and G?3.q.3 are identically distributed, conditioned
on E′. To prove it, we use the fact that the two following distributions are
identical, for any choice of γ:

(si)i∈[n],zi=(x0
i ,x

1
i)

and
(
si + a⊥ · γ(xbi − x0i)

)
i∈[n],zi=(x0

i ,x
1
i)
,

where a⊥ := (−a
1
) ∈ Z2

p and si
$← Z2

p, for all i = 1, . . . , n. This is true since
the si are independent of the zi (note that this is true because we are in
a selective setting, while this would not necessarily be true with adaptive
QEncrypt-queries). Thus, we can re-write si into si +a⊥ · γ(xbi − x0i) without
changing the distribution of the game.
We now take a look at where the extra terms a⊥ · γ(xbi − x0i) actually appear
in the adversary’s view:
– They do not appear in the output of QCorrupt, because we assume event
E′ holds, which implies that if zi 6= ⊥, then i is not queried to QCorrupt
or x1i = x0i .

– They might appear in QDKeyGen(y) as

dky =
∑
i∈[n]

si · yi + a⊥ · γ
∑
i:zi=(x0

i ,x
1
i)
yi(x

b
i − x0i) .

But the gray term equals 0 by the constraints for E′ in Definition 2: for
all i ∈ HS, zi 6= ⊥; if i ∈ CS and zi 6= ⊥, x1i = x0i ; and f(x0) = f(x1),
hence

∑
i:zi=(x0

i ,x
1
i)
yi(x

b
i − x0i) = 0.

– Eventually, they appear in the output of the QEncrypt-queries which use
[u`] computed on the q-th RO-query, since for all others, the vector [u`]
lies in the span of [a], and a>a⊥ = 0. We thus have [ci] := [u>`] ·si+(xbi−
x0i)γ[u

>
`]a
⊥+[xbi]. Since u>` a

⊥ 6= 0, we can choose γ = −1/u>` a⊥ mod p,
and then [ci] = [u>`] · si + [x0i], which is the encryption of x0i . We stress
that γ is independent of the index i, and so this simultaneously converts

Decentralized Multi-Client Functional Encryption for Inner Product 19

all the encryptions of xbi into encryptions of x0i . Finally, reverting these
statistically perfect changes, we obtain that [ci] is identically distributed
to [u>`] · si + [x0i], as in game G?3.q.3.

Thus, when event E′ happens, the games are identically distributed. When
¬E happens, the games both return β $← {0, 1}: Adv?3.q.2(B?) = Adv?3.q.3(B?).
As a conclusion, we get Adv3.q.2 = Adv3.q.3.

G3.q.3 G3.q+1.1: This transition is the reverse of G3.q.1 G3.q.2, namely, we
use the DDH assumption to switch back the distribution of [u`] computed
on the q-th RO-query from uniformly random over G2 (conditioned on the
fact that u>` a

⊥ 6= 0) to uniformly random in the span of [a]: Adv3.q.3 −
Adv3.q+1.1 ≤ Advddh

G (t) + 1/p.

As a conclusion, since G3.Q+1.1 = G3, we have Adv2−Adv3 ≤ 2Q(Advddh
G (t)+1/p).

In addition, Adv3 = 0, which concludes the proof.

5 A Statically-Secure DMCFE for Inner Product

Overview of the Scheme. Our construction of MCFE for inner product uses
functional decryption keys dky = (y, 〈s,y〉) = (y,d), where d = 〈s,y〉 =∑
i siyi = 〈t,1〉, with ti = siyi, for i = 1, . . . , n, and 1 = (1, . . . , 1). Hence, one

can split msk = s into mski = si, define T (mski,y) = ti = siyi and F (t) = 〈t,1〉.
We could thus wish to use the above generic construction from the introduction
with our MCFE for inner product, that is self-enabling, to describe a DMCFE
for inner product. However, this is not straightforward as our MCFE only allows
small results for the function evaluations, since a discrete logarithm has to be
computed. While, for real-life applications, it might be reasonable to assume
the plaintexts and any evaluations on them are small enough, it is impossible
to recover such a large scalar as d = 〈s,y〉, which comes up when we use our
scheme to encrypt encryption keys.

Nevertheless, following this idea we can overcome the concern above with
pairings: One can only recover [d], but using a pairing e : G1 ×G2 → GT , one
can use our MCFE in both G1 and G2. This allows us to compute the functional
decryption in GT , to get [〈x,y〉]T , which is decryptable as 〈x,y〉 is small enough.

5.1 Construction

Let us describe the new construction, using an asymmetric pairing group, as in
Section 3.1.

– SetUp(λ): Generates PG := (G1,G2, p, P1, P2, e)
$← PGGen(1λ). Samples two

full-domain hash functions H1 and H2 onto G2
1 and G2

2 respectively. Each
sender Si generates si

$← Z2
p for all i ∈ [n], and interactively generate

Ti
$← Z2×2

p such that
∑
i∈[n] Ti = 0. One then sets mpk ← (PG,H1,H2),

and for i = 1, . . . , n, eki = si, ski = (si,Ti);

20 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

– Encrypt(eki, xi, `): Takes as input the value xi to encrypt, under the key
eki = si and the label `. It computes [u`]1 := H1(`) ∈ G2

1, and outputs the
ciphertext [ci]1 = [u>` si + xi]1 ∈ G1;

– DKeyGenShare(ski,y): on input y ∈ Znp that defines the function fy(x) =
〈x,y〉, and the secret key ski = (si,Ti), it computes [vy]2 := H2(y) ∈ G2

2,
[di]2 := [yi · si +Tivy]2, and returns the partial decryption key as dky,i :=
([di]2).

– DKeyComb((dky,i)i∈[n],y): the partial decryption keys (dky,i = ([di]2))i∈[n],
lead to dky := (y, [d]2), where [d]2 =

∑
i∈[n][di]2;

– Decrypt(dky, `, ([ci]1)i∈[n]): on input the decryption key dky = [d]2, the label
`, and ciphertexts ([ci]1)i∈[n], it computes [α]T :=

∑
i∈[n] e([ci]1, [yi]2) −

e([u`]
>
1 , [d]2), and eventually solve the discrete logarithm in basis [1]T to

extract and return α.

Correctness: Let x,y ∈ Znp , we have:

[d]2 =
∑
i∈[n]

[di]2 − [vy]2 ·T =
∑
i∈[n]

[yi · si +Tivy]2

= [
∑
i∈[n]

yi · si]2 + [vy]2 ·
∑
i∈[n]

Ti = [
∑
i∈[n]

yi · si]2.

Thus:

[α]T :=
∑
i∈[n]

e([ci]1, [yi]2)− e([u`]>1 , [d]2)

=
∑
i

[(u>` si + xi)yi]T − [
∑
i∈[n]

yiu
>
` si]T = [

∑
i

xiyi]T .

5.2 Security Analysis

Theorem 9 (sta-IND-Security). The above DMCFE protocol (see Section 5.1)
is sta-IND secure under the SXDH assumption, in the random oracle model.
Namely, for any PTT adversary A, there exist PPT adversaries B1 and B2 such
that:

AdvIND(A) ≤ 2Q1 · Advddh
G1

(t) + 2Q2 · Advddh
G2

(t) +
2Q1 + 2Q2

p

+ Advddh
G1

(t+ 4Q1 × tG1) + 2 · Advddh
G2

(t+ 4Q2 × tG2),

where Q1 and Q2 are the number of (direct and indirect) queries to H1 and H2

respectively (modeled as random oracles). The former being asked by QEncrypt-
queries and the latter being asked by QDKeyGen-queries.

We stress that this Theorem supports adaptive encryption queries, but static
corruptions.

Decentralized Multi-Client Functional Encryption for Inner Product 21

Proof. We proceed using hybrid games, described in Fig. 5, with similar notations
as in the previous proof.

Game G0: This is the sta-IND-security game as given in Definition 5, but with
the set CS of corrupted senders known from the beginning. Note that the
hash functions H1 and H2 are modeled as random oracles. The former is
used to generate [u`]1 := H1(`) ∈ G2

1 and the latter [vy]2 := H2(y) ∈ G2
2.

Game G1: We replace the hash function H2 by a random oracle RO2 that
generates random pairs from G2

2 on the fly. In addition, for any QDKeyGen-
query on a corrupted index i ∈ CS, one generates the partial functional
decryption key by itself, without explicitly querying QDKeyGen. Hence, we
can assume that A does not query QCorrupt and QDKeyGen on the same
indices i ∈ [n]. The simulation remains perfect, and so Adv0 = Adv1.

Game G2: Now, the outputs of RO2 are uniformly random in the span of [b]2
for b := (1

a′
) , with a′ $← Zp. As in the previous proof, we have Adv1 −Adv2 ≤

Advddh
G2

(t+ 4Q2 × tG2
), where Q2 is the number of RO2-queries and tG2

the
time for an exponentiation.

Game G3: We replace all the partial key decryption answers by dky,i := [yi ·
si+wi · (b⊥)>vy +Tivy]2, for new wi

$← Z2
p, such that

∑
iwi = 0, for each

y. We show below that Adv2 = Adv3.
Game G4: We switch back the distribution of all the vectors [vy]2 output by

RO2, from uniformly random in the span of [b]2, to uniformly random over
G2

2, thus back to H2(y). This transition is reverse to the two first transitions
of this proof: Adv3 − Adv4 ≤ Advddh

G2
(t+ 4Q2 × tG2

).

In order to prove the gap between G2 and G3, we do a new hybrid proof:

Game G3.1.1: This is exactly game G2. Thus, Adv2 = Adv3.1.1.
G3.q.1 G3.q.2: As in the previous proof, we first change the distribution of

the output of the q-th RO2-query, from uniformly random in the span of
[b] to uniformly random over G2, using the DDH assumption. Then, we use
the basis ((1

a′
) ,(−a

′

1
)) of Z2

p, to write a uniformly random vector over Z2
p as

v1 · b + v2 · b⊥, where v1, v2 $← Zp. Finally, we switch to v1 · b + v2 · b⊥

where v1
$← Zp, and v2 $← Z∗p, which only changes the adversary view by a

statistical distance of 1/p: Adv3.q.1 − Adv3.q.2 ≤ Advddh
G (t) + 1/p. The last

step with v2 ∈ Z∗p will be important to guarantee that v>y b⊥ 6= 0.
G3.q.2 G3.q.3: We now change the simulation of dky,i from dky,i = [yi · si +

Tivy]2 to dky,i = [yi · si + RFi(y) +Tivy]2, with some RFi functions onto
Z2
p such that

∑
i RFi(y) = 0 for any input y. We prove Adv3.q.2 = Adv3.q.3.

To this aim, we use the fact that the two following distributions are identical,
for any choice of wi

$← Z2
p, such that

∑
iwi = 0:

(Ti)i∈HS and (Ti +wi(b
⊥)>)i∈HS ,

where for all i ∈ [n], Ti
$← Z2×2

p such that
∑
iTi = 0, and b⊥ := (−a

′

1
) .

The extra terms (wi(b
⊥)>)i∈HS only appear in the output of the queries to

QDKeyGen which use the vector [vy]2 computed on the q-th RO2-query (if

22 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Games G0, G1, G2, (G3.q.1)q∈[Qdk+1], (G3.q.2, G3.q.3)q∈[Qdk] , G4

PG ← PGGen(1λ), ∀i ∈ [n]: si $← Z2
p, Ti

$← Z2×2
p , such that

∑
i∈[n] Ti = 0

eki := si, ski := (si,Ti), mpk := (G, p, g).

a′
$← Zp, b := (1

a′
)

Sample full-domain hash functions H1 onto G2
1 and H2 onto G2

2.
Sample a bit b $← {0, 1}.
b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·,·),QCorrupt(·),RO1(·),RO2(·)(mpk).
Run Finalize on b′.

RO1(`): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3

Return H1(`).

RO2(y): // G0, G1 , G2, G3.q.1, G3.q.2, G3.q.3 , G4

[vy]2 := H2(y), [vy]2 := RF(y) , [vy]2 := [b · ty]2, with ty := RF′(y)

On the q-th RO2-query: [vy]2 := RF(y)

Return [vy]2.

QEncrypt(i, x0i , x
1
i , `): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

[u`]1 := RO1(`),
[ci]1 := [u>`]1 · si + [xbi]1
Return [ci]

QDKeyGen(y, i): //G0, G1, G2, G3.q.1, G3.q.2, G3.q.3 , G4

Compute [vy]2 := RO2(y), dky,i := [yi · si +Tivy]2, set S := S ∪ {i}.
If [vy]2 is computed on the j-th RO2-query, for j < q:
dky,i := [yi · si + RFi(y) +Tivy]2.

If [vy]2 is computed on the q-th RO2-query:
dky,i := [yi · si + RFi(y) +Tivy]2.

dky,i := [yi · si + RFi(y) +Tivy]2.
Return dky,i.

QCorrupt(i): // G0, G1, G2, G3.q.1, G3.q.2, G3.q.3, G4

Return (si,Ti).

Fig. 5. Games for the proof of Theorem 9. Here, RF, RF′ are random functions onto
G2

2 and Zp, respectively, that are computed on the fly. The RFi are random functions
conditioned on the fact that

∑
i∈[n] RFi is the zero function. In each procedure, the

components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. The Finalize procedure is defined as in Definition 5.

Decentralized Multi-Client Functional Encryption for Inner Product 23

there are such queries), because for all other queries, [vy]2 lies in the span of
[b]2, and b>b⊥ = 0. We thus have dky,i := [yi · si +wi · (b⊥)>vy +Tivy]2.
Since vy is such that v>y b

⊥ 6= 0, (b⊥)>vy 6= 0. In that case, the vectors
wi · (b⊥)>vy are uniformly random over Z2

p such that
∑
iwi · (b⊥)>vy = 0,

which is as in G3.q.3, by setting RFi(y) := wi · (b⊥)>vy.
G3.q.3 G3.q+1.1: This transition is the reverse of G3.q.1 G3.q.2, namely, we

use the DDH assumption to switch back the distribution of [vy]2 to uniformly
random in the span of [b]2: Adv3.q.3 − Adv3.q+1.1 ≤ Advddh

G2
(t) + 1/p.

Then one can note that G3.Q2+1.1 = G3, but also that in Game G4, all the dky,i
output by QDKeyGen can be computed only knowing

∑
i∈[n] si · yi, which is

exactly the functional decryption key dky from our MCFE in Section 4.1. This
follows from the fact that the values RFi(y) perfectly mask the vectors si · yi,
up to revealing

∑
i∈[n] si · yi (as the RFi must sum up to the zero function).

Thus, we can reduce to the IND-security of the MCFE from Section 4.1 (or
even sta-IND-security) by designing an adversary B against the MCFE from
Section 4.1: Adversary B first samples Ti

$← Z2×2
p for all i ∈ [n], such that∑

i∈[n] Ti = 0. It sends CS given by A (set of static corruptions), then it receives
mpk from the MCFE security game, as well as the secret keys si for i ∈ CS. It
forwards mpk as well as (si,Ti) for i ∈ CS to A. Then

– B answers oracle calls to RO1, RO2 and QEncrypt from A using its own
oracles.

– To answer QDKeyGen(i,y): if i is the last non-corrupted index for y, B queries
its own QDKeyGen oracle on y, to get dky :=

∑
i si · yi ∈ Z2

p, computes
[vy]2 := H2(y), and returns dky,i := [dky +RFi(y)+Tivy]2 to A. Otherwise,
it computes [vy]2 := H2(y), and returns dky,i := [RFi(y)+Tivy]2 to A. The
random functions RFi are computed on the fly, such that their sum is the
zero function.

We stress that this last simulation requires to know CS and HS, hence static
corruptions only. From this reduction, one gets

Adv4 ≤ 2Q1 · Advddh
G1

(t) + Advddh
G1

(t+ 4Q1 × tG1) +
2Q1

p
,

where Q1 denotes the number of calls to RO1, tG1
denotes the time to compute

an exponentiation in G1. This concludes the proof.

6 A Function-Hiding MCFE for Inner Products

6.1 Security Model

The function-hiding property intuitively denotes the fact that the functional
decryption key does not leak information about the function it allows to evaluate
on the plaintexts. Of course, as for the indistinguishability of the ciphertexts,
indistinguishability of the functional decryption keys will require some restrictions
from the adversary to avoid trivial attacks.

24 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Function-Hiding Properties. We first present the notion of function-hiding (see
Definition 10), as originally introduced in [32] in the context of Predicate En-
cryption, and in [4] in the context of Functional Encryption.

Using techniques from [27] (in the context of single-input FE), later adapted to
the Multi-Input setting in [2], it suffices to show a weaker function-hiding property
(see Definition 11). These techniques require doubling the size of ciphertext and
keys. We defer to [2, Appendix B] for more details on these techniques.

Here we give the definition of (full) Function-Hiding for Inner-Product MCFE:
this definition is specific to Inner-Product functions because one needs to know
how the plaintext of a sender Si is impacted by the function to be evaluated.
There are trivial ways, with the help of corrupted senders, to distinguish which
function is used, hence the restrictions during the Finalize procedure.

Definition 10 (FH-IND-Security Game for Inner-Product MCFE). Let us
consider an MCFE scheme over a set of n senders. No adversary A should be
able to win the following security game against a challenger C:

– Initialization: the challenger C runs the setup algorithm (mpk,msk, (eki)i)←
SetUp(λ) and chooses a random bit b $← {0, 1}. It provides mpk to the
adversary A;

– Encryption queries QEncrypt(i, x0, x1, `): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext C`,i generated
by Encrypt(eki, x

b, `). We note that any further query for the same pair (`, i)
will later be ignored;

– Functional decryption key queries QDKeyGen(y0,y1): on input two inner-
product functions (two vectors y0,y1 ∈ Znp), returns DKeyGen(msk,yb). A
can make an unbounded number of adaptive queries to this oracle.

– Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt during the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the four cases below is true, in which case we set β $← {0, 1}:

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with

x0i 6= x1i ;
2. some DKeyGen(y0,y1)-query has been asked for an index i ∈ CS with y0i 6= y1i ;
3. for some label `, an encryption-query QEncrypt(i, x0i , x

1
i , `) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been

asked for all j ∈ HS;
4. for some label ` and for some pair of functions (y0,y1) asked to QDKeyGen,

there exists a pair of vectors (x0 = (x0i)i,x
1 = (x1i)i) such that 〈x0,y0〉 6=

〈x1,y1〉, when

Decentralized Multi-Client Functional Encryption for Inner Product 25

– x0i = x1i , for all i ∈ CS;
– y0i = y1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this MCFE is FH-IND-secure if for any adversary A, AdvFH-IND(A) =
|P [β = 1|b = 1]− P [β = 1|b = 0]| is negligible.

We present below a weaker function-hiding property (called FH-security), that
together with the IND-security property (see Definition 2), implies the above
full-fledged function-hiding defined above at the cost of doubling the size of
ciphertext and keys (see [2]). We stress that this above property (a scheme
that is both FH-secure and IND-secure can be converted into a scheme that is
FH-IND-secure) is specific to the Inner-Product functions.

Definition 11 (FH-Security Game for Inner-Product MCFE). Let us con-
sider an MCFE scheme over a set of n senders. No adversary A should be able
to win the following security game against a challenger C:

– Initialization: the challenger C runs the setup algorithm (mpk,msk, (eki)i)←
SetUp(λ) and chooses a random bit b $← {0, 1}. It provides mpk to the
adversary A;

– Encryption queries QEncrypt(i, x, `): A has unlimited and adaptive access to
an encryption oracle, and receives C`,i generated by Encrypt(eki, x, `). We
note that any further query for the same pair (`, i) will later be ignored;

– Functional decryption key queries QDKeyGen(y0,y1): on input two inner-
product functions (two vectors y0,y1 ∈ Znp), returns DKeyGen(msk,yb). A
can make an unbounded number of adaptive queries to this oracle.

– Corruptions queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the encryption key eki of any sender
i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of
corrupted senders (the set of indexes i input to QCorrupt in the whole game),
and HS the set of honest (non-corrupted) senders. We set the output to β ← b′,
unless one of the three cases below is true, in which case we set β $← {0, 1}:

1. some DKeyGen(y0,y1)-query has been asked for an index i ∈ CS with y0i 6= y1i ;
2. for some label `, an encryption-query QEncrypt(i, xi, `) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, xj , `) have not all been
asked for all j ∈ HS;

3. for some label ` and for some pair of functions (y0,y1) asked to QDKeyGen,
there exists a vector (x = (xi)i) such that 〈x,y0〉 6= 〈x,y1〉, when
– y0i = y1i , for all i ∈ CS;
– QEncrypt(i, xi, `)-queries have been asked for all i ∈ HS.

We say this MCFE is FH-secure if for any adversary A, AdvFH(A) = |P [β = 1|b =
1]− P [β = 1|b = 0]| is negligible.

26 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

6.2 Construction

We describe our construction in Fig. 6. Its security relies on the SXDH assumption
on type 3 pairing-friendly groups.

Overview of the Construction. We start with the MCFE from Section 4, where
we encrypt each component of the functional decryption keys using a Damgård-
ElGamal encryption scheme [13], to ensure the function remains hidden. Note that
the secret key for this encryption scheme is a vector, and decryption computes
an inner product of the ciphertext with the secret key. Therefore, for correctness,
we add MCFE encryption and decryption keys that exactly allow a decryptor
to compute this inner product. Intuitively, the security of the MCFE provides
the guarantee that nothing apart from this inner product leaks, which enforces
the security of the overall scheme. A complete description of the scheme is given
in Fig. 6. As explained, it uses, as an underlying component, the MCFE from
Section 4, which we can straightforwardly generalize in such a way that Encrypt
takes as input vectors [xi] ∈ G2

1 instead of scalars xi, and DKeyGen takes as input
vectors [y]2 ∈ G2n

2 instead of y ∈ Znp . We include a description of this underlying
scheme in Fig. 6 for completeness.

Correctness. By correctness of the MCFE from Section 4, we have:

[α]T =
∑
i

[−(xi + u>` si) ·w>i ar + u>` Wiar]T .

Thus, we have:

[out]T =
∑
i∈[n]

e([ci]1, [di]2)− e([u`]>1 , [d]2) + [α]T

=

∑
i

(xi + u>` si)(yi +w>i ar)− u>`
∑
i∈[n]

(si · yi +Wiar)

T

+ [α]T

= [
∑
i

xiyi]T .

6.3 Security Analysis

As explained above, instead of directly proving FH-IND-security, which does not
hold for this scheme, we prove (in Appendix C) that this scheme is both IND-
secure and FH-secure. Hence, by doubling the size of ciphertext and keys (see [2]),
one can get an FH-IND-secure scheme.

First, we show that our scheme is IND-secure (see Definition 2).

Theorem 12 (IND-Security). The above MCFE (see Fig. 6) is IND-secure under
the SXDH assumption, in the random oracle model.

Now, we show that our scheme is FH-secure (see Definition 11).

Theorem 13 (FH-Security). The above MCFE (see Fig. 6) is FH-secure under
the SXDH assumption, in the random oracle model.

Decentralized Multi-Client Functional Encryption for Inner Product 27

SetUp(λ):(
mpk′,msk′, (ek′i)i∈[n]

)
← SetUp′(λ)

For all i ∈ [n], si,wi
$← Z2

p, Wi
$← Z2×2

p , eki := (ek′i, si,wi,Wi)

a
$← Zp, a := (1

a
) , mpk := (mpk′, [a]2), msk := (eki)i∈[n]

Return (mpk,msk, (eki)i∈[n]

Encrypt(eki, xi, `):
Compute [u`]1 := H1(`)

[ci]1 := [xi + s>i u`]1.
[c′i]1 := Enc′

(
ek′i, [−wi · ci +W>

i u`]1, `
)

Return ([ci]1, [c
′
i]1) ∈ G1 ×G2

1

DKeyGen(sk,y):
r

$← Zp, for all i ∈ [n], [di]2 := [yi +w>i ar]2

[d]2 :=
[∑

i∈[n] si · yi +Wiar
]
2(

([ar]2‖ · · · ‖[ar]2), [d′]2
)
:= DKeyGen′

(
msk′, ([ar]2‖ · · · ‖[ar]2) ∈ G2n

2

)
Return dky :=

(
([di]2)i∈[n], [d]2, [ar]2, [d

′]2) ∈ Gn2 ×G2
2 ×G2

2 ×G2
2.

Decrypt(dk, `, (cti)i∈[n]):
Parse dk := ([di]2)i∈[n], [d]2, [t]2, [d

′]2), and
(
cti := ([ci]1, [c

′
i]1)
)
i∈[n]

[α]T := Dec′
(
([t‖ · · · ‖t]2, [d′]2), `, ([c′i]1)i∈[n]

)
.

[out]T :=
∑
i∈[n] e([ci]1, [di]2)− e([u`]

>
1 , [d]2) + [α]T .

Return out.

MCFE’ is MCFE from Section 4,
where Encrypt takes as input vectors [xi] ∈ G2

1,
and DKeyGen takes as input vectors [y]2 ∈ G2n

2

SetUp′(λ):
PG ← GGen(1λ), sample a full domain hash function H1 onto G2

1.
For all i ∈ [n], S′i

$← Z2×2
p .

Return mpk′ := (PG,H1), msk′ := (S′i)i∈[n] and for all i ∈ [n], ek′i = S′i.

Encrypt′(ek′i, [x
′
i] ∈ G2

1, `):
Compute [u`]1 := H1(`)
Return [c′i]1 := [x′i + S′iu`]1 ∈ G2

1.

DKeyGen′
(
msk′, [y := (y1‖ · · · ‖yn)]2 ∈ G2n

2

)
:

[d′]2 := [
∑
i∈[n] S

′>
i yi]2 ∈ G2

2.
Return dk′y := ([y]2, [d

′]2).

Decrypt′(dk′, `, ([c′i]1)i∈[n]):
Parse dk′ :=

(
[y′ := (y′1‖ · · · ‖y′n)]2, [d′]2

)
.

Return [α]T :=
∑
i∈[n] e([c

′
i]
>
1 , [y

′
i]2)− e([u`]>1 , [d′]2).

Fig. 6. Function-Hiding MCFE whose security relies on the SXDH assumption on type
3 pairing-friendly structures.

28 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

7 Conclusion

Multi-Client Functional Encryption and Decentralized Cryptosystems are invalu-
able tools for many emerging applications such as cloud services or big data. These
applications often involve many parties who contribute their data to enable the
extraction of knowledge, while protecting their individual privacy with minimal
trust in the other parties, including any central authority. We make an important
step towards combining the desired functionalities and properties by introducing
the notion of Decentralized Multi-Client Functional Encryption. It opens some
interesting directions:

– For inner-product, in the DDH-based setting with ElGamal-like encryption,
we have a strong restriction of the plaintexts, since the inner-product has to
be small, in order to allow complete decryption of the scalar evaluation. It is
an interesting problem to consider whether the LWE-based and DCR-based
schemes can address this issue.

– Getting all the desired properties, namely efficiency, new functionalities
and the strongest security level, is a challenging problem. One of the main
challenges is to construct an efficient, non-interactive DMCFE which is fully
secure (adaptive encryptions and adaptive corruptions), for a larger class of
functions than that of inner-product functions. The security analyses of our
concrete constructions heavily rely on the linear properties of inner-product
functions, however the global methodology of the constructions themselves
is not restricted to the inner-product setting. Therefore, new constructions
could follow it.

Acknowledgments

This work was supported in part by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud),
and Google PhD fellowship.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
733–751. Springer, Heidelberg (Mar / Apr 2015)

2. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input func-
tional encryption for inner products: Function-hiding realizations and construc-
tions without pairings. IACR Cryptology ePrint Archive 2017, 972 (2017), http:
//eprint.iacr.org/2017/972

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Heidelberg (May 2017)

http://eprint.iacr.org/2017/972
http://eprint.iacr.org/2017/972

Decentralized Multi-Client Functional Encryption for Inner Product 29

4. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Functional encryption and property preserving encryption:
New definitions and positive results. IACR Cryptology ePrint Archive 2013, 744
(2013), http://eprint.iacr.org/2013/744

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner prod-
ucts, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (Aug 2016)

6. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (Aug
2015)

7. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 557–587. Springer, Heidelberg (Dec 2016)

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. pp. 394–403. IEEE Computer Society Press
(Oct 1997)

9. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21
(2016)

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011)

11. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (May 2016)

12. Chan, T.H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault
tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (Feb / Mar 2012)

13. Damgård, I.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (Aug 1992)

14. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input in-
ner product functional encryption from the k-linear assumption (2018), https:
//eprint.iacr.org/2018/061, To appear PKC 2018

15. Emura, K.: Privacy-preserving aggregation of time-series data with public verifiabil-
ity from simple assumptions. In: Australasian Conference on Information Security
and Privacy. pp. 193–213. Springer (2017)

16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

18. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(May 2014)

http://eprint.iacr.org/2013/744
https://eprint.iacr.org/2018/061
https://eprint.iacr.org/2018/061

30 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (Aug
2013)

20. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 555–564. ACM Press (Jun
2013)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (Aug 2012)

22. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013), http://eprint.
iacr.org/2013/774

23. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer,
Heidelberg (Apr 2013)

24. Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilinear
maps. IACR Cryptology ePrint Archive 2016, 432 (2016), http://eprint.iacr.
org/2016/432

25. Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing.
In: ICNP 2012. pp. 1–10. IEEE Computer Society (2012)

26. Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60–81. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

27. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS. pp.
11–20. IEEE Computer Society Press (Oct 2016)

28. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (May 1999)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press (May
2005)

30. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10. pp.
463–472. ACM Press (Oct 2010)

31. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (May
2005)

32. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (Mar 2009)

33. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011. The Internet Society (Feb 2011)

34. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (Aug 2015)

35. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (Feb 2014)

http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2016/432
http://eprint.iacr.org/2016/432

Decentralized Multi-Client Functional Encryption for Inner Product 31

A Multi DDH Assumption

Theorem 14. For any distinguisher A running within time t, the best advantage
A can get in distinguishing

Dm = {(X, (Yj , Zj = CDH(X,Yj))j) | X,Yj $← G, j = 1, . . . ,m}
D′m = {(X, (Yj , Zj)j) | X,Yj , Zj $← G, j = 1, . . . ,m}.

is bounded by Advddh(t+ 4m× tG), where tG is the time for an exponentiation in
G.

Proof. One can first note that the best advantage one can get, within time t,
between

D = {(X,Y, Z = CDH(X,Y)) | X,Y $← G}
D′ = {(X,Y, Z) | X,Y, Z $← G}.

is bounded by Advddh(t). This is actually the DDH assumption. One can note
that Dm and D′m can be rewritten as

Dm = {(X, (Yj = gujY vj , Zj = Xuj · CDH(X,Y)vj)j) | X,Y $← G, uj , vj $← Zp}
D′m = {(X, (Yj = gujY vj , Zj = Xuj · Zvj)j) | X,Y, Z $← G, uj , vj $← Zp},

Since, from (X,Y, Z), the m tuples require 4 additional exponentiations per index
j, one get the expected bound.

B A Selectively-Secure MCFE

B.1 Description

In this section, we formally present the selectively secure MCFE scheme for inner
product we described in Section 1. It is inspired by Abdalla et al.’s scheme [1]:
– SetUp(λ): Takes as input the security parameter, and generates a group G of

prime order p ≈ 2λ, g ∈ G a generator, and H a full-domain hash function
onto G. It also generates the encryption keys si

$← Zp, for i = 1, . . . , n,
and sets s = (si)i. The public parameters mpk consist of (G, p, g,H), while
the master secret key is msk = s and the encryption keys are eki = si for
i = 1, . . . , n (in addition to mpk, which is omitted);

– Encrypt(eki, xi, `): Takes as input the value xi to encrypt, under the key
eki = si and the label `. It computes [u`] := H(`) ∈ G, and outputs the
ciphertext [ci] = [u`si + xi] ∈ G;

– DKeyGen(msk,y): Takes as input msk = (si)i and an inner-product function
defined by y as fy(x) = 〈x,y〉, and outputs the functional decryption key
dky = (y,

∑
i siyi) ∈ Znp × Zp;

– Decrypt(dky, `, ([ci])i∈[n]): Takes as input a decryption key dky = (y, d), a
label `. It computes [u`] := H(`), [α] =

∑
i yi · [ci]− d · [u`], and eventually

solves the discrete logarithm to extract and return α.

As for Abdalla et al.’s scheme [1], the result α should not be too large to allow
the final discrete logarithm computation.

32 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Correctness : if the scalar dk in the decryption functional key dky = (y, dk) is
indeed dk = 〈s,y〉, then

[α] =
∑
i

yi · [ci]− d · [u`] =
∑
i

yi · [u`si + xi]− [u`] ·
∑
i

siyi

= [u`] ·
∑
i

siyi + [
∑
i

xiyi]− [u`] ·
∑
i

siyi = [
∑
i

xiyi].

B.2 Selective Security

Like Abdalla et al.’s original scheme [1], our protocol can only be proven secure in
the weaker security model, where the adversary has to commit in advance to all of
the pairs of messages for the Left-or-Right encryption oracle (QEncrypt-queries).
However, it can adaptively ask for functional decryption keys (QDKeyGen-queries)
and encryption keys (QCorrupt-queries). Concretely, the challenger is provided
(plaintext,label) pairs: (xbj,i, `j)b∈{0,1},i∈[n],j∈[Q], where Q is the number of query
to QEncrypt(i, ·, ·), each one for a different label `j (note that in the security
model, we assume each slots are queried the same number of time, on different
labels). The challenge ciphertexts Ci,j = Encrypt(eki, x

b
j,i, `j), for the random bit

b, are returned to the adversary.
Note that the adversary committing to challenge ciphertexts also limits its

ability to corrupt users during the game: it must corrupt clients for which it
didn’t ask a ciphertext and cannot corrupt any client from which it asked a
ciphertext for x0j,i 6= x1j,i.

B.3 Security Analysis

Theorem 15 (sel-IND Security). The MCFE protocol described above (see
Appendix B.1) is sel-IND secure under the DDH assumption, in the random
oracle model. More precisely, we have

AdvIND(A) ≤ 2Q · Advddh
G (t),

for any adversary A, running within time t, where Q is the number of encryption
queries per slot.

Proof. We proceed using hybrid games, described in Fig. 7, with the same
notations as in the previous proofs.

Game G0: This is the sel-IND security game as given in Definition 2 (see the
paragraph about weaker models), with all the encryption queries being sent
first: they are stored in zj,i = (x0j,i, x

1
j,i), for j ∈ [Q] and i ∈ [n], where j is for

the j-th H-query that specifies the label `j and i is for the index of the sender.
If the query is not asked, we have zj,i = ⊥. Note that the hash function H is
modeled as a random oracle RO onto G. This is used to generate [u`] = H(`).

Decentralized Multi-Client Functional Encryption for Inner Product 33

Games G0, G1, (G2.q)q∈[Q+1](
state, (`j , zj,i)i∈[n],j∈[Q]

)
← A(1λ, 1n)

where each zj,i = (x0j,i, x
1
j,i) ∈ Z2

p, or zj,i = ⊥, which stands for no query.
G ← GGen(1λ), for all i ∈ [n], si $← Zp,eki := si, msk := (si)i, mpk := (G, p, g).
Cj,i = QEncrypt(i, x0j,i, x

1
j,i, `j) for i ∈ [n], j ∈ [Q] such that zj,i = (x0j,i, x

1
j,i).

b′ ← AQDKeyGen(·),QCorrupt(·),RO(·)(mpk, state).
Run Finalize on b′.

RO(`): // G0, G1, G2.q

[u`] := H(`) , [u`] := RF(`) .
Return [u`].

QEncrypt(i, x0i , x
1
i , `): // G0, G1, G2.q

[u`] := RO(`),
[ci] := [u`] · si + [xbi]

If ` = `j with j < q: [ci] := [u`si + x0i]

Return [ci].

QDKeyGen(y): // G0, G1, G2.q

Return
∑
i yisi.

QCorrupt(i): // G0, G1, G2.q

Return si.

Fig. 7. Games G0, G1, (G2.)q∈[Q+1], for the proof of Theorem 15. Here, RF is a random
function onto G, that is computed on the fly. Note that QEncrypt is only used as a
subroutine of the initialization of the game and is not accessible to the adversary. In
each procedure, the components inside a solid frame are only present in the games
marked by a solid frame.

34 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Game G1: We simulate the answers to any new RO query by computing a
truly random element of G, on the fly. The simulation remains perfect, so
Adv0 = Adv1.

Game G2: We simulate every encryption as the encryption of x0i instead of xbi .

While it is clear that in this last game the advantage of any adversary is exactly
0 since b does not appear anywhere, the gap between G1 and G2 will be proven
using an hybrid argument on the RO-queries. We thus index the following games
by q, where q = 1, . . . , Q. Note that only distinct RO-queries are counted, since a
second similar query is answered as the first one.

G2.1: This is exactly game G1. Thus, Adv1 = Adv2.1.
G2.q G2.q+1: We change the generation of the ciphertexts from [cq,i] := [u`qsi+

xbq,i] to [cq,i] := [u`qsi + x0q,i]. We proceed in three steps:

Step 1. We use the fact that the two following distributions are identical, for
any choice of γ:

(si)i∈[n],zq,i=(x0
q,i,x

b
q,i)

and
(
si + γ(x0q,i − xbq,i)

)
i∈[n],zq,i=(x0

q,i,x
1
q,i)

,

where si
$← Zp, for all i ∈ [n]. This is true since the si are independent of

the zq,i (we are in a selective setting, so the si’s are generated after the zq,i’s
have been chosen). Thus, we can re-write si into si + γ(x0q,i − xbq,i) without
changing the distribution of the game.
Note that when Finalize does not output a random bit β $← {0, 1} independent
of the guess b′, γ does not appear in the outputs of QCorrupt(i), since it
must be that x0i = x1i or zq,i = ⊥, and it does not appear in the output of
QDKeyGen(y) either, since

∑
i si · yi +

∑
i γ(x

0
q,i − xbq,i)yi , where the gray

term equals zero by Definition 1. The fact that γ does not appear in the
outputs of these oracles will be crucial for step 2, which applies DDH on [γ].

Step 2. We use the DDH assumption to replace the [u`qγ] that appear in the
output of the q-th query to QEncrypt queries with [r`q + 1] with r`q

$← Zp.
This is possible since the rest of the adversary view can be generated only
from [γ] and [r`q + 1]. This increases the adversary’s advantage by no more
than Advddh

G (t). We now have:

[cq,i] :=[u`qsi + (x0q,i − xbq,i)(r`q + 1) + xbq,i]

=[u`qsi + r`q (x
0
q,i − xbq,i) + x0q,i − xbq,i + xbq,i]

=[u`qsi + r`q (x
0
q,i − xbq,i) + x0q,i].

Step 3. We switch [r`q] in the output of the q-query to QEncrypt back to [u`qγ],
using the DDH assumption again. This is possible since the adversary’s view
is simulatable solely from [γ], [u`q], and [r`q]. We finally undo the distribution
change on the si, which brings us to G2.q+1.

As a conclusion, since G2.Q+1 = G2, we have Adv1 − Adv2 ≤ 2Q · Advddh
G (t). In

addition, Adv2 = 0, which concludes the proof.

Decentralized Multi-Client Functional Encryption for Inner Product 35

C Function-Hiding: Security Proofs

C.1 Proof of Theorem 12

Recall of Theorem 12. The MCFE from Fig. 6 is IND-secure under the SXDH
assumption, in the random oracle model.

Proof. We reduce IND-security of this scheme to the IND-security of MCFE from
Section 4.1. We thus design an adversary B against the MCFE from Section 4.1:
Adversary B first receives a group structure G1 and a hash function onto G2

1

from the MCFE, which is completed by a type 3 pairing-friendly structure in
mpk′ := (PG,H1). It samples a $← Zp, S′i

$← Z2×2
p , wi

$← Z2
p, andWi

$← Z2×2
p , for

all i ∈ [n]. It computes a := (1
a
) , and forwards the public key mpk := (mpk′, [a]2)

to A. It sets ek′i := S′i for all i ∈ [n], and msk′ := (ek′i)i. Then

– B answers oracle calls to RO1, RO2 using its own oracles.
– To answer QEncrypt(i, x0i , x1i , `): B queries (i, x0i , x1i , `) to its own QEncrypt

oracle, to get [ci]1 := [xbi + s>i u`]1, where [u`]1 := RO1(`). It queries RO1 on
` to get [u`]1, computes [c′i]1 := Enc′(ek′i, [−wi · ci +W>

i u`]1, `), and return
([ci]1, [c

′
i]1) to A.

– To answer QDKeyGen(y): B samples r $← Zp, and for all i ∈ [n], B computes
[di]2 := [yi +w>i ar]2. Then it queries its own QDKeyGen oracle on y, to get
dky := (y,

∑
i si ·yi), and computes [d]2 := [

∑
i si · yi +Wiar]2. It computes(

([ar]2‖ · · · ‖[ar]2), [d′]2
)
:= DKeyGen′

(
msk′, ([ar]2‖ · · · ‖[ar]2

)
, and finally,

returns
(
([di]2)i, [d]2, [ar]2, [d

′]2) to A.
– To answer QCorrupt(i): B queries it own QCorrupt oracle on input i, to get

si, and it returns (ek′i, si,wi,Wi) to A.

C.2 Proof of Theorem 13

Recall of Theorem 13. The MCFE from Fig. 6 is IND-secure under the SXDH
assumption, in the random oracle model.

Proof. We proceed using hybrid games, described in Fig. 8, and the same notations
as in the previous proofs.

Game G0: This is the FH-security game as given in Definition 11. Note that the
hash functions H1 is modeled as an oracle. It is used to generate [u`]1 :=
H1(`) ∈ G2

1.
Game G1: For any query QDKeyGen(y0,y1), we encrypt y0 instead of yb.

We now a hybrid technique on the QDKeyGen-queries. We thus index the following
games by q, where q = 1, . . . , Qdk.

Game G1.1: This is exactly game G0.

36 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Gq.1 Gq.2: We first change the distribution of the vector [t]2 contained in the
output of the q-th QDKeyGen-query, from uniformly random in the span of
[a]2 to uniformly random over G2, using the DDH assumption. Then, we use
the basis ((1

a
) ,(−a

1
)) of Z2

p, to write a uniformly random vector over Z2
p as

u1 · a + u2 · a⊥, where u1, u2 $← Zp. Finally, we switch to u1 · a + u2 · a⊥

where u1
$← Zp, and u2 $← Z∗p, which only changes the adversary view by a

statistical distance. The last step with u2 ∈ Z∗p will be important to guarantee
that t>a⊥ 6= 0.

Gq.2 Gq.3: We prove Advq.2 = Advq.3 in two steps. In Step 1, we show that
there exists a PPT adversary B? such that Advq.t = (p2)n ·Adv?q.t(B?), for all
t = 2, 3, where the games G?q.2 and G?q.3 are selective variants of games Gq.2
and Gq.3 respectively, where the q-th query to QDKeyGen is asked before the
initialization phase. In Step 2, we show that for all PPT adversaries B?, we
have Adv?q.2(B?) = Adv?q.3(B?).

Step 1. We build a PPT adversary B? playing against G?q.t for t = 2, 3, such
that Advq.t = (p2)n · Adv?q.t(B?).
Adversary B? first guesses (y0,y1)

$← Z2n
p , which it sends to its selective game

G?q.t. Then, it simulates A’s view using its own oracles. When B? guesses
successfully (call E that event), it simulates A’s view exactly as in Gq.t. If the
guess was not successful, then B? stops the simulation and outputs a random
bit β. Since event E happens with probability p−2n and is independent of
the view of adversary A: Adv?q.t(B?) is equal to∣∣∣Pr[G?q.t|b = 0, E] · Pr[E] +

Pr[¬E]

2
− Pr[G?q.t|b = 1, E] · Pr[E]− Pr[¬E]

2

∣∣∣
= Pr[E] · |Pr[G?q.t|b = 0, E]− Pr[G?q.t|b = 0, E]| = p−2n · Advq.t.

Step 2. We show that games G?q.2 and G?q.3 are identically distributed,
conditioned on the fact that Finalize on b′ does not return a random bit
independent of b′ (call E′ this event). To prove it, we use the fact that the
two following distributions are identical, for any choice of γ:

(wi)i∈[n] and
(
wi + a⊥ · γ(ybi − y0i)

)
i∈[n] ,

and
(Wi)i∈[n] and

(
Wi + si(a

⊥)> · γ(ybi − y0i)
)
i∈[n] ,

where a⊥ := (−a
1
) ∈ Z2

p, wi, si
$← Z2

p, and Wi
$← Z2×2

p , for all i = 1, . . . , n.
This is true since the wi and Wi are independent of y0i , y1i (note that this is
true because we are in a selective setting, while this would not necessarily
be true with adaptive QDKeyGen-queries). Thus, we can do this change of
variable without changing the distribution of the game.
We now take a look at where these extra terms actually appear in the
adversary’s view:

Decentralized Multi-Client Functional Encryption for Inner Product 37

– They do not appear in the output of QCorrupt, because we assume event
E′ holds, which implies that y0i = y1i for all i queried to QCorrupt.

– They might appear in QEncrypt(i, x, `) as [c′i]2 becomes an encryption of

−wi · ci +W>
i u` + a⊥ · γ

∑
i∈[n] xi(y

b
i − y0i) .

But the gray term equals 0 by the constraints for E′ in Definition 11.
– Eventually, they appear in the output of the q-th QDKeyGen-query, since

for all others, the vector [t]2 lies in the span of [a]2, and a>a⊥ = 0. We
thus have [di] := [w>i t

>]2 + (ybi − y0i)γ[t>]2a⊥ + [ybi]2. Since t>a⊥ 6= 0,
we can choose γ = −1/t>a⊥ mod p, and then [di] = [w>i t

>]2 + [y0i], as
in Game Gq.3. We stress that γ is independent of the index i, and so this
simultaneously converts all [di]2 for all i ∈ [n].

Gq.3 Gq+1.1: This transition is the reverse of Gq.1 Gq.2, namely, we use the
DDH assumption to switch back the distribution of [t]2 computed on the q-th
QDKeyGen-query from uniformly random over G2 (conditioned on the fact
that t>a⊥ 6= 0) to uniformly random in the span of [a]2.

GQdk+1,1 is exactly G1, in which the advantage of any adversary is 0. Which
concludes the proof.

38 J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval

Games G0, (Gq.1)q∈[Qdk+1], (Gq.2, Gq.3)q∈[Qdk] :(
mpk′,msk′, (ek′i)i∈[n]

)
← SetUp′(λ), b $← {0, 1}

For all i ∈ [n], si,wi
$← Z2

p, Wi
$← Z2×2

p , eki := (ek′i, si,wi,Wi)

a
$← Zp, a := (1

a
) , a⊥ :=

(−a
1

)
mpk := (mpk′, [a]2).
b′ ← AQEncrypt(·,·,·,·),QDKeyGen(·,·),QCorrupt(·),RO1(·),RO2(·)(mpk).
Run Finalize on b′.

RO1(`): // G0, Gq.1, Gq.2, Gq.3
Return H1(`).

RO2(y): // G0, Gq.1, Gq.2, Gq.3
Return H2(y).

QEncrypt(i, xi, `): // G0, (Gq.1)q∈[Qdk+1], (Gq.2, Gq.3)q∈[Qdk]

[u`]1 := RO1(`),
[ci]1 := [xi + s>i u`]1

[c′i]1 := Enc′
(
ek′i, [−wi · ci +W>

i u`]1, `
)

Return ([ci]1, [c
′
i]1)

QDKeyGen(y0,y1): //G0, Gq.1, Gq.2, Gq.3

r
$← Zp, [t]2 := [ar]2, [t]2 := [ar + a⊥r′], with r′ $← Z∗p

For all i ∈ [n], [di]2 := [ybi +w>i t]2

[d]2 :=
[∑

i∈[n] si · y
b
i +Wit

]
2

On the j-th query, for j < q:
[di]2 := [y0i +w>i t]2, [d]2 :=

[∑
i∈[n] si · y

0
i +Wit

]
2

On the q-th query:
[di]2 := [y0i +w>i t]2, [d]2 :=

[∑
i∈[n] si · y

0
i +Wit

]
2(

([t]2‖ · · · ‖[t]2), [d′]2
)
:= DKeyGen′

(
msk′, ([t]2‖ · · · ‖[t]2)

)
Return dky :=

(
([di]2)i∈[n], [d]2, [t]2, [d

′]2).

QCorrupt(i): // G0, Gq.1, Gq.2, Gq.3
Return eki.

Fig. 8. Games for the proof of Theorem 13. In each procedure, the components inside
a solid (dotted, gray) frame are only present in the games marked by a solid (dotted,
gray) frame. The Finalize procedure is defined as in Definition 11.

	Decentralized Multi-Client Functional Encryption for Inner Product
	Introduction
	Related Work
	Multi-Client Functional Encryption
	Decentralized Multi-Client Functional Encryption
	Technical Overview
	Contributions

	Definitions and Security Models
	Multi-Client Functional Encryption
	Decentralized Multi-Client Functional Encryption

	Notations and Assumptions
	Groups
	Computational Assumptions

	A Fully-Secure MCFE for Inner Product
	Description
	Security Analysis

	A Statically-Secure DMCFE for Inner Product
	Construction
	Security Analysis

	A Function-Hiding MCFE for Inner Products
	Security Model
	Construction
	Security Analysis

	Conclusion
	Multi DDH Assumption
	A Selectively-Secure MCFE
	Description
	Selective Security
	Security Analysis

	Function-Hiding: Security Proofs
	Proof of Theorem 12
	Proof of Theorem 13

