
Secure Code Updates for Smart Embedded
Devices based on PUFs

Wei Feng, Yu Qin, Shijun Zhao, and Dengguo Feng

Trusted Computing and Information Assurance Laboratory,
Institute of Software Chinese Academy of Sciences

vonwaist@gmail.com

Abstract. Code update is a very useful tool commonly used in low-end
embedded devices to improve the existing functionalities or patch discov-
ered bugs or vulnerabilities. If the update protocol itself is not secure, it
will only bring new threats to embedded systems. Thus, a secure code
update mechanism is required. However, existing solutions either rely on
strong security assumptions, or result in considerable storage and com-
putation consumption, which are not practical for resource-constrained
embedded devices (e.g., in the context of Internet of Things). In this
work, we first propose to use intrinsic device characteristics (i.e., Physi-
cally Unclonable Functions or PUF) to design a practical and lightweight
secure code update scheme. Our scheme can not only ensure the fresh-
ness, integrity, confidentiality and authenticity of code update, but also
verify that the update is installed correctly on a specific device without
any malicious software. Cloned or counterfeit devices can be excluded
as the code update is bound to the unpredictable physical properties of
underlying hardware. Legitimate devices in an untrustworthy software
state can be restored by filling suspect memory with PUF-derived ran-
dom numbers. After update installation, the initiator of the code update
is able to obtain the verifiable software state from device, and the de-
vice can maintain a sustainable post-update secure check by enforcing a
secure call sequence. To demonstrate the practicality and feasibility, we
also implement the proposed scheme on a low-end MCU platform (TI
MSP430) by using onboard SRAM and Flash resources.

Keywords: Firmware Update, Secure Code Update, Physically Unclon-
able Function (PUF), Remote Attestation, Embedded Security

1 Introduction

With the rise of new trends like the Internet of Things (IoT), Industry 4.0, or In-
dustrial Internet, smart embedded devices are being increasingly used in various
scenarios, such as industrial control, smart home, wireless sensor networks, etc.
Firmware or code update is an important mechanism for these scenarios as it
offers many benefits [31, 35]: fix bugs or vulnerabilities that have been disclosed
in the deployed devices; add new features or functionalities to system; enable or
disable product functionality in the field; reduce the number of product returns



2 Wei Feng, etc.

to be handled. For example, as recently reported, Dyn DNS DDoS attack1 is
caused by a large number of IoT botnet nodes infected with the Mirai malware.
Code update mechanisms may be used to repair these embedded nodes without
having to recall or destroy these devices. However, if the update process itself
is vulnerable, it can be exploited by attackers to compromise the security of
embedded systems. As low-end embedded devices are resource-constrained and
often lack the security capabilities of general purpose computing platforms, it’s
difficult and challenging to design a secure code update mechanism for them.

A secure code update scheme for embedded systems should not only consider
a protocol for secure downloading, but also ensure that the newly downloaded
code is installed properly and its memory can be verified with the confidence that
no attacker or malicious code is involved. Ideally, a secure code update should
provide the following security attributes [31, 35]: (1) Freshness, the downloaded
code is newest, not a simple replay or downgrading; (2) Integrity, the update
code installed on device is expected and unmodified; (3) Authenticity, the
update code comes from an authorized source and is loaded onto an authorized
device (cloning can also be detected), i.e., mutual authentication is needed; (4)
Confidentiality, the code may be an important intellectual property, which
should not be revealed to other parties; (5) Feasibility, the scheme is applicable
to existing commodity low-end embedded devices based on existing resources;
(6) Verifiability, after update installation, the software state of the updated
device should be verified and the verification result should be eventually fed back
to the source who issues the update; (7) Restorability, secure code update is
able to restore the software state of a compromised device; and (8) Secure Call,
only trustworthy code can be called and executed on the device after the update
process is complete, which aims to alleviate TOCTOU attack [14].

Currently, there are few solutions that can satisfy all these attributes. By
pointing out the inadequacies of existing techniques (hardware and software-
based attestation), Perito and Tsudik [42] introduced a new notion called Proofs
of Secure Erasure (PoSE) for secure code update, in which new code is down-
loaded onto an embedded device after secure erasure of all its prior state. PoSE
meets the integrity, feasibility and restorability attributes. However, other secu-
rity attributes are not supported. Furthermore, PoSE relies on strong security
assumptions [42], e.g., the adversary maintains complete communication silence
during attestation, and it also results in considerable energy and time overhead.
The follow-up researches [17, 32] of PoSE all focus on reducing the communica-
tion and computation overhead, and rarely consider to improve the assumptions
or strengthen security guarantees. Recently, Kohnhauser et al. [35] proposed a
novel secure code update scheme for mesh networked embedded devices, which
achieves much stronger security guarantees and satisfies most of the security
attributes. Their method relies on three hardware security requirements: im-
mutable code, secure storage and uninterruptible execution. Nevertheless, their
method has the following flaws: (1) it uses the traditional secure storage tech-
nology (like EEPROM, BBRAM or eFuse) for device secret or private keys,

1 https://en.wikipedia.org/wiki/2016_Dyn_cyberattack



Secure Update for IoT Devices 3

which is expensive, inflexible and unsafe [39, 53]; (2) it uses public-key cryptog-
raphy, which results in apparent storage consumption (66KB for signature) and
increased running time; and (3) it is vulnerable to device cloning attack and
TOCTOU attack.
Contributions. In this paper, we propose the first secure code update scheme
for current commodity low-end embedded devices by using Physically Unclonable
Functions (PUFs). Firstly, our scheme reserves the design of secure erasure from
PoSE; however, the prover does not need to download random data as large as its
own memory from the verifier. As an improvement, we fill the prover’s memory
with high entropy data derived from PUF. Additionally, we don’t rely on the
strong security assumption like communication silence. Secondly, as opposed to
the latest method in ESORICS 2016 [35], we use PUF-based secure key genera-
tion to replace traditional secure key storage, and use symmetric cryptography
and message authentication code (MAC) instead of public-key cryptography to
achieve confidentiality and authenticity. Thirdly, we design a secure code up-
date protocol based on reverse fuzzy extractor, which satisfies all the security
attributes mentioned above. To illustrate this, we conclude eight possible secu-
rity threats that may break these security attributes and show how our scheme
can be used to address them. Finally, we implement and evaluate our protocol
building blocks in a low-cost and general-purpose MSP430 MCU. The evaluation
results demonstrate the feasibility and validity of PUF-based secure code update
in low-end embedded devices.
Outline. In Section 2, we conclude the security threats and present some back-
ground knowledge about PoSE and PUF. In Section 3, we first give the system
requirements and adversary model, and then introduce our new proposal for se-
cure code update by using PUF. In Section 4, we implement and evaluate the
building blocks of our novel scheme using a MSP430 device. In Section 5, we
overview the related work, and we conclude the paper in Section 6.

2 Background and Preliminaries

2.1 Security Threats of Code Update

Code update involves a verifier V and a prover P . P is a generic embedded
device with constrained resources, e.g. a medical instrument, a wearable device
or an industrial control device. V is a more powerful computing device, e.g. a
smartphone, a laptop or a cloud platform. Secure code update can be viewed as
a means to ensure that a code update issued by a trusted V has been securely
distributed and correctly installed on P . Specifically, for secure code update, we
aim to provide measures to solve the following security threats [31, 21, 35]:

Threat-1 Code Alteration. The binary code (or firmware image) distributed
by V is modified by attackers during the update process.

Threat-2 Code Reverse Engineering. Attackers intercept the binary image
code, and use the reverse engineering technique to analyze the func-
tionality and contents of the update image code.



4 Wei Feng, etc.

Threat-3 Loading Unauthorized Code. The update binary code may be cre-
ated by an unauthorized party, and P is cheated to install the unau-
thorized or malicious code.

Threat-4 Loading Code onto an Unauthorized Device. The code intended
for one device is installed on another, or the code generated by the
product manufacturer is loaded onto an unauthorized device.

Threat-5 Code Downgrading. An attacker in possession of an old code pack-
age may resend it to the device reverting it to a previous, possibly
vulnerable, state in order to exploit it.

Threat-6 Incomplete Update. A compromised device may simply deny the ex-
ecution of code update or execute it inappropriately without restoring
software integrity. And at the same time, V is cheated with a response
indicating a successful update.

Threat-7 TOCTOU (Time Of Check to Time Of Use). After a complete
update, the update code stored in the device may have been tampered
with when it’s called to run a specific embedded task.

Threat-8 Device Cloning. Attackers may simply copy the memory contents
(including code, data, secrets or keys, and other intellectual property)
and create a cloned device to replace the original one.

2.2 Proofs of Secure Erasure (PoSE)

While hardware-based attestation [8, 41] is not practical for low-cost embedded
systems and software-based attestation [47] offers unclear security guarantees,
Perito and Tsudik [42] proposed a new technique called Proofs of Secure Erasure
(PoSE) for low-end embedded devices.

According to [42], PoSE can be used to implement a secure code update
protocol, which we conclude in Figure 1. Suppose the size of P ’s memory (all
writable storage on the embedded device) is n, the verifier V first encrypts
the update code using a random key K ′. Upon receiving the ciphertext blocks
{R1, ..., Rn}, P uses the last k-blocks of randomness as the key to compute a
MAC (Message Authentication Code) and sends the MAC to V . V verifies the
MAC to ensure that P ’s memory is reliably erased with the high entropy data
(ciphertext) sent by V . If MAC verified correctly, V sends the encryption key K ′

to P in order for P to decrypt the ciphertext into the new code {C1, ..., Cn−k}.
Overhead of PoSE. PoSE results in considerable communication and com-

putation costs on the prover: the ciphertext transmitted from V to P is as large
as P ’s memory, and P needs to compute a MAC over the entire memory. There-
fore, Dziembowski et al. [17] constructed a new cryptographic primitive, called
uncomputable hash functions, which can be used to improve the communication
complexity of PoSE. Recently, Karame and Li [32] combined PoSE with All or
Nothing Transforms to reduce the communication and computation overhead.

Security of PoSE. PoSE can resist Threat-1 through MAC computation,
but cannot address all other threats while facing a public communication chan-
nel and an untrusted embedded system. By observing this, Kohnhauser and
Katzenbeisser [35] provided a verifiable code update mechanism based on three



Secure Update for IoT Devices 5

Fig. 1. Secure Code Update Protocol based on PoSE

hardware security requirements (immutable code, secure storage and uninter-
ruptible execution), which is still vulnerable to device cloning and TOCTOU
attacks. To solve all aforementioned security threats, we will propose a novel
secure code update protocol without relying on secure storage by combing PoSE
with SRAM PUF.

2.3 Physically Unclonable Function and Reverse Fuzzy Extractor

A physically unclonable function (PUF) is an entity that uses manufacturing
variation to generate a device-specific output, which can be seen as the finger-
print of a device [11]. Specifically [44], when queried with a challenge Ci, a PUF
generates a response Ri = PUF (Ci) that depends on both, Ci and the unique IC
intrinsic physical properties of the device containing PUF. The tuples (Ci, Ri)
are thereby termed the challenge-response pairs (CRPs) of the PUF. PUFs offer
security attributes such as uniqueness, reproducibility and unclonability; and
can be used to implement some basic security applications: identification, au-
thentication and key generation [11].

Fig. 2. Reproducible and uniformly distributed key from PUF. (a) Fuzzy Extractor.
(b) Reverse Fuzzy Extractor.

Fuzzy Extractor and Reverse Fuzzy Extractor. PUFs are inherently
noisy and their responses are not uniformly random, thus some mechanisms
are needed to correct noise and extract randomness from the PUF responses.



6 Wei Feng, etc.

Depending on the computing power of the prover device, there are two different
mechanisms: fuzzy extractor (FE) and reverse fuzzy extractor (RFE). Fuzzy
extractor [16] allows one to extract some randomness K from response R and
then successfully reproduce K from any other response R′ that is close to R.
As shown in Figure 2(a), FE has two procedures: in the generation procedure,
FE.Gen on input a response R outputs an uniform random K and a helper
data h; later in the reproduction procedure, FE.Rep uses the helper data to
recover K = FE.Rep(R′, h) from a distorted PUF response R′ = R + e, where
e is the error caused by noise. The security property of FE guarantees that the
producedK is nearly uniform random even for those who observe the help data h,
which means that h need not remain secret and can be stored and used publicly.
An important thing to note is that the two algorithms FE.Gen and FE.Rep
have asymmetric complexity [23, 10]: FE.Rep (often containing error decoding
algorithms) typically has higher complexity than FE.Gen. Apparently, FE.Rep
is not suitable for a constrained embedded device. To overcome this problem,
van Herrewege et al. [23] proposed reverse fuzzy extractors (RFE), which place
the FE.Gen within the constrained prover device and move FE.Rep to the more
powerful verifier (Figure 2(b)).

As the prover in our system is a constrained embedded device, we adopt
RFE to extract reconstructible random keys from PUF. Our RFE construction
is based on a code-offset secure sketch and a strong random extractor described
in [16]. The secure sketch uses the error correction algorithm to recover the raw
PUF response. Formally, FE.Gen and FE.Rep are represented as follows:

(K,h)← FE.Gen(R′) :

{r ← RNG(), CW ← Encode(r), h← R′ ⊕ CW,K ← Ext(R′)}
K ← FE.Rep(R, h) :

{CW ′ ← R⊕ h, r ← Decode(CW ′), CW ← Encode(r),K ← Ext(CW ⊕ h)}

Encode and Decode are two procedures included in the error correction. The ran-
dom extractor (Ext) is used to obtain a full-entropy key K from PUF response.
A random number generator RNG is used to choose a random codeword (CW ),
and CW only serves for error correction.

3 Secure Code Update based on PUF

3.1 System Requirements and Adversary Model

Our system consists of (at least) two players: a verifier V and a resource-
constrained prover P . We denote the adversary with A. The main goal is to
allow V to update the application code of P , while providing effective measures
to mitigate all kinds of security threats mentioned above.

Verifier V . We assume V to be trusted. Further, V initializes and deploys
P in a secure environment, extracts adequate (at least two) challenge-response
pairs (CRPs) from the PUF of P and stores them securely. V also keeps a copy
of the update’s binary code generated by the product manufacturer of P .



Secure Update for IoT Devices 7

Prover P . We assume P to be equipped with a root of trust (RoT ), which
contains a robust and unpredictable PUF, a reverse fuzzy extractor, a random
number generator, a symmetric cryptographic algorithm, a secure one-way hash
function and a message authentication code. We also assume P has a static non-
volatile write-protected memory region R, which can be implemented based on
Flash memory with dedicated lock bits as described in [35]. We assume the RoT
code is stored in the protected region R isolated from the application code, and
once the RoT code in R gets executed, it cannot be interrupted until the control
flow intentionally leavesR. The difference from [35] is thatR here doesn’t rely on
a traditional secure storage, which is replaced by PUF-based key generation. We
also assume the protection on R can be temporarily removed by RoT during
the update and is restored immediately after the update, which can also be
implemented on existing commercial embedded devices as described in [30]. It is
worth noting that the update of RoT code itself (infrequently) should be offline
in a secure environment.

Adversary A. We assume that A has complete control over the commu-
nication channel between V and P . This means that A can eavesdrop, manip-
ulate and reroute all messages sent between V and P . We assume A cannot
clone or tamper the PUF feature of P . Following the typical assumptions on
PUF-based key generation (like [10, 23]), we assume that A cannot access the
challenge-response interface of PUF and cannot obtain temporary data (such as
PUF-derived key information) stored in registers or on-device RAM during the
update protocol. The temporary data can be erased by RoT immediately after
the update protocol. In addition, we assume that A can be physically present and
introduce additional (cloned) prover device. Finally, we assume A cannot bypass
any of the hardware protections and cryptographic algorithms used in P . Data
remanence attacks and physical attacks are not considered in our mechanism.
We assume RoT code is immune from vulnerabilities, but the application code
may be vulnerable. The device debug interfaces are disabled after deployment.

3.2 Update Protocol

Our new code update protocol is described in Figure 3, and the memory lay-
out of P during the protocol execution is illustrated in Figure 4. V prepares a
code update package cupkg, which includes (at least) the binary update code
(cupkg.code), the current package version number (cupkg.ver), and the hash val-
ues over the expected memory contents for a successful update (cupkg.hash). P
stores the RoT code and the expected integrity data (consisting of cupkg.ver
and cupkg.hash) in the protected region R, and the integrity data can also be
updated securely by RoT during the protocol. Two PUF CRPs are used in the
protocol, one for encryption and the other for mutual authentication.

Before each update protocol, we assume a temporary session key (tsk) is
established between V and P by using a key exchange protocol (e.g., Diffie-
Hellman or ECDH). Liu et al [37] have presented an efficient implementation of
ECDH key exchange for MSP430 devices. tsk is mainly used to build a secure
channel, and {M}tsk denotes that a message M is encrypted with tsk. All the



8 Wei Feng, etc.

exchanged messages are encrypted with tsk by using a symmetric encryption
algorithm. Specifically, the key features of the protocol can be summarized as
follows:

Fig. 3. Secure Code Update Protocol based on PUF

Fig. 4. Illustration of Prover’s Memory Layout during Protocol Execution

(1) Key Generation based on PUF and Reverse Fuzzy Extrac-
tor without Relying on Secure Storage. V randomly chooses two CRPs
(C1, R1) and (C2, R2), and sends the challenges to P . After receiving C1 and C2,
P reads the physical PUF responses R′1 ← PUF (C1) and R′2 ← PUF (C2),
and generates the secret key and helper data as (K1, h1) ← FE.Gen(R′1),
(K2, h2) ← FE.Gen(R′2). The helper data h1 and h2 are sent to V , and V



Secure Update for IoT Devices 9

uses them to recover K1 ← FE.Rep(R1, h1) and K2 ← FE.Rep(R2, h2). In this
way, P doesn’t need to store keys with the help of NVM-based secure storage,
and can generate random keys on demand every time the protocol is started.

(2) Mutual Authentication based on K2 and MAC. Based on the
reproducibility property of PUF, V and P share the same keys K1 and K2

now. We use K2 and MAC to achieve authentication. As the correct CRPs are
only known to the trusted V and the physical PUF embedded in P is unclon-
able and unpredictable, no other party (e.g., A) can forge a valid key. Thus,
the authentication can be mutual. In detail, P generates a random nonce NP

and sends it to V . Once V receives NP , it uses K2 to create an authenticated
message δV ← MAC(K2,M1) where M1 contains the nonce NP and other ex-
changed messages between V and P . δV serves as a signature, and prevents any
modifications to the exchanged messages since P checks MAC(K2,M

′
1)? = δV .

Similarly, δP is an authenticated message created by P , and verified by V .
(3) Encryption Transmission and Secure Code Erasure based on

PUF. The code update package cupkg is encrypted by using K1 and symmetric
cryptography. Only P with a valid K1 can decrypt the encrypted package. Af-
ter P receives epkg, it first checks the authenticated message. If δV passes the
verification, P believes that the messages come from an authorized V . Then P
performs a secure code erasure (Algorithm 1): the encrypted package epkg is
used to overwrite the memory occupied by the old code, and the extra memory
space is filled with PUF-derived pseudorandom noises. The parameters K2 and
NV assure that the secure code erasure is device-specific and protocol-specific,
and no attackers can predict a valid memory layout. The use of cnt (inspired
by [51]) is convenient for V to reconstruct the prover’s memory layout and com-
pute expected integrity values in advance. Secure code erasure can also eliminate
possible malicious codes and restore P to a clean environment.

Algorithm 1: SecureErasure(epkg,K2,NV ).
Variables:

The counter value, cnt;
The extra memory range, [MemStart : MemEnd].

1 Mem(OldCode, size)← epkg ;
2 cnt = 0;
3 for i = MemStart; i < MemEnd; i + + do
4 prandom← Hash(K2, NV , cnt);
5 Mem[i]← prandom;
6 cnt + +;

7 end

(4) Local Code Integrity Attestation. After a secure code erasure, P
can decrypt epkg and finish the installation of the update binary code. In order
to attest an untampered and up-to-date software state, the RoT code in the pro-
tected region R triggers a local attestation routine. As illustrated in Algorithm
2, the attestation routine uses cupkg to perform three checks: (1) check whether
the version number contained in cupkg is higher than the version number stored



10 Wei Feng, etc.

in R, (2) check whether the hash values in cupkg are different from the values
stored in R, and (3) check whether the hash values over all memory regions
match the expected integrity reference values specified in cupkg.hash (denoted
by CheckCodeIntegrity()). If all checks pass, the verification of code update
and software integrity is successful. Upon a successful verification, RoT disables
the protection on R and writes the newest integrity reference values (cupkg.ver
and cupkg.hash) into R. As the prover device has just performed secure code
erasure and integrity attestation, no malicious values can be written into R at
this moment. Once R is updated, RoT enables the write protection immediately.

Algorithm 2: LocalAttestation(cupkg).

if (cupkg.ver ≤ R.ver) ∨ (cupkg.hash == R.hash) ∨ ¬CheckCodeIntegrity(cupkg.hash)
then

return False ;
else

Disable protection on R ;
UpdateR(cupkg.ver, cupkg.hash) ;
Enable protection on R ;
return True ;

end

(5) Verification Result Feedback and Secure Call. The result of local
integrity attestation is included in the computation of δP to ensure integrity,
and it is sent back to V along with δP . If δP is verified successfully, V can ensure
that the result comes from the correct P as no attackers can forge K2. According
to the feedback result, V knows whether P is in an up-to-date and unmodified
software state. After a successful update, RoT code in P will enforce a strict
white list policy to ensure a secure code call: the entry point of the update binary
application code is hardcoded in R, and each time the control flow is passed to
the application code only when CheckCodeIntegrity() returns True.

Since SRAM is used for PUF in implementation (Sect. 4), a reboot is needed
for each update protocol. In the experiment, we turn off the power manually
to implement a full power cycle to collect SRAM PUF data. The initial SRAM
values are used as R1 and R2 for each reboot, and RoT uses these values to
generate K1 and K2. RoT is always executed after device reset, and the whole
update process is handled by RoT. After the update, the keys are immediately
erased by RoT. RoT also decides if the application code can be executed. Thus,
we define a standard secure call sequence for P in Figure 5.

Fig. 5. Secure Call Sequence of P



Secure Update for IoT Devices 11

Memory Integrity Check. If P ’s memory space is relatively large, we can
divide it into multiple small sections and use hash tree (or Merkle tree) [19] to
implement memory integrity check (CheckCodeIntegrity()). Figure 6 illustrates
an example of a binary hash tree, in a setting where the memory is divided into
four sections, denoted by S1, S2, S3 and S4. The hash values of these sections
are the leaves, and a parent is the hash of the concatenation of its children.
Only hroot (the root of the tree) is stored in the protected region R. Before each
update, V must decide the size of each section, and prepare a bran-new hash
tree as the integrity reference value. During the update, all the sections should
be checked, i.e., RoT should compute:

Hash(Hash(Hash(S1),Hash(S2)),Hash(Hash(S3),Hash(S4))).

Fig. 6. A binary hash tree. Hash values of each memory section are aggregated to the
root of the tree.

All intermediate values during the computation should match the hash values
in the tree (including all nodes). After a succssful check, the root value hroot is
written into R, and other hash values are stored in the mutable memory along
with the code. As the check of the entire memory is time-consuming, the hash
tree method also supports to check the integrity of a specific memory section
(e.g., the memory section containing the application code). For example, to check
the integrity of S1, RoT only needs to read S1, h2 and h6, and the resultant
aggregation value Hash(Hash(Hash(S1), h2), h6) is compared to hroot.

3.3 Analysis

The security of reverse fuzzy extractor is described in [23]. In this section, we
mainly focus on the analysis of security threats (Sect. 2). We also give some
comparisons and discussions about our method.

Our mechanism can defend against all mentioned security threats, and the
specific analysis is as follows:

(1) Code Alteration. For each update, a local attestation is used to check the
code integrity and any changes to the update binary code will be found.

(2) Code Reverse Engineering. It is almost impossible to absolutely guar-
antee the code confidentiality. Our main goal is to prevent code extraction
during the network transmission and increase the difficulty of breaking the



12 Wei Feng, etc.

prover device P . As shown in Figure 3, the communication channel only
discloses epkg, which is encrypted with PUF-based key K1. As we assume
PUF is secure, A cannot decrypt epkg. Moreover, secure code erasure can
remove any malicious code in P during the update, and at other times, RoT
maintains a secure code call by enforcing a strict white list policy. Thus, it’s
difficult for A to break P and extract the update code. It should be not-
ed that runtime attacks, control-flow attacks and physical attacks are not
considered in this paper.

(3) Loading Unauthorized Code. The update binary code is included in
epkg, which is sent to P along with δV . epkg is created based on K1 and δV
is generated based on K2. Since K1 and K2 originate from the PUF of the
same prover device P , it can be inferred that epkg is from an authorized V if
δV is verified successfully by P . If an unauthorized epkg (created randomly
or using a malicious key) arrives at P , its decryption is meaningless and
cannot pass the verification of a local integrity attestation.

(4) Loading Code onto an Unauthorized Device. Due to the uniqueness
and unpredictability of PUF, an unauthorized device cannot derive a cor-
rect decryption key K1 and thus cannot install a update code intended for
another device.

(5) Code Downgrading. An ascending version number cupkg.ver is included
in each code update package cupkg, the attestation routine will check the
version number.

(6) Incomplete Update. Firstly, the result of LocalAttestation is includ-
ed in δP , and thus V can ensure the integrity and authenticity of the
feedback result. Secondly, RoT resides in the protected region R which is
write-protected and execution-uninterruptible, the only entry to RoT is re-
set, and the only chance to write R is after a secure code erasure and a
CheckCodeIntegrity(). Since the feedback result and δP are created by
RoT, the result True indeed indicates a complete update and the result
False illustrates the other situations.

(7) Alleviating TOCTOU. It’s difficult to completely prevent TOCTOU, e.g.,
runtime attacks may break our system easily, which are not discussed here.
Our mechanism uses the post-update defense to alleviate the TOCTOU
attack, which is not considered in previous update mechanisms. During each
update, the code is checked in the local integrity attestation routine and the
newest reference values are written toR. After update (post-update defense),
RoT checks the integrity of application code by using the newest reference
values to run CheckCodeIntegrity() each time the application code is called.
If the code has been tampered with, RoT will never give the system control
to the code. In this case, RoT could trigger a new update protocol.

(8) Device Cloning. Even if A obtains all the memory contents (including
RoT code) of an authorized prover device, it cannot copy or clone a similar
device to pretend to be a legitimate P because A cannot clone a physical
PUF or predict the responses of a particular PUF.

(9) Control-flow Attack. Our system provides no control flow integrity, and
we assume RoT code is immune from vulnerabilities. But the application



Secure Update for IoT Devices 13

code may be compromised, we need to prevent application code from jump-
ing to the RoT code arbitrarily. We can achieve this by enforcing a single
well-defined entry point to RoT code in the ARMv8-M architecture [52].
Or in other devices, we can use software fault isolation [45] to sandbox the
application code.

(10) Physical Adversary. Due to the unclonability and unpredictability of
PUF, a physical clone or replacement of a valid prover device will be found.
However, we cannot defend against other physical attacks, such as repro-
gramming the whole flash memory, data remanence of SRAM, or invasive
attacks with micro-probing. Possible solutions to mitigate physical adversary
contain the heartbeat protocol in DARPA [27].

Comparison with PoSE [42] and [35]. Our comparison with recently pro-
posed update mechanisms mainly covers five aspects: the dependent assumption-
s, the supported security attributes, the ability to resist all mentioned security
threats, the main communication and computation costs. As shown in Table 1,
our mechanism has the following advantages: (1) Don’t rely on NVM-based se-
cure storage and a secure communication channel; (2) Resist all 8 security threats
by providing security attributes like mutual authentication, confidentiality (or
secrecy), integrity, unclonability and secure call; (3) The message transmitted
from V to P is the size of the update binary code, and the extra memory of P is
filled with PUF-derived pseudorandom numbers; and (4) Use symmetric cryp-
tography and MAC instead of public-key cryptography and signature, which is
more suitable for low-end embedded systems.

Table 1. Comparison.

Our mechanism [42] (ESORICS 10) [35] (ESORICS 16)
Assumptions Immutable Code, un-

interruptible execution
and a robust and unpre-
dictable PUF

Immutable code and se-
cure communication (P
only communicates with
V and no other party)

Immutable code, secure
storage and uninterrupt-
ible execution

Security Attributes
Supported

Freshness, Integrity, Au-
thenticity, Confidentiali-
ty, Feasibility, Verifiabil-
ity, Restorability and Se-
cure Call

Integrity, Feasibility and
Restorability

Freshness, Integrity,
Authenticity, Feasibil-
ity, Verifiability, and
Restorability

Resisting Security
Threats

Threat-1,2,3,4,5,6,7,8 Only Threat-1 Threat-1,3,5,6

Communication
costs

the size of cupkg the size of P ’s writable
memory

the size of cupkg

Computation costs Symmetric cryptog-
raphy, MAC, Hash,
RFE

Symmetric cryptogra-
phy, MAC, Hash

Symmetric and Asym-
metric cryptography,
Signature and verifica-
tion, Hash

Comparison with Remote Attestation. Remote attestation mechanisms
are mainly used for verifying the software integrity of a remote device. Our up-
date mechanism not only verifies the integrity of a remote device after an update
installation, but also needs to ensure the correctness, freshness, confidentiality
and authenticity of code update. Schulz et al. [44] gave a lightweight remote



14 Wei Feng, etc.

attestation by combing software-based attestation and PUF. PUFatt [36] imple-
mented Schulz’s idea by presenting a novel PUF design (called ALU PUF) based
on the delay difference in two different arithmetic and logic units (ALUs). These
works mainly focused on remote attestation, and did not consider secure code
update. Furthermore, ALU PUF needs to change the microprocessor of device
and is not available in current embedded devices. Researches (like SMART [18],
Sancus [40], TyTAN [13], etc.) all tried to propose lightweight secure architecture
for embedded devices, which can be used to implement remote attestation (also
called hybrid attestation by [1]). In our opinion, these architecture can be easily
extended to implement secure code update although none of them mentioned
this. However, all hybrid attestation schemes need some hardware modification-
s, which are not available commercially. Our secure code update mechanism can
be applicable using existed resources in current commodity embedded devices.

Limitation. Firstly, our method requires that the prover device must have
enough SRAM space, meeting the memory requirements for PUF and program
variables at the same time. For low-end embedded devices, we may consider
increasing the size of SRAM memory or exploring new PUF primitives (like
Flash-based PUF [50]). Secondly, the scalability of our scheme is not good. To
update multiple devices in a large network, V has to establish an update protocol
for each individual device. Even if all devices have the same configuration (that
is, the same cupkg), V must prepare different hash reference values and different
encryption package epkg for different devices. Our future work will be focused
on the design and implementation of a scalable and lightweight secure code
update mechanism based on PUF. A preliminary idea is to combine PUF physical
properties with attribute-based encryption (ABE) [2], where PUF responses can
be viewed as specific attributes associated with a decryption key.

Discussion. Helfmeier et al. [22] used a Focused Ion Beam (FIB) circuit
edit (CE) to successfully produce a physical clone of a SRAM PUF. Although
we assume a ‘good’ PUF in the adversary model, it’s better to strengthen S-
RAM PUF with synthesized logic as recommended in [22] or adopt other PUF
instances (like Flash-based PUF [50]) for high-security applications. Recently,
data remanence attack [4] brought a new threat to SRAM PUF, but the attack
needs a harsh condition (low-temperature between -110◦C and -40◦C). Verifying
the temperature using the sensors within embedded devices before each update
may mitigate this attack. Note that, our work is not to design an ideal PUF,
but to use PUF to design a secure code update mechanism. Actually, any PUF
instances can be used in our update protocol. In addition, we adopt SRAM
PUF because SRAM is ubiquitous in various computing devices and there are
no modeling attacks currently found against weak PUFs. But we have to assume
A cannot access the challenge-response interface of the PUF and cannot obtain
temporary data stored in volatile memory during the update protocol. Although
this is a strong assumption (the assumption is also used in other literatures like
[23, 10]), it is necessary because no secure execution environment (like TEE) ex-
ists in current embedded devices. However, this assumption can be improved by
forcing memory access control based on a Memory Protection Unit (MPU) [34,



Secure Update for IoT Devices 15

13] or using other techniques such as obfuscation and white-box cryptography.
We adopt reverse FE due to less performance overhead, actually any FEs (like a
computationally secure FE [15]) can be used if they are more effective. Finally,
our work mainly focuses on providing security without changing hardware for
legacy devices. However, in many embedded scenes, modifying hardware is nec-
essary to provide strong security, and we think ARM TrustZone technology in
ARMv8-M architecture will be a good choice.

4 Implementation and Performance Considerations

Setup. We implement and evaluate our proposed secure code update scheme
on a MSP-EXP430G2 LaunchPad Development Board. The board is a complete
USB-based development and experimenter tool from Texas Instrument with a
MSP430G2553 MCU by default. The key features of the MSP430G2553 MCU
include [29]: ultralow-power, von-Neumann architecture; 16-bit RISC CPU (up
to 16MHz); 16KB of programmable Flash; 512 bytes of SRAM.

We use the on-board SRAM as the source of entropy to implement the PUF
and random number generator (RNG). For reverse fuzzy extractor (RFE ), we
adopt the BCH error correction code to eliminate noises and use a hash func-
tion as an entropy accumulator to generate unpredictable random keys. We
implement the hash function using SHA256, while the symmetric algorithm uses
128-bit AES. The MAC computation is implemented by using the construct of
HMAC-SHA256. As no hardware acceleration is supported in MSP430G2553,
all of the cryptographic algorithms are implemented in software based on [28].
As 512B SRAM is relatively small, our implementation is based on the following
guidelines: (1) Use more constants and Flash space; (2) Use fewer variables and
RAM space; (3) Initial SRAM values are written to Flash used for PUF and
RNG, and the actual SRAM space is reserved for global and local variables (.b-
ss, .data and .stack). Our time performance is measured in clock cycles. As we
set the clock frequency to 1MHz, m cycles are equal to m/1, 000, 000 seconds.
Our evaluation code (in python) and data for PUF are uploaded to the Github2.

SRAM PUF and SRAM RNG. We collect the startup SRAM values from
two different MSP430G2553 devices, each measured over 50 power cycles. Based
on these data, we first evaluate the robustness, uniqueness and randomness of
SRAM PUF by analyzing the min-entropy and Hamming distance. For robust-
ness, we compute the intra-chip Hamming distance (HDIntra) between repeated
measurements of SRAM cells from the same chip. The resulting HDIntra is 260
(260/4096=6.3%) at average, and 743 (743/4096=18%) at worst. For unique-
ness, we compute the inter-chip Hamming distance (HDInter) and min-entropy
over the measurements from different chips. The average ratio for HDInter is
42.3%, and the min-entropy rate is 87% which means the average min-entropy
per bit is 0.87. For randomness, we compute the min-entropy over 50 repeatedly
measured SRAM values from the same chip, which gives an average min-entropy

2 https://github.com/vonwaist/PUFRNG



16 Wei Feng, etc.

rate of 7.76%. This means that we need at least 1/7.76%=12.88 SRAM cells to
obtain one random bit. These evaluated results show a well-featured PUF.

4096-bit (=512B) SRAM space is allocated as follows: 2628 bits are used to
generate two PUF CRPs, and the remaining 1468 bits are used to derive random
numbers. The address spaces are separated to avoid direct correlation between
PUF and RNG. As only two CRPs can be used in each device, C1 and C2 needs
not to be transmitted over the network. Using multiple CRPs corresponds to
storing multiple session keys. It means that we have two default session keys.
Additionally, we use 256 bits SRAM to derive a 16-bit random nonce, which
is achieved by XORing adjacent bytes 16 times. Thus, 5 (1468/256) random
numbers can be used for each power cycle. Aysu et al. [10] showed that the
SRAM data can pass all experiments in the NIST statistical Test Suite after 8-
fold XORing, thus our 16-fold XORing is random enough. RNG is implemented
in assembly by using only two registers (one for the start address of SRAM RNG
and the other for the xor result). The code size of RNG is 56 bytes and it takes
44 clock cycles to output one random number. Theoretically, a random extractor
should be used instead to generate RNG, we choose XOR due to low overhead
and Aysu’s experience in [10].

Reverse Fuzzy Extractor. A BCH(n, k, d = 2t + 1) [39] code allows to
correct errors up to t-bit within a n-bit block. We customize a BCH(127,15,53)
based on the open source code3, which can correct up to 20.5% noisy bits (greater
than the worst SRAM noise level of 18%). As the average min-entropy rate for
uniqueness is 87%, 1314 (2628/2) bits SRAM data contains 1143 (1314×0.87)
bits entropy. We use 1143 bits PUF entropy in 9 blocks of a BCH(127,15,53)
code, and 1008(=(127-15)×9) bits are leaked in the helper data. The remaining
entropy is 135 (=1143-1008) bits, which are enough for a 128-bit key. We use
SHA256 to hash the PUF response, and the 256-bit result is 2-XORed to obtain
a 128-bit key. We assume that a single bit flips with a probability of Perror = 7%
(greater than the average HDIntra), then the probability that 27 bits or more

will flip in a 127-bit block is Pblock =
∑n=127

i=27

(
127
i

)
P i
error(1 − Perror)

(127−i) ≈
1.87× 10−7, and thus the error cannot be corrected in this case. For 9 blocks of
a BCH(127,15,53) code, the probability that a key can be fully reconstructed is
Pcorrect = (1− Pblock)

9 > 1− 1.69× 10−6.
The PUF and RFE.Gen are implemented in C with a code size of 3274 bytes,

and it also uses 768 bytes constant space and 426 bytes variable space. To save
RAM, we pre-compute the coefficients of the generator polynomial, log table
and antilog table of the Galois field GF(2m), and store these parameters as the
constants in the flash memory. The implementation contains four steps: read
SRAM values to generate a 1314-bit PUF response (it takes 1471 cycles); use
SHA256 and 2-XORing to generate a 128-bit key (it takes 290,951 clock cycles);
BCH Encoder for 9 blocks (it takes 585,504 clock cycles); write the result to
Flash (132,982 cycles).

Symmetric Algorithm, Hash and MAC. There is a decryption operation
for each update protocol, and we adopt 128-bit AES algorithm. The code size of

3 http://www.eccpage.com/



Secure Update for IoT Devices 17

Dec is 910 bytes, and the memory requirements for its constants and variables are
522 bytes and 119 bytes, respectively. To decrypt a 128-bit cipher text, Dec takes
about 23,487 CPU cycles. The hash function is SHA256, and its implementation
costs 1530 bytes of code size, 288 bytes of constant space and 271 bytes of variable
space. The performance of SHA256 depends on the specific input size, e.g., 96,617
cycles for 50-byte input, 291,040 cycles for 150-byte. HMAC is implemented
based on SHA256, and its code size is 2348 bytes. For a 16-byte message, HMAC-
SHA256 takes about 392,174 clock cycles. As many MCUs support cryptographic
hardware security4, the performance can be improved further.

Secure Erasure and Local Attestation. Two algorithms SecureErasure()
and LocalAttestation() are both implemented based on SHA256. The code size of
SecureErasure() is 2,568 bytes, and the number of clock cycles it takes to erase a
512B flash section is 1,615,880. The main time consumption of SecureErasure()
is caused by SHA256 computation and Flash write operation. The primary role
of LocalAttestation is CheckCodeIntegrity(), which is also the most time-
consuming part. CheckCodeIntegrity() computes the hash value of a given
memory block and compares it with the reference value, and it takes about
292,422 clock cycles for a 128-byte application program code.

Protected Memory. In our method, write-protection is needed for storing
the version, reference hashes and RoT code, and we use existing hardware re-
sources in embedded devices to implement a static non-volatile write-protected
region R. In MSP430G2553, the hardware resources are Flash memory. Accord-
ing to [29], the Flash memory of MSP430G2553 is partitioned into main and
information memory sections. The information memory has four 64-byte seg-
ments, and the main memory has multiple 512-byte segments. The information
memory can be locked separately from the main memory with a LOCKA bit.
When LOCKA is set, the information memory is protected and cannot be writ-
ten or erased. Thus, RoT code can be stored in the information memory. As
the size (256-byte) of information memory in MSP430G2553 is smaller than the
size of our RoT code, our evaluation described above uses the main memory.
However, this does not affect the evaluation results because there are no other
differences between the information and main memory except for the lock bit.

In MSP430FR family [30], the protected hardware resources are FRAMs
similar for MPU. An FRAM is a non-volatile memory that can be read and
written like a standard SRAM. An MPU can be used to divide the device’s
main memory into three variable-sized segments with configurable read, write
and execute access. Furthermore, the protection of the second segment can be
temporarily removed when necessary by the bootloader, which can be used to
store and update the integrity reference hash values. Bootloader (similar to our
RoT ) locks the MPU settings before jumping to the application, preventing the
application from corrupting or overwriting the protected area. For the security
of PUF, we propose to allow only the RoT code to access the start-up values at
boot time, and after that the SRAM space is erased by RoT.

4 http://www.ti.com/ww/en/embedded/security/index.shtml



18 Wei Feng, etc.

For uninterruptible execution, we suggest to disable the interrupt during the
execution of RoT code. Before the control is handed over to the applicaton
code, RoT enables the interrupt and at the same time checks the integrity of
application code and all interrupt handlers.

Comparison with Public-key Cryptography. As the MSP430G2553 de-
vice does not have enough resources to implement and run a ECC/RSA algo-
rithm, we compare our PUF-based AES encryption (with 128-bits key) with a
RSA encryption (with 2048-bits key) in a host environment. RSA is implement-
ed based on the open-source mbed TLS library5. For a 100-bytes plain message,
we test the two encryption operations 1000 times respectively. The min, max
and average runtime for PUF-based AES encryption are 0.023ms, 1.927ms, and
0.0549ms; and the runtime for RSA are 1.076ms, 16.07ms, and 1.37ms. Obvious-
ly, our method is more lightweight and more suitable for tiny embedded devices.
In the future, we plan to purchase a more rich embedded development board
(e.g., MSP430FR family) to make a more comprehensive comparison.

5 Related Work

Remote Attestation. Remote attestation can be categorized in three main
branches: hardware-based attestation, software-based attestation and hardware-
software co-design with minimum hardware requirements. Hardware-based at-
testation relies on strong hardware features, such as TCG’s TPM [41, 8], ARM
TrustZone [6] and Intel SGX [5], which are not supported on low-cost commod-
ity embedded devices. Software-based attestation [46, 48, 7, 26] does not require
secure hardware and thus is well suitable for constrained embedded systems.
However, its security guarantee is weak. Between the two mechanisms, hardware-
software co-design [18, 40, 34, 36, 13] aims to build a dynamic trust anchor in a
low-end embedded device with minimal changes to existing MCUs. The trust
anchor established can be further used to design a scalable collective attestation
protocol (SEDA [9] and SANA [3]), meeting the global security requirements of
large groups of interconnected smart devices. In our opinion, all remote attes-
tation mechanisms can be used to strengthen secure updates, e.g., to verify the
code integrity after update. But a complete secure code update is more than a
remote attestation mechanism.

Secure Code Updates For Embedded Devices. SCUBA [47] is a secure code
update mechanism by using software-based attestation to ensure indisputable
code execution (ICE) on a remote sensor node. PoSE [42] is a different approach
that can enable a prover device to convince a verifier that it has erased all
its memory. As the overhead of PoSE is relatively high, some researchers try
to explore effective skills to reduce the overhead including uncomputable hash
function [17], invert-hash PoSE and graph-based PoSE [33], and All or Nothing
Transforms [32]. Recently, Kohnhauser and Katzenbeisser [35] presented a novel
code update scheme which verifies and enforces the correct installation of code

5 https://tls.mbed.org/



Secure Update for IoT Devices 19

updates on all commodity low-end embedded devices in a mesh network. To
address the security threats involved with the in-field firmware updates process,
Texas Instruments [31, 30, 21] proposes to integrate cryptographic algorithms
and security mechanisms into the bootloader of its ultra-low-energy MCUs.

SRAM PUF. The SRAM PUF was first introduced in 2007 by Holcomb et
al. [24, 25] and Guajardo et al. [20] concurrently and independently. Holcomb
et al. [24, 25] proposed to use SRAM physical fingerprints for identification and
generation of true random numbers in RFID tag circuits, while Guajardo et
al. [20] used initial SRAM values to design new protocols for IP protection on
FPGAs. To provide a viable alternative to costly protected non-volatile memo-
ry (NVM), Maes et al. [38] presented a low-overhead implementation of helper
data algorithm for SRAM PUFs using soft decision information. The SRAM
PUF was implemented and evaluated on a microcontroller in [12]. Researchers
from intrinsic-ID showed the construction of a FIPS 140-3 compliant random
bit generator based on SRAM PUF in [49], and presented a comparative anal-
ysis of several types of SRAM memories from different technology nodes and
demonstrated the reliability and uniqueness of all the tested SRAMs when used
as PUFs in [43]. Aysu et al. showed in [10] that SRAM PUF can be used to de-
sign and implement a provably secure protocol that supports privacy-preserving
mutual authentication.

6 Conclusion

In this paper, we presented a novel secure code update scheme for commodi-
ty low-end embedded devices by combing the advantages of secure erasure and
physically unclonable function. We concluded eight security threats that may
happen in secure code updates from the existing literature, and showed how
our scheme can be used to prevent or mitigate these threats. Our scheme does-
n’t rely on secure storage or secure communication. By using the symmetric
cryptography and lightweight construction of a reverse fuzzy extractor, our ap-
proach offers acceptable communication and computation overhead. Finally, we
also eliminate the gap from the world of protocol theory to concrete realization
through evaluating all protocol components in a single TI MSP430 device. Our
implementation uses only on-board SRAM and the protected memory resources
without requiring any hardware modifications, which is applicable to a broad
range of popular low-end embedded systems.

7 Acknowledgments

The work has been supported by the National Natural Science Foundation of
China (No.61602455 and No.61402455). We thank anonymous reviewers for their
helpful comments. We specially thank Aurlien Francillon for his suggestions on
improving our paper.



20 Wei Feng, etc.

References

1. T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A. R. Sadeghi, and
G. Tsudik. Invited: Things, trouble, trust: On building trust in iot systems. In
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

2. M. Ambrosin, A. Anzanpour, M. Conti, T. Dargahi, S. R. Moosavi, A. M. Rahmani,
and P. Liljeberg. On the feasibility of attribute-based encryption on internet of
things devices. IEEE Micro, 36(6):25–35, Nov 2016.

3. Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven, Ahmad-Reza
Sadeghi, and Matthias Schunter. Sana: Secure and scalable aggregate network
attestation. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 731–742, NY, USA, 2016. ACM.

4. Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, Markus Rosenstihl,
Andr Schaller, Sebastian Gabmeyer, and Tolga Arul. Low-temperature data re-
manence attacks against intrinsic sram pufs. Cryptology ePrint Archive, Report
2016/769, 2016. http://eprint.iacr.org/2016/769.

5. Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innova-
tive technology for cpu based attestation and sealing. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, volume 13, 2013.

6. ARM. Arm security technology: Building a secure system using trustzone technol-
ogy. Technical report, ARM Technical White Paper, 2009.

7. Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian Wachs-
mann. A security framework for the analysis and design of software attestation.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Com-
munications Security, CCS ’13, pages 1–12, New York, NY, USA, 2013. ACM.

8. Will Arthur and David Challener. A Practical Guide to TPM 2.0: Using the
Trusted Platform Module in the New Age of Security. Apress, Berkely, CA, USA,
1st edition, 2015.

9. N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias
Schunter, Gene Tsudik, and Christian Wachsmann. Seda: Scalable embedded de-
vice attestation. In Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages 964–975, NY, USA, 2015.
ACM.

10. Aydin Aysu, Ege Gulcan, Daisuke Moriyama, Patrick Schaumont, and Moti Yung.
End-to-end design of a puf-based privacy preserving authentication protocol.
In Cryptographic Hardware and Embedded Systems, CHES 2015, pages 556–576,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

11. Christoph Bhm and Maximilian Hofer. Physical Unclonable Functions in Theory
and Practice. Springer Publishing Company, Incorporated, 2012.

12. C. Bohm, M. Hofer, and W. Pribyl. A microcontroller sram-puf. In Network and
System Security (NSS), 2011 5th International Conference on, pages 269–273, Sept
2011.

13. Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. Tytan: Tiny trust anchor for tiny devices. In Proceed-
ings of the 52Nd Annual Design Automation Conference, DAC ’15, pages 34:1–34:6,
New York, NY, USA, 2015. ACM.

14. Sergey Bratus, Nihal D’Cunha, Evan Sparks, and Sean W. Smith. Toctou, traps,
and trusted computing. In Proceedings of the 1st International Conference on
Trusted Computing and Trust in Information Technologies: Trusted Computing



Secure Update for IoT Devices 21

- Challenges and Applications, Trust ’08, pages 14–32, Berlin, Heidelberg, 2008.
Springer-Verlag.

15. Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam Smith.
Reusable fuzzy extractors for low-entropy distributions. In Proceedings of the 35th
Annual International Conference on Advances in Cryptology — EUROCRYPT
2016 - Volume 9665, pages 117–146, New York, NY, USA, 2016. Springer-Verlag
New York, Inc.

16. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, March 2008.

17. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable
self-erasing functions. In Proceedings of the 8th Conference on Theory of Cryptog-
raphy, TCC’11, pages 125–143, Berlin, Heidelberg, 2011. Springer-Verlag.

18. Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. SMART:
Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. In
NDSS 2012, 19th Annual Network and Distributed System Security Symposium,
February 5-8, San Diego, USA, San Diego, UNITED STATES, 02 2012.

19. Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Caches and hash trees for efficient memory integrity verification. In
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture, HPCA ’03, pages 295–, Washington, DC, USA, 2003. IEEE Computer
Society.

20. Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. Fpga
intrinsic pufs and their use for ip protection. In Proceedings of the 9th International
Workshop on Cryptographic Hardware and Embedded Systems, CHES ’07, pages
63–80, Berlin, Heidelberg, 2007. Springer-Verlag.

21. Oscar Guillen, Bhargavi Nisarga, Luis Reynoso, and Ralf Brederlow. Crypto-
bootloader secure in-field firmware updates for ultra-low power mcus, texas instru-
ments incorporated, 2015.

22. C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert. Cloning physically un-
clonable functions. In 2013 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pages 1–6, June 2013.

23. Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel Peeters, Ahmad-
Reza Sadeghi, Ingrid Verbauwhede, and Christian Wachsmann. Reverse fuzzy
extractors: Enabling lightweight mutual authentication for puf-enabled rfids. In
Financial Cryptography, volume 7397 of Lecture Notes in Computer Science, pages
374–389. Springer, 2012.

24. Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. Initial sram state as a
fingerprint and source of true random numbers for rfid tags. In Proceedings of the
Conference on RFID Security, volume 7, 2007.

25. Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. Power-up sram state as an
identifying fingerprint and source of true random numbers. IEEE Transactions on
Computers, 58(9):1198–1210, 2009.

26. Julian Horsch, Sascha Wessel, Frederic Stumpf, and Claudia Eckert. Sobtra: a
software-based trust anchor for arm cortex application processors. In Proceedings
of the 4th ACM conference on Data and application security and privacy, pages
273–280. ACM, 2014.

27. Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza Zeitouni. Darpa:
Device attestation resilient to physical attacks. In Proceedings of the 9th ACM
Conference on Security &#38; Privacy in Wireless and Mobile Networks, WiSec
’16, pages 171–182, New York, NY, USA, 2016. ACM.



22 Wei Feng, etc.

28. Texas Instruments Incorporated. C implementation of cryptographic algorithms,
slaa547a-july 2013, 2013.

29. Texas Instruments Incorporated. Msp430x2xx family user’s guide, slau144j-
december 2004, revised july 2013, 2013.

30. Texas Instruments Incorporated. Crypto-bootloader (cryptobsl) for msp430fr59xx
and msp430fr69xx mcus, user’s guide, slau657-november 2015, 2015.

31. Texas Instruments Incorporated. Secure in-field firmware updates for msp mcus,
application report, slaa682-november 2015, 2015.

32. Ghassan O. Karame and Wenting Li. Secure erasure and code update in legacy
sensors. In Proceedings of the 8th International Conference on Trust and Trust-
worthy Computing, TRUST’15, pages 283–299, Cham, 2015. Springer International
Publishing.

33. Nikolaos P. Karvelas and Aggelos Kiayias. Efficient proofs of secure erasure. In
Proceedings of Security and Cryptography for Networks: 9th International Confer-
ence, SCN ’14, pages 520–537, Cham, 2014. Springer International Publishing.

34. Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
Trustlite: A security architecture for tiny embedded devices. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, pages 10:1–10:14,
New York, NY, USA, 2014. ACM.

35. Florian Kohnhauser and Stefan Katzenbeisser. Secure code updates for mesh net-
worked commodity low-end embedded devices. In The 21st European Symposium
on Research in Computer Security, ESORICS ’16, pages 320–338. Springer, 2016.

36. Joonho Kong, Farinaz Koushanfar, Praveen K. Pendyala, Ahmad-Reza Sadeghi,
and Christian Wachsmann. Pufatt: Embedded platform attestation based on nov-
el processor-based pufs. In Proceedings of the 51st Annual Design Automation
Conference, DAC ’14, pages 109:1–109:6, NY, USA, 2014. ACM.

37. Zhe Liu, Hwajeong Seo, Zhi Hu, Xinyi Hunag, and Johann Grosschadl. Efficient
implementation of ecdh key exchange for msp430-based wireless sensor networks.
In Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS ’15, pages 145–153, New York, NY, USA, 2015.
ACM.

38. Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Low-overhead implementation
of a soft decision helper data algorithm for sram pufs. In Proceedings of the 11th
International Workshop on Cryptographic Hardware and Embedded Systems, CHES
’09, pages 332–347, Berlin, Heidelberg, 2009. Springer-Verlag.

39. Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. Pufky: A fully func-
tional puf-based cryptographic key generator. In Proceedings of the 14th Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, CHES’12,
pages 302–319, Berlin, Heidelberg, 2012. Springer-Verlag.

40. Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. Sancus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In Proceedings of the 22Nd USENIX Conference
on Security, SEC’13, pages 479–494, Berkeley, CA, USA, 2013. USENIX Associa-
tion.

41. B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in commodity com-
puters. In 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 414–429.
IEEE Computer Society, May 2010.

42. Daniele Perito and Gene Tsudik. Secure code update for embedded devices vi-
a proofs of secure erasure. In Proceedings of the 15th European Conference on



Secure Update for IoT Devices 23

Research in Computer Security, ESORICS’10, pages 643–662, Berlin, Heidelberg,
2010. Springer-Verlag.

43. Geert-Jan Schrijen and Vincent van der Leest. Comparative analysis of sram
memories used as puf primitives. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’12, pages 1319–1324, San Jose, CA, USA,
2012. EDA Consortium.

44. Steffen Schulz, Ahmad-Reza Sadeghi, and Christian Wachsmann. Short paper:
Lightweight remote attestation using physical functions. In Proceedings of the
Fourth ACM Conference on Wireless Network Security, WiSec ’11, pages 109–114,
New York, NY, USA, 2011. ACM.

45. David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. Adapting software fault isolation to contemporary
cpu architectures. In Proceedings of the 19th USENIX Conference on Security,
USENIX Security’10, pages 1–1, Berkeley, CA, USA, 2010. USENIX Association.

46. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based at-
testation for embedded devices. In Security and Privacy, 2004. Proceedings. 2004
IEEE Symposium on, pages 272–282, May 2004.

47. Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Scuba: Secure code update by attestation in sensor networks. In Proceed-
ings of the 5th ACM Workshop on Wireless Security, WiSe ’06, pages 85–94, NY,
USA, 2006. ACM.

48. Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, SOSP ’05, pages 1–16, NY, USA, 2005. ACM.

49. Vincent van der Leest, Erik van der Sluis, Geert-Jan Schrijen, Pim Tuyls, and
Helena Handschuh. Efficient Implementation of True Random Number Genera-
tor Based on SRAM PUFs, pages 300–318. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

50. Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G. Edward Suh, and Edwin C.
Kan. Flash memory for ubiquitous hardware security functions: True random num-
ber generation and device fingerprints. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, SP ’12, pages 33–47, Washington, DC, USA, 2012. IEEE
Computer Society.

51. Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed software-
based attestation for node compromise detection in sensor networks. In Reliable
Distributed Systems, 2007. SRDS 2007. 26th IEEE International Symposium on,
pages 219–230, Oct 2007.

52. Joseph Yiu. White paper: Armv8-m architecture technical overview, 2015.
53. Shijun Zhao, Qianying Zhang, Guangyao Hu, Yu Qin, and Dengguo Feng. Pro-

viding root of trust for arm trustzone using on-chip sram. In Proceedings of the
4th International Workshop on Trustworthy Embedded Devices, TrustED ’14, pages
25–36, New York, NY, USA, 2014. ACM.


