
A signature scheme from Learning with
Truncation

Jeffrey Hoffstein1, Jill Pipher1, William Whyte2, and Zhenfei Zhang2

1 Brown University, Providence RI, USA, {jhoff,jpipher}@math.brown.edu
2 OnBoard Security, Wilmington MA, USA, {wwhyte,zzhang}@onboardsecurity.com

Abstract. In this paper we revisit the modular lattice signature scheme
and its efficient instantiation known as pqNTRUSign. First, we show that
a modular lattice signature scheme can be based on a standard lattice
problem. As the fundamental problem that needs to be solved by the
signer or a potential forger is recovering a lattice vector with a restricted
norm, given the least significant bits, we refer to this general class of
problems as the “learning with truncation” problem.

We show that by replacing the uniform sampling in pqNTRUSign with a
bimodal Gaussian sampling, we can further reduce the size of a signature.
As an example, we show that the size of the signature can be as low as
4608 bits for a security level of 128 bits.

The most significant new contribution, enabled by this Gaussian sam-
pling version of pqNTRUSign, is that we can now perform batch verifi-
cation, which allows the verifier to check approximately 2000 signatures
in a single verification process.

1 Introduction

Organizations and research groups are looking for candidate algorithms to re-
place RSA and ECC based schemes [7, 1] due to the threat of quantum computers
[30]. Among all candidates, lattice based solutions seem to offer the most promis-
ing solutions. For encryption schemes, NTRUEncrypt [19] is known to be one
of the fastest lattice based encryption algorithms to date. In terms of signature
schemes, there exist several lattice based schemes that rely on the security of
the NTRU lattice [19], such as BLISS [9], DLP [11] and pqNTRUSign [17].

In this paper, we revisit the modular lattice signature scheme from [17]. Given
a lattice L with a trapdoor T in the form of a short basis of row vectors; and
a message digest in the form of a vector m whose coefficients are in [0, p), the
signature of a modular signature scheme in [17] is a lattice vector v such that

1. v ≡m mod p; and
2. v ∈ L.

This vector can be obtained via the following steps:

1. sample a vector v0 from L;

2. use T to micro-adjust the v0 so that v ..= v0 + aT meets the congruence
condition for some a;

3. use rejection sampling to hide T from v

In this paper we revisit the above scheme from the following perspectives.

Security proof. In the original modular lattice signature scheme in [17], the public
key security is connected to a unique shortest non-zero vector problem (uSVP),
i.e., recovering T from (a bad basis of) L; while the unforgeability is based on
an approximate closest vector problem (approx-CVP) over the intersection of a
lattice and a translation of a lattice, namely, L∩(pZn+mp). Although the second
problem is conjectured to be hard for this ad hoc lattice, a connection between
the first and the second problems is missing. The scheme, therefore, requires two
(seemingly independent) hardness assumptions. For example, when the scheme
is instantiated via an NTRU lattice [17], they require the uSVP assumption for
the NTRU lattice and the above approx-CVP assumption for the intersection of
the two lattices.

In this paper, we remove the second assumption. Essentially, the attacker is
given a lattice (any lattice, not necessarily an NTRU lattice), and he is asked to
find a vector in the lattice such that this vector is congruent to a known value
mod p. In other words, the attacker needs to find a vector with pre-determined
least significant bits. We name this problem the learning with truncation (LWT)
problem, which can be viewed as the inverse of learning with rounding (LWR)
problem, where in this case one is given matrix A and vector b = bsA mod qcp,
and asked to find s. That is, to find a vector related to the lattice where the
most significant bits are pre-determined.

This allows us to connect the forgery attack with the approx-SVP. As a
result, we only require a single assumption. In particular, when the scheme is
instantiated via a Short Integer Solution (SIS) problem, forging a signature in our
scheme is as hard as solving an approx-SVP for random lattices. On the other
hand, when the scheme is instantiated via an NTRU lattice, we require that
approx-SVP is hard for NTRU lattices, which is equivalent to the unique-SVP
assumption (up to a polynomial factor, cf. [24]), a.k.a., the NTRU assumption .

Sampling method. Early lattice based signature schemes, such as GGHSign
[15] and NTRUSign [16], leak private key information in a transcript of mes-
sage/signature pairs. An attacker can produce a signing key from a long enough
transcript using methods for “learning a parallelepiped” [27, 12].

In [21], Lyubashevsky proposed a rejection sampling method to thwart tran-
script leakage attacks. Using his technique, signatures are produced according
to a fixed public distribution (typically either a Gaussian as in [21] or a uniform
distribution as in [17]). A transcript reveals only this public distribution, and
contains no information about the particular signing key that is used to generate
the signatures. The sampling method therefore becomes a core issue in designing
signature schemes. For example, replacing a Gaussian sampler with a bimodal
Gaussian sampler [9] significantly improves the performance of a scheme.

2

Recall that in [17], a signature in this scheme is a lattice vector. Since the
verifier already knows a (bad) basis of the lattice for verification purpose, it is
sufficient to transmit part of the vector v as long as the verifier can complete
the whole vector during the verification phase.

Popular lattice based schemes, such as BLISS [9] and TESLA [3], do not have
this property. Signatures in those schemes are vectors close to the lattice. Hence,
when the vectors are compressed, an additional helper needs to be generated for
the verifier to derive the original vector (although this helper is only a few
hundred bits). To be precise, if we parameterize the scheme to be presented in
this paper with the same parameters as in [9], the difference in the size of a
signature is exactly the size of this helper.

This advantage in design did not give a smaller signature size for [17] due to
the sampling method. For an n-dimensional vector with coefficients in [− q2 ,

q
2), it

requires ndlog qe bits for storage. For comparison, a discrete Gaussian vector of
the same dimension with a deviation of σ ∼ √q can be stored with ∼ n(log q

2 +2)
bits. A natural question is whether one can use (bimodal) Gaussian sampling [9]
for modular lattice signatures. In this paper, we give a positive answer to this
question.

Remark 1. Although schemes using Gaussian sampling allow smaller signature
sizes, recent development in lattice based signature schemes [10] shows a trend
of moving back to uniform rejection sampling since uniform sampling is easier
to implement and to ensure constant time. Nevertheless, with pqNTRUSign,
Gaussian sampling enables us to obtain an additional property: signature aggre-
gation.

Signature aggregation. Signature aggregation, also known as batch verification,
allows one to verify a set of signatures, signed under a same key, with operations
that are on the order of a single verification. It is a useful property in many use
cases. As an example, for a secure boot mechanism where the software image
is signed, signature aggregation allows one to sign individual software images
individually (and do so component wise rather than monolithic updates) while
still verifying the entire set of software images in one pass. This allows for fast
boot.

Our scheme allows for batch verification (with fine-tuned parameters). Gen-
erally speaking, a signature v for a message digest m is valid so long as v ≡
m mod p and v ∈ L. Therefore, for a set of signatures {vi}, corresponding to a
set of messages {mi} we have

1.
∑

vi ≡
∑

mi mod p; and
2.
∑

vi ∈ L.

As such, one can simply check
∑

vi instead of checking each individual v. When
realizing this technique for our proposed scheme, we can use a single ring mul-
tiplication (which is usually the most costly operation in verification) to verify
a batch of signatures. Nevertheless we note that one will still need to perform
multiple hash functions to obtain those message digests. In addition, since the

3

accumulated signature is a larger vector in the lattice (compared to a single
signature), we will require that the corresponding lattice problem for this accu-
mulated signature is also hard. We will give more details in section 5.

We also note that other lattice-based schemes such as BLISS [9] and TESLA
[3], cannot provide this property easily as they need to perform the ring opera-
tions before the hash function.

Paper Organization. In section 2 we give some background to this work. In
section 3 we give a modular lattice signature scheme based on the short integer
solution problem. We show that to forge a signature is as hard as solving the
computational LWR problem for a random lattice. This is followed by a practical
instantiation using NTRU lattices and a bimodal Gaussian in section 4. Then we
explain signature aggregation in more details in section 5 and present parameters
for our practical instantiation in section 6.

2 Background

2.1 Notations

We use lower case bold letters for vectors, upper case bold letters for matrices.
For a polynomial f(x) = f0 + f1x + · · · + fn−1x

n−1, we denote its vector form
by f ..= 〈f0, f1, . . . , fn−1〉. We sometimes abuse the notation of vector and poly-
nomial when there is no ambiguity. For a polynomial/vector f , the norms are

‖f‖ ..=
√∑n−1

i=0 f
2
i and ‖f‖∞ ..= max(|fi|).

We often use the polynomial rings Rq ..= Z[x]/F (x) with F (x) = xn ± 1. A
cyclic rotated matrix of a polynomial f(x) over the ring Rq is a matrix M =
(f1, f2, . . . , fn)T with fi = f(x)xi−1 mod F (x). If F (x) = xn − 1 it is literally
cyclic, and close to cyclic, up to signs, if F (x) = xn + 1.

For a real a, we let bae denote the closet integer to a. For an integer a, we use
[a]q to denote a mod q; bacp ..= (a− [a]p)/p for the operation of rounding a to the
closest multiple of p. Modular operations are center lifted, for example a mod q
returns an integer within −q/2 and q/2. These notations are also extended to
vectors and matrices.

2.2 NTRU, SIS, LWR and lattices

A lattice L is a discrete sub-group of Rn, or equivalently, the set of all the integral
combinations of d ≤ n linearly independent vectors over R:

L ..= Zb1 + Zb2 + · · ·+ Zbd,bi ∈ Rn.

B ..= (b1, . . . ,bd)
T is called a basis of L. Given a lattice L, finding a vector that

is no longer than γ · λ1(L) is called the approximate shortest vector problem
(γ-SVP), where λ1 is the first minima, i.e, the length of the shortest vector,
of the lattice. The Gaussian heuristic says that for random lattices, this first

4

minima should be approximately λ1 ≈
√

dim
2πe det(L)

1
dim , where det(L) denotes

the determinant of L. Given a particular lattice L, where there exists a unique
shortest non-zero vector, finding this vector is called the unique shortest vector
problem.

We view an NTRU lattice as an Rq module of rank 2. Let f ,g ∈ Rq with
small coefficients. Let h = g/f over Rq. The NTRU lattice associated with h is
defined as

L ..= {(s, t) ∈ R2
q : t ≡ sh mod q}.

Given h, it is believed to be hard to find f and g. This is known as the NTRU
assumption, and it can be reduced to the unique shortest vector problem for the
NTRU lattice.

We write a vector in the NTRU lattice as v = 〈s, t〉, where s and t are each
an element in Rq. In addition, we refer to the sub-vector that forms the first
part of this vector as the “s-side” vector, and that which forms the second part
of this vector as the “t-side” vector.

We extend this notion to the short integer solution problem (SIS) when
applicable. Recall that an SIS problem is defined as follows:

Definition 1 (SISq,n,m,β problem). Given a random matrix A ∈ Zn×mq , find
a short non-zero vector v such that vA ≡ 0 mod q with ‖v‖2 ≤ β.

For a matrix A that is a horizontal concatenation of two matrices, i.e., A =[
A1

A2

]
, the lattice associated with A is defined as

L ..= {(s, t) : sA1 + tA2 ≡ 0 mod q}.

Finding a short (s, t) in this lattice provides a solution to the SIS problem. It
was shown in [25] that solving SIS on average for n = poly(m), q ≥ β · mδ

for some positive δ, is as hard as the shortest independent vector problem with
approximating factor max{1, ββ∞/q} · O(β

√
m) where β∞ is the upper bound

for the infinity norm of v.
The SIS problem has a “dual” version, known as the LWE problem. Infor-

mally speaking, let m,n, q be some positive integers, let χσ be an error distri-
bution parameterized by σ, for example, a discrete Gaussian distribution with
standard deviation σ, sample uniformly at random A ∈ Zn×mq , s,b1 ∈ Znq ; sam-
ple e ∈ χmσ ; compute b0 = sA + e mod q; the decisional LWE assumption states
that given two pairs (A,b0), with b0 generated as above; and (A,b1), with ,b1

chosen from a uniform distribution, one is not able to distinguish those two pairs.
We also make use of the learning with rounding (LWR) problem [6, 5]. This

can be seen as a variant of the learning with errors (LWE) problem [29], with
deterministic errors from rounding. We formally record the LWR problem as
follows:

Definition 2 (LWRq,r,n,m problem). Sample uniformly at random a matrix
A ∈ Zn×mq and a vector s ∈ Znq ; compute b = bsA mod qcr; the decisional LWR
problem is: given two pairs (A,b) and (A, bucr) where u is sampled uniformly at

5

random in Znq , distinguish those two pairs. The computational problem is: given
(A,b), find s.

It has been shown in [5] that the decisional LWRq,r,n,m problem is hard
assuming the hardness of LWEq,r,n,m′ with parameters

m ≥ log(q)

log(2γ)
·m′ and q ≥ γ(nmβp)

for some γ ≥ 1. To the best of our knowledge, we are not aware of reductions
between computational LWR and other assumptions.

2.3 Bimodal Gaussian distribution and rejection sampling

An n-dimensional Gaussian distribution with mean v and standard deviation σ is
defined by ρv,σ(x) ..= exp(−‖x−v‖

2

2σ2). When there is no ambiguity, we abbreviate
this by ρσ. An n-dimensional discrete Gaussian distribution over Z is defined

by χσ ..= ρσ(x)
ρσ(Zn) , where ρσ(Zn) ..=

∑
z∈Zn ρσ(z) is a scaling quantity needed to

make the function into a probability distribution [22].

Tail cutting: For a discrete Gaussian distribution χmσ and a positive τ > 1,

ρσ(Zm\τσ
√
mB) ≤ 2ρσ(Zm)

(
τ exp

(
1− τ2

2

))m
,

where B is the centered unit ball [26]. As suggested in [9], setting τ =
√
λ2 ln 2

for a 1-dimensional Gaussian will ensure all samples are bounded by τσ with a
probability greater than 1 − 2−λ. Typically, τ = 13.3 for λ = 128 and τ = 18.8
for λ = 256.

Rejection sampling: Let S be a secret matrix, c be a vector sampled from a uni-
form distribution, and y be a vector sampled from χσ. Consider the distribution
of x = y + cS, i.e., a Gaussian distribution shifted by cS. It has been shown
in [27, 12] that each sample x leaks partial information on S. The method used
to seal this leakage is rejection sampling [21]: making the output distribution
independent of S by probabilistically accepting the output according to certain
criteria.

As shown in [23], if we wish to force output distribution to be the same as
y, it is sufficient to have

χσ(x)

χcS,σ(x)
≤M,

and this inequality holds with

M = exp

(
2τσmaxc ‖cS‖+ maxc ‖cS‖2

2σ2

)
where M is the repetition rate. The constant M determines the rate of rejection,
and the smaller M is, the more efficient the signature generation process is. A
common choice is to set σ = τ maxc ‖cS‖ which gives a constant (while still
largish) M . This is improved when bimodal Gaussian sampling is used [9].

6

Bimodal Gaussian: Informally speaking, a bimodal Gaussian is a sum of two
Gaussian distributions with the same σ and means of the same absolute value,
with opposite signs. Following the above example, the distribution of x = y±cS
is very close to a bimodal Gaussian distribution. One can use rejection sampling
to produce the Gaussian distribution χσ from the bimodal Gaussian distribution
1
2χcS,σ(x) + 1

2χ−cS,σ(x) if there exists a constant M such that

χσ(x)
1
2χcS,σ(x) + 1

2χ−cS,σ(x)
≤M.

It has been shown in [9] that this inequality holds with

M = exp

(
maxc(‖cS‖2)

2σ2

)
. (1)

It is also shown in [9], that for an individual x = y ± cS, the probability of
accepting it is given by

ρ = 1/

(
M exp

(
−‖cS‖

2σ2

)
cosh

(
〈x, cS〉
σ2

))
. (2)

Remark 2. As usual there is a trade-off between efficiency and storage size. For
the discrete Gaussian distribution χσ, the entropy of its output x is bounded
above by

H(x) / k log(4.1σ).

Therefore, such a vector can be efficiently stored with approximately k(log(σ)+2)
bits, using Hoffman coding. Thus a smaller σ yields a smaller signature, but
simultaneously makes rejection sampling less efficient.

3 Modular lattice signatures with Gaussian sampling

3.1 The scheme

Construction: Let m, n and k be 3 positive integers with n = k + m. Let S1 ∈
Zm×kq be a matrix with small (and sparse) coefficients. For simplicity, we assume
S1 is sampled from a certain β-bounded sampler such that ‖S1‖∞ ≤ β � q. In
practice one can use either a discrete Gaussian sampler with small variance, or
a uniform sampler within a small range.

Our secret key is a matrix S ..= [pS1|Im] ∈ Zm×nq with small entries. The

public key is constructed from a matrix A =

[
A1

A2

]
such that SA = 0 mod q and

A2 is invertible mod q. Equivalently, we can sample A1 uniformly from Zk×mq ,
and then set A2 = −pS1A1 mod q. We re-sample A1 if A2 is not invertible mod
q. The SIS lattice defined by A is:

L ..= {(u,v) : uA1 + vA2 = 0 mod q},

7

where S is a short trapdoor basis for this lattice. Note that the procedure above
is a standard construction for the SIS problem, except that we have a factor of p
on S1. We will show the equivalence between our construction and the standard
SIS problem in the next subsection.

It is perhaps more convenient to look at a k×mmatrix B ..= A1(−A2)−1 mod
q. With B, the lattice L can be interpreted as

L ..= {(u,v) : uB = v mod q},

with a Learning with Error (LWE) basis

P =

[
0 qIm
Ik B

]
that allows for efficient sampling.

Signing: We model the hash function H as a random oracle that outputs uni-
formly over Znp . This allows us to generate random elements mp ∈ Znp from a

message digest µ. We write mp
..= (up,vp), with up ∈ Zkp and vp ∈ Zmp .

The next step is to sample a vector (u1,v1) from P such u1 ≡ up mod p. To
do so, one can simply sample a vector r from a discrete Gaussian distribution
χkσ. Then, compute u0 = pr, u1 = u0 + up, and then find a lattice vector whose
“s-side” is u1 by setting v1 = u1B mod q. As such, (u1,v1) is a vector in the
lattice, with u1 ≡ up mod p.

An alternative way to view the above procedure is to generate a random
vector (r, rB mod q) in the lattice. By definition, the matrix [Ik|B] is a basis of
a sub-lattice of L(P). Also, since r is sampled from a discrete Gaussian distri-
bution, this random vector can be viewed as an output of a GPV sampler [14]
over L([Ik|B]). If σ is greater than the smoothing parameter of L([Ik|B]), the
vector r([Ik|B]) will be uniform over L([Ik|B]) and a discrete Gaussian over Zn.
Then we take this vector modulo q to obtain the exact output vector.

Since v1 is discrete Gaussian over Zn, it will have random coefficients modulo
p, and therefore will not meet the congruence condition. To complete the process,
we need to micro-adjust v1 so that the t-side also meets the congruence condition;
in the meantime we do not want to break the congruence condition on the s-side.
We use the secret basis S = [pS1|Im] to achieve this goal. Let a = vp−v1 mod p.
We compute (u2,v2) = aS = (paS1,a). Note that (u2,v2) ≡ (0,a) mod p by
construction, and (u2,v2) is a vector in the lattice.

The final signature is (u,v) = (u1,v1) + (u2,v2). It is easy to see that (u,v)
remains in the lattice as long as ‖v‖∞ < q/2. On the other hand, we have

u = u1 + u2 = u1 ≡ up mod p

and

v = v1 + v2 ≡ v1 + vp − v1 ≡ vp mod p.

Therefore, (u,v) is a valid signature for our scheme.

8

3.2 Rejection sampling

As stated before, a candidate signature (u,v) leaks information about the secret
key S. To seal this leak one need to use the rejection sampling technique. The
efficiency of the above scheme relies heavily on how often one will need to reject
a signature. As a proof of concept, we will show how rejection sampling can be
used to seal information leakage here. We will give a more efficient instantiation
in Section 4, which uses bimodal Gaussian distribution.

Rejection sampling on u. Recall that u = p(r + aS1) + up. Since both p and up
are publicly known, we need to seal the leakage of S1 from b ..= r + aS1. Also
recall that χkσ is the distribution for r. This situation is exactly analogous to the
one handled by rejection sampling in [23].

Rejection sampling on v. On the t-side, we do not require rejection sampling.
We have v = v1 + v2. First, v1 = (pr + up)B, which is not linked to the secret
key S1. Second, v2 = (v1 − vp) mod p is also not linked to any secret key.

Another way of saying this is that rejection sampling is not required for the
t-side due to the fact that the “secret key” corresponding to the t-side is actually
Im. In fact, we can write v = v1 + aS2 where S2 happens to be Im. As we shall
see in the next section, we still need to use rejection sampling to seal the leakage
for S2 when an alternative secret matrix replaces Im.

Nonetheless we do need to restart if ‖v‖∞ becomes too large and causes a
wrap-around mod q. When this occurs, the congruent condition is broken after
mod q reduction.

Alternatives. In our construction we choose to do rejection sampling so that
‖v‖∞ does not cause any wrap-around. We chose this approach despite the fol-
lowing two alternatives. First, the signer can send a helper indicating to the
verifier the coefficients where wraparound occurred. This can be seen as a recon-
ciliation approach used in (R)LWE-based key exchange methods [31, 28, 4]. We
do not adopt this solution as it would increase the signature size.

Second, since the wrap-around only occurs with a low probability, we can let
the verifier accept the signature based on a fuzzy matching: accept the signature
when the majority of the coefficients on the t-side meet the congruent condition.
This promising method may weaken our security since it makes forgery easier.
For conservative purpose we do not consider this approach.

3.3 Signature compression

There are three sources of compression. First, one can effectively store only the
“s-side” of the vector instead of the whole vector, so long as the vector is in L.
In other words, given u, the verifier is able to reconstruct v = uB mod q.

Second, the verifier is able to reconstruct u = pb + up from b as both p and
up are publicly known. So only b is required for verification.

9

Finally, since b follows a discrete Gaussian distribution after the rejection
sampling, one can use code based compression techniques to reduce the space
requirement for b.

The final signature is a k-dimensional discrete Gaussian vector that allows
for Hoffman coding. The size of the final signature is k(log(σ) + 2).

Algorithm 1 Signing Algorithm

Input: Message µ; Public key B; Secret key S1; Distribution χσ
Input: Parameters k, m, p, q, M
Output: A signature b for message µ
1: (up,vp) = Hash(µ|B)
2: r← χkσ;
3: u1 = pr + up; v1 = u1B mod q
4: a = vp − v1 mod p
5: v = v1 + a;
6: if ‖v‖∞ ≥ q/2 then go to step 2 end if

7: return b = (r + aS1) with probability 1/
(
M exp

(
−2〈b,aS1〉+‖aS1‖2

2σ2

))
8: go to step 2

Algorithm 2 Verification Algorithm

Input: Message µ; Public key B; Signature b;Parameters p, q
Output: Accept or Reject the signature
1: (up,vp) = Hash(µ|B)
2: u = pb + up
3: if ‖u‖∞ ≥ q/2 then Reject end if
4: v = uB mod q
5: if v 6≡ vp mod p then Reject end if
6: return Accept

3.4 Security

For the security of the public key, it is easy to see that the ability to find the
secret key (or merely a short enough vector that allows for forging) from a public
key can be reduced to the ability to solve an SIS problem. In this section we are
mainly focused on the difficulty of forging signatures.

To quantify the difficulty of forgery, let us first introduce the learning with
truncation problem.

Definition 3 (LWTq,p,n,m). Let q, p, n,m be positive integers with p co-prime
to q. Sample uniformly at random a matrix A ∈ Zn×mq and a vector s ∈ Znq ;
compute b = sA mod q mod p; the decisional LWT problem is: given two pairs

10

(A,b) and (A, [u]p) where u is sampled uniformly at random in Znq , distinguish
those two pairs. The computational problem is: given (A,b), find s.

As mentioned earlier, this LWT problem can be viewed as an inverse of the LWR
problem. Here we show the reduction between the problems.

Lemma 1. Choose a pair (p, q) such that both p and r ≡ p−1 mod q are on
the order of

√
q. Then, if there exists an algorithm A that solves the computa-

tional LWT with parameters q, p, n,m for any input (A,b) ∈ Zn×mq ×Zmp , there
exists another algorithm B that solves the computational LWR with parameters
q, r, n,m, with (A′,b′) for A′ sampled uniformly at random from Zn×mq .

We sketch the proof here.

Proof. Suppose algorithm A is able to solve the LWT problem, that is, given
(A,b) it finds a lattice vector v such that

– v = b mod p, and
– v = tA mod q for some t.

Then, we can build an oracle that, upon input (A,b), it finds vectors u and t,
such that

v + pu = tA mod q,

for some ‖u‖∞ ≤ b q2pc < r.

Given an input of an LWR instance (A′,b′), algorithm B sets A = pA′,
b = b′ and r = p−1 mod q; then B invokes A with input (A,b). Since A′ is
drawn from uniform, and p is co-prime with q, A is also uniform over Zn×mq .
Also, since ‖b‖∞ ≤ p by design, (A,b) will be a legitimate input toA. Therefore,
A will find u and t such that b + pu = tA mod q, which is

rb′ + u = tA′ mod q and b′ = btA′ mod qcr

Therefore, t is the solution to the computational LWR problem. �

Now we are ready to quantify the hardness of the forgery.

Theorem 1 (Unforgeability). Let B be a public key generated as per our
scheme with parameters q, p, n,m. For any new input message µ, if an adversary
A is able to forge a signature with a non-negligible probability ρ, then there is an
algorithm B that solves LWTq,p,k,m with the same probability.

Proof. First, we have modeled the hash function H as a random oracle that
outputs uniformly over Znp . In addition, the forger is asked to sign on a message
that he has not seen before. Hence, if algorithm B is able to forge a signature
for every legitimate input µ with non-negligible probability, it must be that A
is able to forge a signature for any legitimate mp = H(µ|B). In the meantime,
any new “mod p” vector will look like a legitimate hash output from the forger’s
point of view.

11

Next, we claim that B is indistinguishable from a matrix randomly and
uniformly chosen from Zk×mq . This follows from the fact that A is indistin-
guishable from a matrix randomly and uniformly chosen from Zn×mq . Recall

B = A1(−A2)−1 mod q and A =

[
A1

A2

]
.

Therefore, given an LWT instance (A′,b′), the forger cannot distinguish A′

from a legitimately generated public key; it also cannot distinguish b′ from a
legitimately generated public message digest. As a result, it will return a signa-
ture vector v which will pass the verification test with probability ρ. From v it
is easy to extract the solution to the LWT problem. �

We remark that to have such a tight reduction from the forgery to LWR/LWT
we will have required a rather large p, on the order of

√
q, which makes this

scheme less efficient. As we will see in next section, our efficient instantiation uses
practical parameters that are derived from best-known attacks (this is also the
design principle for most practical lattice-based signatures, except for [3]). For
this purpose we will choose a small p that allows for efficient rejection sampling.

Strong unforgeability. One subtlety in the (standard) unforgeablity notion is that
the forger is asked to sign messages that have never been previously signed. The
notion of strong unforgeability, however, requires an attacker to be unable to
forge a signature on a message, even if a set of signatures of this same message
are given. This is not captured by the above theorem. Indeed, here we show a
modification that allows strong unforgeability to be achieved.

As shown in [17], for a given message digest mp, all candidate signatures
associated with this message digest are short vectors within the intersection of
the original lattice and pZn+mp. Therefore, the task of forgery becomes finding
a short vector in the original lattice that meets the length requirement and the
congruence mod p requirement. This is roughly the reduction to the approx-CVP
in [17].

Now, suppose that the attacker is given a list of signatures on a same message
digest, then, it becomes easier (compared to without this list) for the attacker to
find another short vector in this lattice, that is, generating a new signature on this
same message. However, we note that any linear combination of such signatures
is highly unlikely to also satisfy the correct mod p congruence conditions.

In general, our solution to achieving strong unforgeability is to include a
random salt in the hash when generating the message digest; this salt will be
part of the signature and used during verification. This ensures that it is highly
improbable, (probability (1/p)2n for each message), that the same message digest
will occur more than once. Note that this is also the same technique that provides
similar functionalities for GPV based signatures [14].

Nevertheless, as the strong unforgeability model is sometimes too strong for
practical use (i.e., the attacker doesn’t need to forge a new signature since it
has already got a list of them on a same message), we leave out this salt in our
efficient instantiation to minimize signature size.

12

4 A practical instantiation with an NTRU lattice

In the previous section we presented an inefficient modular lattice signature
scheme based on the SIS/LWT which requires n ≈ m log(m). Even if we use the
ring-SIS version the scheme is still somewhat inefficient as it requires n ≈ log(m)
- the reduction of a factor of m comes directly from the use of the ring. A natural
way to improve its efficiency is to relax the requirement of n ≈ log(m) (This
will make the underlying (ring) SIS problem easier, so we will derive parameters
from the best known attacks).

For example we can reduce n to 2m (2 in the case of ring-SIS). This makes
A1 a square matrix which causes another issue:

pS1A1 + ImA2 = 0 mod q.

When A1 is a square matrix and invertible, one can easily recover S1 from A1

and A2.
A naive remedy is to set A2 to be private too, and therefore we will have a

secret matrix [pS1|A2] and a public matrix

[
A1

Im

]
which also satisfies the above

equation without giving away S1. This seemingly plausible solution poses another
challenge: we are not able to perform a micro-adjustment on the “t-side” of the
vector anymore, as now A2 is no longer small. If we perform the same micro-
adjustment as before, the coefficients of u2 will explode and will always cause
wrap-around over q.

Hence, the final solution to the above problem is to have a small and private
A2. The final key generation becomes finding such A2 and an invertible S1, and
setting A1 = A2(pS1)−1 mod q. This, not surprisingly, yields an NTRU lattice.
In the following, we will slightly change the notation: H ..= A1, G ..= A2 and
F ..= S1.

4.1 Overview

In the following we will work over the polynomial ring Rq = Zq[x]/(xN + 1).
Our scheme also works over other rings, such as Zq[x]/(xN − 1) with minor
modification. Let f(x), g(x) and h(x) be 3 polynomials in Rq, where f(x) and
g(x) have very small coefficients; h(x) = p−1g(x)f−1(x). We express by f , g and
h the vector form of the polynomials. Also let F, G and H be the matrix obtained
from nega-cyclic rotations. The NTRU lattice with regard to h is defined as

Lh = {(u, v) ∈ R2
q : uh = v}

or rather, the vector/matrix form:

Lh = {(u,v) : uH = v mod q}

where there exists a public basis P =

[
0 qIN

IN H

]
and a secret generator [pF|G].

We also require g(x) to be invertible over Rp, which is the same as G being
invertible mod p.

13

The rest of the scheme is almost identical to the one presented in the previous
section, except for two differences.

First, we use a bimodal Gaussian distribution to improve the acceptance
rate. To cope with this modification, we set p = 2 so that the change of signs in
b = r± af will vanish after reduction modulo p.

Second, we use [pF|G] rather than [pS1|Im] to perform the micro-adjustment.
This modification does raise another issue: the “t-side” vector during the signing
procedure will contain information about G. To be precise, the “t-side” vector
will be v ..= v1 ± ag where v1 is indistinguishable from uniform over Rq, a
is uniform over ZNp . We will need to perform rejection sampling to seal the
leakage of information about g. As shown in [17], after rejection sampling, the
distribution of v will be computationally indistinguishable from uniform over
(− q2 +B, q2 −B) for a parameter B which depends on a, g and q.

To avoid confusion, we will use Ms to denote the rejection rate for the s-side,
Mt for the t-side, and M for the overall rate.

4.2 The scheme

Key generation : The key generation algorithm is shown in Algorithm 3. We use

Algorithm 3 Key Generation Algorithm

Input: Parameters N , p, q, d
Output: Public key h and secret key (pf ,g)
1: f ← T (d+ 1, d)
2: if f is not invertible mod q then go to step 1 end if
3: g← T (d+ 1, d)
4: if g is not invertible mod p then go to step 3 end if
5: h = g/(pf) mod q
6: return h, g and f

the classical NTRU flat form (non-product form, cf. [18]) keys with a pre-fixed
number of +1s and −1s. Here, T (d1, d2) is a set of trinary polynomials of degree
less than N , where there are exactly d1 positive coefficients and d2 negative
coefficients. One can choose thicker keys for a higher level of security. Since we
require both f and g to be invertible, we have set f(1) = g(1) = 1.

Remark 3. In BLISS [9], there is an extra rejection sampling process on keys f
and g during key generation, so that ‖af‖ is reasonably bounded for efficient re-
jection sampling on signatures. We do not adopt this process. Rather we perform
rejection sampling on ‖af‖ during the signing procedure.

Signing algorithm : We highlight the differences between this signing algorithm
and the one described in previous section.

14

Algorithm 4 Signing Algorithm

Input: Message µ; Public key h; Secret key f and g; Distribution χσ
Input: Parameters N , p, q, Ms, Bs, Bt
Output: A signature b for message µ
1: (up,vp) = Hash(µ|h)
2: r← χNσ , b← {0, 1}
3: u1 = pr + up; v1 = u1h mod q
4: a = (vp − v1)/g mod p
5: if ‖af‖2 > Bs or ‖ag‖∞ > Bt then go to step 2 end if
6: v = v1 + (−1)bag;
7: if ‖v‖∞ > q/2−Bt then go to step 2 end if

8: return b = (r + (−1)baf) with probability 1/
(
Ms exp

(
− ‖af‖

2σ2

)
cosh

(
〈b,af〉
σ2

))
9: go to step 2

First, there is a factor of g−1 mod p for step 4, which is there to ensure the
congruence condition for the t-side.

Second, in step 5, we check the norm requirements for af and ag. This is
to ensure that the rejection samplings in the followed steps deliver the desired
acceptance rate.

Third, in step 7, rejection sampling is performed on the t-side, parameterized
by an additional integer Bt. The distribution of the t-side vector will be uniform
within the interval (− q2 +Bt,

q
2 −Bt).

Finally, unlike the scheme in previous section, here we have

(u,v) = (u1,v1) + (−1)b(u2,v2)

for a random bit b. This makes the raw distribution of b ..= (r + (−1)baf) a
bimodal Gaussian distribution. As stated before, one can achieve a much higher
acceptance rate for this distribution. Note that in the initial construction of
BLISS [9], the bimodal Gaussian distribution makes a signature sometimes un-
verifiable due to the odd modulus q. BLISS solved this problem by moving the
modulus from q to 2q. We solve this problem by setting p = 2. It follows that
v ≡ v1 + (−1)b(vp − v1) ≡ vp mod 2.

Algorithm 5 Verification Algorithm

Input: Message µ; Public key h; Signature b;Parameters p, q, B, σ, N
Output: Accept or Reject the signature
1: (up,vp) = Hash(µ|h)
2: u = pb + up
3: if ‖u‖2 > p2σ2N then Reject end if
4: v = uh mod q
5: if v 6≡ vp mod p or ‖v‖∞ > q/2−B then Reject end if
6: return Accept

15

4.3 Security

A similar reduction to the approximate shortest vector problem can be applied
here, except that we need to adjust the approximation parameter for the γ-SVP
because λ1 = ‖(f ,g)‖ in the NTRU lattice is smaller than the Gaussian heuristic
length. We omit the details.

5 Batch verification

The modular lattice signature scheme presented here allows for batch verifi-
cation. This is because, as stated in the introduction, the sum of signatures,
after lifting to the integers, is still a valid lattice vector that satisfies the mod p
congruence condition.

However, in order to fully utilize this functionality, it appears at first that
one will need to send the whole lattice vector as the signature. In other words,
one cannot merely send the “s-side” of the vector. To see why this is the case,
suppose that for two signatures (u,v) and (u′,v′) corresponding to messages
(up,vp) and (u′p,v

′
p), one computes

(v + v′) mod q = (u + u′)h mod q

The difficulty is that (v + v′) will, with high probability, cause a wraparound
mod q, as ‖v + v′‖∞ / q − 2Bt. Thus one will recover (v + v′) mod q rather
than v + v′. When this occurs,

(v + v′) mod q mod p 6= (vp + v′p) mod p

and the verification will fail.
One way to solve this issue is to send both the “s-side” and the “t-side” of

the vector. Then one recovers u + u′ and v + v′ over the integers. The mod p
relationship can be checked from this, and then the lattice relation mod q can be
checked. As a trade-off, one will have to send 2 elements in Rq for each signature.
This increases the size of a signature.

We can actually do efficient batch verification with a much smaller cost. We
can send merely the “t-side” of the vectors. Then the sum of the t-side vectors
can be computed over the integers, and the congruence mod p can be checked.
Then, multiplying by h−1 and reducing mod q will reveal the sum of the “s-side”
of the vectors mod q. Signature aggregation works so long as the sum of the “s-
side” vectors mod q identically equals the sum over the integers, that is, does
not result in any wrap-around modulo q. Since the “s-side” vectors are Gaussian
distributed with a variance σ much smaller than q, we are able to sum quite a
few s-side vectors without a wrap-around mod q.

To be precise, suppose we want to verify k signatures in one batch. Since a
sum of k samples from χσ is also a Gaussian with variance

√
kσ, we know that

the maximum absolute value of the coefficients, i.e, ‖
∑
k ui‖∞, will be bounded

above by
√
kτσ (recall that τ is the Gaussian tail-cutting parameter). Therefore,

16

having
√
kτσ ≤ q/2 will eliminate wrap-around. That is, we are able to batch

verify

k = b
(q

2τσ

)2
c

signatures in one batch. For our parameter choices, to be shown in the next
section, we have k = 529, σ = 107 and τ = 13.3. See Algorithm 6, below, for the
batch verification algorithm.

Algorithm 6 Batch Verification Algorithm

Input: Messages {µi}; Public key B; Signature {vi};Parameters p, q, B, k, σ
Output: Accept or Reject the signature
1: (up,i,vp,i) = Hash(µi|B)
2: if ‖vi‖∞ > q/2−Bt then Reject end if
3: (up,vp) = 0; v = 0
4: for i ∈ [k] do
5: (up,vp) += (up,i,vp,i)
6: v += vi
7: end for
8: u = vh−1 mod q
9: if ‖u‖∞ >

√
kτpσ then Reject end if

10: if (u,v) 6≡ (up,vp) mod p then Reject end if
11: return Accept

5.1 Attack and proof for batch verification

Here is an potential attack on batch setting, which performs better than forging

a single signature directly. For a set of message digests {u(i)
p ,v

(i)
p } for 1 ≤ i ≤ k,

do the following:

– for each v
(i)
p , find a random vector v

(i)
1 such that v

(i)
1 = v

(i)
p mod p;

– set V =
∑k
i v

(i)
1 ; V meets the congruent condition by design;

– compute U = Vh−1’
– Since we allows (U,V) to be reasonably large, we can simply use the public

key/basis (I, pH−1) for the micro-adjustments. Suppose the micro adjust-
ment vector is (U0,V0)

– Write V0 as a sum of k vectors {v(i)
0 }

– Publish vi = v
(i)
0 + v

(i)
1 as the signatures.

In short, The attacker finds a large vector (U,V) in the lattice, congruent
to the sum of messages mod p. In addition, V can be written as a sum of k

different v(i)’s such that v(i) is congruent to v
(i)
p for each message mod p. In the

meantime, the U vector also meet the congruence condition; while the attacker
doesn’t need to find individual u(i)’s. In the meantime, for sufficiently large k,

17

the size of (U,V) will be acceptable. Hence, the attack can claim that each such
small vector is a signature for a given message, as collectively they can be batch
verified, although each individual verification will fail.

Note that for this attack to work, k needs to be large. For properly chosen k
this attack will fail. The intuition is that, when k is small enough, the sum of k
valid signatures will remain a short vector in the lattice so that the root Hermite
factor with respect to this lattice/vector is still small (although it will be larger
than in a single verification setting). In other words, if the attacker is able to
find a vector (U,V) sufficiently small, he is also able to find an approximate
shortest vector in the lattice (with a root Hermite factor slightly larger than the
single verification case, see Section 6.2 for an analysis of the lattice strength of
both single and batch verifications against forgery).

6 Parameters and implementations

6.1 Parameter derivation

The script that we used to generate the parameters is available at [2]. Here we
give an example of how to derive parameters for 128 bits security.

We use N = 512 which allows for efficient FFT (together with an FFT-
friendly modulus q = 216 + 1). We also set p = 2, which is relatively prime to q
in both settings, and also enables the use of the bimodal Gaussian. The secret
polynomials f and g are sparse trinary polynomials with roughly 2df + 1 =
2dg + 1 = 0.3N ≈ 155 number of non-zero coefficients. This creates an NTRU
lattice with unique shortest vectors. This is also the NTRU lattice used in [9].
In next subsection we show the lattice strength against recovering those unique
shortest vectors.

The next most important parameter in our scheme is σ. We need to have σ
small enough to avoid wrap-around mod q on the s-side when performing batch
verification. This requires the following upper bound for σ < q

2τp . As remarked
before, a smaller σ produces a more compact signature, in the single signature
verification scenario, but at the cost of worsening the rejection rate. Thus we
may chose smaller σ to obtain a slower signature algorithm with smaller (single)
signature size. Alternatively, we can trade the size for faster signing. Here, we
follow the BLISS scheme by setting σ = 107. This value seems to give a good
signature size while maintaining an acceptable rejection rate.

Rejection rate. Next, we calculate the rejection rate. As shown in Eq. 1, the
rejection rate parameter Ms depends on σ and maxf (‖af‖) = Bs. From Eq.
1, if Bs ≈ 2σ, then we can expect a rejection parameter for the “s-side” of
Ms = e2 ≈ 7.4. Assuming a is uniformly distributed in ZNp , our implementation
shows that Prob(‖af‖2 ≤ Bs) ≈ 89% for this choice of Bs. Therefore the overall
probability of acceptance on the “s-side” is 0.89/e2 ≈ 12%.

For the “t-side”, we simply run an exhaustive search for the optimal Bt as
follows:

18

– Sample many v1 uniformly from Rq;
– Sample many a uniformly from {−1, 0, 1}N ;
– Sample many g uniformly from T (d+ 1, d);
– For each set of samples, compute v = v1 + ag
– find Bt which minimizes

Mt
..= 1/Prob(‖ag‖∞ ≤ Bt, ‖v‖∞ ≤

q

2
−Bt).

Our test shows that with Bt = 40, this quantity is minimized at around 2.

R, N, q df , dg σ Bs, Bt PK size Sig size
Zq [x]
xN+1

, 512, 216 + 1 77 107 215, 40 8704 bits 4608 bits

Table 1. Parameters.

Overall Ms Prob(‖af‖2 ≤ B) Mt

6% 7.4 89% 2
Table 2. Acceptance rates.

6.2 Estimating the lattice strength

Security against public key attacks. The public key strength is determined by
the hardness of the unique shortest vector problem of the NTRU lattice, which
is related to the 2N -th root of the following quantity:

Gaussian Heuristic Length

λ1
=

√
2N/(2πe)qN/(2N)

‖f ,g‖2
=

√
Nq/(πe)

2df + 2dg + 2
.

Security against forgery. We analysis the (batch) forgery attack with a parameter
k. For single verification, we can simply apply the results in this section with
k = 1.

In [17] it is shown in Section 5 that the forging a signature can be accom-
plished if an associated approximate closest vector problem in the intersection of
the NTRU lattice, and pZ2N can be solved. Therefore, the task of forgery can be
solved by finding a vector that meets the congruence mod p requirements, and
is sufficiently close to the intersection lattice to satisfy the length requirement.

This problem is harder than that of finding a short vector in the intersection
lattice, and so to simplify our analysis we will use this to quantify the strength
of the lattice problem. The intersection lattice is generated by the rows of the
matrix [

0 pqIN
pIN pH′

]
,

19

for some appropriate H′. We also assume that this lattice behaves like a random
lattice.

Notice that the lattice is not “balanced” as ‖u‖ is significantly smaller than
‖v‖. In general, if the target is a vector (u,v), with u,v each N -dimensional, and
satisfying ‖u‖ ≈ a

√
N and ‖v‖ ≈ b

√
N then the optimal matrix for maximizing

strength against lattice reduction attacks, that is, minimizing the ratio of the
norm of the target of the Gaussian expected norm, is the 2N by 2N matrix[

0 pqIN
αpIN pH

]
,

with α chosen so that α = b/a.
The vector (αu,v) will be a short vector in this matrix, and it is not surprising

that the optimal α equalizes the lengths of the vectors αu, and v. We omit the
details justifying this.

We now determine the values of a, b in our case. As it is a sum of k vectors,
with each coordinate choses from the Gaussian distribution, the expected norm
of ‖u‖ will satisfy ‖u‖2 ≈ p2σ2kN . Thus a = pσ

√
k. Also,

v =

k∑
i=1

vi,

with the coordinates of each vi approximately randomly and uniformly dis-
tributed between −q/2 + Bt and q/2 − Bt. As uniformly distributed vectors in
high dimensions are close to orthogonal, It follows that

‖v‖2 ≈
k∑
i=1

‖vi‖2.

Each coordinate of vi will be approximately randomly and uniformly distributed
between −q/2+Bt and q/2−Bt. Ignoring the Bt, the average squared coefficient
will be approximately

1

q

∫ q/2

−q/2
x2dx = q2/12.

Thus v will have norm ‖v‖2 ≈ kq2N/12, so b = q
√
k/12 .

As stated above, in our particular case a = pσ
√
k, b = q

√
k/12, so α =

q/(pσ
√

12), and the length of the target is

Length target ≈ b
√

2N = q
√
kN/6.

For general, a, b, and α = b/a, the determinant of the matrix is αNp2NqN , and
thus the length of the Gaussian expected shortest vector is

Gaussian Heuristic Length = α1/2pq1/2
√

2N

2πe
=

√
Npq2

πeσ
√

12

20

We thus have
Target Length

Gaussian Heuristic Length
=

√
πeσk

p
√

3
,

and the strength against forgery is determined by the 2N th root of this ration,
which equals. (

πeσk

p
√

3

)1/(4N)

.

k = 1 k = 529 k = 2000

Public key strength
(

GH
λ1

) 1
2N

112
1

2N = 1.0046

Forgery strength
(
‖u,v‖
GH

) 1
2N

16
1

2N = 1.0027 78
1

2N = 1.0043 109
1

2N = 1.0046

k = 1: single verification case
k = 529: theoretical bound without verification errors

k = 2000: practical bound from experiments without verification errors
Table 3. Lattice strength given by root Hermite factor

We estimate that our parameter set delivers 128 bits security against classical
and quantum attackers, assuming the complexity of BKZ 2.0 using enumeration
with extreme pruning [8, 13]. This is using the same metric as was used in [9]
and [17].

6.3 Implementation and performance

We implemented our scheme with C. Our software is available at [2] under GPL
license. We benchmarked our implementation on a dual core Intel i7-6600U pro-
cessor @ 2.60GHz. Our operation system was Linux Ubuntu 16.04. We used gcc
version 5.4.0.

Single verification Batch verification

Signature size 4608 bits 8192 bits

Public key size ≈8200 bits ≈8200 bits

Signing time 15 ∼ 20ms 15 ∼ 20 ms

Verification time 0.3ms 0.3 ms
Table 4. Performance

The benchmark results are given in Table 4. As mentioned previously, we
observed that in practice one may perform successful batch verification for a
number of signatures between 1000 to 2000, which is higher than the theoretical
threshold k = 529.

21

We also note that we did not use FTT/NTT techniques to accelerate ring
multiplications in signing/verification since we need to perform mod p over the
integers regularly. We leave the investigation of this potential optimization to
future work.

Remark 4. A “t-side” signature vector can always be stored with 16N = 8192
bits as it needs to be smaller than q

2 − Bt in infinity norm. For public keys, an
element inRq with q = 216+1 can also be stored efficiently with 8192 bits, except
for the case where one or more coefficients are equal to q − 1. This occurs with
1/q probability if the coefficient is uniformly random in Zq. When this happens,
we need an extra of dlog2Ne = 9 bits for each such coefficient to indicate the
position of the coefficient. The final size of the public is therefore around 8200
bits.

7 Conclusion and comparison

In this paper we revisited the NTRU modular lattice signature scheme [17].
We presented an instantiation of the modular lattice signature, using bimodal
Gaussian sampling [9] and the NTRU lattice [20].

Compared to the original pqNTRUSign scheme, we are able to remove an
extra assumption in the original design. The procedure for generating a signature
is similar, except for the method of sampling the random lattice vector. We
improve both the signing speed and the signature size. We also enable signature
aggregation with this new construction.

Compared to the BLISS scheme, our approach (hash-then-sign) is an entirely
different approach. However, the final signatures in both schemes are discrete
Gaussian vectors of similar parameters. As explained before, in our scheme we
can efficiently store the s-side vector while the verifier can reconstruct the whole
lattice vector during the verification. This advantage saves us from sending a
helper as done in BLISS. In particular, our parameter set uses identical param-
eter sets for bimodal sampling as in BLISS-II. Our signature is around 400 bits
less than BLISS which is exactly the storage requirement for the helper vector.
In terms of the speed, our scheme has almost same rejection rate as BLISS-II
on the “s-side”. However, our overall speed is twice as slow as BLISS-II, due to
the uniform rejection sampling on “t-side”.

References

1. NSA Suite B Cryptography - NSA/CSS.
2. NTRU OpenSource Project. online. available from https://github.com/

NTRUOpenSourceProject/ntru-crypto.
3. Erdem Alkim, Nina Bindel, Johannes A. Buchmann, and Özgür Dagdelen. TESLA:

tightly-secure efficient signatures from standard lattices. IACR Cryptology ePrint
Archive, 2015:755, 2015.

4. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 327–343, 2016.

22

5. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited - new reduction, properties and applications. In Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 57–74, 2013.

6. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, pages 719–737, 2012.

7. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on post-quantum cryptography. National Institute
of Standards and Technology Internal Report 8105, February 2016.

8. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates.
In ASIACRYPT 2011, pages 1–20. Springer, 2011.

9. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, pages 40–56, 2013.

10. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from module lat-
tices. IACR Cryptology ePrint Archive, 2017:633, 2017.

11. Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over NTRU lattices. In Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceed-
ings, Part II, pages 22–41, 2014.

12. Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis
of ntrusign countermeasures. In Advances in Cryptology - ASIACRYPT 2012 -
18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages 433–
450, 2012.

13. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, 2010.

14. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Proceedings of the 40th annual ACM
symposium on Theory of computing, STOC ’08, page 197206, New York, NY, USA,
2008. ACM.

15. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 1997, Proceedings, pages 112–131, 1997.

16. Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSIGN: digital signatures using the NTRU lattice. In Topics
in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference
2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings, pages 122–140,
2003.

17. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Transcript secure signatures based on modular lattices. In Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON,
Canada, October 1-3, 2014. Proceedings, pages 142–159, 2014.

23

18. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt. IACR Cryptol-
ogy ePrint Archive, 2015:708, 2015.

19. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a ring-based public
key cryptosystem. In Algorithmic number theory (Portland, OR, 1998), volume
1423 of Lecture Notes in Comput. Sci., pages 267–288. Springer, Berlin, 1998.

20. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, pages 267–288,
1998.

21. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in CryptologyASIACRYPT 2009, page
598616. Springer, 2009.

22. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in
cryptology—EUROCRYPT 2012, volume 7237 of Lecture Notes in Comput. Sci.,
pages 738–755. Springer, Heidelberg, 2012.

23. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
738–755. Springer, 2012.

24. Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding,
unique shortest vectors, and the minimum distance problem. In Advances in Cryp-
tology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 577–594, 2009.

25. Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small pa-
rameters. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 21–39, 2013.

26. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

27. Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures. J. Cryptology, 22(2):139–160, 2009.

28. Chris Peikert. Lattice cryptography for the internet. In Post-Quantum Cryp-
tography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada,
October 1-3, 2014. Proceedings, pages 197–219, 2014.

29. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

30. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In FOCS, pages 124–134, 1994.

31. Jiang Zhang, Zhenfeng Zhang, Jintai Ding, and Michael Snook. Authenticated key
exchange from ideal lattices. IACR Cryptology ePrint Archive, 2014:589, 2014.

24

