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Abstract. Asymptotically, the best known algorithms for solving the Shortest Vector Prob-
lem (SVP) in a lattice of dimension n are sieve algorithms, which have heuristic complexity
estimates ranging from (4/3)n+o(n) down to (3/2)n/2+o(n) when Locality Sensitive Hashing
techniques are used. Sieve algorithms are however outperformed by pruned enumeration al-
gorithms in practice by several orders of magnitudes, despite the larger super-exponential
asymptotical complexity 2Θ(n logn) of the latter.
In this work, we show a concrete improvement of sieve-type algorithms. Precisely, we show
that a few calls to the sieve algorithm in lattices of dimension less than n− d allows to solve
SVP in dimension n, where d = Θ(n/ logn).
Although our improvement is only sub-exponential, its practical effect in relevant dimensions
is quite significant. We implemented it over a simple sieve algorithm with (4/3)n+o(n) com-
plexity, and it outperforms the best sieve algorithms from the literature by a factor 10 in
dimensions 70-80. It performs less than an order of magnitude slower than pruned enumera-
tion in the same range.
By design, this improvement can also be applied to most other variants of sieve algorithms,
including LSH sieve algorithms and tuple-sieve algorithms. In this light, we may expect sieve-
techniques to outperform pruned enumeration in practice in the near future.
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1 Introduction

The concrete hardness of the Shortest Vector Problem (SVP) is at the core of the cost estimates
of attacks against lattice-based cryptosystems. While those schemes may use various underlying
problems (NTRU [HPS98], SIS [Ajt99], LWE [Reg05]) their cryptanalysis boils down to solving
large instances of the Shortest Vector Problem inside BKZ-type algorithms. There are two classes
of algorithms for SVP: enumeration algorithms and sieve algorithms.

The first class of algorithms (enumeration) was initiated by Pohst [Poh81]. Kannan [Kan83,
HS07, MW15] proved that with appropriate pre-processing, the shortest vector could be found in
time 2Θ(n logn). This algorithm only requires a polynomial amount of memory. These algorithms
can be made much faster in practice using some heuristic techniques, in particular the pruning
technique [SE94, SH95, GNR10, Che13].

The second class of algorithms (sieving) started with Ajtai et al. [AKS01], and requires sin-
gle exponential time and memory. Variants were heuristically analyzed [NV08, MV10], giving a
(4/3)n+o(n) time complexity and a (4/3)n/2+o(n) memory complexity. A long line of work, includ-
ing [BGJ13, Laa15a, Laa15b, BDGL16] lead to decrease this time complexity down to (3/2)n/2+o(n)

at the cost of more memory. Other variants (tuple-sieving) allows to decrease the memory complex-
ity [BLS16, HK17].



The situation is rather paradoxical: asymptotically, sieving algorithms should outperform enu-
meration algorithms, yet in practice, Sieving remains several orders of magnitude slower. This situ-
ation makes security estimates delicate, necessitating to consider both algorithms. In that respect,
one would much prefer enumeration to become irrelevant, as the heuristics used in this algorithm
makes prediction of its practical cost tedious and maybe inaccurate.

To this end, an important goal is to improve not only the asymptotic complexity of sieving,
but also its practical complexity. Indeed, much can been gain from asymptotically negligible tricks,
fine-tuning of the parameters, and optimized implementation effort [FBB+15, BNvdP14, MLB17].

This work. We propose a new practical improvement for sieve algorithms. In theory, we can heuristi-
cally show that it contributes a sub-exponential gain on the running time and the memory consump-
tion. In practice, our implementation outperforms all sieving implementations of the literature by a
factor 10 in dimensions 70-80, despite the fact that we did not implemented some known improve-
ments [BDGL16, MLB17]. Our improved sieving algorithm performs reasonably close to pruned
enumeration; more precisely, within less than an order of magnitude of the optimized pruned enu-
meration implementation of the fplll’s library [Ste10, FPL16b, FPL16a].1

In brief, the main idea behind our improvement is exploiting the fact that sieving produces
many short vectors, rather than only one. We use this fact to our advantage by solving SVP in
lattices of dimension n running a sieve algorithm in projected sub-lattices of dimension smaller than
n− d. Using an appropriate pre-processing, we show that one may choose d as large as Θ(n/ log n).
Heuristic arguments lead to a concrete prediction of d ≈ n ln(4/3)

ln(n/2πe) . This prediction is corroborated
by our experiments.

At last, we argue that, when combined with the LSH techniques [BDGL16, MLB17], our new
technique should lead to a sieve algorithm that outperforms enumeration in practice, for dimensions
maybe as low as n = 90. We also suggest four approaches to further improve Sieving, including
amortization inside BKZ.

Outline. We shall start with preliminaries in Section 2, including a generic presentation of sieve
algorithms in Section 2.3. Our main contribution is presented in Section 3. In Section 4, we present
details of our implementation, including other algorithmic tricks. In Section 5 we report on the
experimental behavior of our algorithm, and compare its performances to the literature. We conclude
with a discussion in Section 6, on combining our improvement with the LSH techniques [Laa15a,
BDGL16, MLB17], and suggest further improvements.
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2 Preliminaries

2.1 Notations and Basic Definitions

All vectors are denoted by bold lower case letters and are to be read as column-vectors. Matrices are
denoted by bold capital letters. We write a matrix B into B = (b0, · · · ,bn−1) where bi is the i-th
column vector of B. If B ∈ Rn×m has full rank n, the lattice L generated by the basis B is denoted
by L(B) = {Bx | x ∈ Zn}. We denote by (b∗0, · · · ,b∗n−1) the Gram-Schmidt orthogonalization
of the matrix (b0, · · · ,bn−1). For i ∈ {0, · · · , n− 1}, we denote the orthogonal projection to the
span of (b0, · · · ,bi−1) by πi. For 0 ≤ i < j ≤ n, we denote by B[i,j] the local projected block
(πi(bi), · · · , πi(bj−1)), and when the basis is clear from context, by L[i,j] the lattice generated by
B[i,j]. We use Bi and Li as shorthands for B[i,n] and L[i,n].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lattice L(B) is Vol(L(B)) =∏
i ‖b∗i ‖, that is an invariant of the lattice. The first minimum of a lattice L is the length of a

shortest non-zero vector, denoted by λ1(L). We use the abbreviations Vol(B) = Vol(L(B)) and
λ1(B) = λ1(L(B)).

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lattice L(B) is Vol(L(B)) =∏
i ‖b∗i ‖, which is an invariant of the lattice. The first minimum of a lattice L is the length of a

shortest non-zero vector, denoted by λ1(L). We abbreviate Vol(B) = Vol(L(B)) and λ1(B) =
λ1(L(B)).

2.2 Lattice Reduction

The Gaussian Heuristic consists in predicting that the number |L ∩ B| lattice of points inside a
measurable body B ⊂ Rn is approximately equal to Vol(B)/Vol(L). Applied to Euclidean n-balls,
it leads to the following prediction of the length of a shortest non-zero vector in a lattice.

Definition 1 (Gaussian Heuristic). We denote by gh(L) the expected first minimum of a lattice
L according to the Gaussian Heuristic. For a full rank lattice L ⊂ Rn, it is given by:

gh(L) =
√
n/2πe ·Vol(L)1/n.

We also denote gh(n) for gh(L) of any n-dimensional lattice L of volume 1: gh(n) =
√
n/2πe.

Definition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev reductions [Ngu09]).

The basis B = (b0, . . . ,bn−1) of a lattice L is said to be HKZ reduced if ‖b∗i ‖ = λ1(L(Bi)) for all
i < n. It is said BKZ reduced with block-size b (for short BKZ-b reduced) ‖b∗i ‖ = λ1(L(B[i:max(i+b,n)]))
for all i < n.2

Under the Gaussian Heuristic, we can predict the shape `0 . . . `n−1 of an HKZ reduced basis, i.e.,
the sequence of expected norms for the vectors b∗i . The sequence is inductively defined as follows:

Definition 3. The HKZ-shape of dimension n is defined by the following sequence:

`0 = gh(n) and `i = gh(n− i) ·
(∏
j<i

`j
)1/(n−i)

.

2 The notion of BKZ-reduction is typically slightly relaxed for algorithmic purposes, see [HPS11].



Note that the Gaussian Heuristic is known to be violated in small dimensions [CN11], fortunately
we only rely on the above prediction for i� n.

Definition 4 (Geometric Series Assumption). Let B be a BKZ-b reduced basis of a lattice of
volume 1. The Geometric Series Assumption states that:

‖b∗i ‖ = α
n/2−i
b

where αb = gh(b)2/b.

This model is reasonably accurate in practice for b > 50 and b� n. For further discussion on this
model and its accuracy, the reader may refer to [CN11, Che13, YD16].

2.3 Sieve Algorithms

There are several variants of Sieving algorithms, even among the restricted class of Sieving algo-
rithms having asymptotic complexity (4/3)n+o(n) [NV08, MV10]. Its generic form is given below.

Algorithm 1 Sieve(L)
Require: The basis B of a lattice L of dimension n
Ensure: A list L of vectors
L← a set of N random vectors (of length at most 2n ·Vol(L)1/n) from L where N = (4/3)n/2+o(n).
while ∃(v,w) ∈ L2 such that ‖v −w‖ < ‖v‖ do

v← v −w
end while
return L

The initialization of the list L can be performed by first computing an LLL-reduced basis of the
lattice [LLL82], and taking small random linear combinations of that basis.

Using heuristic arguments, one can show [NV08] that this algorithm will terminate in time
N2 · poly(n), and that the output list contains a shortest vector of the lattice. The used heuristic
reasoning might fail in some special lattices, such as Zn. However, nearly all lattices occurring in a
cryptographic context are random-looking lattices, for which these heuristics have been confirmed
extensively.

Many tricks can be implemented to improve the hidden polynomial factors. The most obvious
one consist in working modulo negation of vectors (halving the list size), and to exploit the identity
‖v±w‖2 = ‖v‖2+‖w‖2±2〈v,w〉: two reductions can be tested for the price of one inner product.

More substantial algorithmic improvements have been proposed in [MV10]: sorting the list by
euclidean length to make early reduction more likely, having the list size be adaptive, and having
a queue of updated vectors to avoid considering several times the same pair. Another natural idea
used in [MLB17] consist of strengthening the LLL-reduction to a BKZ-reduction with medium
block-size, so as to decrease the length of the initial random vectors.

One particularly cute low-level trick proposed by Fitzpatrick et al. [FBB+15] consist in quickly
rejecting pairs of vectors depending on the hamming weight of the XOR of their bit signs. We shall
re-use (a variant of) this trick in our implementation. This technique is in fact well known in the
Nearest-Neighbor-Search (NNS) literature [Cha02], and sometimes referred as SimHash.



The N2 factor may also be improved to a sub-quadratic factor N c, 1 < c < 2 using advanced
NNS data-structures [Laa15a, Laa15b, BDGL16]. While improving the exponential term, those
techniques introduce extra hidden sub-exponential factors, and typically require more memory.3 In
practice these improvements remain substantial [MLB17]. Yet, as the new improvements presented
in this paper are orthogonal, we leave it to the interested reader to consult this literature.

3 The SubSieve Algorithm and its Analysis

3.1 Approach

Our improvement rely on the remark that the output of the sieve contains much more information
than the shortest vector of L. Indeed, the analysis of [NV08, MV10], suggest that the outputted
list contains the N shortest vector of the lattice, namely, all the vectors of the lattice of length less
than

√
4/3 · gh(L).

We proceed to exploit this extra information by solving SVP in a lattice of larger dimension.
Let us choose an index d, and run the sieve in the projected sub-lattice Ld, of dimension n− d. We
obtain the list:

L := Sieve(Ld) = {x ∈ Ld \ {0}| ‖x‖ ≤
√

4/3 · gh(Ld)}. (1)

Our hope is that the desired shortest non-zero vector s (of expected length gh(L)) of the full
lattice L projects to a vector contained in L, i.e. πd(s) ∈ L or equivalently by equation (1), that
‖πd(s)‖ ≤

√
4/3 gh(Ld). Because ‖πd(s)‖ ≤ ‖s‖ = gh(L), it is therefore sufficient that:

gh(L) ≤
√
4/3 · gh(Ld). (2)

In fact, we may relax this condition, as we rather expect the projection to be shorter: ‖πd(s)‖ ≈√
(n− d)/n‖s‖ assuming the direction of s is uniform and independent of the basis B. More pre-

cisely, it will happen with constant probability that ‖πd(s)‖ ≤
√

(n− d)/n‖s‖. Instead we may
therefore optimistically require: √

n− d
n
· gh(L) ≤

√
4/3 · gh(Ld). (3)

We are now searching for a vector s ∈ L such that ‖s‖ ≈ gh(L), and such that sd := πd(s) ∈ L.
By exhaustive search over L, let us assume we know sd; we now need to recover the full vector s. We
write s = Bx and split x = (x′,x′′) where x′ ∈ Zd and x′′ ∈ Zn−d. Note that sd = πd(Bx) = Bdx

′′,
so we may recover x′′ from sd.

We are left with the problem of recovering x′ ∈ Zd such that B′x′ + B′′x′′ is small where
[B′|B′′] = B, i.e., finding the short vector s in the lattice coset L(B′)−B′′x.

For appropriate parameters, this is an easy BDD instance over the d-dimensional lattice spanned
by B′. More precisely, a sufficient condition to solve this problem using Babai’s Nearest-Plane
algorithm [Bab86] is that |〈b∗i , s〉| ≤ 1

2‖b
∗
i ‖2 for all i < d. A sufficient condition is that:

gh(L) ≤ 1

2
min
i<d
‖b∗i ‖. (4)

3 Becker et al. [BGJ15] proposed a way to not require extra memory, yet it may hide an extra polynomial
factor on time.



This conditions is far from tight, and in practice should not be a serious issue. Indeed, even for
a strongly reduced basis, the d firsts Gram-Schmidt length won’t be much smaller than gh(L),
say by a factor 2. On the other hand assuming s has a random direction we expect |〈b∗i , s〉| ≤
ω(lnn)/

√
n·‖b∗i ‖·‖s‖ except with super-polynomially small probability. We will check this condition

in the complexity analysis below (Section 3.2), and will simply ignore it in the rest of this paper.

Algorithm 2 SubSieve(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L
L← Sieve(Ld)
for each wi ∈ L do

Compute x′′i such that Bd · x′′i = wi

ti = B′′ · x′′
si ← Babai(B′, ti) + ti

end for
return the shortest si

Heuristic Claim 1 For a random lattice, and under conditions (2) and (4), SubSieve(L, d) outputs
the shortest vector of L, and its complexity is dominated by the cost N2 · poly(n) of Sieve(Ld), with
an additive overhead of n2 ·N real arithmetic operations.

We note that the success of our approach depends crucially on the length of the Gram-Schmidt
norms ‖b∗i ‖ (indeed for a fixed d, gh(Ld) depends only of

∏
i≥d ‖b∗i ‖). In the following Section 3.2,

we will argue that our approach can be successfully instantiated with d = Θ(n/ lnn) using an
appropriate pre-processing of negligible cost.

3.2 Complexity analysis

Assume that our lattice L has volume 1 (without loss of generality by scaling), and that its given
basis B is BKZ-b reduced. Using the Geometric Series Assumption (Definition 4) we calculate the
volume of Ld:

Vol(Ld) =
n−1∏
i=d

‖b∗i ‖ = α
d(d−n)/2
b .

Recalling that for a k-dimensional lattice we have gh(L) ≈ Vol(L)1/k
√
k/(2πe), condition (2) is

rewritten to
1 ≤

√
4/3 · α−db .

Taking logarithms, we rewrite the above condition as

d lnαb ≤ ln
√
4/3.

We (arbitrary) choose b = n/2 and maintain the cost of the BKZ-preprocessing negligible compared
to the cost of sieving in dimension n − o(n). Unrolling the definitions, we notice that lnαb =
Θ((ln b)/b) = Θ((lnn)/n). We conclude that condition (2) is satisfied for some d = Θ(n/ lnn).



The second condition (4) for the correction of Babai lifting is easily satisfied: for i < d = o(n)
we have ‖b∗i ‖ = gh(b)(n−o(n))/b = gh(b)2−o(1) = n1−o(1), while gh(n) = Θ(n1/2). This concludes our
argument of the following claim.

Heuristic Claim 2 Having preprocessed the basis B of L with the BKZ algorithm with blocksize
b = n/2 —for a cost of at most poly(n) time the cost of Sieve in dimension n/2— our SubSieve(L, d)
algorithm will find the shortest vector of L for some d = Θ(n/ lnn).

In particular, SubSieve(L, d) is faster than Sieve(L) by a sub-exponential factor 2Θ(n/ lnn).

The fact that BKZ-b requires only poly(n) calls to an SVP oracle in dimension b is justified
in [HPS11].

3.3 (Progressive) Iteration as pre-processing

We now propose an alternative approach to provide pre-processing in our context. It consist of
applying an extension of the SubSieve algorithm iteratively from a weakly reduced basis to a strongly
reduced one. To proceed, we first need to slightly extend our algorithm, to not only provide one
short vector, but a partial basis V = [v0| . . . |vm] of rank m, such that their Gram-Schmidt lengths
are as short as possible. In other words, the algorithm now attempts to provide the first vectors
of an HKZ-reduced basis. For all practical purpose, m = n/2 is sufficiently large. This extension
comes at a negligible additional cost of O(n3) ·N compared to the sieve of complexity poly(n) ·N2.

Algorithm 3 SubSieve+(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L
L← Sieve(Ld)
for each wi ∈ L do

Compute x′′i such that Bd · x′′i = wi

ti = B′′ · x′′
si ← Babai(B′, ti) + ti

end for
for j = 0 . . . n/2− 1 do

Set vj to be the si vector minimizing ‖π(v0...vj−1)⊥(si)‖ such that s 6∈ Span(v0 . . .vj−1)
end for
return (v0 . . .vn/2−1)

Then, the iteration consists of completing V into a basis of L, and to use it as our new input
basis B.4

Additionally, as conditions (2) or even its optimistic variant (3) are not necessary conditions, we
may hope that a larger value of d may probabilistically lead faster to the shortest vector. In fact,
hoping to obtain the shortest vector with d larger than required by the pessimistic condition (2) can
be interpreted in the pruning framework of [GNR10, Che13]; this will be discussed in Section 6.2.
4 This can be done by applying LLL [LLL82] on the matrix [V|B], which eliminates linear dependencies.
As LLL can only decrease partial determinants, the volume of the first d-vectors after this process can
only be smaller than the volume of V: this does not affect condition (2) and (3).



For this work, we proceed with a simple strategy, namely we iterate starting with a large value
of d (say n/4) and decrease d by 1 until the shortest vector (or a vector of the desired length) is
found. This way, the failed attemps with too small d nevertheless contributes to the approximate
HKZ-reduction, improving the basis for the next attempt.

The author admit having no theoretical arguments (even heuristic) to justify that this iterating
approach should be more efficient than the preprocessing approach presented in Section 3.2. Yet, as
we shall see, this method works quite well in practice, and has the advantage of being much simpler
to implement.

Remark. One natural tweak is to also consider the vectors in B′ when constructing the new partial
basis V so as to ensure that the iteration never introduces a regression. Yet, as the optimistic
condition is probabilistic, we may get stuck with an unlucky partial basis, and prefer to change it
at each iteration. This is a reminiscence of the rerandomization of the basis of the extreme pruning
technique of Gama et al. [GNR10]. It is therefore not entirely clear if this tweak should be applied.
In practice, we noted that applying this trick made the running time of the algorithm much more
erratic, making it hard to determine if it should be better on average. For the sake of this initial
study, we prefer to stick with the more stable version of the algorithm.

3.4 Tentative prediction of d on quasi-HKZ reduced basis

We now attempt to estimate the concrete maximal value d allowing our algorithm to succeed. We
nevertheless warn the reader against strong conclusion on the concrete hardness of SVP from the
analysis below. Indeed, it does not capture some practical phenomena, such as the fact that (1)
is not strictly true in practice,5 or more subtly that the directions of the vectors of B are not
independant of the direction of the shortest vector s when B is so strongly reduced. Additionally,
we identify in Section 6.2 avenues for improvements that could make this analysis obsolete.

We work under the heuristic assumption that the iterations up to dlast−1 have almost produced
an HKZ-reduced basis: ‖b∗i ‖ ≈ `i where `i follows the HKZ-shape of dimension n (Definition 3).
From there, we determine whether the last iteration with d = dlast should produce the shortest
vector according to both the pessimistic and optimistic condition. For i � n a quick computation
shows that:

ln `i ≈ ln `0 − i ·
ln(n/2π)

2n
.

The pessimistic condition (2) and the optimistic condition (3) respectively rewrite as:

ln `0 ≤ ln
√
4/3 + ln `d and ln

√
n− d
n

+ ln `0 ≤ ln
√
4/3 + ln `d.

With a bit of rewriting, we concludes on the following maximal value of d respectively under the
following pessimistic and optimistic conditions:

d ≈ n ln 4/3

ln(n/2π)
and d ≈ n ln 4/3

ln(n/2πe)
.

We can also numerically simulate more precisely the maximal value of d using the exact values
of the `i. All four predictions are depicted on Figure 3.4. Our plots start at dimension 50, the
5 some vectors below the

√
4/3 · gh(Ld) bound may be missing, while other vectors above this bound may

be included.



conventional cut-off for the validity of the Gaussian Heuristic [GN08, Che13]. We note that the
approximated prediction are accurate, up to an additive term 2 over the value of d for relevant
dimensions n ≤ 250. We also note that in this range the dimension gain d looks very much affine:
for all practical concerns, our improvement should appear essentially exponential.

50 100 150 200 250
n

5

10

15

20

25

d

pessimistic simulation
pessimistic approximation
optimistic simulation
optimistic approximation

Fig. 1. Prediction of the maximal successful choice of d, under various methods and conditions.

4 Other Optimizations and Implementation Details

In this section, we describe a baseline sieve algorithm and two additional tricks to improve its
practical efficiency. So as to later report the improvement brought by each trick and by our main
contribution, we shall refer to 4 versions of our algorithm, activating one feature at the time:

– V0: GaussSieve baseline implementation
– V1: GaussSieve with XOR-POPCNT trick
– V2: GaussSieve with XOR-POPCNT trick and progressive sieving
– V3: Iterated SubSieve+ with XOR-POPCNT trick and progressive sieving.

4.1 Baseline Implementation

As a baseline algorithm, we essentially use the Gauss-Sieve algorithm of [MV10], with the following
tweaks.

First, we do not resort to Gaussian Sampling [Kle00] for the construction of the list L as the
sphericity of the initial list does not seem so crucial in practice, and lead to start the sieve with
vectors longer than necessary. Instead, we choose vectors by sampling their n/4 last coordinates
in base B uniformly in {0,±1,±2}, and choose the remaining coordinates deterministically using
Babai Nearst-Plane algorithm [Bab86].



Secondly, we do not maintain the list perfectly sorted, but only re-sort it periodically. This makes
the implementation somewhat easier6 and does not affect performances noticeably. Similarly, fresh
random vectors are not inserted in L one by one, but by batches.

Thirdly, we use a hash table to prevent collisions: if v±w is already in the list, then we cancel
the reduction v← v±w. Our hash function is defined as random linear function h : Zn → Z/264Z
tweaked so that h(x) = h(−x); hashing is fast, and false collisions should be very rare. This function
is applied to the integer coordinates of the vector in base B.

At last, the termination condition is as follows: the algorithm terminates when no pairs can
be reduced, and when the ball of radius

√
4/3 gh(L) is half-saturated according to the Gaussian

Heuristic, i.e. when the list L contains at least 1
2

√
4/3

n
vectors of length less than

√
4/3 gh(L).

At the implementation level, and contrary to most implementations of the literature, our im-
plementation works by representing vectors in bases B and B∗ rather than in the canonical basis
of Rn. It makes application of Babai’s algorithm [Bab86] more idiomatic, and should be a crucial
feature to use it as an SVP solver inside BKZ.

4.2 The XOR-POPCNT Trick (a.k.a. SimHash)

This trick —which can be traced back to [Cha02]— was developed for sieving in [FBB+15]. It
consists in compressing vectors to a short binary representation that still carry some geometrical
information: it allows for a quick approximation of inner-products. In more details, they choose to
represent a real vector v ∈ Rn by the binary vector ṽ ∈ Zn2 of it signs, and compute the hamming
weight H = |w̃ ⊕ ṽ| to determine whether 〈v,w〉 is expected to be small or large (which in turn
informs us about the length ‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2〈v,w〉). If H is small enough then the
exact length is computed, otherwise the pair is directly rejected.

This trick greatly decreases the practical computational cost and the memory bandwidth of
the algorithm, in particular by exploiting the native POPCNT instruction available on most modern
CPUs.

Following the original idea [Cha02], we use a generalized version of this trick, allowing the length
of the compressed representation to differ from the lattice dimension. Indeed, we can for example
choose c 6= n vectors r1, . . . , rc, and compress v as ṽ ∈ Zc2 where ṽi = sign(〈v, ri〉). This allows not
only to align c to machine-word size, but also to tune the cost and the fidelity of this compressed
representation.

In practice we choose c = 128 (2 machine words), and set the ri’s to be sparse random ternary
vector. We set the acceptance threshold to |w̃ ⊕ ṽ| < 47,7 having optimized this threshold by
trial and errors. Experimentally, the overall positive rate of this test is of about 2%, with a false
negative rate of less than 30%. The sieve algorithm automatically compensated for false-negatives
by increasing the list size.

6 It avoid resorting to non-contiguous containers, following the nomenclature of c++ standard library.
7 Of course, we also test wether |w̃ ⊕ ṽ| > 128 − 47 in which case we attempt the reduction v ← v + w
instead of v← v −w.



4.3 Progressive Sieving

The trick described in this section was independently invented by Laarhoven and Mariano [LM17]
in another work in progress. It consist of progressively increasing the dimension, first running the
sieve in sublattices L[0,i] for i increasing from (say) n/2 to n.8

It allows us to obtain an initial small pool of rather short vectors for a much cheaper cost. In
turn, when we increase the dimension and insert new fresh vectors, the long fresh vectors get shorter
quite faster thanks to this initial pool. We use the same terminating condition over L[0,i] to decide
when to increase i than the one described over the full lattice in section 4.1.

This trick certainly deserve further study, and could benefit from fine-tuning. Nevertheless, it
already provides an appreciable speed-up, of about half an order of magnitude.

4.4 Implementation details

The core of the our Sieving implementation is written in c++ and the high level algorithm in python.
It relies mostly on the fpylll [FPL16c] python wrapper for the fplll [FPL16b] library, used for
calls to floating-point LLL [Ste10] and providing the Gram-Schmidt orthogonalization. Our code is
not templated by the dimensions, doing so could improve the performance substantially by allowing
the compiler to unroll and vectorize the inner-product loop.

Our implementation is open source, available at https://github.com/lducas/SubSieve.

5 Experiments and Performances

In this section, we report on the behavior in practice of our algorithm and the performances of our
implementation. All experiments were ran on a single core (Intel Core i7-4790 @3.60GHz).

For these experiments, we use the Darmstadt lattice challenges [SG10]. We make a first run of
fplll’s pruned enumeration (repeating it until 99% success probability) to determine the exact
shortest vector.9 Then, for our experiments, we stop our iteration of the SubSieve+ algorithm when
it returns a vector of the same length.

5.1 The dimension gain d in practice

In Figure 5.1, we compare the experimental value of d to the predictions of Section 3.4. The area of
each disc at position (n, d) is proportional the number of experiments that succeeded with dlast = d.
We repeated the experiment 20 times for each dimension n.

We note that the average dlast fits reasonably well with the simulated optimistic prediction. Also,
in the worst case, it never exceeded the simulated pessimistic prediction, except for one outlier in
dimension 62.

Remark. The apparent erratic behavior of the average for varying n is most likely due to the fact
that our experiments are only randomized over the input basis, and not over the lattice itself. Indeed
the actual length of the shortest vector vary a bit around the Gaussian Heuristic, and it seems that
the shorter it actually is, the easier it is to find with our algorithm.
8 Note that unlike in our main algorithm SubSieve, the sublattices considered here are not projected
sublattices, but simply the lattice spanned by the first basis vectors.

9 Which is significantly harder than finding the approximation required by [SG10] to enter in the hall of
fame.

https://github.com/lducas/SubSieve
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Fig. 2. Comparsion between experimental value of d with the prediction of Section 3.4.

5.2 Perfomances

We present in Figure 3 the perfomances of the 4 versions of our implementation and of fplll’s
pruned enumeration with precomputed strategies [FPL16a].

Remark. In fplll, a strategy consists in the choice of a pre-processing blocksize b and of pruning
parameters for the enumeration, as an attempt to reconstruct the BKZ 2.0 algorithm of Chen and
Nguyen [CN11].

The external program Strategizer [FPL16a] first applies various descent techniques to optimize
the pruning parameters, following the analysis of [GNR10, CN11, Che13], and iterate over all
(reasonable) choices of b, to return the best strategy for each dimension n. It may be considered
near the state of the art, at least for the dimensions at hand. Unfortunately, we are unaware of
timing reports for exact-SVP in this range of dimensions for other implementations.

For a fair comparison with SubSieve, we stop repeating the pruned enumeration as soon as it
found the shortest vector, without imposing a minimal success probability (unlike the first run used
to determine the length shortest vector). We also inform the enumerator of the exact length of that
shortest vector, making its task somehow easier: without this information, it would enumerate at a
larger radius.

As Algorithms V0, V1 and V2 have a rather deterministic running time depending only on
the dimension, we only provide one sample. For V3 and enumeration, we provide 20 samples. To
compute the fits, we first averaged the running times for each dimension n, and then computed the
least-square linear fit of their logarithms (computing directly an exponential least-square fit leads
to a fit only capturing the two lasts dimensions).

The given fits are only indicative and we warn against extrapolations. In particular the fact that
the linear fit of V3 is below the heuristic estimate of (4/3)n+o(n) should raise circumspection.
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Fig. 3. Runing time T of all the 4 versions of sieving from 4 and fplll’s pruned enumeration with precom-
puted strategies.

We conclude that our main contribution alone contributes a speed-up of more than an order of
magnitude in the dimensions ≥ 70 (V3 versus V2), and that all the tricks taken together provide
a speed-up of almost three orders of magnitudes (V3 versus V0). It performs within less than an
order of magnitude away from enumeration (V3 versus Pruned Enum).

5.3 Performance comparison to the literature

The literature on lattice sieving algorithms is vast [NV08, MV10, BGJ13, Laa15a, Laa15b, BDGL16,
BLS16, HK17], and many papers do report implementation timings. We compare ourselves to
four of them, namely a baseline implementation [MV10], and three advanced sieve implementa-
tions [FBB+15, MLB17, HK17], which represent (to the best of our knowledge) the state of the art
in three different directions. This is given in Table 1.

Accounting for the CPU frequencies, we conclude that the implementation of our algorithm is
more than 10 times faster than the current fastest sieve, namely the implementation of the Becker
et al. algorithm [BDGL16] from Mariano et al. [MLB17].10

Remark. While we can hardly compare to this computation considering the lack of documentation,
we note that T. Kleinjung holds the record for the shortest vector found in Darmstadt Lattice
10 The CPU frequency may not be the only property of the machines to take account of for a perfect

comparison: memory access delay, memory bandwidth and cache sizes may have noticeable impacts.



Algorithms
V0 V1 V2 V3 [MV10]a [FBB+15] [MLB17] [HK17]

features
XOR-POPCNT trick x x x x
pogressive sieving x x

SubSieve x
LSH (more mem.) x
tuple (less mem.) x

Dimension Running times
n = 60 227s 49s 8s .9s 464s 79s 13s 1080s
n = 70 - - 276s 10s 23933s 4500s ≈ 250s b 33000s
n = 80 - - - 234s - - 4320s 94700s

CPU frequency (GHz) 3.6 3.6 3.6 3.6 4.0 4.0 2.3 2.3

a As reported by [FBB+15].
b This value is not given in [MLB17] as their implementation only handles dimensions that are multiples of
4. We estimated it from the given values for n = 68 (169s) and n = 72 (418s).

Table 1. Comparison with other Sieve implementations.

challenge [SG10] of dimension 116 (seed 0), since May 2014, and reported having used a sieve
algorithm. According to Herold and Kirshanova [HK17, Acknowledgments], the algorithm used by
Kleinjung is similar to theirs.

Another Sieving record is held by Bos et al. [BNvdP14], for an ideal lattice of dimension 128,
exploiting symmetries of ideal lattices to improve time and memory substantially. The computation
ran over 1024 cores for 9 days.



6 Conclusion

6.1 Sieve will outperform enumeration

While this statement is asymptotically true, it was a bit unclear where the cross-over should be,
and therefore whether sieving algorithm have any practical relevance for concrete security levels.
For example, it is argued in [MW16] that the cross-over would happen somewhere between n = 745
and n = 1895.

Our new result suggest otherwise. We do refrain from computing a cross-over dimension from
the fits of Figure 3 which are far from reliable enough for such an extrapolation; our prediction is
of a different nature.

Our prediction is that —unless new enumerations techniques are discovered— further improve-
ments of sieving techniques and implementations will outperform enumeration for exact-SVP in
practice, for reachable dimensions, maybe even as low as n = 90. This, we believe, would constitute
a landmark result. This prediction is backed by the following guesstimates, but also by the belief
that fine-tuning, low-level optimizations and new ideas should further improve the state of the art.
Some avenues for further improvements are discussed in Section 6.2.

Guesstimates. We can try to guesstimate how our improvements would combine with other tech-
niques, in particular with List-Decoding Sieve [BDGL16]. The exact conclusion could be affected
by many technical details, and is mostly meant to motivate further research and implementation
effort.

Mariano et al. [MLB17] report a running time of 1850s for LDSieve [BDGL16] in dimension
n = 76. First, the XOR-POPCNT trick is not orthogonal to LSH techniques, so we shall omit it.11 The
progressive sieving trick provides a speed up of about 4 in the relevant dimensions (V1 vs V2). Then,
our main contribution offers 14 dimensions “for free”, (n = 90, dlast = 14). More accurately, the
iteration for increasing d would come at cost a factor

∑
i≥0(

3
2 )
−i/2 ≈ 5.5. Overall we may expect

to solve exact-SVP 90 in time ≈ 5.5 · 1850/4 ≈ 2500s. In comparison, fpylll’s implementation
of BKZ 2.0 [CN11] solved exact-SVP in average time 2612s over Darmstadt lattice challenge 90
(seed 0) over 20 samples on our machine. For a fairer comparison across different machines, this
Enumeration timing could be scaled up by 3.6GHz/2.3GHz ≈ 1.5.

6.2 Avenues for Further Improvements

Pruning in SubSieve. As we mentioned in Section 3.3, our optimistic condition (3) can be viewed
as a form of pruning: this condition correspond in the framework of [GNR10, Che13] to a pruning
vector of the form (1, 1, . . . , 1, γ, . . . γ) ∈ Rn with d many 1’s, and γ = (n−d)/n. A natural idea is to
attempt running SubSieve using γ < (n− d)/n, i.e. being even more optimistic than condition (3).
Indeed, rather than cluelessly increasing d at each iteration, we could compute for each d the success
probability, and choose the value of d giving the optimal cost over success probability ratio.

Walking beyond
√

4/3 · gh(Ld). Noting m = n− d, another idea could consist in trying to get
more vectors than the

√
4/3

m
shortest for a similar or slightly higher cost than the initial sieve,

as this would allow to increase d a little bit. For example, we can extract the sublist A of all the
11 It could still be that, with proper tuning, combining them gives an extra speed-up.



vectors of length less than α · gh(Ld) where α ≤
√
4/3 from the initial sieve, and use them to walk

inside the ball of radius β · gh(Ld) ≥
√

4/3 where α
β

√
β2 − α2/4 = 1. Indeed, one can show that

the volume of (v + αB) ∩ (βB) = Ω(nc) for some constant c, where ‖v‖ = β. According to the
Gaussian Heuristic, this means that from any lattice point in the ball of radius β + ε, there exist a
step in the list A that leads to another lattice point in the ball of radius β + ε, for some ε = o(1).
This kind of variations have already been considered in the Sieving literature [BGJ13, Laa16].

Each step of this walk would cost αm and there are βm+o(m) many points to visit. Note that in
our context, this walk can be done without extra memory, by instantly applying Babai lifting and
keeping only interesting lifted vectors. We suspect that this approach could be beneficial in practice
for β =

√
4/3 + o(1), if not for the running time, at least for the memory complexity.

Amortization inside BKZ. We now consider two potential amortizations inside BKZ. Both ideas
are not orthogonal to each others (yet maybe not be incompatible). If our SubSieve algorithm is to
be used inside BKZ, we suggest to fix dlast (say, using the optimistic simulation), and to accept that
we may not always solve SVP exactly; this is already the case when using pruned enumeration.

Already pre-processed. One note that SubSieve+ does more than ensuring the shorteness of the first
vector, and in fact attempt a partial HKZ reduction. This means that the second block inside BKZ
loop is already quite reduced when we are over with the first one. One could therefore hope that
starting directly the iteration of Section 3.3 at d = dlast could be sufficient for the second block,
and so forth.

Optimistically, this would lead to an amortization factor f of f =
∑
i≥0(

4
3 )
−i = 4, or even

f =
∑
i≥0(

3
2 )
−i/2 ≈ 5.5 depending on which sieve is used. In practice, it may be preferable to start

at d = dlast − 1 for example.

5 for 9/4. A second type of amortization consist in overshooting the blocksize by an additive term k,
so as to SVP-reduce k+1 consecutive blocks of dimension b for the price of one sieving in dimension
b + k. Indeed, an HKZ-reduction of size b + k as attempted by SubSieve+ directly guarentees the
BKZ-b reduction of the first k+1 blocks: we may jump directly by k+1 blocks. This overshot costs
a factor (3/2)k/2 using the List-Decoding-Sieve [BDGL16]. We therefore expect to gain a factor
f = (k + 1)/(3/2)k/2, which is maximal at k = 4, with f = 20/9 ≈ 2.2.

Further, we note that the obtained basis could be better than a usual BKZ-b reduced basis,
maybe even as good as a BKZ-(b + k−1

2 ) reduced basis. If so, the gain may be as large as f ′ =
(k + 1)/(3/2)(k+1)/4, which is maximal at k = 9, with f ′ ≈ 3.6.
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