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Abstract

Bad choices of passwords were and are a pervasive problem. Most password alternatives
(such as two-factor authentication) may increase cost and arguably hurt the usability of the
system. This is of special significance for low cost IoT devices.

Users choosing weak passwords do not only compromise themselves, but the whole eco sys-
tem. For example, common and default passwords in IoT devices were exploited by hackers to
create botnets and mount severe attacks on large Internet services, such as the Mirai botnet
DDoS attack.

We present a method to help protect the Internet from such large scale attacks. We enable a
server to identify popular passwords (heavy hitters), and publish a list of over-popular passwords
that must be avoided. This filter ensures that no single password can be used to comprise a
large percentage of the users. The list is dynamic and can be changed as new users are added or
when current users change their passwords. We apply maliciously secure two-party computation
and differential privacy to protect the users’ password privacy. Our solution does not require
extra hardware or cost, and is transparent to the user.

The construction is secure even against a malicious coalition of devices which tries to ma-
nipulate the protocol in order to hide the popularity of some password that the attacker is
exploiting. We show a proof-of-concept implementation and analyze its performance.

Our construction can also be used in any setting where one would desire to privately learn
heavy hitters in the presence of an active malicious adversary. For example, learning the most
popular sites accessed by the TOR network.

Keywords: passwords, secure computation, differential privacy, heavy hitters, malicious
model.

1 Introduction

The first use of a password in the modern sense was in 1961 in MIT’s CTSS, and they are still
ubiquitous today. It is well-known that users tend to choose very simple and predictable passwords,
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with very little min-entropy1. The usage of popular and easy to guess passwords is one of the top
security threats for users. Moreover, using an insecure password does not only endanger the user,
but also endangers other users. A compromised account can be used for attacking the rest of the
Internet. For example, using a compromised account to send spam mail or to perform a denial-of-
service (DoS) attack. Although their demise has been announced many times (most notably in Bill
Gates’ famous 2004 speech), they are here to stay for the foreseeable future, especially in the IoT
world.

Web Cameras and the Mirai Attack

An example that demonstrates our setting is the case of web cameras. Web cameras allow their
users to connect to the camera over the Internet, and watch the live video stream. Dedicated
search engines such as Shodan [Wik17b] and the recent Mirai attack, demonstrate how hackers can
find such devices, and hack them using a default or popular password. In the Mirai attack a huge
number of compromised web-based cameras were used to mount a very large scale distributed DoS
(DDoS) attack, sending a total of over 1Tbps and taking down large DNS servers [Wik17a].

Consequently, the Mirai attack motivated many well known security experts to demand liability
from the manufactures of such insecure products [Sch]. However, many IoT devices today (especially
low cost products) use passwords, as this is a cheap solution that is easy to use. Alternative solutions
(such as two factor authentication) may increase cost and arguably hurt the usability of the system.
We need a cheap and user-friendly way to make the usage of passwords more secure not just for
the single user, but to protect the Internet from such large scale attacks.

Many of the compromised cameras in the Mirai attack used a factory default password. There
are some straightforward measures that manufacturers can take to prevent the usage of weak
default passwords. The most basic of which is forcing a password change before the first use of
their product. However, the response of many users might be to choose a simple password such
as “123456”. Such popular or easy passwords may be used in an amplified dictionary attack.
Blacklisting them will greatly improve the situation but requires the server to know the current
popular password distribution, which is hard for several reasons:

1. When a system prevents the usage of certain popular passwords, other passwords become
popular and therefore need to be identified and prevented (for example, a popular password
might change along the following sequence that is caused by changing password policies
“password”→ “Password”→“Password1”→“Password1!”, etc.)

2. User populations in different locations (e.g. in the US vs. China) might use different popular
passwords. Attackers can target their password guesses to the location of victims. Therefore,
the system must identify popular passwords along different locations (and possibly other
different dimensions such as age, etc.)

3. There might be passwords trends that are based on trending topics (for example, more users
today (2017) will prefer “wonderwoman” to “superman” as their password then in the past).

1For example, according to a report by a company for secure password management, the 25 most frequent pass-
words, including passwords such as “123456”, “password” and “qwerty”, account for over 50% of over 10M passwords
that were analyzed. https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-
study
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In order to apply effective blacklisting, the server must learn the currently popular passwords.
The simplest solution is for all users to send their passwords to the server, which will in turn
identify and reject popular passwords. The major drawback of this solution is that the server
learns all passwords (or hashes of these passwords, which are vulnerable to a dictionary attack).
Many users will not want to send their passwords to a somewhat untrusted manufacturer or service
provider, that has no other reason to know their passwords. Users may not want the manufacturer
to maintain control over their cameras or to learn passwords which might also be used for other
purposes (more then 80% of users reuse passwords between different sites and services2).

Tor network statistics

Tor network aims to provide better privacy and security for users in the Internet. To understand
users’ needs and to advocate for better privacy, the Tor network provide researchers with statistics
about its operation [LMD10]. However, such statistic gathering is very limited as we need to protect
the users’ privacy. For example, we would like to enable researchers to privately learn the most
popular websites visited by Tor users. A group of malicious users, might want to influence the
results. For example, a repressive regime may want to delegitimize Tor, by making human rights
sites seem less popular and drug trafficking sites more popular. For simplicity we will focus on
passwords in the rest of the paper, but most of the solutions and requirements are easily translated
to the Tor network setting.

1.1 Desiderata: Requirements from a Password Statistics Gathering Protocol

Our goal is to be able to collect the popular passwords while maintaining their privacy. We want to
come up with a system satisfying several seemingly contradicting goals. We want the center (server)
to learn the popular passwords, but without requiring the devices to divulge their passwords.
Furthermore, we want the center to publish, essentially to the world, some information about these
passwords, but without this allowing a coalition of devices to learn anything (useful) about the
other devices’ passwords.

What is perhaps unique about this paper is that the requirements must hold even in the face
of a malicious (rather than semi-honest) and coordinated behavior of a coalition of devices that
are under the control of the adversary. Namely, it is very likely that the goal of these devices
is to perform an undercount attack which will reduce the perceived popularity of some popular
passwords. This attack can keep these passwords under the radar, thus preventing them from
being blacklisted and allowing them to become more popular. The attacker can then exploit the
growing number of devices that use these passwords.

Let us reiterate the importance of this requirement: It is “legitimate” for a device that is
controlled by the adversary to report an arbitrary password (rather than the true weak password
that was used to break into the device). Such behavior increments the popularity count of some
other passwords and does not change the count of the weak password. However, the protocol
must prevent the adversary from sending data which decrements the popularity count of the weak
password. As we shall see, this is the major technical challenge facing our construction.

A feature which helps the design of a relevant system is that the application we have in mind
cares mostly about the most popular passwords and does not need very accurate estimates of the

2https://keepersecurity.com/assets/pdf/Keeper-Mobile-Survey-Infographic.pdf
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popularity of the heavy hitters (distinguishing whether a password appears at %4 or %5 of the
devices is not of the highest priority, as opposed to distinguishing between %0.1 and %5).

To summarize, any system for gathering statistics about password popularity must meet the
following desiderata:

Heavy Hitters: The server must be able to learn the approximate distribution of the currently
heavily used passwords, and publish this list to all.

Password not leaked to server or server gaining little information about the password: Both
honest and adversarial servers should learn little information regarding the password. Since
the goal of the password is to be hard to guess we can bound this information in bits and
require that they learn, say, at most one bit of information about each device’s password.
This information cannot increase the probability of guessing the password by much.

Resiliency to a malicious server: In addition to a malicious server not learning much about
any password, we do not want it to be able to perform a DoS attack on the system (not
allowing any password). On the other hand, we do not protect the integrity of the published
password list. To prevent a targeted attack against specific devices we require that the list
will be publicly published.

Password privacy: The privacy of a single device’s password must be preserved against any third
party, even after repeated publications of the list. Here even leaking a bit may be problematic,
since passwords could be related. Furthermore, device owners might opt out of the system
(for example, by giving faulty information instead of their actual password) if information
about their password is leaked to other users.

Functionality: Devices should be able to choose any password (with a very low false positive rate)
and repeatedly change it over time.

Resiliency to malicious coalitions: Even a coalition of malicious devices must not be able to
affect the statistics in a significant manner, except in the obvious way: choosing their pass-
words. This is true both for undercounting the popular passwords and overcounting (by more
than one password per device in the coalition). We should handle dynamic password changes
and early stopping in protocol by the devices.

These goals are motivated by observations about “real life”. Big companies, by nature, try to
learn as much information as possible about their users. On the other end, a botnet of devices is
motivated to apply an “undercount” attack which will remove popular passwords from the published
list.

We allow the server to learn one bit of information about each password. In general, leaking
information is not good. But in the case of passwords, leaking less than a single bit may be benign,
since passwords should have high min-entropy to begin with. In other words, the leaked information
speeds up password cracking by a factor of at most 2. This should be tolerable compared to the
benefit of ensuring that users do not use over popular passwords (thus increasing the min entropy).
In addition, we describe a randomized response protocol which further reduces the amount of
information leaked to the server (to less than one bit per device).

4



Communication Model: We work in the local model. We assume that the server executes the
protocol with each device separately. The server maintains a state and communicates with each
device at a different time over a secure and encrypted channel. There are no synchrony assumptions.

Our Contributions

To accomplish the design goals we propose a general scheme for identifying over-popular passwords.
The scheme is based on running very efficient secure protocols (secure against malicious adversaries),
adding differential privacy for the devices, using an algorithm for approximately identifying heavy
passwords, and bounding the possibility of errors. We also give concrete examples for the possible
parameters, calculated using a simulation.

We then describe two suggestions for instantiations of secure protocols for this task (which are
secure in the malicious setting). As discussed above, this level of security is essential since it is
reasonable to assume that compromised devices might act maliciously and in a coordinated manner
in order to obstruct the protocol.

Finally, we show run times of a proof-of-concept implementation that we have written on a
sample platform.

1.2 Background

Differential Privacy (DP): Differential Privacy is a natural tool to discuss the limit on the the
amount of information that is learned about a user’s password; see Dwork and Roth [DR14] for a
survey of the field. Two common techniques of DP are adding Lapalacian noise and randomized
response. In the randomized response technique, in order to learn the prevalence of a property one
asks responders to give a noisy answer regarding it. This affects the aggregate answer in a manner
that allows to retrieve, at least approximately, the real answer.

Secure Computation: Secure two-party computation allows two mutually distrustful parties,
each holding an input, to compute a function of their joint inputs without leaking any other
information about their individual inputs. A key primitive of such protocols is oblivious transfer,
where, roughly speaking one party, the receiver, holds a bit b and the other party, the sender, holds
two strings x0 and x1. At the end of the protocol the receiver gets xb, while the sender learns
nothing.

Related Work

The problem of finding the heavy hitters (i.e. popular items) of a collection of items in a differential
private manner has been addressed in several settings, including when the input is given as a stream
(see [DNP+10, DNPR10, CSS11, CLSX12, DNRR15]).

Blocki et al. [BDB16] showed an efficient differential private mechanism to securely publish a
password frequency list of Yahoo!’s users. However, their mechanism requires full knowledge of the
user’s passwords and is thus appropriate only after a serious leakage occurs. In our application we
want to have periodic update and release of the popular passwords.

Bassily and Smith [BS15] have an efficient protocol in the local model (similar to our com-
munication model) for finding heavy hitters that is differentially private, but they do not deal
with malicious users (specifically the case of undercounting). In particular, since every user knows
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how its vote was counted, the user can redo the protocol until it gets a result it likes. Note that
one difference is that their protocol does not tolerate false positives at all, i.e. from its point of
view a this will translate to a nonsensical candidate for a heavy hitter. In our application it will
mean a rejection of a legitimately strong password, which, if rare enough is innocuous. Bassily
et al. [BNST17] have very recently provided an improved protocol wrt to the communication and
computational complexity and in particular showed a technique for domain reduction on the set of
items. Chan et al. [CSS12] have given a lower bound on the approximation accuracy in the local
model. None of these work in the adversarial setting, when the users are trying to make a popular
item disappear.

Moran and Naor [MN06] considered randomized response protocols when some of the responders
are trying to bias the result (see also Ambainis et al. [AJL04]). This is the analogue of a malicious
set of users who are trying to overcount or undercount the heavy hitters. They related the issue to
oblivious transfer protocols.

One work that combines privacy-preserving statistics collection scheme robust against malicious
manipulation is that of Mani and Sherr [MS17]. They also proposed a histogram based privacy-
preserving statistics collection scheme robust against malicious manipulation in the context of a
TOR network. However their communication complexity is linear in the number of bins, compared
to logarithmic in our protocol (for our example of 216 bins they require 122 MB per client instead of
2 MB in our case). They also required non colluding mix servers for privacy, while in our protocol
the user does not need to trust anyone.

Schechter et al. [SHM10] proposed a method (data structure) to securely publish a list of popular
passwords, with simialr motivation to ours. However they require the user to reveal its full password
to the server and do not offer DP for the user upon password publication.

1.3 Paper Structure

Section 2 describes the basic scheme, discusses the usage of DP to protect the device, and the
possible attacks on the system and required secure functionality in the malicious setting. Section 3
discusses how the server generates the list of popular hashes and bounds the probability of false
negatives in the semi-honest and malicious settings.

The next two sections describe two different methods for computing the secure functionality
required for the general scheme in the malicious setting: Section 4 describes a secure protocol,
based on garbled circuits. Section 5 describes a secure protocol which is based on the intractability
of quadratic residuosity assumption (QR). The garbled circuit solution is more efficient both in
run time and in bandwidth. On the other hand it requires an interactive protocol. The QR based
protocol demands more resources but has a non-interactive version.

Section 6 describes a proof of concept implementation of the QR-based protocol. Section 7
discusses the results and raises open questions.

2 The General Scheme

We first describe the basic construction, and then provide details on how to fulfil properties such
as differential privacy and security against malicious behavior. A rough outline of the basic scheme
is that learning the popular passwords can be reduced to learning a single bit via the Fourier
coefficients of the distribution. This is done by the server sending a random vector to the device
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who responds with the inner product of the vector and the password.

2.1 The Basic Scheme

The system uses a system-wide hash function H, which maps passwords of arbitrary length to `-bit
outputs (a typical output length will be ` = 16, 24 or 32). The output of the scheme reveals
elements in the range of H to which over-popular passwords are mapped. Devices can then check
if their password is mapped by H to one of these elements, and in that case ask the user to choose
a new password. The scheme works in the following way:

1. Each device j maps its password passj to a secret `-bit value vj = H(passj).

2. Each device receives from the server a uniformly distributed random `-bit value rj . The
device sends back the one bit value of the inner product of vj and rj over GF [2], denoted as
〈vj , rj〉.

3. The server keeps a table T [x] of 2` counters, corresponding to all possible `-bit values x (the
table is initialized to zero on system setup). For every value of x if 〈x, rj〉 = 〈vj , rj〉 the
corresponding counter is incremented by one, otherwise it is decreased by one. This equality
holds for exactly half of the values, that we call the “correlated” values.

We denote the total number of users that have chosen a password as NC , and p is the the fraction
of users whose password is hashed by H() to the value x. The expected number of increments and
decrements is NC(p+ (1− p)/2) and NC(1− p)/2 respectively. We get that the expected value of
the counter E(T [x]) = τNC .

For a popularity threshold fraction τ the server simply publish all x values such as T [x] > τNC .
Each device j can now check if H(passj) is in the list of hash values published by the server. If it
is, the device asks the user to change the password.

Running Time: The running time of the above protocol is 2` operations per update. This puts
a constraint on the size of `, but practical values of 16 or 32 are suitable for our needs.

2.2 User Differential Privacy

In our scheme only one bit of information about the user’s password is leaked. In some cases even
this amount of information might be too much. There are two different privacy concerns from the
user’s point of view:

1. Privacy from the server – Although some information must be leaked to the server in order
for the scheme to work, the users may want to have some differential privacy guarantees on
the single bit they send to the server.

2. Privacy from third parties – Although a user may be willing to leak some information about
his password to the server, we want to assure that this information does not leak to third
parties viewing the list of popular hashes that is published by the server.
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2.2.1 Pure Differential Privacy by Applying Randomized Response

To reduce the amount of information leaked to the server, the device can use randomized response.
Namely, after hashing its password to vj , it decides with probability εr to choose a uniformly
distributed random value v′j , and send 〈v′j , rj〉 instead of 〈vj , rj〉. It holds that:

Pr(〈v′j , rj〉 = 〈vj , rj〉 | v′j 6= vj) = 1/2 (1)

Pr(v′j = vj) = 2−` (2)

From equations (1) and (2) we get that the probability of the server learning the correct bit 〈vj , rj〉
is 1− εr(1− 2−`)/2. From this we can conclude that this procedure provides the device with pure
DP, with ε ≈ ln(2/εr − 1).

2.2.2 (εn, δ) Differential Privacy by Applying Laplacian Noise

To ensure users that they have εn differential privacy from a third party, the server can add
independent Laplacian noise Lap(2/εn) to each entry of the table (note that a change in a device’s
password can change the value of an entry by at most 2).

We comment that this procedure might not be sufficient as the server might need to periodically
republish its current hash list. As we need to generate new noise each time we publish, an attacker
can average the results over time and learn information about a single user’s password. Even given
this observation, we still retain DP as long as the number of hash list publications is not very
large. Dwork et al. [DRV10] have shown the advance composition property that enables to get
O(
√
k log(1/δ′) · εn, δ′)-differential privacy for k publications. This means that the penalty we get

in privacy is proportional to the square root of the number of publications. This is not surprising
as we need about (εn)2 samples to distinguish between the possible votes of a single device.

2.3 The Malicious Setting

In a semi-honest model the naive protocol suggested above is sufficient: the server sends rj to the
device and receives 〈vj , rj〉 (perhaps after the user applies the randomized response technique).
The server cannot learn more than a single bit, and the device does not have anything to learn.
However, in the malicious setting, the parties have different possible behaviors:

2.3.1 A Malicious Server

A malicious server can tweak the hash list that is published. One option is to publish a very large
list of popular passwords, and cause a large amount of false positives. This can be done in order
to cause a DoS attack or to try and influence the users to choose from a smaller set of popular
passwords. However, if τ is the popularity threshold then the server should publish at most 1/τ
popular passwords. Moreover the server has no incentive to do a DoS attack on its own system.

2.3.2 A Malicious Device

A coalition of malicious devices may try influence the statistics gathered by the server in two ways.
It can apply an overcount attack to make unpopular passwords seem more popular, or apply an
undercount attack to make popular passwords seem unpopular. Note that in our scheme, a single
device can change the value of a counter by at most ±1.
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Undercount attack: A coalition of devices can try to “hide” some popular passwords, and cause
a “false negative”. This attack may result in a larger fraction of the users using the same (weak)
password. Assume that a corrupt device wants to cause an undercount of a popular password pass.
Lets assume that vp = H(pass). The expected contribution of a device that did not choose vp to
the counter T [vp] is 0. However, by choosing v s.t. 〈v, rj〉 = −〈vp, rj〉 the contribution is −1. In
this way a β fraction of malicious users out of NC can undercount a popular passwords counter by
βNC . This can cause the counter value to go below the threshold, and remove the hash from the
published list.

Overcount attack: A coalition of devices can try to make many passwords that have been chosen
by less than a fraction τ of the users to seem more popular. This will result in a large number of
“false positives”.

This attack will only have a large effect if the attacker is able to do it on a large fraction of
the passwords, and reduce the the min entropy. However, this attack is feasible only on a small
number of password simultaneously, and will have negligible effect on the min entropy. Moreover,
the solution we present for the undercount attack is also effective against the overcount attack, so
we will focus only on the more severe undercount attack.

2.4 The Required Secure Functionality

To protect against malicious undercount attacks we need a prevent the possibility of sending a
result bit that is anti correlated to a any value v (equal to 1 − 〈v, rsj 〉 ) with probability greater
then 1/2. In fact, we only allow the device to send a result of an inner product. We define this
functionality in Figure 2.1. Namely, we define a functionality in the ideal model (where a trusted
party is assumed to exist) which provides the desired privacy and correctness properties. The actual
execution of the protocol (with no trusted party) must securely compute this functionality.

FIGURE 2.1 (The inner-producr functionality).

• Input:

– The server sends to the trusted party (TTP) an `-bit input rsj .

– The device sends to the TTP an `-bit input v.

• Output:

– The TTP sends to server the inner-product value 〈v, rsj 〉.
– The device learns no output.

An ideal model definition of the inner-producr functionality.

The functionality allows the device to randomize its response, by choosing a random input v.
As v is independent of rsj , the result of the inner-product will be random.

The definition implies that a device cannot learn rsj before providing its input to the protocol.
In Sections 4 and 5 we show two secure protocols which implement the functionality of Figure 2.1

(or a small variant).
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3 Generation of the Popular Hash List

We describe how the server uses the inner-product results from the devices, to generate and publish
the list of popular hash values that users should avoid. We give an upper bound on the probability
of false negatives or false positives in the semi-honest and the malicious settings.

Even when implementing the required secure functionality, the published hash list leaks infor-
mation about the secret rs vectors used by the server. Malicious devices can use this information
for an undercount attack. We will bound the amount of leaked information, and the probability of
false negatives caused by this undercount attack.

3.1 Notation

We use the following notation in the analysis:

1. NC is the total number of unique devices that have chosen a password.

2. NP (pass) is the total number of devices currently using password pass.

3. v = H(pass) is the hash value of password pass.

4. NH(v) is the total number of devices that are currently using any password such that v =
H(pass).

5. T [v] is the value stored at the counter table with index v.

6. α(v) is the server’s approximation of the number of votes for a hash value v.

7. εr is the probability that a device will randomize is response (for DP).

8. 1(x) is the unit step function.

All probability calculations are taken over the possible values of the rs vectors used by the server
and the devices’ possible randomized responses.

3.2 Creating an Approximation of Popular Passwords

The approximation to the number of devices that currently using a password that hashes to v,
given the current value of T [v], is defined as:

α(v) = (T [v]−NCεr2
−`)/(1− εr) (3)

Lemma 3.1. If a fraction p of the devices choose a password which hashes to v, then the expected
value of α(v) is pNC .

Proof. Let us first calculate the expected value of counter T [v] given the number of devices whose
password is hashed to v. The expected contribution of any value vj 6= v to T [v] is 0 and for vj = v
it is 1. We calculate the expected number of devices that chose the value v. There are three ways
for a device to choose a password pass, and get a hash v.

1. v = H(pass) and the device is not randomizing the response.
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2. v 6= H(pass), the device randomizes the response, and as a result gets the value v.

3. v = H(pass), the device randomizes the response, but gets the same v again.

Therefore,

E(T [v] | NH(v) = pNC) = NC · (p(1− εr + εr2
−`) + (1− p)εr2−`) (4)

= NC · (p(1− εr) + εr2
−`)

From (3) and (4) we get that the expected value of α(v) is:

E(α(v)|NH(v) = pNC) = pNC

3.3 Bounding False and Positive Negatives

The goal of our system is to prevent any password from becoming “too popular” – i.e., we want to
identify passwords which are used by more than a fraction τ of the devices. Namely, identify any
password pass for which NP (pass) > τNC .

As we can only learn an approximation of NP (pass), we will relax our requirement, to identifying
any password for which NP (pass) > τNC(1+δ). We will also allow error on the other side – namely
allow the server to declare as popular passwords which are only used by more than τNC(1 − δ)
devices (but no password which is used by less devices should be declared as popular).

We first analyze the publication of the hash list in the semi-honest setting.

Estimating the false negative probability We define as a “false negative” the event that at a
given time, some password pass was over the upper threshold, but the approximation α(H(pass))
was below the threshold. Namely,

NP (pass) > τNC(1 + δ) ∧ α(H(pass)) < τNC

Lemma 3.2. The probability for a false negative event, Pfn, is bounded by:

Pfn ≤
2 exp(−NC(τδ(1− εr))2/2)

τ(1 + δ)

Estimating the false positive probability We define a false positive as the mirror case of a
false negative, namely

NP (pass) < τNC(1− δ) ∧ α(H(pass)) > τNC

Lemma 3.3. The probability for a false positive Pfp is bounded by:

Pfp ≤
2−`

τ(1− δ)

Lemmata 3.2 and 3.3 are proved in Appendix A.
While we want to assure that a false negative will never happen, we can allow for a small

probability of a false positive, since the only consequence is that users will be asked to choose
another password.
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3.3.1 Dynamic Threshold as a Function of N

To bound the probability of a false negative given by Lemma 3.2 we propose that the minimal
threshold τ will be bounded such that the following constraint holds for some constant C:

C < NC(τδ(1− εr))2/2 =⇒ τmin >

√
2C

NC
· 1

δ(1− εr)

This will assure a very low probability of false negatives even after publishing the hash list a
polynomial number of times. For example in a system with a million users (NC = 106), δ = εr = 1/2
and C = 20, we get that τmin = 0.025. We can also use a numerical approach to calculate Pfn and
find a suitable τmin.

3.4 Bounds in the Malicious Setting

In a malicious setting, a coalition of devices might try and cause a false negative using an undercount
attack. However, as the system will use a secure inner-product protocol that is resilient to malicious
devices (as described in Sections 4 and 5), the best strategy available for the coalition is to randomize
their chosen hashes between repeated publications of the hash list, and see if this results in an
undercount. The probability of success for this attack is exactly the probability of a false negative
and is very low.

Nonetheless, the publication of the list of popular hash values might leak information about
the secret rs values. This information can be used in an undercount attack to cause false negatives
with higher probability. For example, a device might learn from a change in the published hash list
that its chosen hash is correlated with a popular hash and choose another hash value in hope that
the result will be anti-correlated. We therefore discuss in this section how the server can add noise
to the published list of popular hash values, to reduce the probability of a successful undercount
attack.

3.4.1 Information Leakage in the Malicious Setting

We consider the worst case scenario, where all of the devices are malicious and try to collude to
learn information about the different secret rsj values of each device. We want to bound the amount
of bits leaked on a single publication of the statistics. As all of the devices are colluding, all the
chosen hash values are known (the devices know NH(v) for every v), and so all the information
leaked is on the rj values.

A hash value v is added to the published list if 1(α(v)− τNC) = 1. The maximum entropy for
a single bin happens when E(α(v) = τNC) and then the entropy is H (1(α(v)− τNC)) = 1. As the
malicious devices do not have to randomize their responses, this happens when exactly τNC(1− εr)
devices choose v. Due to our secure inner product protocol the devices cannot control the part of
α(v) that is a binomial distribution:

NB ∼ bin(n = NC(1− τ(1−εr)), p = 1/2) ≈ bin(n = NC , p = 1/2)

α(v) ≈ τNC + 2(NB −NC/2)/(1− εr)

The devices control all of the chosen v values, but NB is randomized due the secret rj vectors. Any
bit of information on the value of NB can be translated to information on rj . We will like to bound
the amount of information leaked.
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3.4.2 The Effect of the Laplacian Noise on False and Positive Negatives

We consider the addition of Laplacian noise with 1/ε = τNCδ/C where C is a small constant (e.g.
2). In that case we can view the noisy approximation αN as:

αN (v) = α(v) +NL = NH(v) +NB +NL

where NB is a binomial noise due to the devices that did not choose v and the randomized response,
and NL is the added Laplacian noise.

The Laplacian noise added by the server can cause false and positive negatives, with a relatively
low but non-negligible probability. By choosing a threshold value τ > τmin we get smaller binomial
noise, to allow for the extra noise. Moreover, the server generates new noise for each publication the
hash list. So even if a false negative will happen with low probability, the expected number of such
events is small and they will have a small effect on the users. For example if once every 10 weeks
a popular password will not appear on the list, not many new users will choose it. In contrast, a
false negative event caused by the binomial noise that was described before will be maintained in
all the next publications.

3.4.3 Bounding the Information Leakage

As we have demonstrated, all bins with NH(v) > τNC(1 + δ) have negligible probability of not
being published. Therefore, the fact that they are in the list leaks no information. The mirror case
is with regards to all bins such that NH(v) < τNC(1 − δ). The fact that they are not in the list
also leaks no information. We get that a bin can only leak information if:

τNC(1− δ) < NH(v) < τNC(1 + δ)

In the malicious setting, the devices do not have to randomize their response and the maximum
number of such bins is:

1/(τ(1− δ)(1− εr))

As the colluding devices know NH(v), the only information they can gather is on the value of
NB, which is the sum of binomial noises. To bound the leakage we want to bound the mutual
information.

I(NB;1(αN (v)− τNC)) = H (1(αN (v)− τNC))−H (1(αN (v)− τNC)|NB)

≤ 1−H (1(αN (v)− τNC))|NB)

= 1−H (1(NB +NL)|NB)

We define b(t) as the maximum possible number of bits leaked at time t with the current values of
τ(t):

b(t) =
(1−H (1(NB(t) +NL(t)|NB(t))

τ(t)(1− δ)(1− εr)
AsNC increases we can add larger Laplacian noiseNL. AsNL gets larger H (1(NB(t)+NL(t)|NB(t))
tends to 1 and b(t) tends to zero.
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3.4.4 Bounding the Probability of an Undercount Attack

As we have seen, the probability of a false negative without active participation is bounded as

Pfn ≤
2 exp(−NC(τδ(1− εr))2/2)

τ(1 + δ)
.

We can view all the possible choices of hashes by the attacker’s devices as a search space, where
the attacker goal is find such a hashes that cause an undercount attack. Without any auxiliary
data on the rj values, an attacker best strategy is to randomly sample from this space, and test if
the undercount attack succeed. This will happen at a probability of Pfn.

Every bit of information on rj can help the attacker ignore half the search space an increase the
success probability by a factor of 2. We define B(t) =

∑
b(ti) the total bits of information leaked

up to time t. So the attacker can use B(t) to increase is success probability by 2B(t). We get an
upper bound for the new probability of a false negative with malicious devices:

Pmal−fn = Pfn · 2B(t) ≤ 2 exp(−NC(τδ(1− εr))2/2)

τ(1 + δ)
· 2B(t)

=
2 exp(−NC(τδ(1− εr))2/2 +B(t)/ log2(e))

τ(1 + δ)

≈ 2 exp((1.38B(t)−NC(τδ(1− εr))2)/2)

τ(1 + δ)

This Probability is greatly affected by two parameters NC and τ . As NC increase Pmal−fn
decreases exponentially. Moreover, as NC increases we can use larger Laplacian noise, reduce the
data leakage and so B(t). As τ decrease Pmal−fn decreases exponentially. Moreover B(t) ∝ 1/τ .

3.4.5 Dynamic Publication Frequency

We define LS as the planned lifespan of the system. This might be the life expectancy of the
devices or of the service (e.g. the manufacture can decide that he will stop support of the web
cameras after 10 years).

To bound the probability of a malicious false negative, we require that for any time t, Pmal−fn ≤
exp(−C) for some constant C. We do this by defining a dynamic threshold and publication fre-
quency that depend on the amount of previously leaked information B(t), the remaining lifespan
of the system LS − t, and the number of devices that have run the protocol so far3

ln(Pmal−fn) ≈ (1.38L(t)−NC(t)(τ(t)δ(1− εr))2)/2 ≤ −C
NC(t)(τ(t)δ(1− εr))2 − 1.38L(t) ≥ 2C

For any time t, the worst case scenario is that no more devices will choose a hash and NC(LS) =
NC(t). In that case we want to choose a publication frequency freq(t) and threshold τ(t) such that
even at the end of the lifespan of the system the information leaked will be bounded:

L(LS) = L(t) + (LS − t)freq(t)l(t) (5)

2C ≤ NC(LS)(τ(LS)δ(1− εr))2 − 1.38L(LS) (6)

= NC(t)(τ(t)δ(1− εr))2 − 1.38(L(t) + (LS − t)freq(t)l(t))

3Devices can change their hash but not remove themselves from the statistics, so NC(t) is a monotonic increasing
function of time t
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Number
of Users

Life span τmin τ
Publication
period

105 10 year 5.3% 10.6% 7 days
106 10 year 1.7% 4% 7 days
107 10 year 0.5% 1.6 % 7 days

Table 1: Publication parameters in the malicious setting

Equation 5 gives an upper bound for the amount of information leaked in the rest of the lifespan
if the statistics are published with frequency freq(t) and threshold τ(t). Equation 6 gives us the
required ratio needed to prevent malicious undercount attacks.

As NC(t) increases over time the server can increase the frequency of publication or decrees the
threshold.

Table 1 demonstrates some examples for different tradeoffs between the parameters, assuming
no previous leakage. The value of b(t) needed for the calculation was simulated using Matlab with
LN ∼ Lap(τδNC/2), δ = 0.5, εr = 0.25.

4 An Inner Product Protocol Based on Garbled Circuits

Generic protocols for secure computation, such as Yao’s garbled circuit protocol, can be used for
securely computing any function. In particular, they can be used for computing the inner-product
function. The Binary circuit computing the inner-product of `-bit values is very small, and is
composed of only ` AND gates and `− 1 exclusive-or gates. The secure computation of this circuit
is extremely efficient.

The main challenge in using garbled circuits in our application is ensuring security against
malicious behavior. The most common approach for achieving security against malicious adversaries
is the cut-and-choose paradigm (see, e.g., [LP07]), but this paradigm requires computing at least
Ω(s) copies of the circuit in order to reduce the cheating probability to 2−s 4.

Fortunately, the setting we are interested in enables a much more efficient implementation with
security against malicious adversaries. This implementation is based on two features of the setting:

1. The device does not receive any output from the computation.

2. The server is allowed to learn a single bit about the input of the device (this feature is a
byproduct of learning the inner-product, but we can also use it for designing a more efficient
two-party protocol).

In our implementation, the server is the constructor of the circuit, and will also learn the
output of the computation. We make a minor change to Yao’s protocol to enable the device to
verify that the circuit outputs only a single bit. The device cannot, however, know which function is
computed by the circuit.5 The server can therefore use the circuit to learn other one-bit functions of

4Note that in our case the server and the device are only interested in running a single computation, or perhaps a
single computation following each password change, and therefore there is no benefit in using protocols which reduce
the amortized overhead of cut-and-choose over many computations of the same function, as in [HKK+14, LR15].

5The device can verify the topology of the circuit, but it cannot verify the functions computed by the gates.
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the input of the device. This is still fine by our security requirements, but we need to re-define the
ideal functionality to model this computation. The modified functionality appears in Figure 4.1.

FIGURE 4.1 (The modified inner-product functionality).

• Input:

– The server sends to the TTP the following inputs:

∗ An `-bit input rsj .

∗ A circuit computing a function F which receives two `-bit inputs and outputs a
single bit.

– The device sends to the TTP an `-bit input v.

• Output:

– The output of the server is F (h, rsj ).

– The device learns no output.

An ideal model definition of the modified inner-product functionality that is computed by Yao’s
protocol.

The protocol we use is based on the observation that running the basic Yao protocol, which is
only guaranteed to provide security against semi-honest adversaries, is actually also secure against
malicious circuit evaluators.6

The parties run Yao’s semi-honest protocol, with two modifications:

1. The oblivious transfers are secure against malicious adversaries. They can be implemented,
for example, using the protocols of [PVW08, CO15], whose overhead is composed of only a
few exponentiations.

2. The server provides in advance the output of a collision-resistant hash function applied to the
two possible garbled outputs of the circuit. The device verifies, before sending the garbled
output to the server, that the garbled output hashes to one of these values. (This guarantees
that the circuit can have only two valid outputs.)

We assume that the reader is familiar with Yao’s garbled circuit protocol. The protocol we
suggest includes the following steps:

1. The server prepares a garbling of a circuit computing the inner product of two `-bit inputs.
In addition, it applies the hash function to the two garbled values of the output wire of the
circuit, and records the results.

2. The parties run ` invocations of 1-out-of-2 oblivious transfer, one for each of the ` input wires
corresponding to the device’s input. The server is the sender, and in each OT it lets the
device learn one of the two garbled values of the corresponding input wire.

6This observation was used in the dual execution paradigm, in which the parties run the protocol twice where each
party is the constructor in one run of the protocol and the evaluator (who learns the output) in the other run [MF06].
The parties then run a reconciliation step in which their garbled outputs are securely compared for equality. This
protocol is known to leak at most one bit, namely whether the two outputs are equal or not. (Follow up work in this
paradigm leaks no information, by running multiple copies of the circuits [KMRR15, RR16].) We need to provide an
output to the server only, and therefore can run a single execution of the protocol instead of two executions.
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The oblivious transfers are implemented using an oblivious transfer protocol that is secure
against malicious adversaries.

3. The server sends to the device (1) the garbled tables of all gates, (2) the garbled values
corresponding to the input wires of the server, and (3) the hash values of the two possible
garbled values of the single output wire (these two values are sent in random order).

4. The device evaluates the circuit and learns the garbled output value.

The device then checks that the hash of this value is equal to one of the two hashes of the
output wire, sent by the server. If there is a match then it sends the garbled value to the
server.

5. The server receives the garbled output value and translates it to the 0/1 value of the inner
product.

Overhead. In terms of overhead, we note that the circuit size is very small (2`− 1 gates, where `
is typically equal to 16, 24 or 32), whereas current implementations of Yao’s protocol can process
millions of gates per second. The protocol can therefore achieve an excellent run time even without
implementing any optimizations to the basic Yao protocol (such as the half-gates garbling method).
There is also no need to implement the oblivious transfers using OT extension, since the run time
of each oblivious transfer is at most a few milliseconds (e.g. the implementation of the fully secure
OT protocol of Chou and Orlandi [CO15] takes less than 500,000 cycles to run, and can therefore
achieve a throughput of thousands or tens of thousands of OTs per second).

Security against a malicious device. The device plays the role of the evaluator (receiver)
in the protocol. It is well known that Yao’s protocol is secure against a malicious evaluator [MF06].
The device sends an output to the server, but since the server verifies that this output is a garbled
value of the output wire the device has no option but to evaluate the circuit and send the garbled
output value to the server. Formally, security can be proven in a straightforward way by assuming
that the oblivious transfers are secure and using the simulation proof presented in [LP09].

Security against a malicious server. A malicious server can use an arbitrary circuit in the
protocol. The main feature ensuring security against the server is that the device is only willing to
send to the server an output whose hash value matches one of two outputs of the hash function.
Namely, there are only two possible outputs which the device might send to the server.

A selective failure attack. In addition, a malicious server can apply a selective failure attack,
and prepare a corrupt circuit whose evaluation fails for a subset of the inputs of the device. In this
case, the server can identify that the device’s input is in this subset. In total, the server can learn
whether the device’s input is in one of three subsets (the preimages of 0, the preimages of 1, and
the values for which evaluation fails). In other words, the server can learn at most log2 3 = 1.58
bits of information about the password.

We note, however, that it is illegitimate to have a protocol run where the device fails in comput-
ing an output. When this happens, the device can complain about the behavior of the server (and if
we require the server to sign the messages that it sends, then the device has a proof that the sender
misbehaved). Moreover, since device manufacturers typically need to keep a good reputation, we
can conclude that even though the selective failure attack is possible, it is unlikely that a device
manufacturer will attempt to apply it.

A simulation argument for the security of the construction works with a slightly modified
function used in the ideal model, which also considers the selective failure attack. The server’s
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input to the trusted party is a value rsj , and a function F̂ , which has three possible outputs: 0,
1, or “computation failure”. The simulator receives the server’s input and output. The simulator
can simulate the server’s input to the OTs, and can easily generate the garbled tables. It then
simulates the answer that the server receives based on the output of F̂ given by the trusted party.

5 An Inner Product Protocol based on the Quadratic Residuosity
(QR) Assumption

The goal of the protocol is to implement the secure functionality described in Figure 2.1 and
calculate the inner product 〈V s, Rs〉 between a device’s (D) input V s and a server’s (S) input Rs

in a malicious setting. S should only learn the result, while D should learn nothing 7 and will not
be able to deviate from the protocol.

We use the following notation:

1.
(
a
N

)
is the Jacobi symbol of a in respect to N , this is easy to calculate.

2. QRN (nQRN ) is the set of all numbers that are (non) quadratic residues modulo N, and with
Jacobi symbol 1.

3. TQRN
(a) tests the quadratic residuosity of a in respect to N . The output is ⊥ if

(
a
N

)
6= 1.

Else the output is 0 if a ∈ QRN and 1 otherwise. We assume that computing this function
requires the knowledge of p and q.

4. a
R← QRN (nQRN ) denotes that the value a is chosen uniformly at random (UAR) from QRN

(nQRN ).

5. πa
R← π{`} denotes that the permutation πa is chosen UAR from the family of permutations

on ` items.

6. x
R← {0, 1}` denotes that the value x is chosen UAR from {0, 1}`.

7. Capital letters such as V s denote binary number in {0, 1} while lowercase letters such as rp

are numbers in ZN .

The protocol is based on the intractability of the quadratic residuosity (QR) assumption. Under
this assumption it is hard to determine whether x ∈ QRN or x ∈ nQRN where

(
x
N

)
= 1, without

knowledge of the factorization of N .
We use this assumption for encrypting S’s vectorRs in a similar way to Goldwasser-Micali [GM84]

public encryption scheme. We use the homomorphic properties of this scheme – i.e. if x, y ∈ QRN
and a, b ∈ nQRN then xy, ab ∈ QRN and ax ∈ nQRN .

5.1 Protocol - Semi Honest Version

S generates an RSA public and secret key pair SK = (p, q), PK = n where p and q are large primes
(the size of N depends on a security parameter k1). S than encodes Rs in a public vector rp ∈ Z`N
that is sent to D . Each number in rpi is a public encryption of the corresponding bit Rsi .

7Unless V s = 0 as then 〈0, Rs〉 = 0
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1. if Rsi = 0: rpi
R← QRN , zero is encoded to a QR.

2. if Rsi = 1: rpi
R← nQRN , one is encoded to a nQR.

D generates a random QR by generating a random number in ZN and squaring it. Then D
calculates the product of the numbers in rp corresponding to the 1 bits in V s, and blinds the result
using the random QR:

e = d2 ·
∏̀
i=1

(rpi )
V s
i where d

R← ZN

After receiving e from D , the server S learns the result of the inner product:

result = TQRN
(e)

Under the QR assumption D does not learn anything on Rs. Due to the homomorphic properties,
a product of encoded bits gives an encoding for the xor of the bits. We get that e encodes the inner
product result.

The blinding by d2 does not change the result (it is equivalent to an exclusive-or with zero).
However, because d is chosen UAR in QRN , then e is also distributed uniformly at random inside
its class (either QRN or nQRN ). This ensures that the S only learns the one-bit result of the inner
product.

5.1.1 Insecurity in the malicious setting

Even under the QR assumption we do not know if it is hard to find a single number x such that
x ∈ nQRN . A malicious D may be able to generate such an x and then flip the value of the result
by sending e′ = e · x. This allows an undercount attack on a specific password.

5.2 A Naive Implementation for the Malicious Setting

We will now show a naive implementation that is secure against a malicious D, but allows S to
learn more than one bit of information on V s.

The main idea is that D creates a vector r∗ that is a “blinded” version of rp. This is done by
blinding each value in rp and randomly permuting the vector. D sends S the list of indexes of the
numbers in r∗ used to calculate e.

We pad rp a with ` numbers that are in QRN . This is done to allow D to always send a product
of ` numbers regardless of the Hamming weight of V s. If V s

i = 0 then we send the corresponding
number from the padding.

Afterwards D proves to S that r∗ is indeed a blind permutation of rp. This is done by generating
vectors rj that are blinded permutations of r∗, and proving to S that D knows how to “open”
them either to r∗ or to rp. The length of the proof depends on a security parameter k2, where the
probability of D to deviate from the protocol is 2−k2 .

5.2.1 Device setup Phase

D generates and saves the following data.
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1. r = rp||pad2 where pad
R← Z`N . We pad rp with ` numbers in QRN .

2. V = V s||V s where V s
i = 1− V s

i .

3. π∗
R← π{2`}, d∗ R← Z2`

N . D generates a random permutation π∗ on 2` items, while d∗ are 2`
random numbers.

4. r∗ = π∗(r · (d∗)2), V ∗ = π∗(V ). r∗ is a blinded random permutation of r, and V ∗ is the same
permutation of V .

5. e =
∏2`
i=1(ri(d

∗
i )

2)Vi =
∏2`
i=1(r

∗
i )
V ∗i . e is the product of the blinded items in r corresponding

to the 1 bits in V . The bit that is encoded is the result of the inner product.

6. For j = 1..k2:

(a) πj
R← π{2`}, dj R← Z2`

N . D generates a random permutation π∗ on 2` items, while d∗ are
2` random numbers.

(b) rj = πj(r
∗ · (dj)2) is a blinded random permutation of r∗

7. D sends (r∗, V ∗, pad) to S.

5.2.2 Interactive proof phase

The server first computes the result.

1. S calculates r = rp||pad2 using the value pad it received from D and rp that it stored locally.

2. S calculates e =
∏2`
i=1(r

∗
i )
V ∗i . Namely, e is the product of the items in r∗ corresponding to

the 1 bits in V ∗.

3. S calculates result = TQRN
(e), to retrieve the value of the inner product.

Then the server verifies the result by applying the following interactive proof for j = 1, . . . , k2:

1. D sends rj to S

2. S sends bj
R← 0, 1 to D

3. if bj = 0

(a) D sends to S (π∗j = πjπ∗, d
∗
j = πj(π∗(d

∗) · dj), opening the blinding and permutation

from r to rj .

(b) S verifies that rj = π∗j (r) · (d∗j )2.

4. else

(a) D sends to S (πj , d
j), opening the blinding and permutation from r∗ to rj .

(b) S verifies that rj = πj(r
∗ · d2j ).
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5.2.3 Information leakage in the naive implementation

S receives a blinded version of the numbers used in the inner product calculation (the numbers in
r∗ corresponding to the 1 bits in V ∗). However, for any number x, S is still able to find the sign of
TQRN

(x). This lets it learn much more information about V s. For example S can choose Rs to be
the all ‘1’ value and use it to learn the Hamming weight of V s by counting the number of numbers
that are in nQR.

5.3 The Complete Protocol

We will now describe the complete protocol. The main difference from the naive implementation
is that instead of sending a vector such as r∗, D sends the squared vector s∗ = (r∗)2. As all the
numbers in s∗ are in QRN , this vector is indistinguishable from any other random vector in QR2`

N

regardless of the values of V s and rp. This vector does not revel any more information about D.
We will prove that under some restriction on the generation of N the soundness of the modified
protocol holds. We shall now give a full description of the protocol:

1. S global setup – initial setup of the public and private parameters of the protocol. This step
can be run once by S with regards to all Ds.

2. S instance setup – should be run once by S for each D .

3. D instance setup – should be run by D every time a new V s is chosen. Calculates the inner
product.

4. The interactive protocol – a description of the run of the interactive protocol.

5.3.1 Server global setup

S runs a setup algorithm GlobalSetup(1k1), taking security parameter k1. It generates an RSA
key pair (PK;SK) where SK = (p, q) and PK = (N = pq), p and q are distinct prime numbers
congruent to 1 mod 4 (this implies that −1 ∈ QRN , as is required for proving soundness).

Additionally S publishes a proof that N is a semiprime( N = paqb where p and q are primes).
This is required for the zero-knowledge proof). Such a proof can be found in the extended version
of the paper.

5.3.2 Server instance setup

For each D , S runs ServerSetup(PK,SK,Rs, `), taking the private and public keys generated by
GlobalSetup, and a secret vector Rs ∈ {0, 1}`. S encodes Rs in a public vector rp ∈ Z`N that is sent
to D . As in the semi honest version, each number in rpi is a public encryption of the corresponding
bit Rsi . S sends rp to D.

5.3.3 Device instance setup

D runs DeviceSetup(1k2 , `, PK, rp, V s) taking a security parameter k2, `, PK, rp and a private
vector V s ∈ {0, 1}`.

First, D checks that for any number x ∈ rp, the Jacobi symbol
(
x
N

)
is 1. Then D generates

and saves the following data:
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1. r = rp||pad2 where pad
R← Z`N . We pad rp with ` numbers in QRN .

2. V = V s||V s where V s
i = 1− V s

i .

3. π∗
R← π{2`}, d∗ R← Z2`

N . Namely π∗ is a random permutation on 2` items, and d∗ are 2`
random numbers.

4. r∗ = π∗(r · (d∗)2), V ∗ = π∗(V ). Namely, r∗ is a blinded random permutation of r, and V ∗ is
the same permutation of V .

5. s∗ = (r∗)2.

6. e =
∏2`
i=1(ri(d

∗
i )

2)Vi =
∏2`
i=1(r

∗
i )
V ∗i . That is, e is the product of the blinded items in r

corresponding to the 1 bits in V , and therefore encodes the inner product result.

D sends (s∗, e, V ∗, pad) to S . Notice that this time S can only calculate e2 by itself, and
therefore it is also required to send e.

5.3.4 Inner product calculation and verification

D and S run the following protocol. If any step or calculation results in ⊥, or a verification fails,
then S outputs reject. Otherwise S outputs accept and can use the value result = 〈V s, Rs〉.

1. S calculates e2, and verifies that e2 =
∏2`
i=1(s

∗
i )
V ∗i . S verify that e2 is indeed equal to the

product of numbers in s∗.

2. S calculates rsqr = (rp||pad2)2, the square of r using pad it received from D and rp that it
stored locally.

3. For j = 1, . . . , k2:

(a) πj
R← π{2`}, dj R← Z2`

N .

(b) D generates πj
R← π{2`}, dj R← Z2`

N (Namely a random permutation on 2` items, and 2`
random numbers).

(c) D sends sj =πj(s
∗ ·(dj)4) to S. sj is a blinded random permutation of s∗.

(d) S sends bj
R← 0, 1 to D .

(e) if bj = 0

i. D sends to S the values (π∗j = πjπ∗, d
∗
j = πj(π∗(d

∗) · dj), opening the blinding and

permutation from rsqr to sj .

ii. S verifies that sj = π∗j (rsqr) · (d∗j )4.
(f) else

i. D sends to S the values (πj , d
j), opening the blinding and permutation from s∗ to

sj .

ii. S verifies that sj = πj(s
∗ · d4j ).

4. S calculates result = TQRN
(e), to retrieve the value of the inner product.
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5.3.5 Non-interactive proof

The interactive part of the protocol can be converted to a non-interactive proof. As the results of
S setup can be stored on D , this allows the implemented protocol to consist of only one message
from D to S .

The conversion is done using the Fiat-Shamir heuristic [FS86] in the (non programmable) ran-
dom oracle model. Unlike hashing the passwords, the interactive proof requires a strong crypto-
graphic hash function such as SHA3 [NIS14].

5.4 Completeness and Soundness

The proof of soundness appears in Appendix B. With regards to completeness, it is easy to see that
if both S and D follow the protocol then the protocol ends successfully as the following statements
hold:

TQRN
(e) = 〈V s, Rs〉

e2 =
2∏̀
i=1

(s∗i )
v∗i

∀j, sj = πj(s
∗ · d2j )

∀j, sj = π∗j (rsqr) · blind2j

5.5 Zero-Knowledge Proof

5.5.1 Privacy of Rs

The encoding of Rs into rp is a semantically secure encryption [GM84], and does not reveal any
information on Rs to any PPT algorithm.

5.5.2 Privacy of V s

There is a simulator SD that given 〈V s, Rs〉, Rs can simulate D . SD chooses UAR V ′ such that
result = 〈V ′, Rs〉 = 〈V s, Rs〉. It then runs the protocol as D with V ′ as the input.

The distribution of all values is the same between D and SD : All values of s∗, sj are indepen-
dently and uniformly distributed in QRN . e is uniformly distributed either in QRN or in nQRN
depending only on result (as N is a semiprime, see Appendix B). Both π∗j and πj are independently
and uniformly distributed random permutations (conditioned on the fact that for any j only one of
the permutations is revealed), and V ∗ is also a uniformly distributed random value with Hamming
weight `.

5.6 Implementation Considerations

5.6.1 Reusing rp

The vector rp can be re-used for repeated runs of the protocol, without any effect on the security
from S’s view point. From D’s side, re-using rp helps by limiting the number of password bits that
can be leaked one, even if the same password is chosen multiple times (e.g. if D was reset, or the
user changed back to an old password).
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As rp is fixed, it can be stored on D in production and not sent over the network. This saves
the first message in the protocol.

5.6.2 Interactive vs. Non-Interactive

As was mentioned above, the protocol can be turned into a non-interactive protocol. This has the
great benefit of allowing D to prepare all messages offline. S can then verify and add the result to
the gathered statistics with minimal interaction.

This advantage comes with a price. In the interactive setting k2 is a parameter of the probability
of deviating from the protocol p(k2) = 2−k2 . For all practical usages setting k2 to be between 10
and 30 should be more than sufficient. However, in the non-interactive proof k2 is a parameter
of the amount of preprocessing work necessary for deviating for the protocol O(2k2), and we will
usually require a much larger value of k2 (say, equal to 80 or 128).

Although the non-interactive protocol is simpler, the requirement of using a larger value of k2
is more suitable for IoT devices such as web cameras with enough memory and processing power.
Devices with lower performance or with tight power restrictions should use the interactive protocol.

5.6.3 Communication complexity

We calculate the amount of bits that need to be communicated in the protocol. As we assume S
generates a fixed rp per D , we will only consider the size of D’s proof (and neglect the k2 bits sent
by S).

The size of the representation of each permutation is 2`|2`| = 4` log `. The size of each vector is
|(s∗, e, v∗, pad)| = k1(2`+1+`)+2` ≈ 3`k1, |(sj , πj∗, blindj)| = |(sj , πj , dj)| = k14`+4` log ` ≈ 4`k1.

The total communication complexity is approximately 4`k1k2. For specific parameters of the
non interactive protocol, ` = 16, k1 = 2048,K2 = 128, it is about 2 MB, and for the interactive
protocol with k2 = 20 about 312 KB.

6 PoC of the QR protocol

To test the feasibility of our solution we implemented a proof-of-concept (PoC) of our QR protocol
in python (the source code will be published for reference). The implementation was done in
python in order to demonstrate that even an unoptimized implementation of the QR protocol,
which demands more resources than the Yao based protocol, is sufficiently efficient for many IoT
devices. To simulate execution on an IoT device such as a high definition web camera, we ran our
implementation on a Raspberry Pi 3 Model B [ras], and ran the server side on a laptop with a
i7-7500U 2.7GHz CPU.

The protocol requires a large amount of random data for blinding and for computing permu-
tations. To optimize this process we implemented a simple AES based pseudo-random number
generator (PRNG) that uses a random seed from the operating system. Even with this optimiza-
tion, the generation of random numbers consumed more than 80% of the total run time. This step
can either be done in a preprocessing step, or be accelerated by using the AES instruction set built
in to many modern embedded CPUs.

For our test we chose to use a modulus N of size 2048 bits and ` = 16. We tested the server and
device run times for 2 different sizes of k2, using k2 = 20 for the interactive version and k2 = 128
for the non-interactive version. The measurements are only for the processing time.
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The device required 2.8 seconds of run time and 13.5 seconds of preprocessing for k2 = 128, and
0.4 seconds of run time and 2.1 seconds of preprocessing for k2 = 20. The server required about
0.5 sec to verify the k2 = 128 non-interactive proof, and about 3msec to update the counter.

These measurements demonstrate that the protocol can be implemented even in very low-end
devices. After the user chooses the password, the device only needs to verify that the hash of the
password is not in the published list, before allowing the user use the new password. Afterwards
the device can run the protocol in the background in order to update the server about the value
of the new password. Since there is no real-time constraint for this phase, the protocol can run
for a relatively long period of time (a few seconds), without causing any inconvenience to the
user. Moreover, recent low power IoT processors like Texas Instruments’ CC2538 Zigbee SoC [cc2]
include ECC and RSA hardware accelerators that can be used for efficient implementations of our
protocols.

7 Discussion and Open Questions

Comparing the QR and garbled circuits solutions We have shown two different approaches
for implementing the secure inner-product protocol. Those two approaches offer an interesting
tradeoff. The garbled circuit solution is more efficient both in run time and in bandwidth. On the
other hand it requires an interactive protocol and a generating a new r value for each password
change. The QR based protocol demands more resources but has a non-interactive version that
only requires the device to prepare and send a single message to the server reusing the same r.8

Implementation for the Tor Network We believe our protocol can be useful for private
statistics gathering in the Tor network. This requires working with the Tor project for choosing
the best use case, and adjusting and implementing the protocol in that setting.

An open question – is cryptography needed? We described a protocol for the semi-honest
setting which does not require any cryptographic primitives. (Namely, the server sends r to the
device, which sends back the result of the inner-product.) This protocol is secure even if the server
is malicious. However, in order to guarantee security against a malicious device, our protocol
instantiations use OT or public key cryptography. An interesting question is whether protecting
against an undercount attack implies the existence of OT or of other cryptographic primitives. It
is an open problem to either prove this claim or show an alternative protocol.
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A Proofs

We prove here Lemma 3.2 and Lemma 3.3 of Section 3.
Lemma 3.2. The probability for a false negative Pfn is bounded by Pfn ≤ 2 exp(−NC(τδ(1− εr))2/2) / τ(1 + δ).

Proof. The worst case is when no other password collides with pass and

NH(v = H(pass)) = NP (pass) = τNC(1 + δ)

α(v) can be viewed as the sum of NC independent random variables bounded by the interval
[−1/(1−εr), 1/(1−εr)] and E(α(v)|NH(v) = pNC) = pNC . Using Hoeffding’s inequality (Theorem
2) [Hoe63] we can show that:

Pr(α(v) ≤ τNC |NH(v)=τNC(1+δ))

= Pr(α(v)− τNC(1 + δ) ≤ −τNCδ|NH(v)=τNC(1+δ))

= Pr(α(v)− E(α(v)) ≤ −τNCδ|NH(v) = τNC(1 + δ))

≤ Pr(|α(v)− E(α(v))| ≥ τNCδ|NH(v) = τNC(1 + δ))

≤ 2 exp(−2(τNCδ(1− εr))2

4NC
) = 2 exp(−NC(τδ(1− εr))2/2)

(7)

As there are at most 1
τ(1+δ) bins where NH(v) ≥ τNC(1 + δ), this is the maximum number of

bins where we can have a false negative. By the union bound the probability of getting at least
one false negative is Pfn ≤ 2 exp(−NC(τδ(1− εr))2/2) / τ(1 + δ).

Lemma 3.3. The probability for a false positive Pfp is bounded by Pfp ≤ 2−`/τ(1 + δ).

Proof. In a similar manner to Equation 7 we can show that

Pr(α(v) ≥ τNC |NH(v) = τNC(1− δ))
= Pr(α(v)− τNC(1− δ) ≥ τNCδ|NH(v) = τNC(1− δ))
= Pr(α(v)− E(α(v)) ≥ τNCδ|NH(v) = τNC(1− δ))

≤ exp(−2(τNCδ(1− εr))2

4NC
) = exp(−NC(τδ(1− εr))2/2)

There are 2` bins, so the expected number of false positive is at most

2` exp(−NC(τδ(1− εr))2/2) ≈ 0

As long as NC(τδ(1− εr))2/2 is large enough we expect to have at most 1
τ(1−δ) bins where NH(v) ≥

τNC(1− δ), and the probability of a device getting a false positive is Pfp ≤ 2−` / τ(1− δ).

B Soundness of the QR Protocol

Theorem B.1. For any (possibly not efficiently computable) adversarial algorithm AD , if TQRN
(e) 6=

〈V s, Rs〉 then Pr
b
R←{0,1}k2

[S = accept] ≤ 2−k2 ].

Theorem B.1 if proved using the following two lemmas.
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Lemma B.1. For any (possibly not efficiently computable) adversarial algorithm AD , and for any
step j in the interactive proof stage, Pr

bj
R←0,1

[S 6= reject] ≥ 1
2 , only if AD knows (d∗, π∗) such that

r∗ = (π∗(r · (d∗)2)) and s∗ = (r∗)2.

Proof. Pr
bj

R←0,1

[S 6= reject] ≥ 1
2 only if AD knows (πj , dj , π

∗
j , d
∗
j ) such that:

sj = πj(s
∗ · d4j ) (8)

sj = π∗j (r
2) · (d∗j )4 (9)

From 8 AD can calculate
s∗ = π−1j (sj) · d−4j

From 8 + 9 AD can calculate

s∗ = π−1j (π∗j (r
2) · (d∗j )4) · d−4j = π−1j π∗j (r

2 · ((π∗j )−1((d∗j ) · πj(d−1j )))4)

We denote π∗ = π−1j π∗j d
∗ = ((π∗j )

−1((d∗j ) · πj(d
−1
j ))

r∗ = π∗(r · (d∗)2), s∗ = π∗(r · (d∗)2)2 = (r∗)2 (10)

And AD can calculate (π∗, d
∗).

Lemma B.2. For any (possibly not efficiently computable) adversarial algorithm AD that knows
(π∗, d

∗) such that s∗ = π∗(r · (d∗)2)2, it holds that finding e such that TQRN
(e) 6= 〈V s, Rs〉 and

S 6= reject is equivalent to factoring N .

Proof. S = rejects unless

e2 =
2∏̀
i=1

(s∗)v
∗
i (11)

From 10 + 11 we get that e′ is a root of e2.

(e′)2 = (
2∏̀
i=1

(r∗)v
∗
i )2 =

2∏̀
i=1

((r∗)2)v
∗
i =

2∏̀
i=1

(s∗)v
∗
i = e2

As −1 ∈ QRN we get that TQRN
(e) = TQRN

(−e). If e = ±e′ then as TQRN
(e) = TQRN

(−e) =
TQRN

(e′) and we get TQRN
(e) = 〈V s, Rs〉. If TQRN

(e′) 6= 〈V s, Rs〉 than e 6= ±e′ and AD can
calculate all 4 roots of N , and that is equivalent to factoring.

Supplementary Material

Proving N is Semi-Prime

The blinding in our protocol is done by multiplying a given value x with a random uniformly chosen
d ∈ QRN . It is easy to see that if x ∈ QRN then x · d is a uniformly random number in QRN .
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However if x ∈ nQRN and |nQRN | > |QRN | then x · d will not be uniform in nQRN . In that case
blinding done by the device might by ineffective.

It holds that |QRN | = |nQRN | if N = paqb where p, q are primes and a, b are positive integers.
In that case Pr

x∈ZN

(x ∈ QRN ) = 1/4. In any other case (N is the product of 3 or more powers

of primes) Pr
x∈ZN

(x ∈ QRN ) ≤ 1/8. If we can prove to the device that with high probability

Pr
x∈ZN

(x ∈ QRN ) > 1/8 then this implies N = paqb. This can be in the (non programmable)

random oracle model in the following way. We generate 1, . . . , k3 random numbers using a strong
Hash function. The server (knowing the factorization of N) publishes a single root for all the
numbers that are in QRN .

For i = 1, . . . , k3 :

1. vi = Hash(N ||i) mod N .

2. if vi ∈ QRn:

(a) a,−a, b,−b =
√
v mod N

(b) Publish (i, a)

Any verifier can check that vi = Hash(N ||i) = a2i mod N ∈ QRn.
We use the notation NHQR = |vi ∈ QRN | and pQR = Pr

x∈ZN

(x ∈ QRN ).

NHQR can be viewed as the sum of k3 independent random variables bounded by the interval
[0, 1], and E(NHQR|pr = pQR) = k3 · pQR. Using Hoeffding’s inequality [Hoe63] we can show that:

Pr(NHQR ≥ k3/4|pQR ≤ 1/8) ≤ Pr(NHQR ≥ k3/4|pQR = 1/8)

= Pr(NHQR − k3/8 ≥ k3/8|pQR = 1/8)

= Pr(NHQR − E(NHQR) ≥ k3/8|pQR = 1/8)

≤ exp(−2
k23

82k3
) = exp(−k3

32
)

(12)

For k3 > 128 · 32/1.44 ≈ 2850 the probability of this event is smaller than 2−128. However if we
generate N correctly then Pr(NHQR ≥ k3/4) = 1/2. If for our chosen N , NHQR < k3/4 then we
just try to generate another N until the condition is satisfied.

This non-interactive proof reveals to the verifier numbers that are in nQR (all the unpublished
numbers with Jacobi Symbol 1) that might be difficult to learn. However this information cannot
be used by the device in our protocol. If needed this proof can be turned to one not revealing such
information by using the same blind and permute scheme we used in the protocol.
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