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Abstract. Profiled side-channel attacks represent the most powerful
category of side-channel attacks. There we have a number of methods
promising to work well in a number of different scenarios. Still, the area
is constantly improving: we started with template attack and then went
into different machine learning techniques that outperformed template
attack in certain settings. Recently, deep learning techniques brought
promise of even better results. In this paper, we ask a question whether
deep learning is actually better than machine learning, and if yes, in
what situations exactly. To this end, we compare several machine learn-
ing techniques and a well-known deep learning technique – convolutional
neural networks in a number of scenarios. Our results point that convo-
lutional neural networks indeed outperforms machine learning in several
scenarios but that often there is no compelling reason to use such a com-
plex technique. In fact, if comparing techniques without extra steps like
pre-processing, we see obvious advantage for deep learning only when
the level of noise is small, the number of measurements is high, and the
number of features is high. All other tested situations actually show that
machine learning, for a significantly lower computational cost, performs
the same or even better. Finally, we conduct a small experiment that
opens the question whether convolutional neural networks are actually
the best choice in SCA context.

Keywords: Side-channel analysis, Machine learning, Deep learning, Convolu-
tional Neural Networks, SCANet

1 Introduction

Today, in side-channel analysis (SCA) domain, profiled attacks are recognized
as the most powerful ones. There, the attacker has access to a device and is
consequently able to find out the secret key for a profiling device. Afterwards, he
can use that knowledge to extract a secret from a different device. Already from
this short description, we can observe that profiled attacks are conducted in two
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distinctive phases where the first phase is known as the profiling (or sometimes
learning/training) phase, while the second phase is known as the attack (test)
phase.

We start with template attack (TA) [1], a technique that is still the best
(optimal) from an information theoretic point of view if the attacker has un-
bounded number of traces and those traces follow Gaussian distribution [2, 3].
After the template attack, soon emerged the stochastic attack that uses linear
regression in the profiling phase [4]. In coming years, researchers recognized cer-
tain weaknesses in template attacks and they tried to modify them in order to
better account for different (usually, more difficult) attack scenarios. One exam-
ple of such an approach is the pooled template attack where only one pooled
covariance matrix is used in order to cope with statistical difficulties [5].

Alongside such techniques, SCA community recognized that the same general
approach is actually used in other domains in the form of supervised machine
learning. Machine learning (ML) is a term encompassing a number of meth-
ods that can be used for tasks like clustering, classification, regression, feature
selection, etc [6]. Consequently, SCA community started to experiment with
different ML techniques and to evaluate whether they are useful in the SCA
context. When considering other domains the results look somewhat sparse but
still there is a number of papers considering machine learning and side-channel
attacks, see e.g., [3, 7–9, 9–16]. Although considering different scenarios and of-
ten different ML techniques (with some algorithms used in prevailing number
of papers like Support Vector Machines and Random Forest), all those papers
have in common that they establish numerous scenarios where ML techniques
can outperform template attack and are the best choice for profiled SCA.

More recently, we are evident that deep learning (DL) techniques start to
capture attention of the SCA community. This is quite natural since DL tech-
niques are so successful in other domains and there is no reason why similar
behavior should not be observed in the SCA domain. Additionally, if DL tech-
niques are able to surpass ML techniques in other domains, once again there is
no reason why not to expect the same behavior in SCA. Accordingly, the first
results confirmed that expectations. In 2016, Maghrebi et al. conducted the first
analysis of DL techniques for profiled SCA as well as a comparison against a
number of ML techniques [17]. The results were very encouraging with deep
learning surpassing ML and TA.

After less than one year, another paper focusing on a DL technique called
Convolutional Neural Networks (CNNs) showed impressive results: again deep
learning was better performing than TA but also it was successful against device
protected with different countermeasures [18]. This, coupled with a fact that
the authors were able to propose several clever data augmentation techniques,
boosted even further the confidence in deep learning for SCA.

In this paper, we take a step back and investigate a number of profiled SCA
scenarios. We compare one DL technique that got the most attention in SCA
community up to now – CNNs against several, well-known “classical” machine
learning techniques. Our goal is to assess whether the deep learning approach
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is truly the best and should be selected without any questions or there could
be some more viable techniques (from complexity, explainability, ease of use or
any other perspective). We emphasize that the aim of this paper is not to doubt
deep learning as a good approach but to doubt it as the best approach in any
profiled SCA setting. Consequently, the main contributions of this paper are:
1. We conduct a detailed comparison between deep learning and machine learn-

ing techniques in an effort to recognize situations where deep learning offers
clear advantages over machine learning. We especially note that we use XG-
Boost ML technique that is well-known as an extremely powerful technique
but has never before been used in SCA.

2. We propose a deep learning architecture called “SCANet” that is able to
reach high-quality results and compete with ML techniques as well as with
the other deep learning architecture designed in [17]. We hope that this will
inspire other researchers to publish their designs so better performance com-
parisons are possible. To that end, having a publicly available repository of
DL architectures designed for SCA would greatly benefit the area and in-
crease the strength and confidence in results.

The rest of this paper is organized as follows. In Section 2 we provide nec-
essary details about profiled side-channel analysis and machine learning. Sec-
tion 3 gives details about datasets we investigate and results obtained. Section 4
provides discussion on relevance of these results, their significance for profiled
side-channel analysis, and possible future research directions. Finally, Section 5
offers a brief conclusion.

2 Background

2.1 Profiled Side-channel Analysis

Let calligraphic letters (X ) denote sets, capital letters (X) denote random vari-
ables taking values in these sets, and the corresponding lowercase letters (x)
denote their realizations. Let k∗ be the fixed secret cryptographic key (byte),
k any possible key hypothesis, and the random variable T the plaintext or ci-
phertext of the cryptographic algorithm, which is uniformly chosen. We denote
the measured leakage as X and consider multivariate leakage X = X1, . . . , XD,
with D being the number of time samples or points-of-interest (i.e., features as
called in ML domain). To guess the secret key, the attacker first needs to choose
a model Y (T, k) depending on the key guess k and on some known text T , which
relates to the deterministic part of the leakage. When there is no ambiguity, we
write Y instead of Y (T, k).

We consider a scenario where a powerful attacker has a device with knowledge
about the secret key implemented and is able to obtain a set of N profiling traces
X1, . . . ,XN in order to estimate the leakage model. Once this phase is done, the
attacker measures additional traces X1, . . . ,XQ from the device under attack
in order to break the unknown secret key k∗. Although it is usually considered
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that the attacker has unlimited number of traces available during the profiling
phase, this is of course always bounded.

2.2 Machine Learning Techniques

We select several techniques from machine learning domain to be tested against
deep learning approach. The selection is done on the basis of results from previ-
ous work and diversity of ML families. More precisely, we select one algorithm
based on Bayes theorem (Naive Bayes), one linear method (logistic regression),
one instance-based method (Support Vector Machine), one tree-based method
(Extreme Gradient Boosting), and finally, one neural network algorithm that
does not belong to the deep learning (Multi Layered Perceptron).

We follow that line of investigation since the “No Free Lunch Theorem” for
supervised machine learning proves there exists no single model that works best
for every problem [19]. To find the best model for any given problem, numerous
algorithms and parameter combinations should be tested. Naturally, not even
then one can be sure that the best model is obtained but at least some estimate
about trade-offs between the speed, accuracy, and complexity of the obtained
models is possible.

Besides the “No Free Lunch Theorem” we briefly discuss two more relevant
ML notions. The first one is connected with the curse of dimensionality [20]
and the Hughes effect [21], which states that with a fixed number of training
samples, the predictive power reduces as the dimensionality increases. This in-
dicates clearly that for scenarios with a large number of features, we need to use
more training examples, which is a natural scenario for deep learning. Finally,
the Universal Approximation theorem states that neural network is a univer-
sal functional approximator, more precisely, even a feed-forward neural network
with a single hidden layer that consists of a finite number of neurons can approxi-
mate many continuous functions [22]. Consequently, by adding hidden layers and
neurons, the networks gain more approximation power.

Finally, when giving results we also include a classifier called Zero-R. This
is the simplest classification method which relies on the class label only. Zero-R
classifier simply predicts the majority category (class). Zero-R results are the
baseline case: if some classifier reaches the same accuracy as Zero-R, it means it
classifies all records as belonging to the most frequent class.

Naive Bayes – NB. Naive Bayes classifier is a method based on the Bayesian
rule. It works under the simplifying assumption that the predictor attributes
(measurements) are mutually independent among the features given the target
class. The existence of highly correlated attributes in a dataset can thus influence
the learning process and reduce the number of successful predictions. NB assumes
a normal distribution for predictor attributes and outputs posterior probabilities.
Naive Bayes does not have any parameters to tune. Further information about
the Naive Bayes algorithm can be found in [23].
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Logistic Regression – LR. Multinomial logistic regression uses a linear pre-
dictor function f(k, i) to predict the probability that observation i has the out-
come k, of the form f(k, i) = β0,k + β1,kx1,i + . . . + βM,kxM,i where βM,kxM,i

is a regression coefficient of the mth variable and the kth outcome. The β coef-
ficients are estimated using the maximum likelihood estimation, which requires
finding a set of parameters for which the probability of the observed data is the
greatest [24]. Note that logistic regression would have the same model as the
single layer perceptron with logistic (sigmoid) activation function. For LR, we
tune the margin parameter C in the range [0.001, 0.01, 0.1, 1, 10]. A low cost of
the margin parameter C makes the decision surface smooth, while a high C aims
at classifying all training examples correctly.

Multi Layer Perceptron – MLP. Multi Layer Perceptron is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs. MLP
consists of multiple layers of nodes in a directed graph, where each layer is fully
connected to the next one. To train the network, the backpropagation algorithm
is used, which is a generalization of the least mean squares algorithm in the linear
perceptron. A perceptron is a linear binary classifier applied to the feature vector.
Each vector component has an associated weight wi. A perceptron classifier
works only for data that are linearly separable, i.e., if there is some hyperplane
that separates all the positive points from all the negative points [6]. Differing
from linear perceptron, MLP can distinguish data that are not linearly separable.
MLP consists of 3 or more layers (since input and output represent two layers)
of nonlinearly-activating nodes [25]. We tune the solver parameter that can be
either adam, lbfgs, or sgd. Next, we tune activation function that can be either
ReLu or Tanh, and the number and structure of hidden layers in MLP. The
number of hidden layers in tested in the range [1, 2, 3, 4, 5] and the number of
neurons per layer in the range between 10 and 50 – [10, 20, 30, 40, 50].

Support Vector Machines – SVM. Support Vector Machine is a kernel
based machine learning technique used to accurately classify both linearly sep-
arable and linearly inseparable data [26]. The general idea for scenarios with
not linearly separable data is to transform them to a higher dimensional space
by using a transformation kernel function. In this new space, the samples can
usually be classified with a higher accuracy. Many types of kernel functions have
been developed, with the most used ones being polynomial and radial-based.
As a learning method, a Sequential Minimal Optimization (SMO) algorithm is
used [27,28]. For multi-class classification purpose as we consider in this paper,
SVM is adapted to perform n × (n − 1)/2 binary classifications. We consider
only radial kernel in our experiments since it is known to be a good choice when
there is no expert knowledge about the problem, the number of features is not too
high, and there is no linear separation between the data [29]. We tune the radial
kernel parameter γ and the margin parameter C. The radial kernel parameter γ
defines how much influence a single training example has, where the larger γ is,
the closer other examples must be to be affected. The margin parameter C has
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the same meaning as in the case of logistic regression (see Section 2.2). We tune
C in the range [0.001, 0.01, 0.1, 1, 10] and γ in the range [0.001, 0.01, 0.1, 1, 10].

Extreme Gradient Boost – XGB. XGBoost is a scalable implementation of
gradient boosting decision tree algorithm [30]. Chen and Guestrin designed this
algorithm where they use a sparsity aware algorithm for handling sparse data and
a theoretically justified weighted quantile sketch for approximate learning [31].
As the name suggests, its core part is gradient boosting. Here, boosting is an
ensemble technique where new models are added to correct the errors made by
existing models. Models are added sequentially until no further improvements
can be made. Gradient boosting is a technique where new models are created
that predict the residuals or errors of prior models and then added together to
make the final prediction. The concept is called gradient boosting since it uses
a gradient descent algorithm to minimize the loss when adding new models.
Today, XGBoost is due to his execution speed and model performance one of
the top performing algorithms in the ML domain. Since this algorithm is based
on decision trees, it has additional advantages as being robust in noisy scenarios
and being (somewhat) easier to understand. XGBoost has many parameters
that are possible to tune but here we select only the two most important (in our
experience) ones: the learning rate and the number of estimators. For learning
rate, we make a grid search within range [0.0001, 0.001, 0.01, 0.1, 1] and for the
number of estimators we tune in the range [100, 200, 300, 400, 500].

2.3 Deep Learning

For our Deep Learning system, we use Convolutional Neural Networks (CNNs).
CNNs are a specific type of neural networks which were first designed for 2
dimensional convolutions as it was inspired by the biological processes of animals’
visual cortex [32]. They are primarily used for image classification but lately they
have proven to be powerful classifiers for time series data such as music and
speech [33]. Their usage in side-channel analysis has been encouraged by [17,18].
Note that throughout the paper, when we are talking about deep learning, we
actually consider only convolutional neural networks.

Our network is composed of 4 convolutional layers and 4 pooling layers in
between, followed by the classification layer. The final architecture was chosen
after creating hyper-parameter constraints based on the literature and tests we
conducted, followed by an optimization on their values through a random search.
The hyper-parameters that are modeled and optimized are: number of convolu-
tional/pooling/fully connected layers, number of activation maps, learning rate,
dropout magnitude, convolutional activation functions, convolutional/pooling
kernel size, and stride and number of neurons on fully connected layers.

All convolutional layers use kernel size of 6 and stride 2 creating a number
of activation maps for each layer. The number of activation maps increases per
layer, following a geometric progression with an initial value a = 16 and a ratio
r = 2 (16, 32, 64, 128). The number of activation maps is optimized for GPU
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training. For pooling we use Average Pooling on the first pooling layer and Max
Pooling on the rest, using kernel of size 4 and stride 3. The convolutional layers
use “Scaled Exponential Linear Unit” (SELU) activation function, an activation
function which induces self-normalizing properties and it was first introduced
by [34]. In the classification layer, we use Softmax activation function combined
with the Categorical Cross Entropy loss function. Finally, for regularization we
use dropout on convolutional and fully connected layers while on the classifica-
tion layer we use an activity L2 regularization. These regularization techniques
help to avoid overfitting on the training set, which in turn help lower the bias of
the model.

During the training, we use Early Stopping to further avoid overfitting by
monitoring the loss on the validation set [35]. Thus, every training session is
interrupted before reaching high accuracy on training dataset. To help the net-
work increase its accuracy on the validation set, we use a learning rate scheduler
to decrease the learning rate depending on the loss from the validation set. We
initialize the weights to small random values and we use “adam” optimizer [36].

The hardware we used has given us some constraints on the model creation
due to the available computational power and memory. The GPU unit is an
NVIDIA GTX 1050 Ti with Pascal architecture and 4GB of memory. The unit is
capable of fast computation of complex computational tasks but lacks in memory
compared to the other NVIDIA cards popular in current deep learning research.
This has an impact on the network’s architecture (few activation maps and
not more than 5 Convolutional layers) and prevent us from exploring deeper
and more complex network configurations. For reference purposes, the network
architecture introduced above will be called SCANet in the following sections
and we depict it in Figure 1. Additionally, we give details about our network in
Table 1.

Table 1: SCANet architecture.
Layer Output Shape Weight Shape Sub-Sampling Activation

conv(1) 1624 x 16 1 x 16 x 6 2 SELU
average-pool(1) 542 x 16 - (4), 3 -

conv(2) 271 x 32 1 x 32 x 6 2 SELU
max-pool(2) 91 x 32 - (4), 3 -

conv(3) 46 x 64 1 x 64 x 6 2 SELU
max-pool(3) 16 x 64 - (4), 3 -

conv(4) 8 x 128 1 x 128 x 6 2 SELU
max-pool(4) 3 x 128 - (4), 3 -

fc-output 9 384 x 9 - Softmax
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Fig. 1: The SCANet architecture. The simplified figure illustrates the applied
architecture. The yellow rectangular blocks indicate 1-dimensional convolution
layer, and the blue blocks indicate pooling layers. The first light blue block
indicates average pooling, which is different from the other max pooling blocks.
After the flattening of every trailing spatial dimensions into a single feature
dimension, we apply a fully-connected layer for classification.

3 Experiments

3.1 Datasets

We consider two datasets that mainly differ in the amount of noise and the
side-channel leakage distribution. We use these datasets in order to allow for
reproducibility of our results.

DPAcontest v2 [37]. DPAcontest v2 (denoted as DPAv2) provides measure-
ments of an AES hardware implementation. Previous works showed that the
most suitable leakage model (when attacking the last round of an unprotected
hardware implementation) is the register writing in the last round:

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

. (1)

Here, Cb1 and Cb2 are two ciphertext bytes and the relation between b1 and
b2 is given through the inverse ShiftRows operation of AES. We select b1 = 12
resulting in b2 = 8 since it is one of the easiest bytes to attack [37]. In Eq. (1),
Y (k∗) consists in 256 values but we apply the Hamming weight (HW) on those
values resulting in 9 classes. Note these measurements are relatively noisy and the
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resulting model-based signal-to-noise ratio SNR = var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) ,

lies between 0.0069 and 0.0096. This dataset has 3 253 features.

DPAcontest v4 [38]. The second dataset we investigate gives measurements
of a masked AES software implementation (denoted DPAv4) but since the mask
is known, one can easily transform it into an unprotected scenario. Since it is a
software implementation, the most leaking operation is not the register writing
but the processing of the S-box operation and we attack the first round:

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (2)

where Pb1 is a plaintext byte and we choose b1 = 1. Note that again we 9
classes scenarios corresponding to the Hamming weight of the output of S-box
(as for DPAv2). Compared to the measurements from the DPAv2, SNR here is
much higher and lies between 0.1188 and 5.8577. For our experiments we start
with a preselected window of 3 000 features from the original trace. Note that
we maintain the lexicographical ordering (topology) of features after the feature
selection (by lexicographical ordering we mean keeping the features in order they
appear in measurements and not for instance sorting them in accordance to their
relevance).

3.2 Preparing the Datasets

First, we scale the features into [0, 1] range. For all “classical” ML techniques,
we divide measurements into 0.65:0.35 ratio for training and testing sets. While
in training phase, the datasets are further divided into 5 stratified folds and
evaluated by 5-fold cross-validation procedure. In the 5-fold cross-validation, the
original sample is first randomly partitioned into 5 equal sized subsets. Then, a
single subsample is selected to validate the data while the remaining 4 subsets
are used for training. The cross-validation process is repeated 5 times where each
of the 5 subsamples is used once for validation. The obtained results are then
averaged to produce an estimation. We select to conduct 5-fold cross-validation
on the basis of the number of measurements belonging to the least populated
class for the smallest dataset we use. Note that the training phase also contains
a tuning phase (see Section 3.2) where we select the best parameters for each
algorithm.

For deep learning, we do not conduct cross-validation since it is too computa-
tionally expensive but rather divide datasets into three parts in ratio: 0:65:0.20:
0.15. The first set is the training set, the second one is the validation set (that
serves as an indicator of early stopping to avoid overfitting), and finally, the
third dataset is the testing dataset. There are small differences in dataset sizes
between ML and DL cases but since all data is taken from the same distribution,
we do not expect negative effects of a such design choice.

Since the number of features for DPAv2 and DPAv4 is too large for ML
techniques, we conduct feature selection where we take the 50 most important
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features where we keep the lexicographical ordering of selected features. To se-
lect those features, we use Pearson correlation coefficient where we calculate it
for the target class variables HW, which consists of categorical values that are
interpreted as numerical values [39].

Algorithm Tuning In order to find the best hyper-parameters, we tune the
algorithms with respect to their most important parameters. Note that tuning
is done only for 10 000 measurements case and then the same parameters are
used in other cases. Naturally, if we would tune parameters for each dataset, we
could expect to improve slightly the performance but that improvement would
be hardly worth the computational overhead. The results of the tuning phase
are given in Table 2.

Table 2: Parameters selected after a tuning phase, 10 000 measurements.
Algorithm Parameters

DPAV4

LR C = 1
MLP hidden layers = 50, 30, 10, 50, activation = tanh
SVM C = 10, γ = 1
XGB learning rate = 0.1, number of estimators = 500

DPAV2

LR C = 0.01
MLP hidden layers = 50, 30, 10, 50, activation = relu
SVM C = 10, γ = 10
XGB learning rate = 0.1, number of estimators = 200

For SCANet, we use convolutional kernel size of 6, pooling size of 4, stride
on convolutional layer equal to 2, initial number of filters of 16, learning rate of
0.007. Next, the number of convolutional layers is equal to 4, number of pooling
layers is equal to 4, and there are no fully connected layers. We use SELU
activation function, adam optimization algorithm, and convolutional dropout of
0.06.

3.3 Results

For all ML techniques, we use scikit-learn library in Python 3.6 while for CNNs
we use Keras with TensorFlow backend [40,41]. In all experiments, we use a set
of randomly selected measurements (profiled traces) from DPAcontest v2 and
DPAcontest v4 datasets with 9 HW classes. We use the accuracy measure to eval-
uate the performance of ML/DL techniques, where accuracy is the percentage
of correctly classified instances: ACC = TP

TP+TN .
Cagli et al. noticed that accuracy is often not enough in SCA context but

something like the key enumeration should be used to really assess the perfor-
mance of classifiers [18]. We agree with that but also offer a slightly different
perspective. The problem with the accuracy is most pronounced in imbalanced



11

scenarios since high accuracy can just mean overfitting. This phenomenon is a
well-known in ML community. To circumvent it, we give results for the Zero-
R classifier to differentiate between cases where the classifier simply classifies
all measurements into the most frequent class (in all our experiments, that is
HW 4 class) and where it actually classifies into n classes. Finally, if in the
training/validation phase one uses accuracy and in the final assessment (testing
phase) some other measure, there could be a potential issue with the interpre-
tation of results. Indeed, some suboptimal result with respect to accuracy in
training phase could actually be optimal when considering some other measure
in testing phase.

Before presenting results, we briefly address the fact that we do not use
template attack. The decision for this is based on previous works as listed in
Section 1 where it is shown that machine learning and deep learning can outper-
form TA. Consequently, we keep our focus here only on techniques coming from
ML and DL domain. Then, the performance of TA can be estimated to be close
but somewhat lower than for SVM, for instance.

Since the test dataset size slightly differs for ML and DL cases, we use one
version of Zero-R for ML techniques (denoted 0−RML) and the second version
for CNNs (denoted 0−RCNN ). Finally, besides using our SCANet architecture,
we implement the deep learning architecture as given by Maghrebi et al. [17].
To ease the differentiation between that architecture and ours, we call this one
SPACE (the conference name were it was published). Note that the SPACE
neural network architecture we use is our adaptation based on the available
information. We do not use the neural network presented by Cagli et al. [18]
since the information provided in that paper can be interpreted in different ways,
which could potentially lead to a different model implementation compared to
the original model.

We start by depicting DPAv4 and DPAv2 with a scatterplot of each trace
per dataset in Figure. Each data point is colored based on its Hamming weight
value. We can clearly observe different separability of the features given by each
dataset. For the visualization we use PCA to reduce the dimensionality of the
features [42]. Notice how DPAv4 has much better class separability, which indi-
cates this case to be much simpler when compared to DPAv2.

In Tables 3 and 4 we give results for DPAv2 when considering 50 best features
and 3 253 features, respectively. As observed in related work (e.g., [12, 17, 18])
DPAv2 is a difficult dataset for profiled attacks. Indeed, we can see that for
instance, SCANet overfits and classifies everything as HW 4. The same behavior
is seen for SVM and two smallest dataset sizes for LR. Additionally, although
MLP does not overfit in a sense that classifies all as HW 4, the prevailing number
of measurements is actually in HW 4, while only few ones belong to HW3 and
HW 5. Finally, we see that the best performing technique is XGB where the
confusion matrix (table with classification results for each class) reveals that
even when the accuracy for XGB is similar to 0−RML, the algorithm does not
overfit and is able to correctly classify examples of several classes.
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Fig. 2: Scatter plot for DPAv4 and DPAv2. Dimensionality reduction done with
PCA.

Next, when we use all 3 253 features we see that DL is not able to improve
significantly. Actually, for 1 000 and 10 000 measurements it still overfits while
for the 50 000 and 100 000 measurements we have scenario where most of the
measurements belong to class HW 4 and small portions to HW 3 and HW 5
(similar to the behavior of XGB for 50 features but with a more pronounced
overfitting). Here, SPACE network is able to give somewhat better results than
SCANet but we note that still most of the measurements is classified as HW
4. SPACE networks outperforms SCANet due to its simplicity – for noisy set-
tings we see that simpler architectures work better since there is less chance of
overfitting (they do not have enough complexity to overfit the data with such a
complicated structure).

Table 3: Testing results, DPAcontest v2, 50 features
Dataset 0 −RML NB LR MLP SVM XGB 0−RCNN SCANet

1 000 0.308 0.131 0.308 0.271 0.308 0.267 0.253 0.253
10 000 0.282 0.067 0.282 0.269 0.282 0.277 0.275 0.275
50 000 0.274 0.116 0.274 0.271 0.274 0.273 0.267 0.267
100 000 0.274 0.108 0.273 0.273 0.274 0.273 0.273 0.273

Tables 5 and 6 give results for DPAv4 dataset when considering 50 features
and 3 000 features, respectively. Differing from DPAv2 case, here we see that
none of the algorithms (except, of course 0 − R) have any problems reaching
high accuracies. Additionally, we see no overfitting which points us that the rea-
son for overfitting in DPAv2 is actually due to the combination of noise and



13

Table 4: Testing results, DPAcontest v2, all features
Dataset SCANet SPACE

1 000 0.253 0.253
10 000 0.275 0.277
50 000 0.244 0.262
100 000 0.271 0.237

highly imbalanced datasets (while having only highly imbalanced dataset would
not be a problem as evident from Table 5). When comparing ML and DL results
for 50 features, we see that DL cannot compete with more powerful ML tech-
niques. Interestingly, the best DL accuracy is obtained for 50 000 measurements
and for the approximately the same accuracy we need SVM with only 1 000
measurements. Finally, on the basis of the presented results, we see that when
the level of noise is small and we use only 50 measurements, SVM is by far the
best performing technique with XGB as close second best.

Table 6 gives results for SCANet and SPACE architectures for DPAv4 when
considering 3 000 features. This scenario reveals the true power of DL where for
50 000 measurements (SCANet) we are able to reach more than 99% accuracy
on test set. Naturally, a question can be made whether it is really necessary
to use DL for such a small increase in accuracy when compared with much
computationally simpler techniques given in Table 5. Still, we need to note that
while for DL having 100 000 measurements is not considered as a large dataset,
we are approaching the limits for SVM since there the train complexity rises in
cube power with the number of examples.

Table 5: Testing results, DPAcontest v4, 50 features
Dataset 0 −RML NB LR MLP SVM XGB 0−RCNN SCANet

1 000 0.297 0.639 0.477 0.834 0.823 0.725 0.267 0.693
10 000 0.272 0.669 0.557 0.867 0.924 0.886 0.268 0.811
50 000 0.275 0.654 0.601 0.866 0.955 0.913 0.273 0.851
100 000 0.274 0.662 0.607 0.866 0.960 0.916 0.269 0.845

When comparing SCANet and SPACE architectures, we see that SCANet
performs better for all cases considered here. This is especially pronounced in
cases with smaller number of measurements (e.g., 1 000 and 10 000 measure-
ments). To conclude, based on presented results, we clearly see cases where DL
offers advantages over ML but we note there are cases where the opposite is true.
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Table 6: Testing results, DPAcontest v4, all features
Dataset SCANet SPACE

1 000 0.720 0.573
10 000 0.947 0.927
50 000 0.993 0.984
100 000 0.988 0.977

4 Discussion and Future Work

We start this section with a small experiment. Consider for example the DPAv4
dataset with all features and 10 000 measurements. Note that the traces are
given in a form to keep the original topology as much as possible. One reason
why CNNs are so successful in image classification is because they are able to
maintain the topology, i.e., shuffling features in an image would results in a wrong
classification. We do exactly that: we shuffle the features uniformly at random.
Running the SCANet on such a dataset results in test accuracy of 0.966, which
is even somewhat higher than with unshuffled features. Consequently, we see
that the ordering of features does not negatively influence the successfulness of
SCANet (or CNNs in SCA domain). This suggests that the topology preservation
of CNNs is maybe not needed for SCA, which would mean we should not keep
our focus solely on CNNs but to consider other deep learning techniques as well.
Naturally, CNNs also have the implicit feature selection part. It is possible that
current good results on SCA problems stem from that, which would in turn
mean we could use separate feature selection and classification to the same goal.

When considering deep learning architectures, and more specifically their
sizes, a valid question is whether the architectures currently used in SCA are
really deep. For instance, Cagli et al. mention their architecture as being “quite
deep CNN architecture” but if we compare that with the state-of-the-art CNNs
architectures used today, we see striking difference. The current “best” archi-
tecture for image classification called ResNet has 152 hidden layers [43]. Our
architectures look very shallow compared to that. Naturally, the question is if
we even need such deep architectures, and if the answer is no, then maybe “clas-
sical” machine learning or shallow neural networks could be a good alternative.

As shown in our experiment, the current deep models in SCA might not be
optimal yet. Consequently, we emphasize the need for more publicly available
datasets to conduct experiments. If we do not have enough public datasets for
more in-depth investigation of deep learning in side-channel analysis, it could
keep the field from the better understanding of the issues we encounter.

We have results up to now for only a few algorithms (where CNNs immedi-
ately got the most of attention) and architectures. If the topology can be relevant
information after all, this could mean that one can still get certain additional
benefit even from (shallow) CNN architectures. Alternatively, other deep learn-
ing (or even machine learning) techniques could be a good choice. Deep learning
domain is an extremely fruitful field with many designs that are proposed on a
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regular basis. Unfortunately, it is hard to expect that all novelties can be tested
in SCA context but considering at least a part of those would hopefully bring
new milestones in profiled SCA.

Finally, we do not need to investigate only the deep learning part. As Cagli
et al. showed, using smart pre-processing (they used custom data augmenta-
tion) can bring more striking increase in the performance than by changing the
network architecture [18]. Machine learning domain is extensively using various
data augmentation techniques for years and there is no reason why some of those,
more general methods could not be used in SCA. Additionally, we must mention
that data augmentation is not limited to deep learning and it would be inter-
esting to see what would happen if SCA-specific data augmentation techniques
would be used with “classical” machine learning.

5 Conclusions

In this paper, we consider a number of scenarios for profiled SCA and compare
the performance of several ML algorithms and two CNNs. Recently, very good
results obtained with deep learning suggested that it should be a method of
choice when conducting profiled SCA. We agree that deep learning is able to
perform very well but the same could be said for several ML techniques.

We see a direct advantage for CNNs architectures over machine learning tech-
niques only for cases where the level of noise is low, the number of measurements
is high, and the number of features is high. In all the other cases, our results
suggest that ML is able to perform on a similar level (with much smaller com-
putational cost) or even surpass CNNs. We propose here a CNNs architecture
called SCANet that is especially designed for side-channel attacks. We tune our
architecture to be more beneficial for settings with low noise since in high noise
scenario we see the need for additional data processing. Without additional data
processing, high noise settings work better with shallow architectures, which
means we require a different architecture for a high noise setting compared to a
low noise setting.

Naturally, the experiments we conducted here (and in general, all experiments
done up to now with deep learning for SCA) are not sufficient to reach definitive
conclusions. As discussed in previous sections, there are many possible research
directions one could follow, which will in the end bring more cohesion to the
area and more confidence in the obtained results.
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