
Simple and Efficient Two-Server ORAM∗

Xiao Wang† Dov Gordon‡ Jonathan Katz†

Abstract

We show a protocol for two-server oblivious RAM (ORAM) that is simpler and more efficient
than the best prior work. Our construction combines any tree-based ORAM with an extension
of a two-server private information retrieval scheme by Boyle et al., and is able to avoid recursion
and thus use only one round of interaction. In addition, our scheme has a very cheap initialization
phase, making it well suited for applications to RAM-based secure computation.

A practical instantiation of our protocol has excellent concrete parameters: for storing an
N -element array of arbitrary size data blocks with statistical security parameter λ, the servers
each store 4N encrypted blocks, the client stores λ+2 logN blocks, and the total communication
per logical access is roughly 10 logN encrypted blocks.

1 Introduction

Protocols for oblivious RAM (ORAM) allow a client to outsource storage of an array to a server,
and then read from/write to that array without revealing to the server anything about the data
itself or the addresses of the data blocks being accessed (i.e., the client’s memory-access pattern).
Since the introduction of the problem by Goldreich and Ostrovsky [16], the problem has received a
significant amount of attention [34, 26, 17, 28, 33, 19, 29, 14, 24, 32, 27, 1]. The main parameters of
interest are the storage at the client and the server, as well as the number of communication rounds
and the total client-server bandwidth needed to read or write one logical position of the array.
In classical work on ORAM, the server was only required to physically read and write elements
of some (encrypted) data array; more recent work [33, 14, 2, 24, 1] has considered solutions in
which the server performs non-trivial computation as well. In that case, solutions relying on non-
cryptographic computation, or symmetric-key cryptography alone, are preferable.

Lu and Ostrovsky [23] proposed exploring ORAM in a model where there are two non-colluding
servers storing data on behalf of the client; the client interacts with the servers to read and write
data, but the servers do not need to interact with (or even know about) each other. The solution
by Lu and Ostrovsky achieves parameters that are asymptotically better than those realized by
any single-server solution: for accessing an N -element array of B-bit data blocks, the client in
their protocol has storage independent of N and B, the servers each store O(N) encrypted data
blocks, and reading/writing has an amortized communication complexity of O(logN) encrypted
data blocks. On the other hand, like most ORAM constructions with sublinear communication
(with a few exceptions discussed below), the Lu-Ostrovsky protocol requires O(logN) rounds of

∗Work supported by NSF awards #1223623, #1563722, and #1564088.
†Dept. of Computer Science, University of Maryland. Email: {wangxiao,jkatz}@cs.umd.edu
‡Dept. of Computer Science, George Mason University. Email: gordon@gmu.edu

1

interaction between the client and server per logical memory access; since it is based on a hierarchical
approach [16] and requires periodic reshuffling, their scheme is also relatively complex and does not
offer good worst-case performance guarantees. A recent two-server ORAM scheme by Abraham
et al. [1] improves the communication overhead to O(logN/ log logN) when B = Ω(λ log2N), but
still requires O(logN) rounds.

1.1 Summary of Our Results

We show here a construction of a two-server ORAM protocol that improves on prior work both
concretely and theoretically. Our scheme is also very simple to describe and implement, which we
view as an added advantage especially when applying ORAM to RAM-based secure computation.

Concretely, our scheme is extremely efficient. The computation in our scheme involves only
symmetric-key operations. Moreover, in one practical instantiation of our scheme, the client stores
λ + 2 logN data blocks (where λ is a statistical security parameter), the servers each store 4N
encrypted data blocks, and the total communication per logical read/write is only roughly 10 logN
encrypted blocks. This can be compared to the Lu-Ostrovsky scheme, which is estimated by the
authors to have server storage 2N+O(log9N) and an amortized bandwidth of more than 160 logN
encrypted data blocks per logical memory access. (Abraham et al. do not offer concrete estimates
of the performance of their scheme, but we believe our protocol will have better communication
overhead for practical parameters, especially for moderate B.)

In a theoretical sense, we improve upon prior work in several respects, with each of the im-
provements yielding significant efficiency gains in practice. Most importantly, our protocol requires
only one round of communication per logical access; note that achieving logarithmic communica-
tion overhead with one round of interaction is a major open question for single-server ORAM.1

Second, our communication bound holds in the worst case, in contrast to the Lu-Ostrovsky scheme
for which it holds only in an amortized sense. Finally, in contrast to the scheme Abraham et al.,
our protocol has good communication overhead regardless of the block size.

Applications to secure computation. Classical work on generic secure computation views
the function being computed as a boolean or arithmetic circuit. More recently, researchers have
explored secure-computation protocols that work directly in the RAM model of computation [25,
18, 21, 22, 10, 35, 31, 8, 9]. A basic idea in these works is to leverage ORAM to ensure that
the parties’ accesses to (shared) memory are oblivious. These works all assume either that the
shared memory is initially empty, or that initialization of the ORAM data structure is done during
some trusted preprocessing phase, because initializing a non-empty ORAM as part of the protocol
would be infeasible. For our ORAM protocol, initialization is essentially “for free” and can be
done locally by the servers without any interaction from the client. (To the best of our knowledge,
this is not true for any prior ORAM scheme with sublinear communication overhead.) This makes
our protocol extremely well-suited for applications to RAM-based secure computation in both the
two-party and multi-party settings.

Our scheme has the added advantage that reads from a public address can be done very effi-
ciently, with communication of only 2B logN bits and negligible computation. This property is
also very useful in applications to secure computation.

1Known single-server ORAM schemes with sublinear worst-case communication and one round of interaction [12,
13] have communication complexity at least κB log2N (see [13, Table 1]), and would be prohibitively inefficient to
implement in practice. Other one-round schemes [33, 11] have sublinear communication only in an amortized sense.

2

1.2 Overview of Our Construction

Our construction can be viewed as combining any tree-based ORAM protocol [28, 29, 30, 27] with
a two-server private information retrieval (PIR) scheme [7]. (Combining ORAM and PIR was
suggested previously by Mayberry et al. [24] in the single-sever setting, and Abraham et al. [1]
in the two-server setting.) We describe each of these primitives informally, and then provide an
overview of our construction. Section 2 contains formal definitions; a detailed description of our
protocol is given in Section 3.

Tree-based ORAM. At a somewhat informal level, which will be sufficient to understand the
main ideas of our construction, a tree-based ORAM scheme—in the single-server setting—works in
the following way.2 Let D denote the client’s data array with D[i], for 0 ≤ i < N , denoting the data
block stored at address i of the array. The client maintains a function position (called a position
map) that maps logical memory addresses to leaves in a binary tree of depth L = O(logN) stored
by the server, where each node in the tree can store some bounded number of data blocks. It will
be convenient for us to assume that every node in the tree stores the same (constant) number of
data blocks, with the exception of the root that can store more items. Instead of being stored on
the server, the root is stored on the client and is also called a stash.

At any point in time, the value D[i] is stored at some node on the path from the root of the
tree to the leaf at position(i) (we call this the path to position(i)). The client performs a logical
read of address i by reading the entire path to position(i) and taking the value of D[i] that is found
closest to the root; a logical write to address i is done by storing the new value of D[i] in the stash
(replacing any old value of D[i] found there).

Executions of an eviction procedure are interspersed with logical reads and writes. At a high
level, during this procedure the client chooses a path P in the tree and then, for each data block
D[i] stored at some node in that path, pushes that block as far down in P as possible subject to
the constraint that D[i] must lie on the path to position(i). The updated values of the nodes on
path P are then rewritten to the server. The purpose of the eviction procedure is to prevent nodes
in the tree from overflowing.

Note that to ensure obliviousness, the position map must be random (so the server cannot
correlate a particular path being read by the client with a logical address) and must be updated
each time an element is read (so the server cannot tell when the same logical address is accessed
repeatedly). Since the position map itself has size Θ(N), the client must store the position map
on the server in order to achieve client storage o(N). The position map can be stored recursively
using a tree-based ORAM; note, however, that this induces several rounds of interaction between
the client and server for each logical memory access, and also increases the server-side storage.

Private information retrieval. Abstractly, a private information retrieval (PIR) scheme provides
a way for a client to obliviously read a data block from an N -element array of B-bit items stored
on a server using o(BN) communication. For our purposes, the main distinction between PIR and
ORAM is that PIR supports reads only. Historically, PIR schemes have also involved only one
round of interaction.

PIR was introduced in the multi-server setting [7], where information-theoretic security is pos-
sible. Subsequently, Kushilevitz and Ostrovsky [20] showed that PIR with computational security
can be achieved even in the single-server setting. Although several follow-up works (e.g., [6, 15])

2For simplicity, we ignore encryption of the data blocks in the description that follows.

3

have shown how to further reduce the communication complexity of single-server PIR, construc-
tions of (computationally secure) PIR in the two-server setting have much better computational
efficiency. In particular, a recent construction of two-server PIR by Boyle et al. [4, 5, 3] requires
only symmetric-key operations by both the client and the server, and has communication com-
plexity B + O(κ · logN) for κ a computational security parameter. (In fact, they show that the
communication can be reduced asymptotically to B+O(κ · log(N/κ)) but for practical parameters
this does not seem likely to yield a concrete improvement.)

Our construction. We show how to combine tree-based ORAM with PIR to obtain an efficient
and conceptually simple protocol in the two-server setting.

In existing tree-based ORAM schemes the eviction procedure is already oblivious, as it involves
either choosing a random eviction path [29] or choosing eviction paths according to a deterministic
schedule [14, 27]. Thus, only reads need to be made oblivious. As noted earlier, in prior work
this is achieved using a random position map that is updated after each read. Our first conceptual
insight is that we can instead have the client use (two-server) PIR to read the path associated with
a particular data block; as a consequence, we can avoid ever having to update the position map (see
below for why we need a position map at all), thus avoiding recursion and allowing us to obtain a
one-round protocol.

Obliviously reading a path in a tree of depth L can always be done using L parallel executions
of a generic PIR protocol. Our second observation is that we can do better than this by adapting
the specific (two-server) PIR scheme of Boyle et al. so as to natively support oblivious reading of
a path in a tree with less than L times the communication. Details are given in Section 2.2.

Since a position map is no longer needed for obliviousness, it is tempting to think that we can
avoid the position map altogether. Unfortunately this is not the case, as we still need a random
mapping of addresses to leaves in order to ensure correctness, specifically, so that the probability
of an overflow remains negligible. In our case, however, we show that it is sufficient to choose a
random position map once, at the outset of the protocol, and then leave it fixed for the remainder
of the execution. This also means that we can generate the position map pseudorandomly, based
on a short key chosen at the beginning of the protocol. Finally, we observe that this allows for
extremely efficient initialization (in settings where the data—perhaps in encrypted form—is initially
held by the server), at least in settings where the memory-access pattern is chosen non-adaptively;
specifically, initialization can be done by sending the key defining the position map to the server,
who then arranges the data blocks in the tree structure as needed.

2 Background

2.1 Oblivious RAM

We use the standard definitions of correctness and security for ORAM [16], repeated here for
completeness. Readers familiar with these definitions can safely skip to the next section.

For fixed N,B, we define a memory access to be a tuple (op, i, v) where op ∈ {read,write},
i ∈ {0, . . . , N − 1}, and v ∈ {0, 1}B. Let D be an N -element array containing B-bit entries. The
result of applying (read, i, v) to D is D[i], and the array D is unchanged. The result of applying
(write, i, v) is ⊥, and D is updated to a new array D′ that is identical to D except that D′[i] = v.
Given an initial array D and a sequence of memory accesses (op1, i1, v1), . . . , (opM , iM , vM), we
define correctness for the sequence of results o1, . . . , oM in the natural way; namely, the sequence

4

of results is correct iff, for all t, the result ot is equal to the last value written to it (or is equal to
D[it] if there were no previous writes to it).

A two-server, one-round ORAM scheme is defined by a collection of four algorithms ORAM.Init,
ORAM.C, ORAM.S, and ORAM.C′ with the following syntax:

• ORAM.Init takes as input parameters 1λ, 1κ and elements D[0], . . . , D[N − 1] ∈ {0, 1}B. It
outputs state st and data T to be stored at the servers.

• ORAM.C takes as input st and a memory access (op, i, v). It outputs updated state st′ along
with a pair of queries q0, q1.

• ORAM.S takes as input data T and a query q. It outputs updated data T ′ and a response r.

• ORAM.C′ takes as input state st and a pair of responses r0, r1. It outputs updated state st′

and a value o.

We define correctness and security via an experiment Expt. Given an array D (which defines the
parameters N and B) and a sequence of memory accesses seq = ((op1, i1, v1), . . . , (opM , iM , vM)),
experiment Expt(1λ, 1κ, D, seq) first runs (st0, T0)← ORAM.Init(1λ, 1κ, D) and sets T0,0 = T0,1 = T0.
Then, for t = 1 to M it does:

1. Run (st′t−1, qt,0, qt,1)← ORAM.C(stt−1, (opt, it, vt)).

2. Run (Tt,b, rt,b)← ORAM.S(Tt−1,b, qt,b) for b ∈ {0, 1}.

3. Run (stt, ot)← ORAM.C′(st′t−1, rt,0, rt,1).

Let viewb = (T0, q1,b, . . . , qM,b). The output of the experiment is (view0, view1, o1, . . . , oM).
Correctness requires that for any polynomial M there is a negligible function negl such that for

any λ, κ,D, and sequence of M = M(λ) memory accesses seq = ((op1, i1, v1), . . . , (opM , iM , vM)), if
we compute (view0, view1, o1, . . . , oM)← Expt(1λ, 1κ, D, seq) then the sequence of results o1, . . . , oM
is correct (for D and seq) except with probability negl(λ).

An ORAM protocol is secure if for any λ and ppt adversary A the following is negligible in κ:∣∣∣∣Pr

[
(D0, seq0, D1, seq1)← A(1λ, 1κ); b← {0, 1};

(view0, view1, o1, . . . , oM)← Expt(1λ, 1κ, Db, seqb)
: A(view0) = b

]
− 1

2

∣∣∣∣
(and analogously for view1), where D0, D1 have identical parameters N,B, and where seq0, seq1

have the same length. As usual, this notion of security assumes the servers are honest-but-curious.
We remark that, as is typical in this setting, both correctness and security are defined with

respect to a non-adaptive selection of inputs (in terms of both the original data and the sequence
of memory accesses). Our scheme remains secure even for adaptively chosen inputs, though in that
case we cannot use the optimized initialization procedure discussed at the end of Section 3.1.

2.2 Private Path Retrieval

We review the notion of private information retrieval (PIR), and define an extension that we call
private path retrieval (PPR). We then describe an efficient construction of a two-server PPR scheme
based on a two-server PIR scheme of Boyle et al.

Abstractly, a PIR scheme allows a client to obliviously learn one value out of an array of N
values stored by a pair of servers. Specialized to XOR-based, one-round protocols in the two-server
setting, we can define a PIR scheme as a pair of algorithms (PIR.C,PIR.S) with the following syntax:

5

• PIR.C is a randomized algorithm that takes as input parameters 1κ, B,N , and an index
i ∈ {0, . . . , N − 1}. It outputs a pair of queries q0, q1.

• PIR.S is a deterministic algorithm that takes as input elements D[0], . . . , D[N − 1] ∈ {0, 1}B,
and a query q. It outputs a response r.

Correctness requires that for all κ,B,N, i, and D as above, we have

Pr
[
(q0, q1)← PIR.C(1κ, B,N, i); {rb := PIR.S(D, qb)}b∈{0,1} : r0 ⊕ r1 = D[i]

]
= 1.

A PIR scheme can be used by a client C and a pair of servers S0, S1 in the natural way. S0 and S1
each begin holding identical copies of an N -element array D of B-bit data blocks. When C wants
to learn the element located at address i, it computes (q0, q1) ← PIR.C(1κ, B,N, i) and sends qb
to Sb. The servers compute their corresponding responses r0, r1, and send them to the client. The
client can then recover D[i] by computing D[i] = r0 ⊕ r1.

Security requires that neither server learns anything about the client’s desired address i. In
other words, it is required that for all B,N, i, i′, and b ∈ {0, 1} the following distributions are
computationally indistinguishable (with κ as a security parameter):

{(q0, q1)← PIR.C(1κ, B,N, i) : qb} and
{

(q0, q1)← PIR.C(1κ, B,N, i′) : qb
}
.

Private path retrieval. For our application, it is convenient to use a generalized primitive we
call private path retrieval (PPR). Here, we view the data stored by the servers as being organized
in a depth-L binary tree with N = 2L leaves; the client wishes to obliviously obtain all the values
stored on some path in that tree from the root to a leaf. (In fact, it will be convenient to omit the
root itself.) Formally, and again specializing to XOR-based, one-round protocols in the two-server
setting, we define a PPR scheme as a pair of algorithms (PPR.C,PPR.S) with the following syntax:

• PPR.C is a randomized algorithm that takes as input parameters 1κ, B,N , and an index
i ∈ {0, . . . , N − 1} corresponding to a leaf node. It outputs a pair of queries q0, q1.

• PPR.S is a deterministic algorithm that takes as input a tree T of elements T [x] ∈ {0, 1}B,
for x ∈ {0, 1}≤logN , and a query q. It outputs a response vector r1, . . . , rL.

Representing i ∈ {0, . . . , N − 1} as an L-bit integer in the obvious way, we let 〈i〉t denote the t-bit
prefix of i for 1 ≤ t ≤ L. Correctness for a PPR scheme requires that for all κ,B,N, i, and T as
above, and all t ∈ {1, . . . , L}, we have

Pr
[
(q0, q1)← PPR.C(1κ, B,N, i); {(r1b , . . . , rLb) := PPR.S(1κ, T, qb)}b∈{0,1} : rt0 ⊕ rt1 = T [〈i〉t]

]
= 1.

Security requires that neither server learns anything about the client’s desired path. That is,
we require that for all B,N, i, i′, and b ∈ {0, 1} the following distributions are computationally
indistinguishable (with κ as a security parameter):

{(q0, q1)← PPR.C(1κ, B,N, i) : qb} and
{

(q0, q1)← PPR.C(1κ, B,N, i′) : qb
}
.

Constructing a PPR scheme. It is immediate that any PIR scheme can be used generically
to construct a PPR scheme. Briefly: the servers view the the tree they store as a collection of L
arrays, with the ith level of the tree corresponding to an array Di containing 2i elements. The client

6

can then obliviously retrieve a path in the tree by running any underlying PIR protocol L times,
once for each array D1, . . . , DL. This increases both the client-to-server and the server-to-client
communication by roughly a factor of L. This construction is “overkill,” though, in the sense that
it allows the client to retrieve an arbitrary data block at each level of the tree, whereas a PPR
scheme only needs to support retrieval of data blocks along a path. This suggests that it may be
possible to further optimize the construction.

Indeed, we show that by adapting the specific PIR scheme of Boyle et al. [4, 5, 3] a better
solution is possible. The communication complexity3 of their PIR scheme is B +O(κ logN); thus,
the generic construction sketched above would give a baseline PPR scheme with communication
complexity B logN +O(κ log2N). We show how to improve this to B logN +O(κ logN).

Rather than give the details of the PIR scheme of Boyle et al., we describe their scheme ab-
stractly. To retrieve the ith element of an array D of length N , the client in their scheme sends
each server Sb a query of length κ + 1 + (κ + 2) · logN = O(κ logN) bits; the query enables that
server to compute a sequence of bits λb[0], . . . , λb[N − 1] with the property that λ0[j]⊕λ1[j] = 1 iff
j = i. Server Sb then responds with rb =

⊕N−1
j=0 λb[j] ·D[j]. It is easily verified that r0⊕ r1 = D[i].

To construct a PPR scheme, we leave the client algorithm unchanged. Let i denote the leaf
corresponding to the path the client wishes to retrieve. As before, server Sb then computes a
sequence of bits λb[0], . . . , λb[N − 1] where λ0[j] ⊕ λ1[j] = 1 iff j = i. Each server then constructs
a logical binary tree of depth L = logN with the λ-values at the leaves, and recursively defines
the values at each internal node of this logical tree to be the XOR of the values of its children.
In this way, each server Sb obtains4 a collection of bits {λb[x]}x∈{0,1}≤L with the property that
λ0[x] ⊕ λ1[x] = 1 iff x is a prefix of i (or, in other words, iff the node corresponding to x is
on the path from the root to the ith leaf). Server Sb then computes the sequence of responses
rtb =

⊕
x : |x|=t λb[x] · T [x] for 1 ≤ t ≤ L. One can verify that rt0 ⊕ rt1 = T [〈i〉t] for all t. Note also

that security of the PPR scheme is implied immediately by security of the original PIR scheme,
which in turn is based on the existence of pseudorandom functions.

Summarizing, we have:

Theorem 2.1. Assuming the existence of pseudorandom functions, there is a two-server PPR
scheme in which the client sends each server a query of length κ+ 1 + (κ+ 2) · logN = O(κ logN),
and each server sends back a response of length B · logN .

3 A Two-Server ORAM Scheme

We now present our two-server ORAM scheme, which can be viewed as being constructed by
adapting the ring ORAM protocol [27] to the two-server setting, and then combining it with the
PPR scheme from Section 2.2. We build on ring ORAM for concreteness, but our general idea can
also be applied to several other tree-based ORAM schemes from the literature (e.g., [28, 29, 30]).

3They show a better scheme with communication complexity B +O(κ log(N/κ)), but that scheme does not seem
likely to yield concrete improvement for practical parameters.

4Readers familiar with the construction of Boyle et al. may observe that these values are already implicitly defined
as part of their scheme; we explicitly describe the computation of these values for self-containment.

7

3.1 Description of our Scheme

Preliminaries. The client’s data is a sequence of N = 2L data blocks D[0], . . . , D[N−1] ∈ {0, 1}B.
Each server will store identical copies of a depth-L, full binary tree T with N leaves numbered from
0 to N − 1; we number the levels of the tree from the root at level 0 to the leaves at level L, and
refer to each node of the tree (except the root) as a bucket. (The root will be treated differently
from the other nodes; see further below.)

As in other tree-based ORAM schemes, the client maintains a position map that maps logical
memory addresses to leaves in T . In our case, the position map will be static and we implement it
by a pseudorandom function FK : [N]→ [N], with K chosen by the client. For pos ∈ {0, . . . , 2L−1}
denoting a leaf in T , we let P(pos) denote the path consisting of all buckets in the tree from the
root to that leaf.

An record (flag, i, pos, data) ∈ {0, 1}×{0, 1}logN×{0, 1}logN×{0, 1}B contains four fixed-length
fields, encrypted using a key held by the client. (For simplicity in what follows, we omit explicit
mention of encrypting/decrypting these blocks.) If flag = 1 then the record is real and we have
pos = FK(i) and data = D[i]; if flag = 0 then the record is a dummy record and i, pos, data can
be arbitrary (so long as they are the correct length). Each bucket in the binary tree stored by the
servers contains Z records, where Z is a parameter we fix later.

As an optimization, we have the client store the root of the tree and refer to the root as the
stash. (We stress, however, that when we refer to a path P = P(pos) in the tree, that path always
includes the root/stash.) All records in the stash are real, and we allow the stash to store more
than Z records. Of course, the records in the stash do not need to be encrypted.

Invariant. In our scheme, the servers store identical copies of the tree T at all times. As in other
tree-based ORAM schemes, we maintain the invariant that, for all i, there is always a (real) record
(1, i, pos, D[i]) located in some bucket on P(pos). It is possible that multiple real records with the
same index appear in the tree at the same time; in this case, the one closest to the root is always
the most up-to-date copy.

Accessing memory. To read logical address i of its array, the client simply needs to read the path
P(FK(i)) and then find the corresponding record closest to the root. For obliviousness, reading
this path is done using our PPR scheme. A logical write of the value v to address i of the array
is done by storing the record (1, i, FK(i), v) in the stash (removing from the stash any outdated
record with the same logical address, if necessary).

Eviction. As described, writing to the array will cause the number of records stored in the stash
to grow without bound. We prevent this by performing an eviction procedure after every A memory
accesses. This eviction procedure reads a path P in the tree, updates the buckets in that path,
and then writes the updated path P ′ back to the servers. To fully specify this process, we need to
determine two things: (1) how the paths to be evicted are chosen and (2) how the chosen paths
are updated.

• Following Gentry et al. [14], we choose paths to be evicted according to a deterministic
schedule, namely, in reverse lexicographic order. This is also the schedule used in ring ORAM.
Note that using a deterministic schedule ensures obliviousness.

• Our update procedure is similar (but not exactly identical) to the one used in path ORAM [29]
and ring ORAM [27]. As in those schemes, we update a path P by pushing every real record
(1, i, pos, v) in that path as far down the tree as possible, subject to the constraint that it

8

The state of the client includes the stash, a key K, and a counter ctr initialized to 0 that indicates
the next eviction path. The servers store identical copies of a tree T .

On input (op, i, v) do:

1. Let pos := FK(i).

2. Use PPR to read P(pos) from T .

3. If op = read then scan through P(pos) to find the real record (1, i, pos, vi) closest to the root,
and output vi.

4. If op = write then (1) remove any records of the form (1, i, pos, ?) from the stash, and then
(2) add the record (1, i, pos, v) to the stash.

5. Set ctr = ctr + 1 mod A ·N . If ctr = 0 mod A then run procedure Evict(ctr/A).

Evict(ctr):

1. Let P be the path corresponding to ctr under reverse lexicographic order. Request P from
one of the servers.

2. If, for any i, there are multiple (real) records (1, i, pos, ?) in P, then only the one closest to
the root is kept; the rest are replaced with dummy records.

3. Process the remaining real records one-by-one, starting from the root. For each such record
record = (1, i, pos, v), find the bucket in P furthest from the root that (1) is on P(pos) and
(2) contains fewer than Z real records. Put record in that bucket in place of a dummy block.
(If no such bucket is found then keep record where it is.) Finally, (re-)encrypt all records in
the updated buckets.

4. The updated path P ′ is then written back to both servers.

Figure 1: Our two-server ORAM scheme.

must be located on P(pos) (and the constraint that each bucket holds at most Z records).
In addition, prior to doing this, we also clear out any stale records in P. That is, if for any i
there are multiple records of the form (1, i, pos, ?) in P, then only the one closest to the root
is kept; the rest are replaced with dummy records.

We give a formal description of our scheme, assuming initialization of the tree has already been
done, in Figure 1. See below for a discussion of initialization.

Parameters. Each record has length exactly 1 + 2 logN + B bits before being encrypted.5 En-
cryption adds at most κ additional bits; this can be reduced by using a global counter keeping track
of how many records have been encrypted thus far. We let R denote the size, in bits, of a record
(after encryption). If κ = O(B) and B ≥ logN (which is typical in practice), we have R = O(B).

As described, the client’s stash can grow arbitrarily large. We show in the next section that when
A = 1 and Z = 3 the client’s stash contains at most λ records except with probability negligible
in λ. The servers each hold fewer than 2N buckets, with each bucket containing Z records; thus,
for the parameter settings discussed above, each server’s storage is at most 2ZNR = O(BN) bits.

The total communication for a logical memory access can be computed as follows:

5As a small optimization, FK(i) need not be stored in a record, as the client can recompute it when needed.

9

1. As part of the PPR scheme, the client sends O(κ logN) bits to each server, and each server
responds with RZ logN bits.

2. For eviction, one server sends RZ logN bits to the client, and then the client sends RZ logN
bits to each server. (The servers can maintain the counter ctr, so it need not be sent.)

Thus, for the parameter settings discussed above, the total communication complexity is O(B logN)
even when A = 1. Importantly, the constants are small; the total worst-case communication (for
general parameters) is at most κ+ 1 + (κ+ 2) · logN + 5Z · (κ+ 2 logN +B) · logN bits, and the
amortized communication (in bits) is

κ+ 1 + (κ+ 2) · logN +

(
2Z +

3Z

A

)
· (κ+ 2 logN +B) · logN.

Thus, as in path ORAM, we can trade off Z and A to reduce communication.
As described (and taking A = 1), the protocol uses three messages if we piggyback the server’s

eviction message with its response in the PPR scheme. However, if we delay the client’s eviction
message until the next time the client initiates the PPR protocol (for the next memory access),
then we obtain a 1-round protocol. Since the client must now store the updated path P ′ between
memory accesses, this increases the storage of the client by ZR logN bits.

Initialization. Initialization can be done locally at the client by starting with a tree consisting only
of dummy records and then simulating the process of writing each data block of the original array;
the resulting tree is then uploaded to each server. We additionally observe that in settings where
the servers initially hold the array (in encrypted form), initialization can be done in essentially the
same way—but locally at each server—by having the client simply send K to the servers.6

3.2 Analysis

Correctness of our protocol follows by inspection, and obliviousness follows from obliviousness of the
PPR scheme and the fact that a deterministic eviction procedure is used. Thus, in the remainder
of this section we focus on analyzing the efficiency of the scheme, specifically, the size of the stash
stored by the client. Compared to the similar analysis done for the ring ORAM schemes, we have
two differences here: first, in our scheme the tree may contain stale records (i.e., real records
(1, i, pos, v) that have been superseded by a more up-to-date record stored closer to the root on the
same path P(pos)); second, in our scheme the position map is fixed once-and-for-all rather than
being updated each time a memory access is done. Careful examination of the proofs for prior
tree-based ORAM schemes, however, shows that both of these changes have no effect on the final
bound. Nevertheless, we include details of the analysis (following [27]) for completeness.

In our analysis, we conceptually view our ORAM scheme as in Figure 1; that is, we view each
logical memory access as resulting in an invocation of the PPR scheme, with an invocation of the
eviction procedure done after every A accesses. Taking M to be a multiple of A, we define the size
of the stash after the Mth memory access to be the size of the stash following the last invocation of

6Revealing the key to the servers does not affect the security of our scheme since we do not rely on secrecy of K
for obliviousness. Rather, we rely on pseudorandomness of FK only for our bound on the size of the stash. We
remark, however, that our analysis of the stash size assumes that the client’s sequence of memory accesses is chosen
independently of K. Thus, the optimized initialization (in which the client sends K to the servers) is only applicable
when the client’s sequence of memory accesses is chosen non-adaptively.

10

the eviction procedure. (In our 1-round scheme the eviction procedure following the Mth memory
access is not completed until the (M + 1)st memory access takes place; this difference can only
increase the size of the stash by a single record.)

During the execution of our ORAM scheme, the resulting tree stored by the servers can contain
two types of real records. We call a real record (1, i, pos, v) stale if there is another real record
(1, i, pos, ?) stored closer to the root (including at the root itself); otherwise, we call the record
fresh. Note that there is exactly one fresh record stored in the tree at any point in time for each
logical memory address i. An important observation is that stale records have no impact on the
stash. More formally:

Lemma 3.1. Consider modifying the ORAM protocol (Figure 1), so that in step 4 of processing a
write operation the client also marks any stale records corresponding to logical address i as dummy
records (without regard for obliviousness). This modification does not affect the size of the stash,
regardless of the position map or the sequences of memory accesses.

Proof. The only time a stale record can possibly have any effect on the stash in an execution of
the real protocol is if there is a stale record (corresponding to some logical address i) in a path P
being processed in step 3 of the eviction subroutine. But then the fresh record corresponding to
address i is also in P at that moment, and so the stale record would have been replaced with a
dummy record in step 2 of the eviction subroutine.

A consequence of the above is that we may treat stale records as dummy records in our analysis,
and it suffices for us to keep track of the placement of fresh records.

Fix a memory-access sequence seq of length M . We assume the binary tree T stored by the
servers is initially filled entirely with dummy records; we thus let seq include the memory accesses
done as part of initialization. For the purposes of proving a bound on the size of the stash, we may
assume that all operations in seq are writes; moreover, the data values being written are irrelevant,
and so we can simply focus on the sequence of logical memory addresses being accessed. If τ is a
subtree of T , then we let n(τ) denote the number of nodes in τ . A subtree is rooted if it contains
the root, and root denotes the root node (which is itself a rooted subtree).

We treat the position map as a random function f : [N] → [N] chosen independently of the
memory-access sequence. For a subtree τ we let τZ be a random variable denoting the number
of fresh records stored in each node of τ after our ORAM scheme (with bucket size Z) is used to
carry out the sequence of memory accesses in seq. As in prior work [29, 27], we let τ∞ refer to the
same random variable when buckets can hold an unbounded number of records. We let X(τZ) be a
random variable denoting the total number of fresh records stored in τZ . (Using this notation, we
are interested in bounding X(rootZ).) We let Xi(τZ) be a random variable denoting the number
of fresh records corresponding to logical address i that are in τZ ; note that Xi(τZ) ∈ {0, 1}.

We rely on the following result proved in prior work [29, 27] for the same eviction procedure we
use (when focusing on fresh blocks):

Lemma 3.2. For any Z, S, it holds that

Pr[X(rootZ) > Z + S] ≤
∑
n≥1

4n · max
τ :n(τ)=n

Pr[X(τ∞) > Z · n(τ) + S],

where the maximum is over rooted subtrees τ of T .

11

The following result depends on the specifics of the eviction procedure and the position map.
Nevertheless, the end result we obtain for our scheme is the same as what is shown in prior work.

Lemma 3.3. Set A = 1 in our scheme. If b is a leaf node, Exp[X(b∞)] ≤ 1. If b is an internal
node, Exp[X(b∞)] ≤ 1/2.

Proof. If b is a leaf node, then a fresh record corresponding to logical address i can only possibly
be stored in that node if i is mapped to b by the position map. Since there are N logical addresses,
and each is mapped to b with probability 1/N , the claimed bound follows.

Say b is a non-leaf node at level `. If b is not on any of the first M eviction paths (note that
this is independent of seq or the position map f), then b will contain no fresh records. Otherwise,
let 1 ≤ ctr1 ≤ M denote the last time b was on an eviction path, and let ctr0 < M denote the
penultimate time b was on an eviction path (set ctr0 = 0 if there was no such time). By the
properties of reverse lexicographic ordering, we have ctr1 − ctr0 ≤ 2`. The only possible fresh
records that can be in b after all M instructions are executed are those corresponding to logical
write addresses used in time steps ctr0 + 1, . . . , ctr1. Moreover, each such address causes a fresh
record to be placed in bucket b with probability exactly 2−(`+1). Thus, the expected number of
fresh records in b is at most 2` · 2−(`+1) = 1/2.

A corollary of the above lemma is that if τ is a rooted subtree then Exp[X(τ∞)] ≤ 0.8 · n(τ)
for all N ≥ 4 (since in that case at most N/(2N − 1) ≤ 4/7 of the nodes in τ can be leaves).
Following the analysis of Ren et al. [27, Section 4.3] (taking a = 0.8), we may then conclude that
when Z ≥ 3, the probability of overflow decreases exponentially in S. This implies that the stash
will not exceed λ records except with probability negligible in λ.

3.3 Optimizations

We briefly mention a few optimizations.

Heuristic parameters. As in the ring ORAM scheme, we experimentally observe that it suffices
to keep A = 1 but set Z = 2 (giving the parameters mentioned in the abstract/introduction), or
to keep Z = 3 but set A = 3 (giving slightly better communication).

A two-round variant. If we are willing to use one more roundtrip, the communication complexity
can be further reduced by first having the client use PPR to read the indices in the records on the
desired path, and then using a second PIR to read the single record of interest.

References

[1] Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren. Asymp-
totically tight bounds for composing ORAM with PIR. In 17th Intl. Conference on Theory
and Practice of Public Key Cryptography—PKC 2017, Part I, volume 10174 of LNCS, pages
91–120. Springer, 2017.

[2] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable oblivi-
ous storage. In 14th Intl. Conference on Theory and Practice of Public Key Cryptography—
PKC 2014, volume 8383 of LNCS, pages 131–148. Springer, 2014.

12

[3] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomorphic
secret sharing: Optimizations and applications. In 24th ACM Conf. on Computer and Com-
munications Security (CCS), pages 2105–2122. ACM Press, 2017.

[4] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Advances in
Cryptology—Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer, 2015.

[5] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In 23rd ACM Conf. on Computer and Communications Security (CCS), pages 1292–
1303. ACM Press, 2016.

[6] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In Advances in Cryptology—Eurocrypt ’99,
volume 1592 of LNCS, pages 402–414. Springer, 1999.

[7] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In 36th Annual Symposium on Foundations of Computer Science (FOCS), pages 41–50.
IEEE, 1995.

[8] Jack Doerner, David Evans, and Abhi Shelat. Secure stable matching at scale. In 23rd ACM
Conf. on Computer and Communications Security (CCS), pages 1602–1613. ACM Press, 2016.

[9] Jack Doerner and Abhi Shelat. Scaling ORAM for secure computation. In 24th ACM Conf.
on Computer and Communications Security (CCS), pages 523–535. ACM Press, 2017.

[10] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party ORAM for secure
computation. In Advances in Cryptology—Asiacrypt 2015, Part I, volume 9452 of LNCS, pages
360–385. Springer, 2015.

[11] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. Bucket
ORAM: Single online roundtrip, constant bandwidth oblivious RAM. Cryptology ePrint
Archive, Report 2015/1065, 2015. http://eprint.iacr.org/2015/1065.

[12] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In 56th Annual
Symposium on Foundations of Computer Science (FOCS), pages 210–229. IEEE, 2015.

[13] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: Efficient
oblivious RAM in two rounds with applications to searchable encryption. In Advances in
Cryptology—Crypto 2016, Part III, volume 9816 of LNCS, pages 563–592. Springer, 2016.

[14] Craig Gentry, Kenny Goldman, Shai Halevi, Charanjit Jutla, Mariana Raykova, and Daniel
Wichs. Optimizing ORAM and using it efficiently for secure computation. In Privacy Enhanc-
ing Technologies (PETS), volume 7981 of LNCS, pages 1–18. Springer, 2013.

[15] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with constant
communication rate. In 32nd Intl. Colloquium on Automata, Languages, and Programming
(ICALP), volume 3580 of LNCS, pages 803–815. Springer, 2005.

[16] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Jour-
nal of the ACM, 43(3):431–473, 1996.

13

[17] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In 38th Intl. Colloquium on Automata, Languages, and
Programming (ICALP), Part II, volume 6756 of LNCS, pages 576–587. Springer, 2011.

[18] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In 19th ACM Conf. on Computer and Communications Security (CCS), pages 513–524. ACM
Press, 2012.

[19] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In 23rd SODA, pages 143–156. ACM-SIAM, 2012.

[20] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computa-
tionally private information retrieval. In 38th Annual Symposium on Foundations of Computer
Science (FOCS), pages 364–373. IEEE, 1997.

[21] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks. Automating
efficient RAM-model secure computation. In IEEE Symposium on Security and Privacy, pages
623–638. IEEE, 2014.

[22] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A pro-
gramming framework for secure computation. In IEEE Symposium on Security and Privacy,
pages 359–376. IEEE, 2015.

[23] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computation.
In 9th Theory of Cryptography Conference—TCC 2013, LNCS, pages 377–396. Springer, 2013.

[24] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file retrieval by
combining ORAM and PIR. In NDSS 2014. The Internet Society, 2014.

[25] Rafail Ostrovsky and Victor Shoup. Private information storage. In 29th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 294–303. ACM Press, 1997.

[26] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Advances in Cryptology—
Crypto 2010, volume 6223 of LNCS, pages 502–519. Springer, 2010.

[27] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and
Srinivas Devadas. Constants count: Practical improvements to oblivious RAM. In USENIX
Security Symposium, pages 415–430. USENIX Association, 2015.

[28] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In Advances in Cryptology—Asiacrypt 2011, volume 7073 of
LNCS, pages 197–214. Springer, 2011.

[29] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: An extremely simple oblivious RAM protocol. In 20th
ACM Conf. on Computer and Communications Security (CCS), pages 299–310. ACM Press,
2013.

14

[30] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. In 22nd ACM Conf. on Computer and Communications Security
(CCS), pages 850–861. ACM Press, 2015.

[31] Xiao Shaun Wang, S. Dov Gordon, Allen McIntosh, and Jonathan Katz. Secure computation
of MIPS machine code. In ESORICS 2016, Part II, volume 9879 of LNCS, pages 99–117.
Springer, 2016.

[32] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM:
Oblivious RAM for secure computation. In 21st ACM Conf. on Computer and Communications
Security (CCS), pages 191–202. ACM Press, 2014.

[33] Peter Williams and Radu Sion. Single round access privacy on outsourced storage. In 19th
ACM Conf. on Computer and Communications Security (CCS), pages 293–304. ACM Press,
2012.

[34] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: Practical
access pattern privacy and correctness on untrusted storage. In 15th ACM Conf. on Computer
and Communications Security (CCS), pages 139–148. ACM Press, 2008.

[35] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner, David Evans,
and Jonathan Katz. Revisiting square-root ORAM: Efficient random access in multi-party
computation. In IEEE Symposium on Security and Privacy, pages 218–234. IEEE, 2016.

15

