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Abstract. We study game-based definitions of individual and universal
verifiability by Smyth, Frink & Clarkson. We prove that building voting
systems from El Gamal coupled with proofs of correct key generation suf-
fices for individual verifiability. We also prove that it suffices for an aspect
of universal verifiability. Thereby eliminating the expense of individual-
verifiability proofs and simplifying universal-verifiability proofs for a class
of encryption-based voting systems. We use the definitions of individual
and universal verifiability to analyse the mixnet variant of Helios. Our
analysis reveals that universal verifiability is not satisfied by implemen-
tations using the weak Fiat-Shamir transformation. Moreover, we prove
that individual and universal verifiability are satisfied when statements
are included in hashes (i.e., when using the Fiat-Shamir transformation,
rather than the weak Fiat-Shamir transformation).

1 Introduction

An election is a decision-making procedure to choose representatives [3,15,25,31].
Choices should be made by voters with equal influence, and this must be ensured
by voting systems [27, 28, 38]. Many electronic voting systems build upon cre-
ativity and skill, rather than scientific foundations, and are routinely broken in
ways that permit adversaries to unduly influence the selection of representatives,
e.g., [5,7,16,20,37]. Breaks can be avoided by carefully formulating rigorous and
precise security definitions that capture notions of voters voting with equal influ-
ence, and proving that systems satisfy these definitions. We consider game-based
security definitions in the computational model of cryptography [18], whereby
a benign challenger, a malicious adversary and a voting system engage in a se-
ries of interactions which task the adversary to complete a challenge. Successful
completion of the task corresponds to an execution of the voting system in which
security is broken. Thus, the task captures what the adversary should not be
able to achieve.

Universal verifiability formalises a notion of checking whether voters voted
with equal influence.

– Universal verifiability. Anyone can check whether an outcome corresponds
to votes expressed in recorded ballots.

Smyth, Frink & Clarkson formalise a game-based definition of universal verifi-
ability [35]. That game tasks the adversary to compute inputs to the tallying



procedure, including an election outcome and some ballots, that cause checks to
succeed when the outcome does not correspond to the votes expressed by those
ballots, or that cause checks to fail when the outcome does correspond to the
votes expressed.

Merely casting a ballot is insufficient to ensure it is recorded, because an
adversary may discard ballots. Individual verifiability formalises the notion of
voters convincing themselves that their ballot is amongst those recorded.

– Individual verifiability. A voter can check whether their ballot is recorded.

Smyth, Frink & Clarkson formalise individual verifiability as a game that tasks
the adversary to cause a collision between ballots [35]. That game proceeds
as follows: First, the adversary provides any inputs necessary to construct a
ballot, including a vote v0. Secondly, the challenger constructs a ballot using
those inputs. Finally, the adversary and the challenger repeat the process to
construct a second ballot for vote v1. The adversary wins if the two independently
constructed ballots are equal. Hence, winning signifies the existence of a scenario
in which two voters cannot uniquely identify their ballot, thus a voter cannot be
convinced that their ballot is recorded.

Equipped with definitions of individual and universal verifiability, we can
analyse existing voting systems to determine whether they are secure. As is ex-
emplified by the following two voting systems. The first (Enc2Vote) instructs
each voter to encrypt their vote using an asymmetric encryption scheme and
instructs the tallier to decrypt the encrypted votes and publish the number
of votes for each candidate. The second (Enc2Vote∗) extends the former to in-
clude proofs of correct computation, in particular, the tallier computes proofs
of correct key generation and decryption. The former system achieves neither
individual nor universal verifiability. Indeed, a public key can be maliciously
constructed such that ciphertexts collide and spurious outcomes need not corre-
spond to the encrypted votes. By comparison, the latter system achieves both
individual and universal verifiability, because well-formed ciphertexts are unique
(individual verifiability) and anyone can check proofs to determine whether the
election outcome corresponds to votes expressed in recorded ballots (universal
verifiability). Voting systems Enc2Vote and Enc2Vote∗ leak the ballot-vote rela-
tion during tallying; more advanced voting systems, such as Helios, do not.

Helios is intended to satisfy verifiability and ballot secrecy. For ballot secrecy,
each voter encrypts their vote using a homomorphic encryption scheme. Those
encrypted votes are homomorphically combined and the homomorphic combi-
nation is decrypted to reveal the outcome [2]. Alternatively, a mixnet is applied
to the encrypted votes and the mixed encrypted votes are decrypted to reveal
the outcome [1,6]. We refer to the former voting system as Helios and the latter
as Helios Mixnet. For universal verifiability, the encryption and decryption steps
are accompanied by non-interactive proofs demonstrating correct computation.

Contribution and structure. Section 3 proves that individual verifiability and
an aspect of universal verifiability are satisfied by voting systems built from



El Gamal coupled with proofs of correct key generation, thereby eliminating the
expense of individual-verifiability proofs and simplifying universal-verifiability
proofs for a class of encryption-based voting systems. Section 4 presents an
analysis of Helios Mixnet that uncovers a vulnerability in implementations, dis-
cusses a fix, and proves that individual and universal verifiability are satisfied
when the fix is applied. The remaining sections present syntax and definitions
of individual and universal verifiability (§2) and a brief conclusion (§5). Ap-
pendix A defines cryptographic primitives and relevant security definitions, and
Appendix B contains proofs.

2 Election scheme syntax and verifiability definitions

We recall syntax for election schemes (Definition 1) from Smyth, Frink & Clark-
son [35]. Election schemes capture a class of voting systems that consist of the
following four steps. First, a tallier generates a key pair. Secondly, each voter
constructs and casts a ballot for their vote. These ballots are recorded on a bul-
letin board. Thirdly, the tallier tallies the recorded ballots and announces an
outcome, i.e., a distribution of votes. Finally, voters and other interested parties
check that the outcome corresponds to votes expressed in recorded ballots.1

Definition 1 (Election scheme [35]). An election scheme is a tuple of prob-
abilistic polynomial-time algorithms (Setup,Vote,TallyVerify) such that:

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ),2 is run by the tallier.3 It takes a
security parameter κ as input and outputs a key pair pk , sk , a maximum
number of ballots mb, and a maximum number of candidates mc.4

Vote, denoted b← Vote(pk , v,nc, κ), is run by voters. It takes as input a public
key pk , a voter’s vote v, some number of candidates nc, and a security param-
eter κ. The vote should be selected from a sequence 1, . . . ,nc of candidates.5

The algorithm outputs a ballot b or error symbol ⊥.

1 Smyth, Frink & Clarkson use the syntax to model first-past-the-post voting systems
and Smyth shows the syntax is sufficiently versatile to capture ranked-choice vot-
ing systems [33]. Moreover, Smyth, Frink & Clarkson extend the syntax to voting
systems with eligibility verifiability, which enables anyone to check whether counted
votes were cast by voters. Eligibility verifiability seems to require expensive infras-
tructures for voter credentials and some systems – including Helios and Helios Mixnet
– forgo eligibility verifiability in favour of cheaper, non-verifiable ballot authentica-
tion mechanisms. Hence, we do not pursue eligibility verifiability further.

2 Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where
r is chosen uniformly at random. And let ← denote assignment.

3 Some election schemes (e.g., Helios) permit the tallier’s role to be distributed
amongst several talliers. In this manuscript, we consider a single tallier for simplicity.

4 Some voting systems bound the number of ballots mb, respectively candidates mc,
to ensure correctness. For example, Helios requires mb and mc to be less than or
equal to the size of the underlying encryption scheme’s message space.

5 Candidates are (abstractly) represented as integers, rather than alphanumeric
strings, for brevity.



Tally, denoted (v, pf ) ← Tally(sk , bb,nc, κ), is run by the tallier. It takes as
input a private key sk , a bulletin board bb, some number of candidates
nc, and a security parameter κ, where bb is a set. And outputs an election
outcome v and a non-interactive tallying proof pf demonstrating that the
outcome corresponds to votes expressed in ballots on the bulletin board. The
election outcome v should be a vector of length nc such that v[v] indicates
the number of votes for candidate v.6

Verify, denoted s ← Verify(pk , bb,nc, v, pf , κ), is run to audit an election. It
takes as input a public key pk , a bulletin board bb, some number of candi-
dates nc, an election outcome v, a tallying proof pf , and a security parameter
κ. And outputs a bit s, where 1 signifies success and 0 signifies failure.

Election schemes must satisfy correctness: there exists a negligible function
negl, such that for all security parameters κ, integers nb and nc, and votes
v1, . . . , vnb ∈ {1, . . . ,nc}, it holds that, given a zero-filled vector v of length nc,
we have:

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk , vi,nc, κ);
v[vi]← v[vi] + 1;

(v′, pf )← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

For individual verifiability, voters must be able to check whether their ballot
is recorded. Smyth, Frink & Clarkson capture this notion using a game that
challenges the adversary to provide inputs to algorithm Vote that cause ballots
to collide.

Definition 2 (Individual verifiability [35]). An election scheme (Setup,Vote,
Tally,Verify) satisfies individual verifiability, if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl, such that for all se-
curity parameters κ, we have Pr[(pk ,nc, v, v′) ← A(κ); b ← Vote(pk ,nc, v, κ);
b′ ← Vote(pk ,nc, v′, κ) : b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥] ≤ negl(κ).

For universal verifiability, anyone must be able to check whether the election
outcome represents the votes used to construct ballots on the bulletin board.
The formal definition of universal verifiability by Smyth, Frink & Clarkson re-
quires algorithm Verify to accept if and only if the election outcome is correct.7

The if requirement is captured by completeness (Definition 3), which stipulates
that election outcomes produced by algorithm Tally will actually be accepted by
algorithm Verify. And the only if requirement is captured by soundness (Defini-
tion 5), which challenges an adversary to concoct a scenario in which algorithm
Verify accepts, but the election outcome is not correct.

6 Let v[v] denote component v of vector v.
7 Quaglia & Smyth [30] provide a tutorial-style introduction to the individual and

universal verifiability definitions by Smyth, Frink & Clarkson.



Definition 3 (Completeness [35]). An election scheme (Setup,Vote,Tally,
Verify) satisfies completeness, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parameters κ,
we have Pr[(pk , sk ,mb,mc)← Setup(κ); (bb,nc)← A(pk , κ); (v, pf )← Tally(sk ,
bb,nc, κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk , bb,nc, v, pf , κ) = 1] > 1− negl(κ).

Smyth, Frink & Clarkson capture correct election outcomes using function
correct-outcome, which is defined such that correct-outcome(pk ,nc, bb, κ)[v] = `
iff ∃=`b ∈ bb\{⊥} : ∃r : b = Vote(pk , v,nc, κ; r),8 where correct-outcome(pk ,nc,
bb, κ) is a vector of length nc and 1 ≤ v ≤ nc. Hence, component v of vector
correct-outcome(pk ,nc, bb, κ) equals ` iff there exist ` ballots on the bulletin
board that are votes for candidate v. The function requires ballots to be inter-
preted for only one candidate, which can be ensured by injectivity.9

Definition 4 (Injectivity). An election scheme (Setup,Vote,Tally,Verify) sat-
isfies injectivity,10 if for all probabilistic polynomial-time adversaries A, security
parameters κ and computations (pk ,nc, v, v′) ← A(κ); b ← Vote(pk , v,nc, κ);
b′ ← Vote(pk , v′,nc, κ) such that v 6= v′ ∧ b 6= ⊥ ∧ b′ 6= ⊥, we have b 6= b′.

Definition 5 (Soundness [35]). An election scheme Γ = (Setup,Vote,Tally,
Verify) satisfies soundness, if Γ satisfies injectivity and for all probabilistic poly-
nomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Pr[(pk ,nc, bb, v, pf ) ← A(κ) : v 6=
correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk , bb,nc, v, pf , κ) = 1] ≤ negl(κ).

Definition 6 (Universal verifiability). An election scheme Γ satisfies uni-
versal verifiability, if completeness, injectivity and soundness are satisfied.

Other definitions of verifiability exist. In particular, definitions have been
proposed by Juels, Catalano & Jakobsson [17], Cortier et al. [9] and Kiayias,
Zacharias & Zhang [19]. Smyth, Frink & Clarkson [35, §7] show that definitions
by Juels, Catalano & Jakobsson and Cortier et al. do not detect attacks that
arise when tallying and verification procedures are corrupt nor when verification
procedures reject legitimate outcomes. Moreover, they show that the definition
by Kiayias, Zacharias & Zhang does not detect the latter class of attacks. By
comparison, Definition 6 detects these attacks, thereby motivating its adoption.

Küsters et al. [21–23] propose an alternative, holistic notion of verifiability
called global verifiability, which must be instantiated with a goal. Smyth, Frink
& Clarkson [35, §8] show that goals proposed by Küsters et al. [24, §5.2] and by

8 Function correct-outcome uses a counting quantifier [32] denoted ∃=. Predicate
(∃=`x : P (x)) holds exactly when there are ` distinct values for x such that P (x) is
satisfied. Variable x is bound by the quantifier, whereas ` is free.

9 Injectivity resembles individual verifiability, except individual verifiability allows
votes to be equal.

10 Smyth, Frink & Clarkson [35] consider a definition of injectivity which quantifies over
all public keys, rather than public keys constructed by an adversary. That definition
is stronger than necessary.



Cortier et al. [10, §10.2] are too strong (in the sense that they cannot be satisfied
by some verifiable voting systems, including Helios). Moreover, Smyth, Frink &
Clarkson propose a slight weakening of the goal by Küsters et al. and proved
that their notion of verifiability is strictly stronger than global verifiability with
that goal (the “gap” is due to an uninteresting technical detail), which further
motivates the adoption of Definition 6.11

3 Encryption ensures individual verifiability & injectivity

Definitions of individual verifiability and injectivity only focus on properties
of algorithm Vote, hence, to prove these properties for election scheme (Setup,
Vote,Tally,Verify), it suffices to prove the existence of an election scheme (Setup′,
Vote,Tally′,Verify′) satisfying both properties. We demonstrate the existence of
such schemes by coupling election scheme Enc2Vote with proofs of correct key
generation.12,13

Definition 7 (Enc2Vote+). Suppose Π = (Gen,Enc,Dec) is an asymmetric en-
cryption scheme, Σ is a sigma protocol that proves correct key generation,
and H is a hash function. Let FS(Σ,H) = (ProveKey,VerKey).14 We define
Enc2Vote+(Π,Σ,H) = (Setup,Vote,Tally,Verify) such that:

– Setup(κ) selects coins s uniformly at random, computes (pk , sk ,m)← Gen(κ;
s); ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ← (pk , sk), de-
rives mc as the largest integer such that {0, . . . ,mc} ⊆ {0}∪m, and outputs
(pk ′, sk ′, p(κ),mc), where p is a polynomial function.

– Vote(pk ′, v,nc, κ) parses pk ′ as vector (pk ,m, ρ), outputting ⊥ if parsing fails
or VerKey((κ, pk ,m), ρ, κ) 6= 1∨ v 6∈ {1, . . . ,nc}∨{1, . . . ,nc} 6⊆ m, computes
b← Enc(pk , v), and outputs b.

– Tally(sk ′, bb,nc, κ) parses sk ′ as vector (pk , sk), outputting ⊥ if parsing fails,
initialises vector v of length nc, computes for b ∈ bb do v ← Dec(sk , b); if
1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs (v, ε), where ε is a constant
symbol.

11 Cortier et al. [10, §8.5 & §10.1] claim that definitions by Smyth, Frink & Clarkson
are flawed. Those claims were discussed with Cortier et al. (email communication,
April’16) and are believed to be false [35, §9]. Moreover, Smyth, Frink & Clark-
son prove that any flaw in their definitions implies flaws in the context of global
verifiability, which should increase confidence in their definitions.

12 Election scheme Enc2Vote∗ (§1) couples Enc2Vote with proofs of correct key gen-
eration and proofs of correct decryption, hence, it is distinguished from schemes
produced by Enc2Vote+. This distinction enables Enc2Vote∗ to satisfy individual
and universal verifiability, whereas Enc2Vote+ cannot produce schemes satisfying
universal verifiability.

13 Election scheme Enc2Vote+(Π,Σ,H) adopts the setup algorithm formalised by
Smyth, Frink & Clarkson for Helios [35, Appendix C].

14 Let FS(Σ,H) denote the non-interactive proof system derived by application of the
Fiat-Shamir transformation to sigma protocol Σ and hash function H.



– Verify(pk , bb,nc, v, pf , κ) outputs 1.

Lemma 1. Given an asymmetric encryption scheme Π, a sigma protocol Σ that
proves correct key generation, and a hash function H, we have Enc2Vote+(Π,Σ,
H) is an election scheme.

A proof of Lemma 1 and all further proofs appear in Appendix B.
Secrecy properties of asymmetric encryption schemes ensure ciphertexts do

not collide. Indeed, IND-CPA demands that no adversary can construct a ci-
phertext that collides with the challenge ciphertext.15 But, such secrecy prop-
erties assume public keys are generated (by key generation algorithms) using
coins chosen uniformly at random. By comparison, individual verifiability and
injectivity assume public keys are constructed by the adversary. Thus, secrecy
properties are insufficient to ensure election scheme Enc2Vote+(Π,Σ,H) satis-
fies individual verifiability and injectivity. Nonetheless, given that the scheme’s
Vote algorithm checks correct key generation, it suffices that ciphertexts do not
collide for correctly generated keys.

Proposition 2. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme,
Σ be a sigma protocol that proves correct key generated, and H be a hash function.
Election scheme Enc2Vote+(Π,Σ,H) satisfies individual verifiability if for all
probabilistic polynomial-time adversaries A and security parameters κ we have

Pr[(pk ,m, ρ,m,m′)← A(κ); c← Enc(pk ,m); c′ ← Enc(pk ,m′)

: VerKey((κ, pk ,m), ρ, κ) = 1 ∧m,m′ ∈ m⇒ c 6= c′] > 1− negl(κ),

where FS(Σ,H) = (ProveKey,VerKey). Moreover, the election scheme satisfies
injectivity if the probability is 1 when plaintexts m and m′ are distinct.

Our proof of Proposition 2 (Appendix B.2) follows immediately from our pre-
conditions. It is nevertheless useful, because the preconditions are defined over
encryption scheme Π and proof system FS(Σ,H), rather than election scheme
Enc2Vote+(Π,Σ,H), which makes the preconditions easier to reason with. For
El Gamal [12], the preconditions are ensured if the proof system checks param-
eters:

Definition 8. Let (ProveKey,VerKey) be a non-interactive proof system that
proves correct key generation. The proof system checks El Gamal parameters,
if for all security parameters κ, public keys pk , messages spaces m, and proofs
ρ, we have VerKey((κ, pk ,m), ρ, κ) = 1 implies pk is a vector (p, q, g, h) such
that p = 2 · q + 1, |q| = κ, g is a generator of Z∗p of order q, h ∈ Z∗p, and
m = {1, . . . , p− 1}.

Theorem 3. Let Π be El Gamal, Σ be a sigma protocol that proves correct key
generation, and H be a hash function. Suppose proof system FS(Σ,H) checks
El Gamal parameters. We have Enc2Vote+(Π,Σ,H) satisfies individual verifia-
bility and injectivity.

15 Correctness of asymmetric encryption schemes only ensures ciphertexts do not collide
for distinct plaintexts.



We exploit Theorem 3 in the following section to derive a proof of individual
verifiability for free and to simplify a proof of universal verifiability.

4 Case study: Helios Mixnet

Helios Mixnet can be informally modelled as an election scheme such that:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public key
coupled with the proof.

Vote enciphers the vote to a ciphertext, proves correct ciphertext construction
in zero-knowledge, and outputs the ciphertext coupled with the proof.

Tally selects the ballots on the bulletin board for which proofs hold, mixes the
ciphertexts in those ballots, decrypts the ciphertexts output by the mix to
reveal the distribution of candidate preferences, and announces that distri-
bution, along with zero-knowledge proofs demonstrating correct decryption
and mixing.

Verify checks the proofs and accepts the distribution if these checks succeed.

Neither Adida [1] nor Bulens, Giry & Pereira [6] have released an implemen-
tation of Helios Mixnet.16 Tsoukalas et al. [36] released Zeus as a fork of He-
lios 3.1.4 spliced with mixnet code to derive an implementation,17 and Yingtong
Li released helios-server-mixnet as an extension of Zeus with threshold asym-
metric encryption.18 Both implementations use multiplicatively-homomorphic
asymmetric encryption, rather than additively-homomorphic encryption.

Chang-Fong & Essex [8] show that Helios 2.0 does not satisfy completeness
(because cryptographic parameters were not checked for suitability), hence, im-
plementations of Helios Mixnet did not satisfy completeness until Helios was
patched (because the implementations fork Helios and do not add code to check
parameters).19 Moreover, Bernhard, Pereira & Warinschi [4] show that He-
lios 3.1.4 does not satisfy soundness.20,21 They also demonstrate a denial of

16 The planned implementation of Helios Mixnet (http://documentation.
heliosvoting.org/verification-specs/mixnet-support, published c. 2010,
accessed 19 Dec 2017, and https://web.archive.org/web/20110119223848/http:

//documentation.heliosvoting.org/verification-specs/helios-v3-1, pub-
lished Dec 2010, accessed 15 Sep 2017) has not been released.

17 https://github.com/grnet/zeus, accessed 15 Sep 2017.
18 https://github.com/RunasSudo/helios-server-mixnet, accessed 15 Sep 2017.
19 https://github.com/benadida/helios-server/pull/133, published 31 May 2016,

accessed 21 Sep 2017.
20 Bernhard, Pereira & Warinschi show that a malicious tallier can add votes for their

preferred candidate and remove votes for other candidates. Smyth, Frink & Clarkson
formalise that attack and prove that soundness is not satisfied [35].

21 A further soundness vulnerability is known [35], as are secrecy [11] and eligibility [26]
vulnerabilities.



service attack. We exploit their denial of service attack to show that imple-
mentations of Helios Mixnet do not satisfy soundness: A malicious tallier can
decrypt the ciphertexts output by the mix to reveal the distribution of candidate
preferences, select the ciphertexts that decrypt to the tallier’s preferred subdis-
tribution, prove correct decryption of those ciphertexts, and exploit the attack
by Bernhard, Pereira & Warinschi to falsify proofs that the remaining cipher-
texts decrypt to arbitrary elements of the message space, thereby enabling the
malicious tallier to exclude votes from the election outcome.

Remark 4. Zeus does not satisfy soundness.

Similarly, helios-server-mixnet does not satisfy soundness when a (n, n)-threshold
is used. An informal proof of these claims follows from our discussion and a formal
proof is omitted.

Helios 3.1.4 uses additively-homomorphic El Gamal, hence, an adversary can
falsify that ciphertexts decrypt to arbitrary elements of the group, but cannot
recover the corresponding messages, because solving discrete logarithms for ar-
bitrary group elements is hard. Thus, the attack by Bernhard, Pereira & Warin-
schi leads to a denial of service attack against Helios 3.1.4, whereby the election
outcome is not recovered, rather than an attack that violates soundness. By com-
parison, our attack against implementations of Helios Mixnet violates soundness,
because a malicious tallier can exclude votes from the election outcome.

Bernhard, Pereira & Warinschi attribute vulnerabilities of Helios 3.1.4 to use
of the Fiat-Shamir transformation without including statements in hashes (i.e.,
the weak Fiat-Shamir transformation), and recommend including statements in
hashes (i.e., using the Fiat-Shamir transformation) as a defence. Implementa-
tions of Helios Mixnet can be extended to use the Fiat-Shamir transformation
and we derive a formalisation of that extension from Enc2Vote+(Π,Σ,H) by re-
placing its tallying and verification algorithms,22 and by using a suitable asym-
metric encryption algorithm. Using the Fiat-Shamir transformation (rather than
the weak Fiat-Shamir transformation) ensures that proofs of correct decryption
cannot be falsified, hence, the formalisation is not vulnerable to the aforemen-
tioned attack.

Definition 9. Suppose Π = (Gen,Enc,Dec) is a homomorphic asymmetric en-
cryption algorithm, Σ1 is a sigma protocol that proves correct key construc-
tion, Σ2 is a sigma protocol that proves plaintext knowledge, and H is a hash
function. Let FS(Σ1,H) = (ProveKey,VerKey) and FS(Σ2,H) = (ProveCiph,
VerCiph). Moreover, let π(Π,Σ2,H) = (Gen,Enc′,Dec′) be an asymmetric en-
cryption scheme such that:

– Enc′(pk , v) selects coins r uniformly at random, computes c← Enc(pk , v; r);
σ ← ProveCiph((pk , c), (v, r), κ), and outputs (c, σ).

22 The tallying and verification algorithms in Definition 9 adapt (unpublished) algo-
rithms prepared by Quaglia & Smyth in the context of [29]. Quaglia & Smyth have
since incorporated these adaptations into their work to take advantage of the results
presented in this manuscript.



Suppose Σ3 is a sigma protocol that proves correct decryption and Σ4 is a
sigma protocol that proves mixing. Let FS(Σ3,H) = (ProveDec,VerDec) and
FS(Σ4,H) = (ProveMix,VerMix). We define HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) =
(Setup,Vote,Tally,Verify), where Enc2Vote+(π(Π,Σ2,H), Σ1,H) = (Setup,Vote,
Tally′,Verify′) and algorithms Tally and Verify are defined below.

Tally(sk ′,nc, bb, κ) initialises v as a zero-filled vector of length nc, parses sk ′ as
a vector (pk , sk), outputting (v,⊥) if parsing fails, and proceeds as follows:

1. Remove invalid ballots. Let {b1, . . . , b`} be the largest subset of bb such that
for all 1 ≤ i ≤ ` we have bi is a pair and VerCiph((pk , bi[1]), bi[2], κ) = 1. If
{b1, . . . , b`} = ∅, then output (v,⊥).

2. Mix. Select a permutation χ on {1, . . . , `} uniformly at random, initialise bb
and r as vectors of length `, fill r with coins chosen uniformly at random,
and compute

for 1 ≤ i ≤ ` do
bb[i]← bχ(i)[1]⊗ Enc(pk , e; r[i]);

pf 1 ← ProveMix((pk , (b1[1], . . . , b`[1]),bb), (r, χ), κ);

where e is an identity element of Π’s message space with respect to �.
3. Decrypt. Initialise W and pf 2 as vectors of length ` and compute:

for 1 ≤ i ≤ ` do
W[i]← Dec(sk ,bb[i]);
pf 2[i]← ProveDec((pk ,bb[i],W[i]), sk , κ);
if 1 ≤W[i] ≤ nc then

v[W[i]]← v[W[i]] + 1;

Output (v, (bb, pf 1,W, pf 2)).

Verify(pk ′,nc, bb, v, pf , κ) derives the largest integer mc such that {0, . . . ,mc} ⊆
{0} ∪ m; parses pk ′ as a vector (pk ,m, ρ) and v parses as a vector of length
nc, outputting 0 if parsing fails, VerKey((κ, pk ,m), ρ, κ) 6= 1, |bb| 6≤ p(κ), or
nc 6≤ mc, where p is the polynomial function used by algorithm Setup to bound
the maximum number of ballots; and proceeds as follows:

1. Remove invalid ballots. Compute {b1, . . . , b`} as per Step 1 of algorithm Tally.
If {b1, . . . , b`} = ∅ and v is a zero-filled vector, then output 1. Otherwise,
perform the following checks.

2. Check mixing. Parse pf as a vector (bb, pf 1,W, pf 2), outputting 0 if parsing
fails, and check VerMix((pk , (b1[1], . . . , b`[1]),bb), pf 1, κ) = 1.

3. Check decryption. Check W and pf 2 are vectors of length `,
∧`
i=1 VerDec(

(pk ,bb[i],W[i]), pf 2[i], κ) = 1, and
∧nc
v=1 ∃=v[v]i ∈ {1, . . . , `} : v = W[i].

If the above checks hold, then output 1, otherwise, output 0.

Lemma 5. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of Def-
inition 9. We have HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) is an election scheme.



Our formalisation of Helios Mixnet is similar to the formalisation of Helios
by Smyth, Frink & Clarkson [35]. The main distinctions are as follows: First,
given a vote v from a sequence of candidates 1, . . . ,nc, a Helios-Mixnet ballot
contains an encryption of v, whereas a Helios ballot contains ciphertexts c1, . . . ,
cnc−1 such that if v < nc, then cv encrypts plaintext one and the remaining
ciphertexts all encrypt zero, otherwise, all ciphertexts encrypt zero. (Both He-
lios Mixnet and Helios ballots prove correct ciphertext construction, only Helios
ballots prove the vote is selected from the sequence of candidates.) Secondly,
Helios Mixnet decrypts individual ciphertexts after mixing, whereas Helios ho-
momorphically combines ciphertexts and decrypts the resulting homomorphic
combination. (Both Helios Mixnet and Helios prove correct decryption. For He-
lios Mixnet, decryption of individual votes is proved correct. Whereas Helios
proves correct decryption of the election outcome.) Finally, the aforementioned
distinctions lead to slight differences in the verification algorithms.

Since election schemes HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) and Enc2Vote+(π(Π,
Σ2,H), Σ1,H) share the same voting algorithm, both schemes satisfy individual
verifiability and injectivity by Proposition 2, assuming the proposition’s precon-
ditions are satisfied. Moreover, since the preconditions hold for El Gamal when
parameters are checked (Corollary 2), we have:

Corollary 6. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 9. Further suppose Π is El Gamal and Σ1 checks El Gamal parame-
ters. Election scheme HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) satisfies individual verifia-
bility and injectivity.

To evaluate whether universal verifiability is satisfied, it remains to consider
completeness and soundness.

Theorem 7. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 9. Moreover, suppose Σ2 satisfies special soundness and special honest
verifier zero-knowledge and H is a random oracle. Election scheme HeliosM(Π,
Σ1, Σ2, Σ3, Σ4,H) satisfies completeness. Further suppose, Π is perfectly correct
and perfectly homomorphic, Σ1, Σ3 and Σ4 satisfy special soundness and spe-
cial honest verifier zero-knowledge, and HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) satisfies
injectivity. The election scheme satisfies soundness.

Theorem 7 requires perfect correctness, rather than computational correctness,
because soundness quantifies over public keys constructed by an adversary and
such an adversary might not construct the public key using coins chosen uni-
formly at random. (We can, nonetheless, verify whether public keys are con-
structed using the correct algorithm.) Thus, perfect correctness is required, be-
cause it quantifies over all coins. Moreover, perfect homomorphisms are similarly
required.

These findings were reported to the Zeus developers, who conducted an in-
vestigation of their code and confirmed Zeus does not satisfy soundness.23 They

23 Email communication, Oct & Dec 2017.



promptly adopted and deployed the proposed fix,24 this was straightforward, be-
cause they had already written code for the Fiat-Shamir transformation. These
findings were also reported to the developer of helios-server-mixnet,25 who con-
firmed soundness is not satisfied with a (n, n)-threshold, but is for other thresh-
olds because code from the PloneVote26 cryptographic library is used rather than
code from Helios,27 and has since adopted and deployed the proposed fix.28

5 Conclusion

We have introduced a construction that serves as a foundation for verifiable
voting systems, and we have shown that it produces systems satisfying individual
verifiability and the injectivity aspect of universal verifiability, when instantiated
with El Gamal. Moreover, we have analysed verifiability of two implementations
of Helios Mixnet and shown that the soundness aspect of universal verifiability
is not satisfied, due to vulnerabilities in Helios. Finally, we propose a fix and
exploit our construction to prove that the fix suffices for individual and universal
verifiability.

Acknowledgements. I am grateful to Steve Kremer and the anonymous reviewers
for feedback that helped improve this paper. I am also grateful to Yingtong Li
(developer of helios-server-mixnet) and to Georgios Tsoukalas & Panos Louridas
(developers of Zeus) for discussions about their voting systems.

A Cryptographic primitives

Definition 10 (Asymmetric encryption scheme [18]). An asymmetric en-
cryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen,Enc,
Dec), such that:29

– Gen, denoted (pk , sk ,m)← Gen(κ), inputs a security parameter κ and out-
puts a key pair (pk , sk) and message space m.

– Enc, denoted c ← Enc(pk ,m), inputs a public key pk and message m ∈ m,
and outputs a ciphertext c.

– Dec, denoted m← Dec(sk , c), inputs a private key sk and ciphertext c, and
outputs a message m or an error symbol. We assume Dec is deterministic.

24 See commitments d2653d4 (9 Oct 2017), 4fddcd3 (11 Oct 2017), and aab1b6f (9
Oct 2017), accessed 20 Dec 2017.

25 Email communication, 22 Dec 2017.
26 https://github.com/HRodriguez/svelib, accessed 4 Jan 2017.
27 Email communication, 25 Dec 2017.
28 See commitment 9af7674 (25 Dec 2017).
29 Our definition differs from Katz and Lindell’s original definition [18, Definition 10.1]

in that we formally state the plaintext space.



Moreover, the scheme must be correct : there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk ,m)←
Gen(κ); c← Enc(pk ,m) : m ∈ m⇒ Dec(sk , c) = m] > 1− negl(κ). A scheme has
perfect correctness if the probability is 1.

Definition 11 (Homomorphic encryption [35]). An asymmetric encryp-
tion scheme Π = (Gen,Enc,Dec) is homomorphic, with respect to ternary opera-
tors �, ⊕, and ⊗,30 if there exists a negligible function negl, such that for all secu-
rity parameters κ, we have the following.31 First, for all messages m1 and m2 we
have Pr[(pk , sk ,m) ← Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : m1,m2 ∈
m ⇒ Dec(sk , c1 ⊗pk c2) = Dec(sk , c1) �pk Dec(sk , c2)] > 1 − negl(κ). Secondly,
for all messages m1 and m2, and all coins r1 and r2, we have Pr[(pk , sk ,m) ←
Gen(κ) : m1,m2 ∈ m ⇒ Enc(pk ,m1; r1) ⊗pk Enc(pk ,m2; r2) = Enc(pk ,m1 �pk

m2; r1 ⊕pk r2)] > 1 − negl(κ). A scheme is perfectly homomorphic if the afore-
mentioned probabilities are 1.

Definition 12 (Non-interactive proof system [35]). A non-interactive proof
system for a relation R is a tuple of algorithms (Prove,Verify), such that:

– Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove (s, w) ∈
R.

– Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ).

Definition 13 (from [35]). Let (Gen,Enc,Dec) be a homomorphic asymmetric
encryption scheme and Σ be a sigma protocol for a binary relation R.32

– Σ proves correct key generation if a ((κ, pk ,m), (sk , s)) ∈ R⇔ (pk , sk ,m) =
Gen(κ; s).

Further, suppose that (pk , sk ,m) is the output of Gen(κ; s), for some security
parameter κ and coins s.

– Σ proves plaintext knowledge if ((pk , c), (m, r)) ∈ R ⇔ c = Enc(pk ,m; r) ∧
m ∈ m.

30 Henceforth, we implicitly bind ternary operators, i.e., we write Π is a homomorphic
asymmetric encryption scheme as opposed to the more verbose Π is a homomorphic
asymmetric encryption scheme, with respect to ternary operators �, ⊕, and ⊗.

31 We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk .
We occasionally abbreviate X ◦pk Y as X ◦ Y , when pk is clear from the context.

32 Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈ R ⇔ P (s1, . . . , sl,
w1, . . . , wk) for (s, w) ∈ R ⇔ P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w = (w1,
. . . , wk), hence, R is only defined over pairs of vectors of lengths l and k.



– Σ proves mixing if ((pk , c, c′), (r, χ)) ∈ R ⇔
∧

1≤i≤|c| c
′[i] = c[χ(i)] ⊗

Enc(pk , e; r[i]) ∧ |c| = |c′| = |r|, where c and c′ are both vectors of ci-
phertexts encrypted under pk , r is a vector of coins, χ is a permutation on
{1, . . . , |c|}, and e is an identity element of the encryption scheme’s message
space with respect to �.

– Σ proves correct decryption if ((pk , c,m), sk) ∈ R⇔ m = Dec(sk , c).

Definition 14 (Fiat-Shamir transformation [13]). Given a sigma protocol
Σ = (Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the Fiat-
Shamir transformation, denoted FS(Σ,H), is the non-interactive proof system
(Prove,Verify), defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

A string m can be included in the hashes computed by algorithms Prove and
Verify. That is, the hashes are computed in both algorithms as chal← H(comm,
s,m). We write Prove(s, w,m, κ) and Verify(s, (comm, resp),m, k) for invocations
of Prove and Verify which include string m.

Definition 15 (Simulation sound extractability [4,14,35]). Suppose Σ is
a sigma protocol for relation R, H is a random oracle, and (Prove,Verify) is a
non-interactive proof system, such that FS(Σ,H) = (Prove,Verify). Further sup-
pose S is a simulator for (Prove,Verify) andH can be patched by S. Proof system
(Prove,Verify) satisfies simulation sound extractability if there exists a probabilis-
tic polynomial-time algorithm K, such that for all probabilistic polynomial-time
adversaries A and coins r, there exists a negligible function negl, such that for
all security parameters κ, we have:33

Pr[P← (); Q← AH,P(—; r); W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty input and coins r,
where H is a transcript of the random oracle’s input and output, and where
oracles A′ and P are defined below:

– A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to K,
and outputs Q′. By running A(—; r), K is rewinding the adversary.

33 We extend set membership notation to vectors: we write x ∈ x if x is an element of
the set {x[i] : 1 ≤ i ≤ |x|}.



– P(s). Computes σ ← S(s, κ); P← (P[1], . . . ,P[|P|], (s, σ)) and outputs σ.

Algorithm K is an extractor for (Prove,Verify).

Theorem 8 (from [4]). Let Σ be a sigma protocol for relation R, and let H be a
random oracle. Suppose Σ satisfies special soundness and special honest verifier
zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies zero-knowledge
and simulation sound extractability.

B Proofs

B.1 Proof of Lemma 1

Let Π = (Gen,Enc,Dec), FS(Σ,H) = (ProveKey,VerKey), and Enc2Vote+(Π,
Σ,H) = (Setup,Vote,Tally,Verify). Suppose κ is a security parameter, nb and
nc are integers, and v1, . . . , vnb ∈ {1, . . . ,nc} are votes. Let v be the election
outcome that corresponds to those votes. Suppose (pk ′, sk ′,mb,mc) is an output
of Setup(κ) such that nb ≤ mb∧nc ≤ mc. By definition of algorithm Setup, there
exist coins s such that (pk , sk ,m) = Gen(κ; s), ρ is an output of ProveKey((κ, pk ,
m), (sk , s), κ), pk ′ = (pk ,m, ρ), sk ′ = (pk , sk), and mc is the largest integer such
that {0, . . . ,mc} ⊆ {0} ∪ m. By completeness of (ProveKey,VerKey), we have
VerKey((κ, pk ,m), ρ, κ) = 1, with overwhelming probability. Suppose for each
i ∈ {1, . . . ,nb} that bi is an output of Vote(pk , vi,nc, κ), hence, bi is an output of
Enc(pk , vi). Further suppose (v′, pf ) is an output of Tally(sk , {b1, . . . , bnb},nc, κ).
By definition of algorithm Tally, we have

∧nc
v=1 ∃=v′[v]i ∈ {1, . . . ,nb} : v =

Dec(sk , bi). It follows by correctness of Π that
∧nc
v=1 ∃=v′[v]i ∈ {1, . . . ,nb} :

v = vi, with overwhelming probability. Hence, v′ is the election outcome that
corresponds to votes v1, . . . , vnb , i.e., v = v′, concluding our proof.

B.2 Proof of Proposition 2

Let Enc2Vote+(Π,Σ,H) = (Setup,Vote,Tally,Verify). Suppose A is a probabilis-
tic polynomial-time adversary and κ is a security. Further suppose (pk ,nc, v, v′)
is an output of A(κ), b is an output of Vote(pk ′,nc, v, κ), and b′ is an output of
Vote(pk ′,nc, v′, κ), such that b 6= ⊥ and b′ 6= ⊥. By definition of algorithm Vote,
public key pk ′ is a vector (pk ,m, ρ) such that VerKey((κ, pk ,m), ρ, κ) = 1 and
v, v′ ∈ {1, . . . ,nc} ⊆ m. Moreover, b is an output of Enc(pk , v) and b′ is an output
of Enc(pk , v′). Thus, b 6= b′ by our precondition, with overwhelming probability,
therefore, individual verifiability is satisfied. For injectivity, we further suppose
v 6= v′, hence, b 6= b′ by our precondition, which concludes our proof.

B.3 Proof of Theorem 3

Suppose A is a probabilistic polynomial-time adversary and κ is a security pa-
rameter. Further suppose (pk ,m, ρ,m,m′) is an output of A(κ), c is an out-
put of Enc(pk ,m), and c′ is an output of Enc(pk ,m′), such that VerKey((κ, pk ,



m), ρ, κ) = 1 and m,m′ ∈ m. Since FS(Σ,H) checks El Gamal parameters, public
key pk is a vector (p, q, g, h) such that p = 2 · q + 1, |q| = κ, g is a generator of
Z∗p of order q, h ∈ Z∗p, and m = {1, . . . , p − 1}. By definition of El Gamal, we

have c[1] = gr (mod p) and c′[1] = gr
′

(mod p) for some coins r and r′ chosen
uniformly at random from Z∗q . It follows that coins r and r′ are distinct, with
overwhelming probability. Hence, c[1] 6= c′[1], therefore, c 6= c′, with overwhelm-
ing probability. Thus, individual verifiability is satisfied. For injectivity, if r 6= r′,
then c[1] 6= c′[1], therefore, c 6= c′, otherwise (r = r′), c[2] = hr ·m (mod p) and
c′[2] = hr ·m′ (mod p) by definition of El Gamal, hence, c 6= c′ when m and m′

are distinct. Thus, injectivity is satisfied too, which concludes our proof.

B.4 Proof of Lemma 5

Let Π = (Gen,Enc,Dec), π(Π,Σ1,H) = (Gen,Enc′,Dec′), FS(Σ2,H) =
(ProveCiph,VerCiph), and H is a hash function. Suppose κ is a security parame-
ter, nb and nc are integers, and v1, . . . , vnb ∈ {1, . . . ,nc} are votes. Let v be the
election outcome that corresponds to those votes. Suppose (pk ′, sk ′,mb,mc) is
an output of Setup(κ) such that nb ≤ mb ∧ nc ≤ mc. Further suppose for each
i ∈ {1, . . . ,nb} that bi is an output of Vote(pk , vi,nc, κ). Hence, by reasoning
similar to that given in the proof of Lemma 1, each ballot is a ciphertext pro-
duced by Enc′. By definition of algorithm Enc′, we have for each i ∈ {1, . . . ,nb}
there exist coins ri such that bi[1] = Enc(pk , vi; ri) and bi[2] is an output of
ProveCiph((pk , c), (v, r), κ). It follows by completeness of (ProveCiph,VerCiph)

that
∧nb
i=1 VerCiph((pk , bi[1]), bi[2], κ) = 1.

Suppose (v′, pf ) is an output of Tally(sk , {b1, . . . , bnb},nc, κ). By definition
of algorithm Tally, we have pf is a vector (bb, pf 1,W, pf 2) such that for all
1 ≤ i ≤ ` we have bb[i] = bχ(i)[1]⊗ Enc(pk , e; r[i]), where χ is a permutation on
{1, . . . , `}, r is a vector of coins, and e is an identity element. Moreover, we have
for all 1 ≤ i ≤ ` that W[i] = Dec(sk ,bb[i]). Since v′ is derived by initialising W
as a vector of length ` and computing for 1 ≤ i ≤ ` do if 1 ≤W[i] ≤ nc then
v′[W[i]]← v′[W[i]] + 1, we have

∧nc
v=1 ∃=v′[v]i ∈ {1, . . . , `} : v = Dec(sk ,bb[i]).

Moreover, since Π is homomorphic, we have for all 1 ≤ i ≤ ` that bb[i] =
Enc(pk , vχ(i); rχ(i)⊕r[i]), with overwhelming probability. It follows by correctness

of Π that
∧nc
v=1 ∃=v′[v]i ∈ {1, . . . , `} : v = vχ(i), with overwhelming probability.

Since χ is a permutation on {1, . . . ,nc}, election outcome v′ corresponds to votes
v1, . . . , vnb , i.e., v = v′, with overwhelming probability, thereby concluding our
proof.

B.5 Proof of Theorem 7

Let Π = (Gen,Enc,Dec), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), FS(Σ3,H) = (ProveDec,VerDec), FS(Σ4,H) = (ProveMix,
VerMix), and HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) = (Setup,Vote,Tally,Verify). We
prove completeness and soundness below. The proofs are similar to proofs of
completeness and soundness for Helios [35, Appendix F], due to the aforemen-
tioned similarities between Helios Mixnet and Helios (§4).



Completeness. Suppose A is an adversary and κ is a security parameter. Fur-
ther suppose (pk ′, sk ′,mb,mc) is an output of Setup(κ), (bb,nc) is an output
of A(pk ′, κ) such that |bb| ≤ mb and nc ≤ mc, and (v, pf ) is an output of
Tally(sk , bb,nc, κ). By definition of algorithm Setup, there exist coins s such
that (pk , sk ,m) = Gen(κ; s), ρ is an output of ProveKey((κ, pk ,m), (sk , s), κ), pk ′

is the vector (pk ,m, ρ), sk ′ is the vector (pk , sk), mc is the largest integer such
that {0, . . . ,mc} ⊆ {0} ∪ m, and mb = p(κ), where p is a polynomial function.
By completeness of (ProveKey,VerKey), we have VerKey((κ, pk ,m), ρ, κ) = 1,
with overwhelming probability. Suppose {b1, . . . , b`} is computed as per Step 1
of algorithm Tally. If {b1, . . . , b`} = ∅, then we have v as a zero-filled vector
of length nc and Verify(pk , bb,nc, v, pf , κ) = 1, hence, completeness is satisfied.
Otherwise, we proceed as follows.

SinceΣ2 satisfies special soundness and special honest verifier zero-knowledge,
proof system FS(Σ2,H) satisfies simulation should extractability (Theorem 8),
hence, we have for each i ∈ {1, . . . , `} that bi is a ciphertext. By definition of al-
gorithm Tally, we have pf is a vector (bb, pf 1,W, pf 2) such that for all 1 ≤ i ≤ `
we have bb[i] = bχ(i)[1]⊗Enc(pk , e; r[i]), where χ is a permutation on {1, . . . , `},
e is an identity element of Π’s message space with respect to �, and r is a vector
of coins. Moreover, pf 1 is an output of ProveMix((pk , (b1[1], . . . , b`[1]),bb), (r, χ),
κ). By completeness of (ProveMix,VerMix), we have VerMix((pk , (b1[1], . . . , b`[1]),
bb), pf 1, κ) = 1, with overwhelming probability. It follows that checks hold in
Step 2 of algorithm Verify.

By Step 3 of algorithm Tally, we have for all 1 ≤ i ≤ ` that W[i] is an output
of Dec(sk ,bb[i]) and pf 2[i] is an output of ProveDec((pk ,bb[i],W[i]), sk , κ).

By completeness of (ProveDec,VerDec), we have
∧`
i=1 VerDec((pk ,bb[i],W[i]),

pf 2[i], κ) = 1, with overwhelming probability. Moreover, since v is derived by
initialising W as a vector of length ` and computing for 1 ≤ i ≤ ` do if
1 ≤W[i] ≤ nc then v[W[i]]← v[W[i]] + 1, we have

∧nc
v=1 ∃=v[v]i ∈ {1, . . . , `} :

v = W[i]. It follows that checks hold in Step 3 of algorithm Verify.
Since the above checks succeed, algorithm Verify outputs 1, with overwhelm-

ing probability, hence, completeness is satisfied.

Soundness. We suppose each of the proof systems satisfies simulation sound
extractability by Theorem 8. Moreover, since (Setup,Vote,Tally,Verify) shares
algorithm Vote with Enc2Vote+(π(Π,Σ2,H), Σ1,H), it follows from Proposi-
tion 2 that both schemes satisfy injectivity, hence, a prerequisite of soundness is
satisfied.

Suppose A is a probabilistic polynomial-time adversary, κ is a security pa-
rameter, and (pk ′,nc, bb, v, pf ) is an output ofA(κ) such that Verify(pk , bb,nc, v,
pf , κ) = 1. By definition of algorithm Verify, public key pk ′ is a vector (pk ,m, ρ)
and v parses as a vector of length nc. Let {b1, . . . , b`} be computed as per Step 1
of algorithm Tally. We have for all b = Vote(pk ′,nc, v, κ; r) that b 6∈ {b1, . . . , b`}
with overwhelming probability, since such an occurrence would imply a contra-
diction: {b1, . . . , b`} is not the largest subset of bb satisfying the conditions in
Step 1 of algorithm Tally, because b is a pair and VerCiph((pk , bi[1]), bi[2], κ) = 1,
with overwhelming probability, but b 6∈ {b1, . . . , b`}. It follows with overwhelming



probability that

correct-outcome(pk ,nc, bb, κ) = correct-outcome(pk ,nc, {b1, . . . , b`}, κ) (1)

A proof of (1) follows from the definition of function correct-outcome. If {b1,
. . . , b`} = ∅, then v and correct-outcome(pk ,nc, {b1, . . . , b`}, κ) are zero-filled
vectors of length nc, with overwhelming probability, hence, soundness is satisfied.
Otherwise, we proceed as follows.

By definition of Verify, we have VerKey((κ, pk ,m), ρ, κ) = 1, hence, by simu-
lation sound extractability, public key pk is an output of Gen, with overwhelm-
ing probability. Moreover, we have for each i ∈ {1, . . . , `} that VerCiph((pk ,
bi[1]), bi[2], κ) = 1, hence, by simulation sound extractability, there exists a mes-
sage vi ∈ m and coins ri such that

bi[1] = Enc(pk , vi; ri)

and bi[2] is an output of ProveCiph((pk , bi[1]), (vi, ri), κ), with overwhelming
probability.

By Step 2 of algorithm Verify, proof pf parses as a vector (bb, pf 1,W, pf 2)
such that VerMix((pk , (b1[1], . . . , b`[1]),bb), pf 1, κ) = 1. It follows from simula-
tion sound extractability that there exists a permutation χ on {1, . . . , `} and a
vector of coins r such that bb is a vector of length ` and for each i ∈ {1, . . . , `}
we have

bb[i] = bχ(i)[1]⊗ Enc(pk , e; r[i]),

where e is an identity element of Π’s message space with respect to �, with over-
whelming probability. Although public key pk might not have been constructed
using coins chosen uniformly at random, we nevertheless, with overwhelming
probability, have for each i ∈ {1, . . . , `} that

bb[i] = Enc(pk , vχ(i); rχ(i) ⊕ r[i])

because Π is perfectly homomorphic and e is an identity element.
Let v′ = correct-outcome(pk ,nc, {b1, . . . , b`}, κ). Given that {b1, . . . , b`} is a

set of pairs, error symbol ⊥ is not an element of that set. Hence, by definition
of function correct-outcome, we have for each v ∈ {1, . . . ,nc} that ∃=v′[v]b ∈
{b1, . . . , b`} : ∃r : b = Vote(pk , v,nc, κ; r), moreover, ∃=v′[v]j ∈ {1, . . . , `} : v =
vj and, since χ is a permutation on {1, . . . , `},

∃=v′[v]j ∈ {1, . . . , `} : v = vχ(j) (2)

By Step 3 of algorithm Verify, we have W and pf 2 are vectors of length ` such

that
∧`
i=1 VerDec((pk ,bb[i],W[i]), pf 2[i], κ) = 1 and

∧nc
v=1 ∃=v[v]i ∈ {1, . . . , `} :

v = W[i]. Hence, by simulation sound extractability, we have for each v ∈
{1, . . . ,nc} that

nc∧
v=1

∃=v[v]i ∈ {1, . . . , `} : v = Dec(sk ,Enc(pk , vχ(i); rχ(i) ⊕ r[i]))



with overwhelming probability. Although ciphertexts bb[1], . . . ,bb[`] may not
have been constructed using coins chosen uniformly at random nor using a
public key that was constructed using coins chosen uniformly at random, we
nonetheless, with overwhelming probability, have for each i ∈ {1, . . . , `} that
Dec(sk ,Enc(pk , vχ(i); rχ(i) ⊕ r[i])) = vχ(i), because Π is perfectly correct. Thus,

∃=v[v]j ∈ {1, . . . , `} : v = vχ(j) (3)

with overwhelming probability. Soundness follows from (1)–(3), which concludes
our proof.
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