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Abstract

Zero-knowledge proofs of knowledge and fully-homomorphic encryption are two
areas that have seen considerable advances in recent years, and these two techniques
are used in conjunction in the context of verifiable decryption. Existing solutions for
verifiable decryption are aimed at the batch setting, however there are many applica-
tions in which there will only be one ciphertext that requires a proof of decryption.
The purpose of this paper is to provide a zero-knowledge proof of correct decryption
on an FHE ciphertext, which for instance could hold the result of a cryptographic
election.

We give two main contributions. Firstly, we present a bootstrapping-like protocol
to switch from one FHE scheme to another. The first scheme has efficient homomor-
phic capabilities; the second admits a simple zero-knowledge protocol. To illustrate
this, we use the Brakerski et al. (ITCS, 2012) scheme for the former, and Gentry’s
original scheme (STOC, 2009) for the latter. Secondly, we present a simple one-shot
zero-knowledge protocol for verifiable decryption using Gentry’s original FHE scheme.

1 Introduction

Consider a number of users with secret inputs who wish to compute some function on
those combined inputs. If they are a small group and are online regularly then they can
use multi-party computation (MPC), however in the asynchronous or large group setting
this will not work. A cryptographic election is an obvious realisation of this scenario but
it also covers any computation on highly sensitive data. One solution is for each user to
encrypt her input using FHE, and have some semi-trusted entity perform the computation
and distribute the resulting value to the users. But how can the users verify that the
decryption has been done correctly? What if the FHE scheme used for the computation
does not support a proof of decryption?

Verifiable Decryption

Verifiable decryption is well-known for schemes such as ElGamal. To prove that m is the
decryption of (u, v) = (mhr, gr) in some group with h = ga, one has to prove the relation

loghm
−1u = logg v,
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which can be done with a variant of the standard Schnorr protocol. For soundness, one
must prove that there exists an integer value a such that the formula holds. For LWE-
based cryptosystems it is no longer sufficient to prove that a certain value exists (working
over the integers): it has to be smaller than some threshold. In addition, to hide the a in
the Schnorr proof, the randomness used to mask a is uniformly distributed and used in
such a way as to make all values of a equally likely.

The naïve approach can leak the secret key directly. Recall the DGHV scheme [49]
which does FHE over the integers. The ciphertext is a number pq+ 2r+m, where q is the
key, r is noise and m is the message. If one were to apply a simple Schnorr-like protocol
to the scheme, the verifier has to check that something is a lattice point. However, that
is equivalent to seeing if it is divisible by the secret key q.

More concretely, consider a general LWE cryptosystem [8] (RLWE cryptosystems are
built using the same blueprint). Let q be some modulus. The public key is a matrix A
which contains LWE samples and the private key is some vector ~s such that A~s = 2~e,
where ~e is some small noise. To encrypt a message m, set ~m = (m, 0, . . . , 0), choose
a random vector ~r with small entries (from {−1, 0, 1}), and output ~c = ~m + AT~r. To
decrypt, compute m = [[〈~c,~s〉]q]2. If we follow the pattern from above, a naïve proof of
correct decryption would be to prove that there exists a vector ~s such that

〈~c− ~m,~s〉 is small.

The complication is the condition “is small”, and typically much smaller than the modulus
in the space. One can try to produce a tight proof (with respect to soundness), but
that will leak information about the secret (which did not happen in the Schnorr case, as
discussed above). To safeguard the secret which is smaller than some β, one can instead
prove that it is smaller than τ × β, where τ is large. Then we can achieve honest-verifier
zero-knowledge, but at the expense of a large gap between the statement we want to
prove, and that the verifier is convinced of. One can mitigate the problem using rejection
sampling, but only to a certain extent. To sum up, the naïve approach is inadequate.

This problem is further explained in detail by Baum et al. [4]. Their goal is to provide
a protocol for proving knowledge of plaintext, which is a problem related to verifiable
decryption. They proceed to amortise the cost of the proof across several instances, by
letting the verifier assign the ciphertexts into several buckets, and prove the claim for the
sum of each bucket. Their technique has been subsequently refined [16,18].

Baum, Damgård, Oeschsner and Peikert [5] have demonstrated a multiparty com-
putation protocol for distributed threshold decryption. This can be transformed to an
zero-knowledge protocol by doing “MPC in the head”. However, it is still only efficient
when amortised over multiple ciphertexts. Our goal is to start a line of research that will
lead to efficient one-shot zero-knowledge protocols.

The analog problem – an encryptor wishes to prove that they did in fact encrypt a
certain plaintext to a ciphertext – is relatively well studied. Lyubashevsky and Neven [40]
show how one can avoid amortisation for proving knowledge of plaintext in a single round.
Their technique is dependent on the linearity of encryption, but decryption algorithms are
typically not linear.

Cryptographic Elections

In a cryptographically-verifiable election a central authority collects encrypted ballots
from voters, homomorphically evaluates the election counting circuit and arrives at an
encrypted result. The votes are published on some bulletin board so that voters can
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also perform the election counting circuit evaluation themselves. The authority then
decrypts the ciphertext encrypting the result and appends a proof that the decryption was
indeed done correctly. This process of homomorphic tallying [12] is applicable when the
counting function used in an election can be efficiently evaluated on encrypted ballots. This
approach greatly simplifies public verifiability of a voting system [30], as correctness follows
from the homomorphic properties of the cryptosystem. Note that Gjøsteen-Strand [30]
uses leveled fully homomorphic encryption with a larger plaintext space, but the approach
also works for binary plaintexts. Traditionally, the cryptosystems used in voting have been
additively or multiplicatively homomorphic [36,44] which places significant restrictions on
the kind of counting functions that can be computed. Fully- (or somewhat-) homomorphic
encryption (F/SHE) greatly expands the applicability of homomorphic tallying, such as in
Gjøsteen-Strand [30]. Unfortunately, this greater functionality comes at a cost: verifiable
decryption of the result now becomes an obstacle.

Our Contribution

Gentry’s breakthrough [21] came from achieving fully homomorphic capabilities through
bootstrapping. Bootstrapping is the homomorphic evaluation of the decryption circuit in
order to produce a ciphertext with lower noise. One can formalise this by saying that
bootstrapping is an algorithm that takes a ciphertext encrypted under one instance of
a scheme, into a new instance. These instances can be identical (using the same key,
and requiring a property known as circular security), or they can use different keys. The
only requirement for bootstrapping is that the source instance has a decryption algorithm
(consider the decryption key as hard-coded into the algorithm, such that each instance
has a unique algorithm) that is easy enough for the target instance to evaluate, and still
have space left for further computations.

The common state situation – that the source and target instances are using the
same underlying scheme – is not intrinsic to the bootstrapping idea. One can therefore
generalise it to instances from different cryptosystems. This observation has yielded a
number of recent works focused on providing extremely fast bootstrapping [10, 19]. We
are less interested in how long this bootstrapping procedure takes since we only ever need
to do it once: in this instance to produce the proof of a single decrypted value. In fact,
we wish to bootstrap ciphertexts from comparatively efficient modern FHE schemes to
(slower) schemes with a particular lattice structure that allows for the zero-knowledge
protocol to work.

Assume we are given two homomorphic schemes: one with efficient homomorphic
capabilities, the second suitable for zero-knowledge proofs. If the latter can evaluate
the former’s decryption circuit homomorphically, it follows that we can apply the zero-
knowledge proof to the initial scheme. The challenge is to work out the algorithm that
binds the two schemes together: one must take an efficient circuit for the source scheme,
and formulate in such a way that the target scheme can evaluate it.

As an example of the utility of our main contribution, we provide a one-shot zero-
knowledge protocol for verifiable decryption of FHE ciphertexts. In particular, we show
how to transform a ciphertext of the BGV [8] encryption scheme to one from the Gen-
try [21] scheme. We then give a zero-knowledge proof of decryption for the Gentry scheme,
and combining the two results yield a proof of decryption for BGV. Our main technical
results are illustrated in Fig. 1.
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BGV Gentry Plaintext
Feasibility: Thm. 1

Integrity: Lemma 1

Feasibility: Decryption

Integrity: Thm. 2

Feasibility: Composition

Integrity: Lemma 1 + Thm. 2

Figure 1: How to obtain a proof of decryption on a BGV ciphertext.

Further Work

Our hope is that this idea can be applied to transformations between other FHE schemes
as well. Each such combination requires some precise tailoring, and can have other appli-
cations than the one we present here. For example, switching between from FHE scheme
B to FHE scheme A, where scheme A is suitable for some specific algorithm, while scheme
B is better for general computations.

Additionally, much like the results of decrypting AES homomorphically led to the
development of more FHE-friendly symmetric schemes [2, 31, 41], we believe there is a
potential to develop specialised and efficient FHE schemes for specific applications, such
as simple zero-knowledge proofs. If that scheme is capable of performing the ciphertext
transformation from a different scheme, then such a primitive will exist for all other such
schemes.

To the best of our knowledge, the BGV [8] and original Gentry [21] schemes are the
only ones that work in this context. The reason for this is that the Gentry scheme admits
very simple and efficient zero-knowledge proofs of correct decryption, and other lattice-
based schemes do not or are broken. We use the BGV scheme in the initial phase of our
protocol because it appears to be the most efficient [15]. The question of whether zero-
knowledge proof of correct decryption via ciphertext-switching can be instantiated with
different schemes remains open.

2 Preliminaries

Denote reduction of a modulo b in two ways, either by [a]b for a, b ∈ Z to mean mapping
integers to [− b

2 ,
b
2) or by 〈a〉b to mean mapping to [0, b). Use dac to denote rounding a ∈ R

to the nearest integer. We use · for scalar multiplication and × for any other multiplication
operation. Denote column vectors as lower case bold a and matrices as upper case bold
A. The inner product of two vectors a,b is written 〈a,b〉. We write a $←− S to mean that
a was chosen uniformly at random from the set S and a← D to mean that a was selected
according to the distribution D. An NP relation R is a set (x,w) of pairs of inputs x and
witnesses w, for which deciding if (x,w) ∈ R can be checked in time polynomial in the
length of x.

2.1 Zero-Knowledge Protocols

In a zero-knowledge protocol a prover attempts to prove to a verifier that she knows a
proof that a statement is true – usually a witness for an instance of an NP relation. An
accepting conversation is one for which the verifier outputs accept. Later on we will need
the following two definitions relating to zero-knowledge protocols, and we use the notation
of Damgård [17].
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Definition 1 (Special Soundness). There exists an efficient algorithm A s.t. if (a, c, z)
and (a, c′, z′), with c 6= c′, are accepting conversations for x, then A(∆, x, a, c, z, c′, z′) = w
(where ∆ are the system parameters) such that (x,w) ∈ R, for some binary relation R.

Definition 2 (Special Honest-Verifier Zero Knowledge (S-HVZK)). There exists a poly-
nomial-time simulator S, which on input x and a challenge c, outputs an accepting conver-
sation of the form (a, c, z), with the same probability distribution as conversations between
the honest prover and verifier on input x.

A three-message protocol satisfying completeness and these properties is called a Σ-
protocol.

2.2 Lattices and Ideal lattices

An n-dimensional lattice is a discrete subgroup of Rn. Lattices that form a discrete
subgroup of Zn are called integral lattices, and we mainly focus on these. For a set of
linearly-independent vectors {b1, . . . ,bn} ∈ Zn, the set

L = Λ({bi : 1 ≤ i ≤ n}) =

{ n∑
i=1

xi · bi : xi ∈ Z
}

is a lattice with basis {b1, . . . ,bn}. Lattices are often given by providing the basis in
the form of a matrix B, with basis vectors bi as columns. The rank d of a lattice L is
the dimension of the subspace span(L) ⊆ Zn, and we only consider full-rank (i.e. d = n)
lattices.

A Hermite normal form (HNF) basis for a lattice is a basis such that bi,j = 0 for all
i < j, bj,j for all j and if i > j, then bi,j ∈ [−bj,j/2,+bj,j/2). For any basis B of L one can
compute the HNF(L) efficiently using Gaussian elimination. In some older lattice-based
cryptosystems, the secret key is set as a ‘good’ basis for a lattice where the vectors are
short, and the public key is set to be the HNF of the same lattice.

Let Φ(X) be a monic irreducible polynomial of degree n. We will often use the 2nth

cyclotomic polynomial Φ(X) = Xn + 1 with n = 2k for some k ∈ Z. Define R as the ring
of integer polynomials modulo Φ(X), R = Z[X]/(Φ(X)). Elements of R can be considered
as polynomials or as vectors; since elements of the ring R are polynomials of degree at
most n− 1, they can be associated with coefficient vectors in Zn.

A non-empty subset I ⊂ R is called an ideal of R if I is an additive subgroup of R,
and for all r ∈ R and all x ∈ I, x · r ∈ I. One can define the ideal generated by the set
E ⊂ R as the intersection of all ideals containing E (i.e. the smallest ideal containing E),
which we denote by IE if E contains more than one element. If E = {x} contains a single
element, we denote the ideal generated by it by (x). An ideal I is called principal if it is
generated by a single element x, and then consists of all multiples of x in R. A lattice
is an ideal lattice if it corresponds to an ideal of R. If the ideal lattice corresponds to a
principal element (x) we can represent it using a single element x ∈ R or its coefficient
vector x ∈ Zn. This allows very compact representation of each component of schemes
based on ideal lattices.

2.3 Homomorphic Encryption

A homomorphic encryption scheme E is a public-key encryption scheme with an additional
Eval algorithm that operates on ciphertexts. For the purposes of this paper, we focus on
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schemes that are both additively and multiplicatively homomorphic. We have a security
parameter λ, and the algorithms are as follows.

(pk, sk)← KeyGen(1λ)

c← Enc(pk,m)

c← Eval(pk,F , c1, · · · , cn)

m← Dec(sk, c).

The Eval algorithm takes as input the public key pk, ciphertexts and a (circuit representing
some) function F and must respect a correctness requirement, namely that applying F to
the ciphertexts is equivalent to applying it to the underlying plaintext messages,

Dec(sk,Eval(pk,F , c1, · · · , cn)) = F(m1, · · · ,mn).

We say E is fully homomorphic if it can support arbitrary functions F , and somewhat
homomorphic otherwise.

Since many of the schemes we refer to are very complex but have been detailed ex-
tensively elsewhere, we emphasise only the key points that we are interested in, and refer
the reader to the original papers and the references therein for further details. Halevi [32]
points out that there have been three distinct generations of FHE schemes: i) Gentry’s
scheme and its variants, which require special assumptions in order to bootstrap success-
fully, ii) Brakerski et al.’s work that creates levelled schemes capable of evaluating any fixed
(polynomial) depth, based on standard assumptions and iii) Work beginning with Gentry,
Sahai and Waters [28] that has asymmetric multiplication, allowing small noise growth, at
the cost of not being able to use some of the optimisations available to second-generation
schemes.

2.3.1 Gentry-like Schemes

The three components that we can consider separately are the underlying SHE scheme, the
procedure that ‘squashes’ the decryption circuit and the bootstrapping procedure. The
main trick involved in Gentry’s original method to reduce the degree of the decryption
polynomial is to add to the public key a hint of the secret key: a large set of vectors, of
which a very sparse subset adds up to the secret key (SSSP). An improvement to this step
was given by Stehlé and Steinfeld [48] who showed how to reduce the number of vectors
required. Gentry and Halevi [22] showed a way to do bootstrapping without squashing the
decryption circuit by expressing the decryption function of the SHE scheme as a special
depth-3 arithmetic circuit.

We give a high-level overview of what we refer to as a Gentry encryption. Gentry
and Halevi gave an implementation of the scheme [23] which has a simpler presentation
compared to the original scheme, however it was shown to be insecure [11]. There are
other ‘Gentry-like schemes’ that have ciphertexts which are suitable for our purposes and
have a simpler presentation. By this we mean not only Gentry’s original scheme [21] but
also the variants/implementations by Smart and Vercauteren [46] van Dijk et al. [49] and
others [14, 27]. However, all of these implementations are currently broken and therefore
we will use the original Gentry construction.

The algebraic set-up of the ring R is the same as mentioned above. We have a cy-
clotomic polynomial ring R = Z[X]/(Φ(X)). We also have two ideals I and J that are
coprime in R, i.e. I + J = R. We also have two bases of the ideal J ; one “good" basis,
which plays the role of the secret key, and one “bad" basis, which plays the role of the
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public key. Messages are binary, and we view the plaintext space as embedded into R/I.
To encrypt, sample some error r and output c = 2r+m (mod Bpk), so that the ciphertext
is

c = 2r + b + m,

where b ∈ Bpk, which is the “bad" basis – i.e. public key – of J . Here m is encoded as
the constant polynomial 0 or 1.

To decrypt, use the good basis to identify and remove b (using the modulo operation),
and then the inner noise in the same manner.

2.3.2 Brakerski-Gentry-Vaikuntanathan-like Schemes

We can separately consider another class of FHE schemes that do not use assumptions for
bootstrapping, but instead employ modulus switching [7–9,37]. This class of schemes can
be optimised in a number of ways [3,24–26,33,35,47]. In this work, we choose to focus on
the original BGV scheme [8]. This is because it is currently the most efficient scheme [15],
as well as one of the two FHE schemes widely implemented [34].

Decryption of a BGV ciphertext c carrying m is performed with secret key s by eval-
uating

m← [〈c, s〉]q (mod 2),

where s = (1,−s). For a more detailed description and analysis of this scheme, we refer to
the original presentation [8]. The construction is a levelled scheme and applies modulus
switching at each level. A fresh ciphertext is encrypted at the ‘top’ level, modulo qL. With
each multiplication, we appropriately scale the resulting ciphertext by qi−1/qi to go from
a ciphertext at level qi to one at level qi−1. This reduces the noise growth and allows for
L multiplications. In an implementation, the number of multiplications L we allow for is
specified in the set-up phase.

3 Ciphertext Switching

This section represents our main technical contribution on FHE: an algorithm which trans-
forms a BGV ciphertext into a Gentry one. In Section 4 we will detail how to give a
zero-knowledge proof of decryption for Gentry-style schemes, and in combination with
our ciphertext switching technique this resolves our motivating scenario: use a BGV-type
scheme to efficiently perform computations, then a Gentry-type one for verifiable decryp-
tion. Our approach takes inspiration from Gentry’s original work [21]: bootstrapping is
simply a homomorphic evaluation of the decryption circuit. This is done by adding one
layer of encryption on a ciphertext, then evaluating the decryption circuit, resulting in a
ciphertext with one layer of encryption. The added layer of encryption can be under the
same scheme, or a different one. In the first case, the result of the homomorphic decryption
is a ciphertext in the initial scheme. In the latter case, a ciphertext in the second scheme.
We are interested in the latter case. We will use the bootstrapping procedure in order
to perform a ciphertext-switch between a BGV ciphertext and a Gentry one. We pick
the Gentry and BGV schemes because of their efficient capabilities to perform verifiable
decryption and homomorphic operations, respectively. The idea of ciphertext-switching
is relatively straightforward, and it is easy to imagine a context in which two different
schemes would be used.

The results presented in this section could not be implemented in practice since the
original Gentry construction [21] is not (securely) implementable. Therefore, in this section
we provide a proof of concept that the ciphertext switching procedure can be instantiated.
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We use the notation {m}E to mean that the plaintext message m is encrypted under
the scheme E. In particular, we will write {m}G and {m}BGV to mean that the message
m is encrypted under the Gentry and the BGV scheme, respectively. We assume that all
messages and keys are honestly generated.

Assume we are working in the ringR = Z[X]/(Φ(X)), where Φ(X) is monic irreducible,
taken to be a power of two cyclotomic polynomial. Let deg(Φ) = n and fix this ring for
the remaining of this section. For simplicity, we will assume that s is a binary polynomial
in the ring R. This has an impact on security, and one would need to carefully select s as
described by Albrecht [1].

Before looking at the ciphertext-switching procedure, we need to ensure that it can be
set up. This means that we need to match up the plaintext and ciphertext spaces. Both
spaces have a very simple presentation for the BGV scheme. These are, respectively, Rp
and Rq, where Rp = R/pR, and similarly for Rq. The integers p and q are referred to as
the plaintext and ciphertext moduli, respectively. We can set the plaintext modulus p to
be 2, without loss of generality. The ciphertext modulus q is chosen in accordance with
security requirements [1].

For the Gentry scheme, the plaintext space can also be taken to be binary, so matching
the two schemes is not complicated. Matching the ciphertext spaces is more intricate.
Simplifying greatly, a Gentry ciphertext is an element of the form (c mod J) mod I,
where both I and J are ideals of the ring R. The exact set-up and definition of these
ideals is very complex, and we refer the reader to the original presentation. This simplified
presentation of a ciphertext is of course not enough to give a deep understanding of the
scheme; however it is enough to see that a Gentry ciphertext lies in the intersection of
ideals I ∩ J , which we will call K. Therefore, to ensure that the ciphertext spaces match,
we will require that Rq ⊆ K.

In order to perform the ciphertext-switching procedure, we encrypt each of the coef-
ficients si of s under the Gentry scheme. This is performed by sampling errors ri and bi
and outputting

ai = 2 · ri + bi + si.

As mentioned previously, many bootstrapping procedures make use of another homomor-
phic scheme. Typically, this is a GSW or LWE encryption scheme [10, 19]. The method
is then: bootstrap a ciphertext with a GSW or LWE-encrypted secret key, which gives a
GSW or LWE-encrypted message, according to which scheme was used in the procedure.
The bootstrapping operation is then achieved by extracting the encryption of the message
in the desired form. Since we will not want to recover a ciphertext in BGV form, this
allows us to dispense of the last operation. Thus, our method becomes: encrypt the BGV
secret key under the Gentry scheme, and decrypt homomorphically.

The procedure is as follows: we start with a BGV ciphertext c = (c0, c1) ∈ R2 under
a secret key s. We ignore the issues of modulus or key switching, and also note that there
is an implicit mod Φ(X) performed with each homomorphic operation. The BGV secret
key will have the form

s(X) =

n−1∑
i=0

si ·Xi,

where each si ∈ {0, 1}. The first step is to encrypt each si in the Gentry scheme. Each
{si}G is an n-vector. We form a GSW-type matrix of all the encryptions {si}G:

S = ({si}G)i∈{0···n−1}.
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For a more detailed analysis of this technique, see for example Alperin-Sheriff and Peik-
ert [3]. Recall that the ciphertext c = (c0, c1) consists of two polynomials of degree (at
most) n− 1. Write them in their coefficient vector representation and evaluate

c0 − c1 · S.

Recall that bootstrapping is the process of homomorphically evaluating the decryption
circuit. Thus, evaluating the BGV decryption circuit on a BGV ciphertext with a Gentry-
encrypted secret key results in a Gentry-encrypted ciphertext. We have the following
theorem.

Theorem 1. Ciphertext-switching a BGV ciphertext c under its Gentry-encrypted secret
key {s}G results in a Gentry-encrypted ciphertext.

Proof. We will assume that we have set up our schemes in a correct manner, i.e. that the
plaintext/ ciphertext spaces match up, as explained earlier in this section. Suppose we
have an encryption scheme E which is linearly homomorphic, i.e. the following is true

b− a · E(s) = E(b− a · s).

This is trivially true of most homomorphic schemes in the literature, including the Gentry
scheme, and the proof relies on this fact. This is true of any encryption scheme E which
supports affine transformations.

Indeed, the decryption circuit of BGV is

m← [〈c, s〉]q (mod 2),

where by abuse of notation 〈c, s〉 = c0 − c1 · s, for a ciphertext c = (c0, c1). Now if the
scheme E does indeed support affine transformations, we have that

c0 − c1 · {s}G = {c0 − c1 · s}G.

More precisely, writing each row i in S as 2 · ri + bi + si, in evaluating the above we
get the following. Notice we now switch to vector coefficient notation, writing ci for the
polynomial ci.

c0 − c1 · {s}G =
∑
i

c0,i − c1,1 · (2 · ri + bi + si)

=
∑
i

(c0,i − c1,1 · si) + (2 · ri + bi)

= c0 − c1 · s + 2 · r + b

= m+ k · q + 2 · r + b

= {m}G (mod q).

Providing a complete noise analysis here would require the introduction of all the formalism
from Gentry’s scheme, which is beyond our scope. Instead, we notice that our resulting
Gentry ciphertext is the sum of n such ciphertexts, and we refer to the original construction
for a thorough analysis.
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3.1 Switching Integrity

Returning to the election example, assume that the election authority has prepared for
some likely, but unfavourable, outcomes. Resourcefully, they alter the transformation key
{s}G during key generation to encrypt a different key, which will transform the correct
result into one they prefer, which they can then prove the correct decryption of.

Multiparty computation can be used for key generation in answer to this problem.
However, there is a simpler method to check the validity of the transformation key. We give
the result in its full generality, only assuming linearity of decryption and that cancellation
holds in the plaintext space.

In the following lemma, the reader might find it helpful to think of sk as the “real”
decryption key, and sk′ as a key the dishonest decryptor has found to change the output
favourably.

Lemma 1. Let C and P denote the ciphertext and plaintext spaces, and let Decsk,Decsk′ :
C → P be functions indexed by two different keys. Assume that the adversary wants to
target messages in a set A ⊂ C, such that for all c ∈ A we have Decsk(c) 6= Decsk′(c).
Assuming the decryption algorithm is additively homomorphic and that cancellation works
in the plaintext space, then for ciphertexts outside of A, Decsk and Decsk′ will also differ.

Proof. We use a contrapositive argument. Assume that c1 ∈ A and c2 /∈ A. Then there are
two cases for c1 + c2, either in or not in A. We assume the latter, the former is analogous.
There are some corner cases for FHE ciphertext spaces where the linearity does not hold,
but then, for the sake of the argument one can just select different values.

Assume that decryption under sk′ agrees with sk for all values outside A. It follows
that

Decsk(c1 + c2) = Decsk′(c1 + c2) = Decsk′(c1) + Decsk′(c2)

= Decsk′(c1) + Decsk(c2).

By linearity and cancellation, we must have Decsk′(c1) = Decsk(c1). Hence, Dec′sk cannot
modify any value in A without also modifying all values outside A.

Verification Protocol: To verify that the secret key is correct, one only needs to verify
the decryption of a single non-zero plaintext. Let ES be the source scheme and ET be the
target scheme.

1. The challenger sends a tuple (m, {m}ES
) to the decryptor.

2. Both parties agree on a representation of {m}ET
using the public transformation

algorithm.

3. The decryptor proves the correctness of the decryption {m}ET
−m = 0.

4. The challenger verifies the proof.

Note that this protocol can be carried out independently (and possibly long before) the
zero-knowledge protocol that we describe in the next section.
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4 One-Shot Verifiable Decryption

As we discussed in the introduction, there are no generic and efficient zero-knowledge
proofs for correct decryption of an FHE ciphertext. Currently, the most promising ap-
proach is based on MPC, and is only efficient when the computational cost is amortised
over a large number of instances [6]. In this section we detail a zero-knowledge proof for
decryption of Gentry ciphertexts, and thus when combined with the ciphertext switch-
ing procedure discussed in the previous chapter we can transform a ciphertext from any
scheme with a sufficiently simple decryption circuit to a “proof-friendly” scheme.

4.1 The Zero-Knowledge Proof

Let ĉ be a ciphertext encrypted under a scheme whose decryption circuit is sufficiently
simple for Gentry, and let c be the corresponding ciphertext under Gentry. Recall that c
can be written as c = 2r + b + m, where b represents a lattice point and r is some noise
vector. As long as r is inside some set D, the ciphertext is decryptable. Letting the prover
have access to the decryption key, we get a simple Schnorr-like Σ-protocol to prove that
m = 0. Notice that the decryption algorithm can be modified to output both the message
and the noise vector.

The generic protocol, between a prover P and a verifier V, is as follows.

P1 Choose an encryption c′ = b′+ r′ of zero such that the noise r′ can hide r, and send
c′ to the verifier.

V1 Select e $←− {0, 1} and send e to the prover.

P2 If e = 0, set d = b′, or if e = 1, set d = b + b′. Transmit d.

V2 Verify that d is a lattice point, and check that the noise ec + c′ − d is well-formed
and sufficiently small.

We use rejection sampling [38,39] to improve the parameters of our proposal. Rejection
sampling is useful in a scenario where one has a distribution D, but lacks a good way of
sampling from it. Instead, one can sample from a larger distribution E ⊃ D, and simply
reject any value not in D. The usefulness becomes apparent when the sampling takes part
over several rounds in a protocol. Typically, a value outside D will leak information, but
only after combining everything in the final step can one decide whether it will be out of
bounds, so we avoid this problem.

We can generalise the protocol to a larger e, which will result in an arbitrarily good
soundness bound (but may require increased parameters for the Gentry scheme). To
instantiate the above idea specifically for the Gentry scheme, all that remains is to add
the following lines to the respective steps:

P2 If er + r′ is outside the set D, reject.

V2 Verify that d is a lattice point: check that (Bpk
J )−1d is an integer vector. Verify

that ec + c′ − d is within bounds and the correct randomness to generate d in the
encryption algorithm.

Notice that ec+c′−d = 2er+ r′, which is the combined randomness used to generate
the ciphertexts c and c′, so d is the lattice part of ec + c′.

The modification of step P2 is an application of rejection sampling. The probability
of the prover rejecting depends on the parameters: a large set D (possibly exponentially
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large) requires larger parameters, whereas a small set will result in more rejections. We
leave the choice of concrete parameters for specific applications.

Remark 1. When creating a Schnorr-like zero-knowledge proof for modern LWE-based
schemes, one usually has to prove that they can extract a value through rewinding and
this value will be small, like we have discussed earlier. However, the extraction equation
normally requires that one divides by the difference of the challenges. If that is different
from ±1 then there is no longer a guarantee that the extracted value is small, so one is
prevented from using a large challenge space. Alternatively, one can use some values out-
side ±1, with the consequence that one can only make a guarantee for a bound larger than
that one is interested in. The difference may be acceptable, and is called the “soundness
slack” [4]. Here, we do not need to reconstruct short vectors. We are not limited by the
size of the challenge space, and so the main advantage of the above protocol is the lack of
soundness slack.

Theorem 2. The above protocol is complete and achieves special soundness and special
honest-verifier zero knowledge.

Proof. To verify completeness, notice that (Bpk
J )−1(b′)+eb will be an integer vector since

b′ and b are lattice points. Next, we have ec + c′ − d = 2er + r′, which is exactly the
values used to generate the lattice points.

For special soundness, assume we have gathered challenges e0 and e1 such that e0− e1
is invertible in R, and that the prover has responded successfully with d0 and d1. Then
compute (e0 − e1)−1(d0 − d1) to get b and extract the message as c− b (mod 2).

Depending on the ring R, e0− e1 may not always be invertible. If so, let φ denote the
probability that an arbitrary element is a unit. After rewinding, e0 − e1 is invertible with
probability φ. After rewinding k − 1 times, the probability that no ei − ej is invertible is
just (1− φ)(

k
2), which quickly becomes negligible.

Next we prove special honest-verifier zero knowledge. Note that the transcript of a
correct protocol run is {c′, e,d}, where the ciphertext is a fresh random encryption of
0, e is a uniformly random value from some finite set and d is distributed based on the
distribution on r in the encryption algorithm. The simulator is initiated with an e, then
proceeds to select a random noise vector and computes the corresponding lattice point d.
Then c′ is given by ec+c′−d = r c′, which guarantees that the verification step is satisfied.
The distribution of the simulated transcript essentially only depends on the distribution
of the randomness r as a function of e, so the simulator can choose it accordingly.

In the protocol we took advantage of the lattice structure of Gentry’s cryptosystem to
create an elegant proof – structure that is not available in more efficient schemes such as
BGV. The challenge in providing a compact ZK proof of decryption for other schemes (not
just BGV) remains but we believe this will be a fruitful direction given that one can design
a proof-friendly FHE scheme that is only geared towards a single circuit: the decryption of
ciphertexts under a different scheme. Looking at the greater picture, verifiable decryption
need not be the only application of the generalised bootstrapping idea.
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