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Abstract

Authentication and integrity are fundamental security services that are critical for any viable
system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive,
and therefore their safe and reliable operation requires delay-aware authentication mechanisms.
Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy compu-
tations or lack scalability for such large and distributed systems. Hence, there is a crucial need for
digital signature schemes that can satisfy the requirements of delay-aware applications.

In this paper, we propose a new digital signature scheme that we refer to as Compact Energy and
Delay-aware Authentication (CEDA). InCEDA, signature generation and veri�cation only require
a small-constant number of multiplications and Pseudo Random Function (PRF) calls. Therefore,
it achieves the lowest end-to-end delay among its counterparts. Our implementation results on
an ARM processor and commodity hardware show that CEDA has the most e�cient signature
generation on both platforms, while o�ering a fast signature veri�cation. Among its delay-aware
counterparts, CEDA has smaller private key with a constant-size signature. All these advantages
are achieved with the cost of a larger public key. This is a highly favorable trade-o� for applications
wherein the veri�er is not memory-limited. We open-sourced our implementation of CEDA to
enable its broad testing and adaptation.

Keywords: Applied cryptography, delay-aware authentication, real-time networks, digital signa-
tures.

1 Introduction

Broadcast authentication is an essential security service for various important systems, where the au-
thenticity of messages should be veri�ed by multiple receivers. However, broadcast authentication
is a challenging problem for large and distributed systems (e.g. smart grids, vehicular networks, IoT
systems), especially if the system has real-time authentication requirements [1]. For instance, as men-
tioned in relevant vehicular network standards (e.g., [2, 3]), a single car might broadcast a very large
number of messages (e.g., up to 500-1000 messages) per second, where all these messages should be
veri�ed by other vehicles/devices in the vicinity. Such messages may include directives for sudden
brakes/turns, which require the timely reaction of the receiving parties. This also brings scalability
problems since a vehicular network might be composed of a large number of components (e.g., vehi-
cles, infrastructure, devices). Similarly, in power grid/smart grid systems, some critical command and
control messages must be veri�ed by a large number of peripheral devices [4, 5] in real-time. Besides
such real-time applications, an e�cient authentication mechanism is also greatly needed by recently
emerging IoT applications that involve resource-limited devices (e.g., small aerial drones).
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Table 1: Experimental Performance Comparison of CEDA and its Counterparts on ARM Cortex A53

Scheme Signer Transmission Veri�er End-to-EndSignature
Generation (µs)

Private Key
(Byte)

Signature
Size (Byte)

Signature
Veri�cation (µs)

Public Key
(Byte) Delay (µs)

RSA 237.15 768 416 1.33 384 238.48
ECDSA 9.33 32 64 12.10 32 21.43

BPV-ECDSA 1.75 10272 64 12.10 32 13.85
Ed25519 2.25 32 64 6.79 32 9.04

SCRA-C-RSA 2.72 2000000 432 4.42 384 7.14
CEDA 1.59 416 416 2.98 393600 4.57

1.1 Problem Statement

The current state-of-the-art authentication mechanisms might not be able to fully meet the demands
of large and distributed time-critical applications (e.g., smart-grid, vehicular/drone networks). That
is, Message Authentication Codes (MACs) are highly e�cient but they lack the necessary scalability
for large and distributed systems as well as public veri�ability and non-repudiation properties. Digital
signature schemes rely on public key infrastructures, and therefore can enable scalable authentication
for large-distributed systems. However, unlike MACs, they generally require highly expensive oper-
ations at the signer and/or veri�er side. For instance, standard signatures (e.g., RSA [6], ECDSA [7])
require expensive operations such as exponentiation or elliptic curve scalar multiplications, which have
been shown to be highly costly for some delay-aware applications (e.g., smart-grid [8, 9, 10], vehicular
networks [11, 12, 3, 2]).

Delay-aware signatures such as SCRA [13] and RA [10] were proposed, however both of these
schemes incur very large private keys due to the pre-computation tables at the signer’s side. More-
over, RA requires messages to have speci�c prede�ned structures, which might not be the case for
various real-life applications. One-time signatures [14] and some of their variants (e.g., [9, 15]) o�er
very fast signature generation and veri�cation, however they have very large signature sizes. More-
over, the private-public key pair must be continuously renewed, whose overhead may not be practical
for certain applications. Signature schemes that incur linear token/key storage (e.g. online/o�ine sig-
natures [16]) are also not suitable for applications with memory-limited devices. E�cient signature
generation and veri�cation can be achieved by delayed key disclosure methods [17] and amortized
signatures [18]. However, these methods rely on packet bu�ering, and therefore, highly intolerant to
packet losses. Moreover, they lack the immediate veri�cation critically required by delay-aware ap-
plications. In Section 2, we provide a detailed overview of the related works that are most relevant to
ours.

There is a signi�cant need for a compact and light-weight digital signature scheme that can achieve
high-speed signature generation and veri�cation for time-critical systems.

1.2 Our Contributions

In this paper, we developed a new real-time digital signature scheme that we refer to as Compact En-
ergy and Delay-aware Authentication (CEDA). We summarize the desirable properties of CEDA as
follows (Table 1 demonstrates the experimental comparison between CEDA and its counterparts on
ARM Cortex A53).

2



• Fast Signing: The signature generation of CEDA does not require any expensive operation such
as exponentiation over large integers or elliptic curve scalar multiplication. More speci�cally,
the signing algorithm in CEDA only requires an exponentiation over a small modulus and cryp-
tographic hash function calls that makes it the fastest among its counterparts. For instance, as
shown in Tables 1 and 4, CEDA can generate up to 18,070 and 628 signatures per second on a
commodity hardware and IoT device, respectively.

• Low End-to-end Delay: CEDA enjoys from the fastest signing algorithm and the second fastest
veri�cation algorithm among its counterparts. That is, the veri�cation only requires an exponen-
tiation over a small modulus and a few multiplications. More speci�cally, as shown in Table 1,
CEDA is 1.56× faster than its most e�cient counterpart (SCRA in [13]) and 4.69× faster than
ECDSA, in terms of end-to-end delay.

• Eliminate the Pre-computation Components from Signer: Some applications (e.g. IoT, smart-grids)
may require memory-limited devices to issue signatures. Unlike some existing alternatives (e.g.,
[19, 13, 10, 20, 21, 16]), CEDA does not require any pre-computation table or tokens to be stored
at signer’s side. For instance, SCRA-C-RSA [13] and ECDSA with precomputation [19] require
storing a private key of size 2 MB and 10 KB on the signer’s side, respectively. CEDA has a
constant private key of size 416 Byte that is smaller than traditional RSA signature [6] and a
signature size identical to the traditional RSA (see Table 1).

• Immediate Veri�cation: Unlike some broadcast authentication mechanisms (e.g. [17]), CEDA can
achieve immediate veri�cation without the need of packet bu�ering or time synchronization.

• Limitation: The main limitation of CEDA is its large public key size (e.g., 393 KB for κ = 128-bit
security) compared to its alternatives. However, in many delay-aware applications (e.g., aerial drones,
vehicular networks, smart-grid), the verifying devices (e.g., cars, UAVs, command centers) are poten-
tially more than capable of storing such public keys. Therefore, by providing the lowest end-to-end
cryptographic delay with small private key sizes, CEDA is expected to o�er an ideal choice for time-
critical networks, in which a very high-speed authentication is a crucial requirement to ensure a safe
and reliable operation.

2 Related Work

In this section, we provide an overview of e�cient digital signature schemes and authentication mech-
anisms that are most relevant to our work.

Standard Digital Signatures: Standard signatures (e.g., RSA [6], ECDSA [7]) require expensive opera-
tions, such as exponentiation over a large modulus, and elliptic curve scalar multiplication. Hence, they
are not suitable for resource-limited devices and time-critical applications. Improvement via special el-
liptic curves [22] and/or pre-computation techniques [19] are possible. However, such improvements
may not fully meet the demands of highly time-critical applications (see Section 6 for detailed analysis).

Delay-AwareDigital Signatures: Real-time signatures, specially designed for smart grids and vehicu-
lar networks were proposed in [13, 10]. Such schemes provide fast signature generation and veri�cation
to meet the requirements of time-critical networks. However, RA [10] relies on a pre-de�ned structure
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of messages, which may not be applicable for many real-life scenarios. Moreover, both of these sig-
nature schemes require large private key sizes (up to 2MB [13]), that may not be feasible for many
resource-limited signers.

One-time Signatures (OTS) and Their Extensions: Hash-based signatures achieve post-quantum
security [23]. Earlier one-time hash-based signatures (e.g., HORS [14]) o�er fast signing and veri�cation
but have very large signature sizes (e.g., 2-5 KB). Moreover, a private/public key pair can only be used
once and therefore, must be renewed frequently. This continuous renewal requires the distribution of
new public keys and may be impractical for real-life applications where each new public key should
be signed by a certi�cate authority and veri�ed by the veri�er. Di�erent performance and security
trade-o�s, such as low storage with very high computational cost [15] and time valid OTS such as TV-
HORS [9], have been o�ered based on HORS. Despite their bene�ts, time-valid approaches su�er from
performance and security penalties due to time-synchronization requirements and low tolerance for
packet loss. Moreover, the use of low-security parameters might not be ideal for some security-critical
delay-aware applications even with potential time constraints. Multiple-time hash-based signatures
(e.g., [24]) rely on Merkle-trees [25] with a signer state [26] to be able to sign several messages. Recently,
stateless signatures (e.g., SPHINCS [23]) have been proposed. However, these schemes have extremely
large signatures (up to 41 KB) and expensive sign algorithms for low-end devices [27].

Online/O�line Signatures: Online/o�ine signatures (e.g. [21, 16, 28]) pre-compute a token for each
message to be signed at the o�ine phase, and then use it to compute a signature on a message e�ciently
at the online phase. However, these schemes can use a private/public key pair only once, and therefore
introduce a linear public key size. Hence, all such online/o�ine signatures incur linear storage with
respect to the number of messages to be signed, which might not be practical for resource-limited
devices. Moreover, the tokens must be renewed continuously as depleted, which introduces further
computational overhead. Therefore, they may not be practical for real-time networks or IoT devices as
considered in this work.

DelayedKeyDisclosure andAmortized Signatures: Delayed key disclosure methods [17] introduce
an asymmetry between the signer and the veri�er via a time factor, and therefore can achieve highly
e�cient signing and veri�cation via only Message Authentication Codes. However, they require time
synchronization among entities, packet bu�ering, and introduce potential packet loss risks. Therefore,
such schemes cannot provide immediate veri�cation, which is a critical requirement for real-time net-
works. Similarly, achieving time synchronization for a large distributed system might be di�cult. In
signature amortization techniques (e.g., [18]), the signer generates a signature over a set of messages
to reduce the cost. However, this also requires packet bu�ering and introduces potential packet loss
risks. Moreover, amortized signatures require all related messages in a single set to be received until a
message could be veri�ed, and therefore they lack immediate veri�cation.

3 Preliminaries

We �rst outline the notation in Table 2 and then describe our building blocks.

De�nition 1. A digital signature scheme is a tuple of three algorithms SGN = (Kg,Sig,Ver)
de�ned as follows.

– (sk ,PK )← SGN.Kg(1κ): On the input of the security parameter κ, this algorithm outputs the
public/private key pair (sk ,PK ).
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Table 2: Notation followed to describe schemes.

(t, k) HORS parameters (k out of t)
κ Security parameter
N RSA modulus
p, q large primes
d RSA large exponent
e RSA small exponent
z CEDA private key
si Random components generated deterministically by z
Vi CEDA public key
r One-time randomness
c Counter

PRF Pseudo Random Function
PRF1

¶ PRF1 : {0, 1}∗ → {0, 1}κ
PRF2

¶ PRF2 : {0, 1}∗ → {0, 1}κ
H Cryptographic hash function
H1 H1 : {0, 1}∗ → {0, 1}l1 where l1 = 2 · κ
H2 H2 : {0, 1}∗ → {0, 1}l2 where l2 = k · log2 t

¶ PRF1 and PRF2 are two di�erent PRF instantiations with the
same domain.

– σ ← SGN.Sig(m, sk): Given a message to be signed m and the private key of the signer, this
algorithm outputs the signature σ.

– {0, 1} ← SGN.Ver(m,σ,PK ): Given a message-signature pair to be veri�ed (m,σ), and the
public key of the signer, this algorithm outputs a bit that indicates if the signature is veri�ed (1)
or not (0).

De�nition 2. Existential Unforgeability under Chosen Message Attack (EU-CMA) experimentExptEU−CMA
SGN

is de�ned as follows.

– (sk ,PK )← SGN.Kg(1κ)

– (m∗, σ∗)← ASGN.Sig(·)(PK )

– If 1 ← SGN.Ver(m∗, σ∗,PK ) and m∗ was not queried to SGN.Sig(·), return 1, else, return
0.

The EMU-CMA advantage of A is de�ned as AdvEU-CMA
SGN = Pr[ExptEU−CMA

SGN = 1].

Given a one-way function f , HORS signature scheme is de�ned in the following de�nition.

De�nition 3. HORS signature scheme consists of three algorithms HORS = (Kg,Sig,Ver) de�ned
as follow.

– (sk ,PK ) ← HORS.Kg(l, k, t): On the input of parameters l, k and t, this algorithm generates
t random l-bit strings (s1, s2 . . . , st), computes vi = f(si) for 1 ≤ i ≤ t and outputs sk =
(s1, s2 . . . , st) and PK = (v1, v2 . . . , vt).
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– σ ← HORS.Sig(m, sk): Given a message m to be signed, this algorithm computes h = H(m)
and splits h into k substrings (h1, h2, . . . , hk), each of length log2 t. The substrings are inter-
preted as integers ij for 1 ≤ j ≤ k and used to generate a signature as σ = (si1 , si2 , . . . , sik).

– {0, 1} ← HORS.Ver(m,σ,PK ): Given a message-signature pair (m,σ = (s
i
′
1
, s
′
i2
, . . . , s

′
ik

)),
this algorithm computes h = H(m) and splits h into k substrings (h1, h2, . . . , hk). The sub-
strings are interpreted as integers ij for 1 ≤ j ≤ k. Returns 1 if for each j, f(s

′
j) = vij and

returns 0 otherwise.

De�nition 4. A trapdoor permutation function family is a tuple of algorithmsπ = (Gen,Eval,Invert)
as follows.

– (i, td) ← π.Gen(1κ): Given the security parameter κ, this algorithm outputs a pair (i, td),
where i is the index of a particular permutation πi de�ned over some domain Di, and td is the
trapdoor that allows for the inversion of πi.

– y ← π.Eval(i, x): Given an index i and x ∈ Di, this algorithm outputs an element y ∈ Di.
More speci�cally, for all i output by Gen, the function Eval(i, ·) : Di → Di is a permutation.

– x← π.Invert(td, y): Given a trapdoor td and y, this algorithm outputs the element x ∈ Di.

The correctness of a trapdoor permutation family requires that for all κ, all (i, td) output by Gen,
and all x ∈ Di, we have x← Invert(td, y).

De�nition 5. A RSA permutation function is de�ned as a tupleRSA = (GenRSA,EvalRSA,InvertRSA)
as below.

– 〈(N, e), (N, d)〉 ← GenRSA(1κ): Given the security parameter κ, it chooses two large primes p
and q and forms their product N ← p · q. It then computes φ(N)← (p− 1) · (q − 1), chooses e
that is relatively prime to φ(N) and computes d where e · d ≡ 1 mod φ(N). It outputs (N, e)
as the index i, and (N, d) as the trapdoor td. The domain DN,e is Z∗N .

– y ← EvalRSA((N, e), x): Given the index (N, e) and a random element x ∈ Z∗N , this algorithm
computes and outputs y ← xe mod N .

– x← InvertRSA((N, d), y): Given (N, d) and an element y, it computes the inversion as x←
yd mod N .

De�nition 6. Inverting the RSA permutation function de�ned in De�nition 5 without having the
knowledge of the trapdoor information td is known to be a hard problem [29]. Given, a public key (N, e)
andx ∈ Zq the advantage of the adversaryA is de�ned asAdvRSA = Pr[y ← EvalRSA((N, e), x);x←
A(κ,N,e)(y)] < ε.

• Security and System Model: The standard security notion that captures our threat model is EU-
CMA as in De�nition 2

Our system model is based on Public Key Cryptography broadcast authentication model which
includes two types of entities (i.e., the signer and the veri�er). As depicted in Figure 1, we assume that
a key generation server, uploads the private key to the signer (o�ine) and responds to the public key
queries by the veri�ers in the system.
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Figure 1: High-level description of CEDA algorithms

4 Proposed Scheme

The idea behind the proposed scheme is to leverage the multiplicative property of RSA trapdoor per-
mutation function (De�nition 5) to transform one-time HORS [14] signatures into an (practically)
unbounded time signature. Speci�cally, our private key consists of t randomly generated values si
(that can be deterministically generated with a seed) and the corresponding public key consists of all
Vi ← (EvalRSA((N, e), si))

−1 mod N where i ∈ {0, . . . , t}. To sign a message, we compute γ by
combining a subset of k selected one-time signature components (i.e., si’s whose indexes (i1, . . . , ik)
are obtained from the message hash output, as in HORS) along with a one-time randomness r to prevent
their disclosure. Recall that the release of the private key components with each signature is the main
reason that HORS is a one-time signature. We then compute R ← EvalRSA((N, e), r) and set the
CEDA signature as σ = (R, γ). Upon receiving the signature, the veri�er �rst multiplies the subset of
corresponding public keys from PK and calculates Γ. The veri�er checksR = EvalRSA((N, e), γ) ·Γ,
and returns valid (1) if it holds; otherwise returns invalid (0).

Our scheme consists of the following algorithms.
(sk ,PK )← CEDA.Kg(1κ): Given the security parameter κ, this algorithm works as follows:

1. Select HORS parameters (t, k) as in De�nition 3 and run 〈(N, e), (N, d)〉 ← GenRSA(1κ) to set
sk ′ = (N, d) and PK ′ = (N, e) as in De�nition 5.

2. Pick z $← {0, 1}κ and compute si ← PRF1(z||i) for i = 1, . . . , t.

3. Generate the public keys Vi ← EvalRSA(PK ′, si) for i = 1, . . . , t and set a counter c← 0.

4. Compute the modular inverse of the public keys Vi = V −1i mod N for i = 1, . . . , t.

5. Output the public and private key pair 〈PK = (V1, . . . , Vt), sk = z〉 and the public parameters
params = (PK ′, t, k).

σ ← CEDA.Sig(m, sk): Given a message m ∈ {0, 1}∗ to be signed, this algorithm works as follows.

1. Generate r ← PRF2(z||c) and R← EvalRSA(PK ′, r) and increment the counter c← c+ 1.
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2. Compute h← H1(R) and (i1, . . . , ik)← H2(m||h) where {ij}kj=1 ∈ [1, t] and |ij | = log2 t.

3. Generate sij ← PRF1(z||ij) for j = 1, . . . , k and compute γ = (
∏k
j=1 sij )·r mod N to output

the signature as σ = (γ, h).

{0, 1} ← CEDA.Ver(m,σ,PK ): Given a message-signature pair 〈m,σ = (γ, h)〉 andPK = (V1, . . . , Vt),
this algorithm works as follows.

1. Compute (i1, . . . , ik)← H2(m||h) where {ij}kj=1 ∈ [1, k] and |ij | = log2 t.

2. Compute Γ←
∏k
j=1 Vij mod N and β = EvalRSA(PK ′, γ) · Γ mod N .

3. If H1(β) = h holds, output 1 and 0 otherwise.

5 Security Analysis

In the random oracle model [30], we prove that CEDA is EU-CMA in Theorem 1. In our proof, we
ignore terms that are negligible in terms of our security parameters.

Theorem 1. If an adversaryA can break the EU-CMA security of our scheme in time tA after making
qH hash queries and qS signature queries, we can build another algorithmB that runsA as a subroutine
and upon outputting a successful forgery by A, B can invert the RSA trapdoor one-way permutation
function as in De�nition 6 in time tB.

AdvEU -CMA
EDA (tA, qH , qS) ≤ AdvRSA(tB, qH , qS)

Proof: Let (N, e) be the output of GenRSA(1κ) as de�ned in De�nition 5 and Y = EvalRSA((N, e), x)
be the target challenge value for the algorithm B on a random input x ∈ Z∗N . B takes Y as input and
runs as follows.

Algorithm B(Y ):
• Setup: B maintains a list LM, and two tables HL1 and HL2 that are all initially empty. LM stores
messages M that are queried to CEDA.Sig oracle by A. HL1 and HL2 store the queries (and re-
sponses) to hash functions H1 and H2, respectively. B sets up RO(.) and the simulated public keys to
initialize CEDA.Sig oracle as follows.

- Setup RO(.) Oracle: B implements a function H -Sim to handle RO(.) queries to random oracles
H1 and H2. That is, the cryptographic hash functions H1 and H2 are modeled as random oracles via
H -Sim as follows.

1) h1 ← H -Sim(R,HL1): IfR ∈ HL1 thenH -Sim returns the corresponding valueh1 ← HL1(R).
Otherwise, it returns h1

$← {0, 1}l1 as the answer, and inserts (R, h1) intoHL1.
2) h2 ← H -Sim(M‖h1,HL2): If (M‖h1) ∈ HL2 then H -Sim returns the corresponding value
h2 ← HL2(M‖h1). Otherwise, it returns h2

$← {0, 1}l2 as the answer, inserts (M‖h1, h2) into
HL2.

- Setup CEDA.Sig Oracle: B selects parameters (t, k) as in CEDA.Kg Step 1, and creates the simu-
lated CEDA public key as follows.
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1) B generates index j′ $← [1, t] and sets the challenge public key as Vj′ ← Y .

2) B generates {si
$← {0, 1}µN}ti=1,i 6=j′ and {Vi ← EvalRSA((N, e), si)}ti=1,i 6=j′ .

3) B sets z $← {0, 1}κ and counter c← 0.
4) Set sk ← {si}ti=1,i 6=j′ , PK ← (V1, . . . , Vt) and public parameters params ← (t, k,N, e, c).

• Execute (M∗, σ∗)← ARO(.),CEDA.Sigsk (·)(PK ): B handles A ’s queries as follows:

- Queries of A : A can query RO(.) and CEDA.Sig(·) oracles on any message of its choice up to qH
and qS times, respectively.

1) Handle RO(.) queries: A ’s queries on H1 and H2 are handled by H -Sim function as described
above.

2) Handle CEDA.Sig queries: To answer A ’s signature queries CEDA.Sig(·) on any message of
its choice M , B inserts M into LM and continues as follows.

i) Pick r ∈ Z∗N and compute R′ ← EvalRSA((N, e),
r).

ii) ij
$← [1, . . . , t], j = 1, . . . , k.

iii) R← R′ ·
∏k
j=1 V

−1
ij

mod N .

iv) h $← {0, 1}l1 and insert (R, h) inHL1.
v) If (H(M ||h)) ∈ HL2,B aborts. We call this event BAD1. Else, it inserts (H(M‖h), 〈i1 . . . , ik〉)

inHL2.
vi) Set σ = (γ, h) where γ = r, and return σ to A.

- Forgery of A : Finally, A outputs a forgery for PK as (M∗, σ∗), where σ∗ = (γ∗, h∗). By De�nition
2, A wins the EU -CMA experiment for CEDA if the below conditions hold.

i) CEDA.Ver(M∗, σ∗,PK ) = 1

ii) M∗ /∈ LM

• B’s Attempt to Invert RSA Trapdoor Permutation: If A fails in the EU -CMA experiment for CEDA,
B also fails in inverting the RSA trapdoor permutation function as in De�nition 5, and therefore,
B aborts and returns 0.

Otherwise, if A outputs a successful forgery (M∗, σ∗), by behaving similar to FA(x), as in [31,
Lemma 1], B can rewind A to get a second forgery (M∗, σ̃ = 〈γ̃, h̃〉) where γ∗ 6= γ̃ and h∗ = h̃ with
an overwhelming probability. Given CEDA forgeries (M∗, σ∗ = 〈γ∗, h∗〉) and (M∗, σ̃ = 〈γ̃, h̃〉) on
PK where (M∗||h∗) = (M∗||h̃), based on [31, Lemma 1], we know that H(M∗‖h∗) 6= H(M∗‖h̃).
Then B can attempt to break RSA trapdoor permutation function if either of the following conditions
holds.

- If (M∗‖h∗ ∈ HL2) and (j′ ∈ (i∗1 . . . , i
∗
k)) then (j′ /∈ (̃i1 . . . , ĩk)), where (i∗1 . . . , i

∗
k)← HL2(M∗‖h∗)

and (̃i1 . . . , ĩk)← HL2(M∗‖h̃). We recall this event as GOOD1.

- If (M∗‖h∗ ∈ HL2) and (j′ /∈ (i∗1 . . . , i
∗
k)) then (j′ ∈ (̃i1 . . . , ĩk)), where (i∗1 . . . , i

∗
k)← HL2(M∗‖h∗)

and (̃i1 . . . , ĩk)← HL2(M∗‖h̃). We recall this event as GOOD2.
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In a case that none of the above conditions holds, B aborts and fails to break RSA, otherwise, it
works as follows.

- Case 1: If j′ ∈ (i∗1 . . . , i
∗
k) and j′ /∈ (̃i1 . . . , ĩk), set x̃ ← γ∗

∏k
j=1 sĩj/γ̃

∏k
j=1,j 6=j′ si∗j

mod N .

- Case 2: If j′ /∈ (i∗1 . . . , i
∗
k) and j′ ∈ (ĩ1 . . . , ĩk), set x̃ ← γ̃

∏k
j=1 si∗j/γ

∗∏k
j=1,j 6=j′ sĩj

mod N .

Then, if x̃ = x implies that B has inverted RSA permutation function without any knowledge of the
trapdoor.

- Success Probability Analysis: We analyze the events that are needed for B to successfully invert RSA
as follows.

- BAD1: B may abort in the simulation phase when the adversary queries the CEDA.Sig oracle. This
event happens when the randomly drawn (i1, . . . , ik) already exists in HL2. This can happen with
the probability (qH−1)qS/2l.

- ACC: The success probability of A to win the game in De�nition 2 as in [31, Lemma 1].
- FRK: B receives two valid forgeries from A for the target message.
- BAD2: If A successfully outputs a forgery in each of the runs, then B will break RSA if (GOOD1

∨ GOOD2) happens for the forged signatures. (GOOD1 ∨ GOOD2) can happen with a non-negligible
probability of 2k(t−k)/t2. Note that given the random behavior of our hash function, we consider the
probability ((M∗||h∗ /∈ HL2) ∨ (M∗‖h̃ /∈ HL2)) to be negligible in the case of the above event.

We bound the success probability ofA as de�ned in [31, Lemma 1] as ACC ≥ εA−Pr[BAD1]. The prob-
ability that BAD1 occurs can be upper-bounded by (qH−1)qS/2l2 , and therefore, ACC ≥ εA− (qH−1)qS/2l2 .

The probability of B in breaking RSA is given by:

εB ≥ FRK · BAD2

≥
(

ACC2

qH + qS
− 1

2l2

)
· BAD2

≥
(

ε2A
(qH + qS)

− 2((qH − 1)qS)

2l2(qH + qS)
− 1

2l2

)
· 2k(t− k)

t2

6 Performance Analysis and Comparison

We �rst compare the analytical costs of CEDA with its counterparts and then describe our evaluation
metrics along with the experimental setup. We then present our detailed experimental results on both
commodity hardware and an ARM processor. Note that we only compare our scheme with the state-of-
the-art digital signatures with a constant-size key/token storage overhead. Moreover, we also consider
optimization techniques such as constant storage pre-computation [19] and e�cient curves [22]. Fur-
ther note that in [13], authors proposed three instantiations of SCRA: (i) SCRA-C-RSA (ii) SCRA-BGLS
(iii) SCRA-NTRU. We compare the cost of CEDA with SCRA-C-RSA since it achieves the lowest end-
to-end delay among these three schemes with a mid-size table stored at the signer side [13].

6.1 Analytical Performance Comparison

Table 3 shows the analytical comparison of CEDA with its state-of-the-art counterparts.

10



Table 3: Analytical Performance Comparison of CEDA and its Counterparts

Scheme Signer Transmission Veri�er

Private Key† Signature
Generation¶ Signature† Public Key† Signature

Veri�cation¶

RSA |N |+ |d| Expd |N | |N |+ |e| Expe
ECDSA |q′| Emul +H +Mulq′ |q′|+ |H| |q′| 1.3 · Emul + Eadd+H

BPV-ECDSA |q′|+ T1 v · Eadd+H +Mulq′ |q′|+ |H| |q′| 1.3 · Emul + Eadd+H

Ed25519 |q′| Emul25519+
2H +Mulq′

|q′|+ |H| |q′| 1.3 · Emul25519+
Eadd25519 +H

SCRA-C-RSA |N |+ T2 L ·MulN |N |+ |H|+ κ |N |+ |e|+ κ Expe + L ·H + L ·MulN

CEDA |z|+ |N | (k + 3) ·H + Expe |N |+ |H| |N |+ |e|+ PK Expe + k ·MulN
¶ Expe and Expd denote exponentiation over the small exponent e and large exponent d, respectively. Emul and Eadd denote the costs
of EC scalar multiplication over modulus p′, and EC addition over modulus p, respectively. Emul and Eadd are performed in secp256r1,
where Emul25519 and Eadd25519 are performed on twisted Edwards’ curve. H and Mulq′ denote a cryptographic hash and a modular
multiplication over modulus q′, respectively. We omit the constant number of negligible operations if there is an expensive operation (e.g.,
integer additions are omitted if there is anEmul orExpe). We use double-point scalar multiplication for veri�cations of ECC based schemes
(1.3 · Emul instead of 2 · Emul [33]).
Suggested parameters for v, L, k are 32 [19], 32 [13], and 26, respectively.
† For κ = 128, the parameter sizes are: |N | = 3072 bit, |e| = 17 bit, |d| ≈ 3072 bit, and |z| = 128 bit. The size of the pre-computation
tables with the suggested parameters for BPV-ECDSA [19], SCRA-C-RSA [13] and CEDA are 384 KB, 10KB [19] and 2MB [13] for PK , T1
and T2, respectively. For ECC-based schemes, (p′, q′) are ECC parameters where |p′| = |q′| = 256 bit.

Signer Computation and Storage: In CEDA, signature generation only requires an exponentiation
over the small exponent e and a small-constant number of hash calls, which have an (almost) negligible
overhead (implemented with highly optimized Blake2 [32]). The small exponent is selected as e =
65537 to ensure the security, while enabling the computational e�ciency as such an exponentiation
can only be done with 16 squarings and a single multiplication via square-and-multiply algorithm.
Moreover, CEDA has a much smaller private key size than that of its delay-aware variants as well as
the RSA signature, since the signer does not store a pre-computed table or the RSA private key d in
CEDA.

RSA and ECDSA require an exponentiation over large exponent and elliptic curve scalar multiplica-
tion(s), respectively, both of which are considered as expensive computations. BPV-ECDSA eliminates
the scalar multiplication in ECDSA [7] in exchange of some elliptic curve additions [19]. However, it re-
quires storing a pre-computation table at the signer’s side. Ed25519 scheme [22] uses e�cient twisted
Edwards’ curve to perform scalar multiplications. It also has a very compact private key. SCRA-C-
RSA [13] only requires L multiplications to compute the signature, where L is suggested to be 32.
However, this scheme requires a very large private key of 2MB, which may not be feasible for some
resource-constrained devices.

Signature Transmission: CEDA has a compact signature that has the same size with standard RSA
signature scheme. However, elliptic curve based schemes o�er more compact signatures. More specif-
ically, signature length in RSA-based schemes, including CEDA, require at least |N |+ |H| bits where
|N | = 3072 bits for κ = 128 bit security. On the other hand elliptic curve based schemes require a
signature size of |q′|+ |H| where |q′| = 256 bits.

Veri�er Computation and Storage: CEDA has an ultra e�cient veri�cation algorithm since it only
requires an exponentiation over e and k multiplications, where k is suggested to be 26. However,
CEDA has a relatively large public key size, that requires storing a table. This table has a size of t · |N |,
where t = 1024 and |N | = 3072 bits. On the other hand, all elliptic curve based counterparts have

11



a very small public key of size 32 bytes, but they require a double scalar multiplication for veri�ca-
tion. Double scalar multiplication can be accelerated with Shamir’s trick [33], however, this is still a
very expensive operation, and to the best of our knowledge, there are no pre-computation methods
to speed-up this operation. RSA veri�cation is the fastest among all schemes, since it only requires
an exponentiation over e. It also has a compact public key size of |N | + |e|. SCRA-C-RSA requires
exponentiation over e along with L hash and multiplication calls, where L is suggested to be 32 [13].
As for the public key size, it only requires and additional κ bits to be stored, in addition to traditional
RSA [6].

Our analytical analysis shows that CEDA only requires a small-constant number of inexpensive
operations at the signer and veri�er sides, which makes it a suitable alternative for delay-aware appli-
cations. It has a compact private key and signature size as compared to that of its delay-aware signature
alternatives. However, it can be seen that elliptic curve-based counterparts o�er more compact private
key and signatures than CEDA, but with the cost of a very large end-to-end delay. The main limita-
tion of CEDA is its relatively large public key size, which can be readily stored by veri�ers for many
real-life applications.

6.2 Experimental Evaluation

EvaluationMetrics: We implementedCEDA both on an IoT device (ARM Cortex A53) and commodity
hardware. We also ran our counterparts on both devices to compare the signature generation and
veri�cation times. Moreover, we discuss the signer’s and veri�er’s storage, along with the transmission
requirement of each signature scheme.

Software Libraries and Implementation: We developed two implementations of CEDA in C, one
with MIRACL [34] and the other with GMP [35]. We observed that GMP implementation is signi�cantly
faster, and therefore we present our results in GMP. We use Blake2 as our cryptographic hash function
and PRF due to its high e�ciency [32]. We use portable implementation of Blake2 hash, b2 library. We
have open-sourced our implementation of CEDA for wide adaptation and comparison.

https://github.com/ozgurozmen/CEDA

The security of HORS signature can be calculated as (k · log2t)/2 [14]. We selected the HORS
parameters as (t = 1024, k = 26) that provide κ = 130-bit security. Di�erent HORS parameters
can be selected to instantiate CEDA, which o�er a trade-o� between computation and storage. For
instance, (t = 256, k = 32) also provides κ = 128-bit security, with smaller storage but slower
computation. Since |N | = 3072 provides approximately κ = 128-bit security, all in all, our current
CEDA implementation o�ers κ = 128-bit security.

We benchmarked the ECDSA implementation in MIRACL library [34]. We applied BPV pre-computation
technique [19] to ECDSA implementation of MIRACL. For Ed25519, we used the Supercop implemen-
tation [22]. Note that BPV pre-computation technique cannot be directly incorporated into Ed25519
scheme, since the randomness is generated deterministically with the message that is being signed. We
also benchmarked RSA [6] with GMP library in C [35]. SCRA-C-RSA was implemented in MIRACL
library in [13], however, our experiments showed us that MIRACL is signi�cantly slower than GMP
for modular exponentiations and multiplications. Therefore, for the purpose of fairness, we measured
SCRA-C-RSA costs with GMP library. Moreover, we observed that authors selected the small exponent
in RSA as e = 3, that is not recommended [36]. Therefore, we calculated SCRA-C-RSA costs with
e = 65537 (as in CEDA implementation).

12



Table 4: Experimental Performance Comparison of CEDA and its Counterparts on an Intel Processor

Scheme Signer Transmission Veri�er End-to-EndSignature
Generation (µs)

Private Key
(Byte)

Signature
Size (Byte)

Signature
Veri�cation (µs)

Public Key
(Byte) Delay (µs)

RSA 8083.26 768 416 47.74 386 8131.00
ECDSA 725.38 32 64 927.30 32 1652.68

BPV-ECDSA 149.60 10272 64 927.30 32 1076.9
Ed25519 132.61 32 64 335.95 32 468.56

SCRA-C-RSA 88.67 2000000 432 164.85 384 253.52
CEDA 55.33 416 416 115.45 393600 170.78

Hardware Con�gurations: We benchmarked our scheme and its counterparts on an ARM Cortex
A53 processor as the IoT device. ARM Cortex A53 is a low-cost and low energy consuming (can work
with small batteries) device with a powerful processor [37]. Therefore, it is highly preferred in IoT
applications [38]. We used a laptop equipped with Intel Core i7 6700HQ 2.6 GHz processor and 12GB
RAM as the commodity hardware.

6.3 Performance Evaluation

Tables 1 and 4 depict the experimental results of CEDA and its counterparts on ARM Cortex A53 and
commodity hardware, respectively.

IoT Device: Our experiments on ARM Cortex A53 show that CEDA is the fastest signature scheme
among its counterparts. CEDA outperforms all its counterparts in terms of signature generation and
veri�cation speeds (the only exception is RSA veri�cation, however the signature generation of RSA
is very expensive). More speci�cally, CEDA has 1.56×, 1.98×, and 3.03× lower end-to-end delay as
compared to SCRA-C-RSA, Ed25519, and BPV-ECDSA (as its most e�cient counterparts), respectively.
Although CEDA requires a larger storage requirement at the veri�er’s side, due to the larger public
key (≈ 393 KB), it is still highly achiveable with the storage capabilities of IoT devices such as ARM
Cortex A53.

Energy consumption poses a critical limit to prevent full adoption of cryptographic protocols to
IoT systems. Therefore, it is highly useful to provide an energy-e�cient cryptographic protocol for
IoT systems. Note that computational energy consumption can be calculated with the formula E =
V · I · t where V is the voltage processor is taking, I is the current drawn by the processor and t
is the computation time. Considering most IoT processors work with constant currents and voltages
in active mode, computation time should be optimized to decrease the energy consumption. Thus,
computational e�ciency of CEDA drastically reduces the energy consumption and we believe that it
is the most suitable signature scheme to be deployed in energy-critical applications.

Commodity Hardware: The signature generation of CEDA is 1.60× faster than that of SCRA-C-
RSA (the fastest counterpart), which has a very large private key (2MB). We note that CEDA can
generate 18,070 signatures per second, which can meet the high throughput signing requirements of
various real-life applications. For instance, as discussed in Section 1.2, vehicular networks may require a
signi�cantly large throughput for signature generation [2]. With the hardware con�guration described,
CEDA o�ers a signing speed way above this requirement, which can be suitable for infrastructure-to-
vehicle communication. Therefore, we believe CEDA can potentially meet the needs of even the most
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stringent requirements of high signing throughput applications.
CEDA signature veri�cation is also 1.43× and 2.91× faster than that of SCRA-C-RSA and Ed25519

(the fastest counterpart with reasonable end-to-end delay), respectively. Note that standard RSA has
2× faster veri�cation than CEDA. However, its signature generation is 146.17× slower than CEDA,
which is not suitable for delay-aware applications. The signature veri�cation time is highly critical for
applications that require a fast response to the commands/messages. We believe that CEDA is highly
suitable for such applications with a very fast veri�cation and end-to-end delay. Speci�cally, veri�cation
throughput of CEDA is 8,660 signatures per second. However, as depicted in Table 4, CEDA requires
storing a public key of size almost 393 KB at the veri�er’s side, when t = 1024. Therefore, if the
veri�er is storage-limited, di�erent HORS parameters (e.g. t = 256, k = 32) can be used to instantiate
CEDA with a storage-computation trade-o� (see De�nition 3).

7 Conclusion

In this paper, towards addressing the authentication requirements of time-critical applications, we cre-
ated a novel delay-aware digital signature scheme that we refer to as Compact Energy and Delay-aware
Authentication (CEDA). Most importantly, CEDA achieves the lowest end-to-end cryptographic delay
among all of its counterparts by o�ering the fastest signature generation along with a highly e�cient
veri�cation. Moreover CEDA requires only a small-constant size private key and signature, which are
smaller than its most e�cient delay-aware counterparts. Our experiments on ARM and Intel processors
further con�rmed the signi�cant speed advantages of CEDA over its counterparts with compact signer
storage overhead. On the other hand, CEDA has a larger public key sizes than that of its counterparts.
Overall, by o�ering the lowest end-to-end delay with small private key and signature sizes, CEDA is
an ideal authentication tool for delay-aware critical systems such as energy delivery (e.g., smart-grids)
and mobile cyber-physical systems (e.g., vehicular and aerial drone networks). We open-sourced our
implementation of CEDA for public testing and adaptation purposes.
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