
Tightly SIM-SO-CCA Secure Public Key Encryption

from Standard Assumptions?

Lin Lyu1,2, Shengli Liu1,2,3(�), Shuai Han1,2,4, and Dawu Gu1,5

1 Dept. of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China

{lvlin,slliu,dalen17,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China
4 Karlsruhe Institute of Technology, Karlsruhe, Germany

5 Shanghai Institute for Advanced Communication and Data Science,

Shanghai, China

Abstract. Selective opening security (SO security) is desirable for public key

encryption (PKE) in a multi-user setting. In a selective opening attack, an ad-

versary receives a number of ciphertexts for possibly correlated messages, then

it opens a subset of them and gets the corresponding messages together with the

randomnesses used in the encryptions. SO security aims at providing security for

the unopened ciphertexts. Among the existing simulation-based, selective open-

ing, chosen ciphertext secure (SIM-SO-CCA secure) PKEs, only one (Libert et

al. Crypto’17) enjoys tight security, which is reduced to the Non-Uniform LWE

assumption. However, their public key and ciphertext are not compact.

In this work, we focus on constructing PKE with tight SIM-SO-CCA security

based on standard assumptions. We characterize securities needed for key en-

capsulation mechanism (KEM) and show how to transform these securities into

SIM-SO-CCA security of PKE through a tight security reduction, while the con-

struction of PKE from KEM follows the general framework proposed by Liu

and Paterson (PKC’15). We present two KEM constructions with tight securities

based on the Matrix Decision Diffie-Hellman assumption. These KEMs in turn

lead to two tightly SIM-SO-CCA secure PKE schemes. One of them enjoys not

only tight security but also compact public key.

1 Introduction

Selective Opening Security. In the context of public key encryption (PKE), IND-

CPA(CCA) security is widely believed to be the right security notion. However, multi-

user settings enable more complicated attacks and traditional IND-CPA(CCA) secu-

rity may not be strong enough. Consider a scenario of N senders and one receiver.

The senders encrypt N (possibly correlated) messages m1, · · · ,mN under the receiver’s

public key pk using fresh randomnesses r1, · · · , rN to get ciphertexts c1, · · · , cN , respec-

tively, i.e., each sender i compute ci = Enc(pk,mi; ri). Upon receiving the ciphertexts

c1, · · · , cN , the adversary might be able to open a subset of them via implementing

corruptions. Namely, by corrupting a subset of users, say I ⊂ [N], the adversary obtains

the messages {mi}i∈I together with the randomnesses {ri}i∈I . Such an attack is called

selective opening attack (SOA). It is desirable that the unopened ciphertexts {ci}i∈[N]\I
still protects the privacy of {mi}i∈[N]\I , which is exactly what the SO security concerns.

? This is the full version of a paper that appeared in PKC 2018.

2 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

The potential correlation between {mi}i∈I and {mi}i∈[N]\I hinders the use of hybrid

argument proof technique. Hence, traditional IND-CPA security may not imply SO

security. To date, there exist two types of SO security formalization: indistinguishability-

based SO security (IND-SO, [BHY09, BHK12]) and simulation-based SO security (SIM-

SO, [BHY09, DNRS99]). According to whether the adversary has access to a decryption

oracle, these securities are further classified into IND-SO-CPA, IND-SO-CCA, SIM-SO-

CPA and SIM-SO-CCA.

Intuitively, IND-SO security requires that, given public key pk, ciphertexts {ci}i∈[N],

the opened messages {mi}i∈I and randomnesses {ri}i∈I (together with a decryption or-

acle in the CCA case), the unopened messages {mi}i∈[N]\I remain computationally in-

distinguishable from independently sampled messages conditioned on the already opened

messages {mi}i∈I . Accordingly, the IND-SO security usually requires the message dis-

tributions be efficiently conditionally re-samplable [BHY09, HLOV11, Hof12] (and such

security is referred to as weak IND-SO security in [BHK12]), which limits its application

scenarios.

On the other hand, SIM-SO security is conceptually similar to semantic security

[GM84]. It requires that the output of the SO adversary can be simulated by a simulator

which only takes the opened messages {mi}i∈I as its input after it assigns the corruption

set I. Since there is no restriction on message distribution, SIM-SO security has an

advantage over IND-SO security from an application point of view. SIM-SO security

was also shown to be stronger than (weak) IND-SO security in [BHK12]. However, as

shown in [HJR16], SIM-SO security turns out to be significantly harder to achieve.

Generally speaking, there are two approaches to achieve SIM-SO-CCA security. The

first approach uses lossy trapdoor functions [PW08], All-But-N lossy trapdoor functions

[HLOV11] or All-But-Many lossy trapdoor functions [Hof12] to construct lossy encryp-

tion schemes. If this lossy encryption has an efficient opener, then the resulting PKE

scheme can be proven to be SIM-SO-CCA secure as shown in [BHY09]. A DCR-based

scheme in [Hof12] and a LWE-based scheme in [LSSS17] are the only two schemes known

to have such an opener. The second approach uses extended hash proof system and

cross-authentication codes (XACs) [FHKW10]. As pointed out in [HLQ13, HLQC13], a

stronger property of XAC is required to make this proof rigorous. Following this line of

research, Liu and Paterson proposed a general framework for constructing SIM-SO-CCA

PKE from a special kind of key encapsulation mechanism (KEM) in combination with

a strengthened XAC [LP15].

Tight Security Reductions. Usually, the security of a cryptographic primitive is es-

tablished on the hardness of some underlying mathematical problems through a security

reduction. It shows that any successful probabilistic polynomial-time (PPT) adversary

A breaking the cryptographic primitive with advantage εA can be transformed into a

successful PPT problem solver B for the underlying hard problem with advantage εB.

The ideal case is εA = εB. However, most reductions suffer from a loss in the advantage,

for example, εA = L ·εB where L is called security loss factor of the reduction. Smaller L

always indicates a better security level for a fixed security parameter. For a PKE scheme,

L usually depends on λ (the security parameter) as well as Qe (the number of challenge

ciphertexts) and Qd (the number of decryption queries). A security reduction for a PKE

scheme is tight and the PKE scheme is called a tightly secure one [GHKW16, Hof17] if

L depends only on the security parameter λ6 (and is independent of both Qe and Qd).

6 According to [CW13, GHK17], such a security reduction is called an almost tight one and a

security reduction is tight only if L is a constant.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 3

Note that for concrete settings, λ is much smaller than Qe and Qd (for example, λ = 80

and Qe, Qd can be as large as 220 or even 230 in some settings). Most reductions are not

tight and it appears to be a non-trivial problem to construct tightly IND-CCA secure

PKE schemes.

Among the existing SIM-SO-CCA secure PKEs, only one of them has a tight security

reduction [LSSS17]. Very recently, Libert et al. [LSSS17] provide an all-but-many lossy

trapdoor function with an efficient opener, leading to a tightly SIM-SO-CCA secure

PKE based on the Non-Uniform LWE assumption. Note that, their construction relies

on a specific tightly secure PRF which is computable in NC1. So far, no construction

of such a PRF based on standard LWE assumption is known, which is why their PKE

has to rely on a non-standard assumption. Meanwhile, there is no PKE scheme enjoying

both tight SIM-SO-CCA security and compact public key & ciphertext up to now.

1.1 Our Contribution

We explore how to construct tightly SIM-SO-CCA secure PKE based on standard as-

sumptions. Following the KEM+XAC framework proposed in [LP15],

– we characterize stronger security notions needed for KEM and present a tightness

preserving security reduction, which shows the PKE is tightly SIM-SO-CCA secure

as long as the underlying KEM is tightly secure;
– we present two KEM instantiations and prove that their security can be tightly

reduced to the Matrix Decision Diffie-Hellman (MDDH) assumption, thus leading

to two tightly SIM-SO-CCA secure PKE schemes. One of them enjoys not only tight

security but also compact public key.

1.2 Technique Overview

Roughly speaking, to prove the SIM-SO-CCA security of a PKE (see for Definition 1),

for any PPT adversary, we need to construct a simulator and show that the adversary’s

outputs are indistinguishable with those of the simulator. Naturally, such a simulator

can be realized simply by simulating the entire real SO-CCA environment, invoking the

adversary and returning the adversary’s outputs. However, due to lack of essential infor-

mation like messages and randomnesses, the simulator is not able to provide a perfect

environment directly. Therefore, both the PKE scheme and the simulator has to be care-

fully designed, so that the simulator is able to provide the adversary a computational

indistinguishable environment. To this end, we have to solve two problems.

– The first problem is how the simulator prepares ciphertexts for the adversary without

knowing the messages.
– The second problem is how the simulator prepares randomnesses for the adversary

according to the opened messages {mi}i∈I that it receives later.

To solve the first problem, the simulator has to provide ciphertexts that are com-

putational indistinguishable with real ciphertexts in the setting of selective opening

(together with chosen-ciphertext attacks). As to the second problem, note that the ad-

versary can always check the consistence between {mi}i∈I , {ci}i∈I and the randomnesses

by re-encryption. Therefore, the simulator should not only provide indistinguishable ci-

phertexts but also be able to explain these ciphertexts as encryptions of any designated

messages.

Liu and Paterson [LP15] solved these two problems and proposed a general frame-

work for constructing SIM-SO-CCA secure PKE with the help of KEM in combination

4 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

with XAC. Their PKE construction encrypts message in a bitwise manner. Suppose the

message m has bit length `. If the i-th bit of m is 1 (mi = 1), a pair of encapsulation

ψi and key γi is generated from KEM, i.e., (ψi, γi) ←$ KEnc(pkkem). If mi = 0, a ran-

dom pair is generated, i.e., (ψi, γi) ←$ Ψ × Γ . Then a tag T is generated to bind up

(γ1, · · · , γ`) and (ψ1, · · · , ψ`) via XAC. And the final ciphertext is C = (ψ1, · · · , ψ`, T).

They construct a simulator in the following way.

• Without knowledge of the message, the simulator uses an encryption of 1` as the

ciphertext. Thus the encryption involves ` encapsulated pairs (ψi, γi) ←$ KEnc(pkkem).

The simulator then saves all the randomnesses used in these encapsulations.

• When providing the randomnesses for the opened messages, the simulator checks

the opened messages bit by bit. If a specific bit is 1, then the simulator outputs the

original randomnesses and the simulation is perfect. Otherwise, the simulator views the

encapsulated pair as a random pair. Then the simulator resamples randomnesses as if

this pair is randomly chosen using these resampled randomnesses.

Thanks to the bit-wise encryption mode and the resampling property of spaces Ψ

and Γ , an encapsulation pair (encrypting bit 1) can be easily explained as a random

pair (encrypting bit 0). Therefore the second problem is solved.

To solve the first problem, one has to show that the encapsulated pairs are compu-

tationally indistinguishable with the random pairs. In [LP15], a special security named

IND-tCCCA is formalized for KEM. This security guarantees that one encapsulated

pair is computationally indistinguishable with one random pair even when a constrained

decryption oracle is provided. With the help of IND-tCCCA security of KEM, the in-

distinguishability between the encryption of 1` and the encryption of real messages are

proved with ` hybrid arguments, each hybrid replacing only one encapsulated pair with

one random pair.

To pursue tight security reduction, the ` hybrid arguments have to be avoided. To

this end, we enhance the IND-tCCCA security and consider the pseudorandomness

for multiple pairs even when a constrained decryption oracle is provided. This new

security for KEM is formalized as mPR-CCCA security in Definition 5. Armed with this

enhanced security, it is possible to replace the ` encapsulated pairs once for all in the

security reduction from the SIM-SO-CCA security of PKE to the mPR-CCCA security of

KEM. However, this gives rise to another problem. The SIM-SO-CCA adversary A may

submit a fresh ciphertext which shares the same encapsulation ψ with some challenge

encapsulation. In the security reduction, the adversary B, who invokes A to attack the

mPR-CCCA security of KEM, cannot ask its own decapsulation oracle to decapsulate ψ

since ψ is already embedded in some challenge ciphertext forA. To solve this problem, we

define another security notion for KEM, namely, the Random Encapsulation Rejection

(RER) security of KEM (cf. Definition 6). Equipped with the RER security of KEM

and a security of XAC, B could simply set 0 as the decryption bit for ψ.

Although the enhancement from IND-tCCCA to mPR-CCCA is conceptually sim-

ple, finding an mPR-CCCA secure KEM instantiation with tight reduction to standard

assumptions is highly non-trivial. Inspired by the recent work on constructing tightly

IND-CCA secure PKE [GHKW16, GHK17], we are able to give two tightly mPR-CCCA

& RER secure KEM instantiations, one of which also enjoys compact public key.

1.3 Instantiation Overview

We provide two KEM instantiations.

The first KEM instantiation is inspired by a recent work in Eurocrypt’16. In the

work [GHKW16], Gay et al. proposed the first tightly multi-challenge IND-CCA secure

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 5

PKE scheme based on the MDDH assumption. From their PKE construction, we extract

a KEM and tightly prove its mPR-CCCA security & RER security based on the MDDH

assumption.

The second KEM instantiation is contained in a very recent work by Gay et al.

[GHK17] in Crypto’17. In [GHK17], a qualified proof system (QPS) is proposed to con-

struct multi-challenge IND-CCCA secure KEM, which can be used to obtain a tightly

multi-challenge IND-CCA secure PKE scheme with help of an authenticated encryption

scheme. Note that our mPR-CCCA security is stronger than multi-challenge IND-CCCA

security. To achieve mPR-CCCA security, we formalize a so-called Pseudorandom Sim-

ulated Proof property for QPS. We prove that if QPS has this property, the KEM from

QPS is mPR-CCCA secure. Finally, we show that the QPS in [GHK17] possesses the

pseudorandom simulated proof property.

Compared with the first instantiation, the public key of our second KEM instantia-

tion has a constant number of group elements. The compactness of public key is in turn

transferred to the PKE, resulting in the first tightly SIM-SO-CCA secure PKE based

on standard assumptions together with a compact public key.

2 Preliminaries

We use λ to denote the security parameter in this work. Let ε be the empty string.

For n ∈ N, denote by [n] the set {1, · · · , n}. Denote by s1, · · · , sn ←$ S the process of

picking n elements uniformly from set S. For a PPT algorithm A, we use y ← A(x; r)

to denote the process of running A on input x with randomness r and assigning the

deterministic result to y. Let RA be the randomness space of A, we use y ←$ A(x) to

denote y ← A(x; r) where r ←$ RA. We use T(A) to denote the running time of A,

which is a polynomial in λ if A is PPT.

We use boldface letters to denote vectors or matrices. For a vector m of finite dimen-

sion, |m| denotes the dimension of the vector and mi denotes the i-th component of m.

For a set I = {i1, i2, · · · , i|I|} ⊆ [|m|], define mI := (mi1 ,mi2 , · · · ,mi|I|). For all matrix

A ∈ Z`×kq with ` > k, A ∈ Zk×kq denotes the upper square matrix of A and A ∈ Z(`−k)×k
q

denotes the lower ` − k rows of A. By span(A) := {Ar | r ∈ Zkq}, we denote the span

of A. By Ker(A>), we denote the orthogonal space of span(A). For ` = k, we define the

trace of A as the sum of all diagonal elements of A, i.e., trace(A) :=
∑k
i=1 Ai,i.

A function f(λ) is negligible, if for every c > 0 there exists a λc such that f(λ) < 1/λc

for all λ > λc.

We review the definitions of collision resistant hash function and universal hash

function, together with leftover hash lemma in Appendix A.1.

We use game-based security proof. The games are illustrated using pseudo-codes

in figures. By a box in a figure, we denote that the codes in the box appears in a

specific game. For example, G4

�� ��G5 means that G4 contains the codes in dash box ,

G5 contains the codes in
�� ��oval box , and both of them contain codes in square box .

Moreover, we assume that the unboxed codes are contained in all games. We use the

notation Pri[E] to denote the probability that event E occurs in game Gi, and use the

notation G ⇒ 1 to denote the event that game G returns 1. All variables in games are

initialized to ⊥. We use “�” to denote the end of proof of lemmas and use “�” to denote

the end of proof of theorems.

6 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

2.1 Prime-order Groups

Let GGen be a PPT algorithm that on input 1λ returns G = (G, q, P), a description of

an additive cyclic group G with a generator P of order q which is a λ-bit prime. For

a ∈ Zq, define [a] := aP ∈ G as the implicit representation of a in G. More generally,

for a matrix A = (aij) ∈ Zn×mq , we define [A] as the implicit representation of A in

G, i.e., [A] := (aijP) ∈ Gn×m. Note that from [a] ∈ G it is generally hard to compute

the value a (discrete logarithm problem is hard in G). Obviously, given [a], [b] ∈ G
and a scalar x ∈ Z, one can efficiently compute [ax] ∈ G and [a + b] ∈ G. Similarly,

for A ∈ Zm×nq ,B ∈ Zn×tq , given A,B or [A],B or A, [B], one can efficiently compute

[AB] ∈ Gm×t.
We review the Matrix Decision Diffie-Hellman Assumption relative to GGen in Ap-

pendix A.2.

2.2 Simulation-based, Selective-Opening CCA Security of PKE

We recall the definition of public key encryption in Appendix A.3. Let m and r be two

vectors of dimension n := n(λ). Define Enc(pk,m; r) := (Enc(pk,m1; r1), · · · ,Enc(pk,mn; rn))

where ri is a fresh randomness used for the encryption of mi for i ∈ [n]. Then we re-

view the SIM-SO-CCA security definition in [FHKW10]. Let M denote an n-message

sampler, which on input a string α ∈ {0, 1}∗ outputs a message vector m of dimension

n, i.e., m = (m1, · · · ,mn). Let R be any PPT relation.

Expso-cca-realPKE,A,n,M,R(λ):

(pk, sk)←$ Gen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

m←$ M(α), r←$ (REnc)
n

C← Enc(pk,m; r)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

r̂I ← rI

outA ←$ A
Dec/∈C(·)
3 (a2,mI , r̂I)

Return R(m, I, outA)

Expso-cca-idealS,n,M,R (λ):

(α, s1)←$ S1(1λ)

m←$ M(α)

(I, s2)←$ S2(s1, (1
|mi|)i∈[n])

outS ←$ S3(s2,mI)

Return R(m, I, outS)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE

Definition 1 (SIM-SO-CCA Security). A PKE scheme PKE = (Gen,Enc,Dec) is

simulation-based, selective-opening, chosen-ciphertext secure (SIM-SO-CCA secure) if

for every PPT n-message sampler M, every PPT relation R, every stateful PPT ad-

versary A = (A1,A2,A3), there is a stateful PPT simulator S = (S1,S2,S3) such that

Advso-ccaPKE,A,S,n,M,R(λ) is negligible, where

Advso-ccaPKE,A,S,n,M,R(λ) :=
∣∣∣Pr
[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
− Pr

[
Expso-cca-idealS,n,M,R (λ) = 1

]∣∣∣ .
Experiments Expso-cca-realPKE,A,n,M,R(λ) and Expso-cca-idealS,n,M,R (λ) are defined in Figure 1. Here the

restriction on A is that A2,A3 are not allowed to query the decryption oracle Dec(·)
with any challenge ciphertext Ci ∈ C.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 7

2.3 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [FHKW10] if there

exist two PPT algorithms (SampleD,Sample−1D) where SampleD(1λ) outputs a uniform

element over D and Sample−1D (x), on input x ∈ D, outputs r that is uniformly distributed

over the set {r ∈ RSampleD | SampleD(1λ; r) = x}.
It was shown by Damg̊ard and Nielsen in [DN00] that any dense subset of an effi-

ciently samplable domain is ESE as long as the dense subset admits an efficient mem-

bership test.

2.4 Cross-Authentication Codes

The concept of XAC was first proposed by Fehr et al. in [FHKW10] and later adapted

to strong XAC in [HLQC13] and strengthened XAC in [LDL+14].

Definition 2 (`-Cross-Authentication Code, XAC).

An `-cross-authentication code XAC (for ` ∈ N) consists of three PPT algorithms

(XGen,XAuth,XVer) and two associated spaces, the key space XK and the tag space

XT . The key generation algorithm XGen(1λ) outputs a uniformly random key K ∈ XK,

the authentication algorithm XAuth(K1, · · · ,K`) takes ` keys (K1, · · · ,K`) ∈ XK` as

input and outputs a tag T ∈ XT , and the verification algorithm XVer(K,T) outputs a

decision bit.

Correctness. failXAC(λ) := Pr[XVer(Ki,XAuth(K1, · · · ,K`)) 6= 1] is negligible for all

i ∈ [`], where the probability is taken over K1, · · · ,K` ←$ XK.

Security against impersonation and substitution attacks. Define

εimp
XAC(λ) := maxT ′ Pr[XVer(K,T ′) = 1 | K ←$ XK] where max is over all T ′ ∈ XT ,

and εsubXAC(λ) := max
i,K6=i,F

Pr

 T ′ 6= T

XVer(Ki, T
′) = 1

∣∣∣∣∣∣
Ki ←$ XK,

T ← XAuth(K1, · · · ,K`),

T ′ ← F (T)

 where max is

over all i ∈ [`], all K 6=i := (Kj)j∈[`\i] ∈ XK`−1 and all (possibly randomized) functions

F : XT → XT . Then we say XAC is secure against impersonation and substitution

attacks if both εimp
XAC(λ) and εsubXAC(λ) are negligible.

Definition 3 (Strong and semi-unique XACs). An `-cross-authentication code XAC
is strong and semi-unique if it has the following two properties.

Strongness [HLQC13]. There exists a PPT algorithm ReSamp, which takes as input

T ∈ XT and i ∈ [`], with K1, · · · ,K` ←$ XGen(1λ), T ← XAuth(K1, · · · ,K`), and out-

puts K̂i ∈ XK, denoted by K̂i ←$ ReSamp(T, i). Suppose for each fixed (k1, · · · , k`−1, t) ∈
(XK)`−1 × XT , the statistical distance between K̂i and Ki, conditioned on (K 6=i, T) =

(k1, · · · , k`−1, t), is bounded by δ(λ), i.e.,

1

2

∑
k∈XK

∣∣∣∣∣∣
Pr[K̂i = k | (K6=i, T) = (k1, · · · , k`−1, t)]

−
Pr[Ki = k | (K6=i, T) = (k1, · · · , k`−1, t)]

∣∣∣∣∣∣ ≤ δ(λ).

Then the code XAC is said to be δ(λ)-strong or strong if δ(λ) is negligible.

Semi-Uniqueness [LDL+14]. The code XAC is said to be semi-unique if XK = Kx ×
Ky, and given T ∈ XT and Kx ∈ Kx, there exists at most one Ky ∈ Ky such that

XVer((Kx,Ky), T) = 1.

A concrete XAC instantiation by Fehr et al. in [FHKW10] is shown in Appendix A.4.

8 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

3 Key Encapsulation Mechanism

In this section, we recall the definition of key encapsulation mechanism and formalize

two new security notions for it.

Definition 4 (Key Encapsulation Mechanism). A KEM KEM is a tuple of PPT

algorithms (KGen,KEnc,KDec) such that, KGen(1λ) generates a (public, secret) key pair

(pkkem, skkem); KEnc(pkkem) returns an encapsulation ψ ∈ Ψ and a key γ ∈ Γ , where

Ψ is the encapsulation space and Γ is the key space; KDec(skkem, ψ) deterministically

decapsulates ψ with skkem to get γ ∈ Γ or ⊥.

We say KEM is perfectly correct if for all λ, Pr[KDec(skkem, ψ) = γ] = 1, where

(pkkem, skkem)←$ KGen(1λ) and (ψ, γ)←$ KEnc(pkkem).

3.1 mPR-CCCA Security for KEM

We formalize a new security notion for KEM, namely mPR-CCCA. Roughly speaking,

mPR-CCCA security guarantees pseudorandomness of multiple (ψ, γ) pairs outputted

by KEnc even if a constrained decapsulation oracle is provided.

Definition 5 (mPR-CCCA Security for KEM). Let A be an adversary and b ∈
{0, 1} be a bit. Let KEM = (KGen,KEnc,KDec) be a KEM with encapsulation space Ψ

and key space Γ . Define the experiment Expmpr-ccca-b
KEM,A (λ) in Figure 2.

Expmpr-ccca-b
KEM,A (λ): //b ∈ {0, 1}

(pkkem, skkem)←$ KGen(1λ)

b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Oenc():

(ψ0, γ0)←$ Ψ × Γ
(ψ1, γ1)←$ KEnc(pkkem)

ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ):

γ ← KDec(skkem, ψ)

Return

γ If

(
ψ /∈ ψenc∧
pred(γ) = 1

)
⊥ Otherwise

Fig. 2. Experiment used in the definition of mPR-CCCA security of KEM

In Expmpr-ccca-b
KEM,A (λ), pred : Γ ∪ {⊥} → {0, 1} denotes a PPT predicate and pred(⊥) := 0.

Let Qdec be the total number of decapsulation queries made by A, which is indepen-

dent of the environment without loss of generality. The uncertainty of A is defined as

uncertA(λ) := 1
Qdec

∑Qdec

i=1 Prγ←$Γ [predi(γ) = 1], where predi is the predicate in the i-th

Odec query.

We say KEM has multi-encapsulation pseudorandom security against constrained

CCA adversaries (mPR-CCCA security) if for each PPT adversary A with negligible un-

certainty uncertA(λ), the advantage Advmpr-ccca
KEM,A (λ) is negligible, where Advmpr-ccca

KEM,A (λ) :=∣∣∣Pr
[
Expmpr-ccca-0

KEM,A (λ) = 1
]
− Pr

[
Expmpr-ccca-1

KEM,A (λ) = 1
]∣∣∣.

Note that the afore-defined mPR-CCCA security implies multi-challenge IND-CCCA

security defined in [GHK17].

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 9

3.2 RER Security of KEM

We define Random Encapsulation Rejection security for KEM which requires the de-

capsulation of a random encapsulation is rejected overwhelmingly.

Definition 6 (Random Encapsulation Rejection Security for KEM). Let KEM =

(KGen, KEnc,KDec) be a KEM with encapsulation space Ψ and key space Γ . Let A be a

stateful adversary and b ∈ {0, 1} be a bit. Define the following experiment Exprer-bKEM,A(λ)

in Figure 3.

Exprer-bKEM,A(λ): //b ∈ {0, 1}
(pkkem, skkem)←$ KGen(1λ)

ψran ← ∅
(st, 1n)←$ AOcha(·,·)(pkkem)

ψran = {ψ1, · · · , ψn} ←$ Ψ
n

b′ ←$ AOcha(·,·)(st,ψran)

Return b′

Ocha(pred, ψ):

If ψ /∈ ψran:

Return pred(KDec(skkem, ψ))

If b = 1:

Return pred(KDec(skkem, ψ))

Else:

Return 0

Fig. 3. Experiment used in the definition of RER property of KEM

In Exprer-bKEM,A(λ), pred : Γ ∪{⊥} → {0, 1} denotes a PPT predicate and pred(⊥) := 0.

Let Qcha be the total number of Ocha queries made by A, which is independent of the

environment without loss of generality. The uncertainty of A is defined as uncertA(λ) :=
1

Qcha

∑Qcha

i=1 Prγ←$Γ [predi(γ) = 1], where predi is the predicate in the i-th Ocha query.

We say KEM has Random Encapsulation Rejection security (RER security) if for

each PPT adversary A with negligible uncertainty uncertA(λ), the advantage

AdvrerKEM,A(λ) :=
∣∣Pr
[
Exprer-0KEM,A(λ) = 1

]
− Pr

[
Exprer-1KEM,A(λ) = 1

]∣∣ is negligible.

4 SIM-SO-CCA Secure PKE from KEM

4.1 PKE Construction

In Figure 4, we recall the general framework for constructing SIM-SO-CCA secure PKE

proposed in [LP15]. A small difference from [LP15] is that we make use of hash function

H1 to convert the key space of KEM to the key space of XAC.

Ingredients. This construction uses the following ingredients.

• KEM=(KGen,KEnc,KDec) with key space Γ & ESE encapsulation space Ψ .

• (`+ 1)-XAC XAC with ESE key space XK = Kx ×Ky.

• Hash function H1 : Γ → XK generated by hash function generator H1(1λ).

• Hash function H2 : Ψ ` → Ky generated by hash function generator H2(1λ).

4.2 Tight Security Proof of PKE

In this subsection, we prove the SIM-SO-CCA security of PKE with tight reduction to

the security of KEM. We state our main result in the following theorem.

10 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

Gen(1λ):

(pkkem, skkem)←$ KGen(1λ)

H1 ←$ H1(1λ)

H2 ←$ H2(1λ)

Kx ←$ Kx
pk← (pkkem,H1,H2,K

x)

sk← (pk, skkem)

Return (pk, sk)

Enc(pk,m ∈ {0, 1}`):
For j ← 1 to `:

If mj = 1:

(ψj , γj)←$ KEnc(pkkem)

Kj ← H1(γj)

Else:

ψj ←$ Ψ

Kj ←$ XK
Ky ← H2(ψ1, · · · , ψ`)
K`+1 ← (Kx,Ky)

T ← XAuth(K1, · · · ,K`+1)

Return C ← (ψ1, · · · , ψ`, T)

Dec(sk, C = (ψ1, · · · , ψ`, T)):

m′ ← 0`

Ky′ ← H2(ψ1, · · · , ψ`)
K′`+1 ← (Kx,Ky′)

If XVer(K′`+1, T) = 1:

For j ← 1 to `:

γ′j ← KDec(skkem, ψj)

K′j ← H1(γ′j)

m′j ← XVer(K′j , T)

Return m′

Fig. 4. Construction of PKE = (Gen,Enc,Dec).

Theorem 1. Suppose the KEM KEM is mPR-CCCA and RER secure, the (`+1)-cross-

authentication code XAC is δ(λ)-strong, semi-unique, and secure against impersonation

and substitution attacks; H1 is universal; H2 outputs collision resistant function. Then

the PKE scheme PKE constructed in Figure 4 is SIM-SO-CCA secure. More precisely,

for each PPT adversary A = (A1,A2,A3) against PKE in the SIM-SO-CCA real experi-

ment, for each PPT n-message sampler M, and each PPT relation R, we can construct

a stateful PPT simulator S = (S1,S2,S3) for the SIM-SO-CCA ideal experiment and

PPT adversaries B1,B2,B3 with T(B1) ≈ T(B2) ≈ T(B3) ≤ T(A) +Qdec · poly(λ), such

that

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + ` ·Qdec · εsubXAC(λ)

+ 2AdvcrH,B1
(λ) + (n`) · (δ(λ) +∆), (1)

where Qdec denotes the total number of A’s decryption oracle queries, poly(λ) is a poly-

nomial independent of T(A) and ∆ = 1
2 ·
√
|XK|/|Γ |.

Remark. If we instantiate the construction with the information-theoretically secure

XAC in Appendix A.4 and choose proper set XK and Γ , then ∆, δ(λ), εimp
XAC(λ) and

εsubXAC(λ) are all exponentially small in λ. Then (1) turns out to be

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + 2AdvcrH,B1

(λ) + 2−Ω(λ).

If the underlying KEM has tight mPR-CCCA security and RER security, then our PKE
turns out to be tightly SIM-SO-CCA secure.

Proof of Theorem 1. For each PPT adversary A = (A1,A2,A3), we can construct a

stateful PPT simulator S = (S1,S2,S3) as shown in Figure 5.

In Appendix B, we illustrate the detailed ideas of the construction for S.

The differences between the real and the ideal experiments lie in two aspects. The

first is how the challenge ciphertext vector is generated and the second is how the cor-

rupted ciphertexts are opened. In other words, the algorithms SimCtGen and SimOpen
used by the simulator differ from the real experiment. In the proof, we focus on these

two algorithms and gradually change them through a series of games starting with game

G0 and ending with game G9, with adjacent games being proved to be computationally

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 11

S1(1λ):

(pk, sk)←$ SimKeyGen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

Return (α, s1 = (pk, sk, a1))

S2(s1, (1
|mi|)i∈[n]):

(C,R,K)←$ SimCtGen(pk)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

Return (I, s2 = (s1, a2, I,C,R,K))

S3(s2,mI):

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ A
Dec/∈C(·)
3 (a2,mI , R̂I)

Return outA

SimKeyGen(1λ):

(pkkem, skkem)←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ),Kx ←$ Kx
pk← (pkkem,H1,H2,K

x), sk← (pk, skkem)

Return (pk, sk)

SimCtGen(pk):

For i← 1 to n:

For j ← 1 to `:

ri,j ←$ RKEnc

(ψi,j , γi,j)← KEnc(pkkem; ri,j)

Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,`)

Ki,`+1 ← (Kx,Ky
i)

Ti ← XAuth(Ki,1, · · · ,Ki,`+1)

Ci ← (ψi,1, · · · , ψi,`, Ti)
Ri ← (ri,1, · · · , ri,`)
Ki ← (Ki,1, · · · ,Ki,`+1)

Return

C

R

K

 =

C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn

SimOpen(I,mI ,C,R,K):

For i ∈ I:

For j ← 1 to `:

If mi,j = 1:

r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂Ki,j ←$ Sample−1
XK(K̂i,j)

r̂ψi,j ←$ Sample−1
Ψ (ψi,j)

r̂i,j ← (r̂Ki,j , r̂
ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,`)
Return R̂I = (R̂i)i∈I

Fig. 5. Construction of simulator S = (S1,S2,S3) for Expso-cca-idealS,n,M,R (λ).

indistinguishable. The full set of games are illustrated in Figure 6.

Game G0. Game G0 is exactly the ideal experiment Expso-cca-idealS,n,M,R (λ). Hence

Pr
[
Expso-cca-idealS,n,M,R (λ) = 1

]
= Pr0[G⇒ 1]. (2)

Game G0 −G1. The only difference between G1 and G0 is that a collision check for H2

is added in G1 and G1 aborts if a collision is found. More precisely, we use a set Q to log

all the (input, output) pairs for H2 in algorithm SimCtGen. Then in the Dec oracle, if

there exists a usage of H2 such that its output collides with some output in Q but with

different inputs, then a collision for H2 is found and the game G1 aborts immediately.

It is straightforward to build a PPT adversary B1 with T(B1) ≈ T(A) +Qdec · poly(λ),

where poly(λ) is a polynomial independent of T(A), such that,

|Pr0[G⇒ 1]− Pr1[G⇒ 1]| ≤ AdvcrH,B1
(λ). (3)

Game G1 −G2. G2 is essentially the same as G1 except for one conceptual change in

the Dec oracle. More precisely, for a Dec(C = (ψ1, · · · , ψ`, T)) query such that ∃(i, j) ∈
[n]× [`], η ∈ [`] s.t. mi,j = 0 ∧ ψη = ψi,j ,

• in G1, we proceed exactly the same as the decryption algorithm, i.e.,

set m′η ← XVer(H1(γ′η), T) where γ′η = KDec(skkem, ψη);

• in G2, we set m′η ← XVer(Ki,j , T).

Since ψη = ψi,j , γ
′
η = KDec(skkem, ψη) and (ψi,j , γi,j) is the output of KEnc(pkkem),

we have that γ′η = γi,j due to the perfect correctness of KEM. Then Ki,j = H1(γi,j) =

H1(γ′η). Thus the difference between G1 and G2 is only conceptual, and it follows

Pr1[G⇒ 1] = Pr2[G⇒ 1]. (4)

12 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

Expso-cca-idealS,n,M,R (λ):

(pk, sk)←$ SimKeyGen(1λ)

(α, a1)←$ ADec(·)
1 (pk)

m←$ M(α)

(C,R,K)←$ SimCtGen(pk)

(I, a2)←$ A
Dec/∈C(·)
2 (a1,C)

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ A
Dec/∈C(·)
3 (a2,mI , R̂I)

Return R(m, I, outA)

SimCtGen(pk):

G0 G1, G2 G3

�� ��G4 −G7

�� ��G8 G9

For i← 1 to n:

For j ← 1 to `:

If mi,j = 0:

rψi,j ←$ RSampleΨ

ψi,j ← SampleΨ (1λ; rψi,j)

γi,j ←$ Γ

Ki,j ← H1(γi,j)�

�
	rKi,j ←$ RSampleXK

Ki,j ← SampleXK(1λ; rKi,j)

ri,j ← (rKi,j , r
ψ
i,j)

Else:

ri,j ←$ RKEnc

(ψi,j , γi,j)← KEnc(pkkem; ri,j)

Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,`)
Q ← Q∪ {(Ky

i , (ψi,1, · · · , ψi,`))}
Ki,`+1 ← (Kx,Ky

i)

Ti ← XAuth(Ki,1, · · · ,Ki,`+1)

Ci ← (ψi,1, · · · , ψi,`, Ti)
Ri ← (ri,1, · · · , ri,`)
Ki ← (Ki,1, · · · ,Ki,`+1)

Return

C

R

K

 =

C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn

SimOpen(I,mI ,C,R,K):

G0 −G6 G7, G8 G9

For i ∈ I:

For j ← 1 to `:

If mi,j = 1:

r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂Ki,j ←$ Sample−1
XK(K̂i,j)

r̂Ki,j ←$ Sample−1
XK(Ki,j)

r̂ψi,j ←$ Sample−1
Ψ (ψi,j)

r̂i,j ← (r̂Ki,j , r̂
ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,`)

R̂I ← RI

Return R̂I

Dec/∈C(C = (ψ1, · · · , ψ`, T)):

G0 G1 G2, G3, G4

�� ��G5 G6, G7 G8, G9

If C ∈ C:

Return ⊥
m← 0`

Ky′ ← H2(ψ1, · · · , ψ`)

If

[
∃(K̂y, (ψ̂1, · · · , ψ̂`)) ∈ Q s.t.

Ky′ = K̂y ∧ (ψ1, · · · , ψ`) 6= (ψ̂1, · · · , ψ̂`)

]
:

Abort game //Find a collisoin for H2

Q ← Q∪ {(Ky′, (ψ1, · · · , ψ`))}
K′`+1 ← (Kx,Ky′)

If XVer(K′`+1, T) = 1:

For η ← 1 to `:

γ′η ← KDec(skkem, ψη)

If

[
∃(i, j) ∈ [n]× [`] s.t.

mi,j = 0 ∧ ψη = ψi,j

]
:

m′η ← XVer(H1(γ′η), T)

m′η ← XVer(Ki,j , T)�� ��m′η ← 0

Else:

m′η ← XVer(H1(γ′η), T)

Return m′

SimKeyGen(1λ): G0 G1 −G7 G8, G9

(pkkem, skkem)←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ),Kx ←$ Kx
pk← (pkkem,H1,H2,K

x), sk← (pk, skkem) T ← ∅
Return (pk, sk)

Fig. 6. Games G0 −G9 in the proof of Theorem 1.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 13

Game G2 −G3. G3 is almost the same as G2 except for one change in the SimCtGen
algorithm.

• In G2, all (ψi,j , γi,j) pairs are the output of KEnc(pkkem).

• In G3, for mi,j = 1, (ψi,j , γi,j) pairs are the output of KEnc(pkkem);

• In G3, for mi,j = 0, (ψi,j , γi,j) pairs are uniformly selected from Ψ × Γ .

We will reduce the indistinguishability between game G2 and G3 to the mPR-CCCA

security of KEM. Given A = (A1,A2,A3), we can build a PPT adversary B2 with

T(B2) ≈ T(A) and uncertainty uncertB2
(λ) ≤ εimp

XAC(λ) +∆ such that

|Pr2[G⇒ 1]− Pr3[G⇒ 1]| ≤ Advmpr-ccca
KEM,B2

(λ). (5)

On input pkkem, B2 selects H1,H2 and Kx itself and embeds pkkem in pk = (pkkem,H1,

H2,K
x). In the first phase, B2 callsADec(·)

1 (pk). To respond the decryption query Dec(C =

(ψ1, · · · , ψ`, T)) submitted by A, B2 simulates Dec until it needs to call KDec(skkem, ψη)

to decapsulate ψη. Since B2 does not possess skkem relative to pkkem, B2 is not able to

invoke KDec itself. Then B2 submits a Odec(pred, ψη) query to its own oracle Odec where

pred(·) := XVer(H1(·), T). Clearly, this predicate is a PPT one. If the response of Odec

is ⊥, B2 sets m′η to 0. Otherwise B2 sets m′η to 1.

Case 1: Odec(XVer(H1(·), T), ψη) = ⊥. This happens if and only if

ψη ∈ ψenc ∨ XVer(H1(KDec(skkem, ψη)), T) = 0.

In the first phase, B2 has not submitted any Oenc query yet and ψenc is empty. So

ψη /∈ ψenc. In this case, Odec(XVer(H1(·), T), ψη) = ⊥ if and only if

XVer(H1(KDec(skkem, ψη)), T) = 0.

Therefore B2 perfectly simulates the Dec oracle in G2(G3) by setting m′η ← 0.

Case 2: Odec(XVer(H1(·), T), ψη) 6= ⊥. This happens if and only if

ψη /∈ ψenc ∧ XVer(H1(KDec(skkem, ψη)), T) = 1.

For the same reason as case 1, the condition ψη /∈ ψenc always holds. In this case,

Odec(XVer(H1(·), T), ψη) 6= ⊥ if and only if XVer(H1(KDec(skkem, ψη)), T) = 1. Therefore

B2 perfectly simulates the Dec oracle in G2(G3) by setting m′η ← 1.

In either case, B2 can perfectly simulate the Dec oracle for A1. At the end of this

phase, B2 gets A1’s output (α, a1). Then B2 calls m←$M(α) and simulates algorithm

SimCtGen(pk).

– If mi,j = 1, B2 proceeds just like game G2(G3), i.e., (ψi,j , γi,j)←$ KEnc(pkkem) and

set Ki,j ← H1(γi,j).

– If mi,j = 0, B2 submits an Oenc() query to its own oracle and gets the response

(ψ, γ) (ψ is added into set ψenc). Then B2 sets (ψi,j , γi,j)← (ψ, γ).

If b = 1, (ψ, γ) is the output of KEnc(pkkem), B2 perfectly simulates SimCtGen(pk)

to generate challenge ciphertexts C in G2.

If b = 0, (ψ, γ) is uniformly over Ψ × Γ , B2 perfectly simulates SimCtGen(pk) to

generate challenge ciphertexts C in G3.

In the second phase, B2 calls ADec/∈C(·)
2 (a1,C) to get (I, a2). Upon an decryption query

Dec/∈C(C = (ψ1, · · · , ψ`, T)) submitted by A2, B2 responds almost in the same way

as in the first phase, except that B2 has to deal with the case of ∃ψη ∈ ψenc. This

case does happen: even if C = (ψ1, · · · , ψ`, T) /∈ C, it is still possible that ∃ψη ∈
{ψi}i∈[`] with ψη ∈ ψenc. In this case, there is no chance for B2 to submit anOdec(pred, ψη)

query for a useful response because the response will always be ⊥. However, it does not

matter. By the specification of G2(G3), m′η should be set to the output of XVer(Ki,j , T)

which B2 can perfectly do.

14 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

Note that the execution of algorithm SimOpen in gameG2(G3) does not need all infor-

mation about R. Only those randomnesses with respect to mi,j = 1 are needed. Now that

B2 does have I,mI ,C,K and part of R (for mi,j = 1), it can call SimOpen(I,mI ,C,R,K)

to get R̂I .

In the third phase, B2 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C query

submitted by A in this phase is responded by B2 in the same way as in the second

phase. Finally, B2 outputs R(m, I, outA).

According to the above analysis, B2 perfectly simulates G2 for A if b = 1 and

perfectly simulates G3 for A if b = 0. Moreover, for γ ←$ Γ , H1(γ) is ∆-close to uniform

by Lemma 2 since H1 is universal. Then

Pr
γ←$Γ

[pred(γ) = 1] = Pr
γ←$Γ

[XVer(H1(γ), T) = 1] ≤ εimp
XAC(λ) +∆.

By the definition of uncertainty, we have.

uncertB2
(λ) ≤ εimp

XAC(λ) +∆. (6)

Thus (5) follows.

Game G3 −G4. G4 is almost the same as G3 except for one change in the SimCtGen
algorithm. In the SimCtGen algorithm, if mi,j = 0,

• in G3, Ki,j ← H1(γi,j) for γi,j ←$ Γ ;

• in G4, Ki,j is uniformly selected from XK.

Since H1 is universal, by Lemma 2 and a union bound, we have that

|Pr3[G⇒ 1]− Pr4[G⇒ 1]| ≤ (n`) ·∆. (7)

Game G4 −G5. G5 is almost the same as G4 except for one change in the Dec oracle.

More precisely, to reply a Dec/∈C(C = (ψ1, · · · , ψ`, T)) query such that ∃(i, j) ∈ [n] ×
[`], η ∈ [`] s.t. mi,j = 0 ∧ ψη = ψi,j ,

• in G4, we set m′η ← XVer(Ki,j , T);

• in G5, we set m′η ← 0 directly.

Suppose ψη = ψi,j ∈ Ci = (ψi,1, · · · , ψi,`, Ti) where Ti = XAuth(Ki,1, · · · ,Ki,`+1).

There are two cases according to whether T = Ti.

Case 1: T = Ti. In this case, since C /∈ C, we have that (ψ1, · · · , ψ`) 6= (ψi,1, · · · , ψi,`).
Note that Ky

i = H2(ψi,1, · · · , ψi,`) and Ky′ = H2(ψ1, · · · , ψ`). If Ky
i = Ky′, a collision

for H2 occurs, both G4 and G5 abort. Otherwise, we must have Ky′ 6= Ky
i , hence K ′`+1 =

(Kx,Ky′) 6= (Kx,Ky
i) = Ki,`+1. Since XAC is semi-unique and XVer(Ki,`+1, T) = 1, it

holds that XVer(K ′`+1, T) 6= 1 which implies that m′η = 0. In this case, the responses of

Dec/∈C make no difference in G4 and G5.

Case 2: T 6= Ti. Note that all the information about Ki,j is leaked to A only through

Ti in game G4. Thus, the probability that XVer(Ki,j , T) = 1 for T 6= Ti will be no more

than εsubXAC(λ).

By a union bound, we have that

|Pr4[G⇒ 1]− Pr5[G⇒ 1]| ≤ ` ·Qdec · εsubXAC(λ). (8)

Game G5 −G6. G6 is almost the same as G5 except for one change in the Dec or-

acle. More precisely, for a Dec(C = (ψ1, · · · , ψ`, T)) query such that ∃(i, j) ∈ [n] ×
[`] s.t. mi,j = 0 ∧ ψη = ψi,j for any η ∈ [`],

• in G5, we set m′η ← 0 directly;

• in G6, we proceed exactly the same as the decryption algorithm, i.e., setting m′η ←
XVer(H1(γ′η), T), where γ′η = KDec(skkem, ψη).

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 15

We will reduce the indistinguishability between game G5 and G6 to the RER security

of KEM. More precisely, we can build a PPT adversary B3 with T(B3) ≈ T(A) and with

uncertainty uncertB3(λ) ≤ εimp
XAC(λ) +∆ such that

|Pr5[G⇒ 1]− Pr6[G⇒ 1]| ≤ AdvrerKEM,B3
(λ). (9)

On input pkkem, B3 selects H1,H2 and Kx itself and embeds pkkem in pk = (pkkem,H1,

H2,K
x). In the first phase, B3 callsADec(·)

1 (pk). To respond the decryption query Dec(C =

(ψ1, · · · , ψ`, T)) submitted by A, B3 simulates Dec until it needs to call KDec(skkem, ψη)

to decapsulate ψη. Since B3 does not hold skkem relative to pkkem, B3 is not able to

invoke KDec itself. Then B3 submits a Ocha(pred, ψ) query to its own oracle Ocha where

pred(·) := XVer(H1(·), T) and ψ = ψη. Clearly, this predicate is a PPT one. Since ψran

is empty set in this phase, the condition ψ /∈ ψran will always hold and B3 will get a

bit β = pred(KDec(skkem, ψ)) = XVer(H1(KDec(skkem, ψη)), T) in return. Then B3 sets

m′η ← β and perfectly simulates Dec for A in this phase.

At the end of this phase, B3 gets A’s output (α, a1). Then B3 calls m ←$ M(α)

and then simulates algorithm SimCtGen(pk) as follows. B3 first outputs 1n` and get

ψran = {ψran
1 , · · · , ψran

n` } which are n` random encapsulations. During the generation of

the challenge ciphertexts, B3 sets (ψi,j ,Ki,j) according to m.

– If mi,j = 1, B3 sets (ψi,j , γi,j)←$ KEnc(pkkem) and sets Ki,j ← H1(γi,j).
– If mi,j = 0, B3 sets ψi,j ← ψran

(i−1)`+j and Ki,j ←$ XK. Since (i, j) ∈ [n] × [`], the

subscript (i− 1)`+ j ∈ {1, · · · , n`} is well defined.

Then B3 proceeds just like algorithm SimCtGen(pk) in game G5(G6).

In the second phase, B3 calls ADec/∈C(·)
2 (a1,C) to get (I, a2). To respond the decryp-

tion query Dec/∈C(C = (ψ1, · · · , ψ`, T)) submitted by A, B3 proceeds just like game

G5(G6). When a decapsulation of ψη is needed, B3 submits a Ocha(pred, ψη) query to

its own oracle Ocha where pred(·) := XVer(H1(·), T). After that, B3 will get a bit β in

return and B3 sets m′η ← β. Note that

– In case of ψη /∈ ψran, m′η = XVer(H1(KDec(skkem, ψη)), T), which is exactly how m′η
is computed in both game G5 and G6.

– In case of ψη ∈ ψran, there must exist (i, j) ∈ [n] × [`] s.t. mi,j = 0 ∧ ψη = ψi,j .

Thus m′η = XVer(H1(KDec(skkem, ψη)), T) if b = 1 and m′η = 0 if b = 0. The former

case is exactly how m′η is computed in game G6 and the latter case is exactly how

m′η is computed in game G5.

As a result, B3 perfectly simulates Dec/∈C in the second phase of game G5 for A if b = 0

and perfectly simulates Dec/∈C in the second phase of game G6 for A if b = 1. After B3
gets (I, a2), B3 is able to call SimOpen(I,mI ,C,R,K) to get R̂I for the similar reason

as in the proof of G2 −G3.

In the third phase, B3 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C query

submitted by A in this phase is responded using the same way as in the second phase.

Finally, B3 outputs R(m, I, outA).

Thus B3 perfectly simulates G6 for A if b = 1 and perfectly simulates G5 for A if

b = 0. Similar to (6), uncertB3
(λ) ≤ εimp

XAC(λ) +∆. Thus (9) follows.

Game G6 −G7. G7 is almost the same as G6 except for one change in the SimOpen
algorithm. More precisely,

• in G6, r̂Ki,j is the output of Sample−1XK(K̂i,j) where K̂i,j ←$ ReSamp(Ti, j);

• in G7, r̂Ki,j is the output of Sample−1XK(Ki,j) for the original Ki,j generated in

algorithm SimCtGen.

16 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

In game G6 and G7, before the invocation of algorithm SimOpen, only Ti leaks

information about Ki,j to A when mi,j = 0. Since XAC is δ(λ)-strong, the statistical

distance between the resampled K̂i,j ←$ ReSamp(Ti, j) and the original Ki,j is at most

δ(λ). By a union bound, we have that

|Pr6[G⇒ 1]− Pr7[G⇒ 1]| ≤ (n`) · δ(λ). (10)

Game G7 −G8. G8 is almost the same as G7 except for the dropping of the collision

check added in G1. Similar to the proof of G0 −G1, we can show that

|Pr7[G⇒ 1]− Pr8[G⇒ 1]| ≤ AdvcrH,B1
(λ). (11)

Game G8 −G9. G9 is almost the same as G8 except for one change in SimOpen. More

precisely,

• in G8, the opened randomness is a “reverse sampled” randomness, i.e., r̂Ki,j ←$

Sample−1XK(Ki,j) and r̂ψi,j ←$ Sample−1Ψ (ψi,j);

• in G9, the opened randomness (r̂Ki,j , r̂
ψ
i,j) is changed to be the original randomness

used to sample Ki,j and ψi,j , i.e., (r̂Ki,j , r̂
ψ
i,j)← (rKi,j , r

ψ
i,j).

This change is conceptual since Ψ and XK are ESE domains. Thus

Pr8[G⇒ 1] = Pr9[G⇒ 1]. (12)

Game G9. Game G9 is exactly the real experiment Expso-cca-realPKE,A,n,M,R(λ). Thus

Pr9[G⇒ 1] = Pr
[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
. (13)

Finally, Theorem 1 follows from (2, 3, 4, 5, 7, 8, 9, 10, 11, 12) and (13). �

5 Instantiations

We give two instantiations of KEM with mPR-CCCA security and RER security.

5.1 KEM from MDDH

We present a KEM which is extracted from the multi-challenge IND-CCA secure PKE

proposed by Gay et al. in [GHKW16]. The KEM KEMmddh = (KGen,KEnc,KDec) is

shown in Figure 7.

Suppose G = (G, q, P)←$ GGen(1λ) and H is a hash generator outputting functions

H : Gk → {0, 1}λ. For a vector y ∈ Z3k
q , we use y ∈ Zkq to denote the upper k components

and y ∈ Z2k
q to denote the lower 2k components.

Perfectly correctness of KEMmddh is straightforward. By Theorem 2 and 3, we will

prove that it is tightly mPR-CCCA secure and tightly RER secure.

Theorem 2. The KEM KEMmddh in Figure 7 is mPR-CCCA secure if Uk-MDDH as-

sumption holds and H outputs collision-resistant hash function. Specifically, for each

PPT adversary A with negligible uncertainty uncertA(λ), there exist two PPT adver-

saries B1,B2 with T(B1) ≈ T(B2) ≤ T(A) + (Qenc + Qdec) · poly(λ) such that the

advantage

Advmpr-ccca
KEMmddh,A(λ) ≤ (8λ+ 6)Advmddh

Uk,GGen,B1
(λ) + 2AdvcrH,B2

(λ)

+ (8λ+ 4)Qdec · uncertA(λ) + 2−Ω(λ),

where Qenc(Qdec) is the total number of Oenc(Odec) queries made by A and poly(λ) is a

polynomial independent of T(A).

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 17

KGen(1λ) :

M←$ U3k,k,H←$ H(1λ).

k1,0, · · · ,kλ,1 ←$ Z3k
q

pkkem ←
(

G,H, [M]

([M>kj,β])0≤β≤1
1≤j≤λ

)
skkem ← (kj,β)1≤j≤λ,0≤β≤1

Return (pkkem, skkem)

KEnc(pkkem) :

r←$ Zkq , [y]← [M]r

τ ← H([y])

γ ← r> ·
∑λ
j=1[M>kj,τj]

Return (ψ ← [y], γ)

//Ψ = G3k, Γ = G

KDec(skkem, ψ) :

ψ = [y]

τ ← H([y])

kτ ←
∑λ
j=1 kj,τj

γ ← [y>] · kτ
Return γ

Fig. 7. The KEM KEMmddh = (KGen,KEnc,KDec) extracted from [GHKW16].

Theorem 3. The KEM KEMmddh in Figure 7 is RER secure if KEMmddh is mPR-CCCA

secure and the Uk-MDDH assumption holds. Specifically, for each PPT adversary A
with negligible uncertainty uncertA(λ), there exist two PPT adversaries B1,B2 with

T(B1) ≈ T(B2) ≤ T(A) +Qcha · poly(λ) and uncertB1
(λ) = uncertA(λ) such that

AdvrerKEMmddh,A(λ) ≤ 2Advmpr-ccca
KEM,B1

(λ) + 2Advmddh
Uk,GGen,B2

(λ) + 2Qcha · uncertA(λ) + 2−Ω(λ),

where Qcha is the total number of Ocha queries made by A and poly(λ) is a polynomial

independent of T(A).

The public key of KEMmddh is not compact, so we put the proof of these two theorems

in Appendix C and D.

5.2 KEM from Qualified Proof System with Compact Public Key

First we recall the definition of a proof system described in [GHK17].

Definition 7 (Proof System). Let L = {Lpars} be a family of languages indexed by

public parameters pars, with Lpars ⊆ Xpars and an efficiently computable witness relation

R. A proof system PS = (PGen,PPrv,PVer,PSim) for L consists of a tuple of PPT

algorithms.

– PGen(pars). It outputs a public key ppk and a secret key psk.
– PPrv(ppk, x, w). On input a statement x ∈ L and a witness w with R(x,w) = 1, it

deterministically outputs a proof Π ∈ Π and a key K ∈ K.
– PVer(ppk, psk, x,Π). On input ppk, psk, x ∈ X and Π, it deterministically outputs

b ∈ {0, 1} together with a key K ∈ K if b = 1 or ⊥ if b = 0.
– PSim(ppk, psk, x). Given ppk, psk, x ∈ X , it deterministically outputs a proof Π and

a key K ∈ K.

Next we recall the definition of a qualified proof system.

Definition 8 (Qualified Proof System [GHK17]). Let PS = (PGen,PPrv,PVer,PSim)

be a proof system for a family of languages L = Lpars. Let Lsnd = {Lsnd
pars} be a family

of languages, such that Lpars ⊆ Lsnd
pars. We say that PS is Lsnd-qualified, if the following

properties hold.

– Completeness: For all possible public parameters pars, for all statements x ∈ L
and all witnesses w such that R(x,w) = 1, Pr[PVer(ppk, psk, x,Π)] = 1, where

(ppk, psk)←$ PGen(pars) and (Π,K)←$ PPrv(ppk, x, w).

18 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– Perfect zero-knowledge: For all possible public parameters pars, all key pairs

(ppk, psk) in the output range of PGen(pars), all statements x ∈ L and all witnesses

w with R(x,w) = 1, we have PPrv(ppk, x, w) = PSim(ppk, psk, x).
– Unique of the proofs: For all possible public parameters pars, all key pairs (ppk, psk)

in the output range of PGen(pars) and all statements x ∈ X , there exists at most

one Π∗ such that PVer(ppk, psk, x,Π∗) = 1.
– Constrained Lsnd-Soundness: For any stateful PPT adversary A, consider the

soundness experiment in Figure 8 (where PSim and PVer are implicitly assumed to

have access to ppk).

Expcsnd
Lsnd,PS,A(λ):

win = 0

(ppk, psk)←$ PGen(pars)

AOsim(),Over(·,·,·)(ppk)

Osim():

x←$ Lsnd\L
(Π,K)← PSim(psk, x)

Return (x,Π,K)

Over(x,Π, pred):

(v,K)← PVer(psk, x,Π)

If v = 1 ∧ pred(K) = 1:

If x ∈ L:

Return K

Else:

win =

{
0 If x ∈ Lsnd

1 Otherwise

Abort game

Return ⊥

Fig. 8. Experiment used in the definition of constrained Lsnd-soundness of PS.

Let Qver be the total number of Over queries, which is independent of the environment

without loss of generality. Let predi : K∪{⊥} → {0, 1} be the predicate submitted by

A in the i-th query, where predi(⊥) = 0 for all i. The uncertainty of A is defined as

uncertA(λ) := 1
Qver

∑Qver

i=1 PrK←$K[predi(K) = 1].

We say constrained Lsnd-soundness holds for PS if for each PPT adversary A with

negligible uncertainty, AdvcsndLsnd,PS,A(λ) is negligible, where

AdvcsndLsnd,PS,A(λ) := Pr[win = 1 in Expcsnd
Lsnd,PS,A(λ)]

In Appendix E, we review the definition for Lsnd-indistinguishability of two proof

systems and the definition for L̃snd-extensibility of a proof system. Here we define a

new property for qualified proof system, which stresses that the simulated proof Π for a

random x ∈ Lsnd\L is pseudorandom when providing verification oracle for only x ∈ L.

Definition 9 (Pseudorandom Simulated Proof of Qualified Proof System). Let

PS = (PGen,PPrv,PVer,PSim) be a Lsnd-qualified proof system for a family of languages

L. Let A be a stateful adversary and b ∈ {0, 1} be a bit. Define the following experiment

Exppr-proof-bPS,A (λ) in Figure 9. We say PS has pseudorandom simulated proof if for each

PPT adversary A, the advantage

Advpr-proofPS,A (λ) :=
∣∣∣Pr
[
Exppr-proof-0PS,A (λ) = 1

]
− Pr

[
Exppr-proof-1PS,A (λ) = 1

]∣∣∣ is negl.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 19

Exppr-proof-b
PS,A (λ)://b ∈ {0, 1}

(ppk, psk)←$ PGen(pars)

b′ ←$ AOsim(),Over(·,·)(ppk)

Return b′

Osim():

x←$ Lsnd\L
Π0 ←$ Π

(Π1,K)← PSim(psk, x)

Return (x,Πb)

Over(x,Π):

(v,K)← PVer(psk, x,Π)

If x /∈ L ∨ v = 0:

Return ⊥
Return K

Fig. 9. Experiment used in the definition of pseudorandom simulated proof of PS.

The Qualified Proof System in [GHK17]. First we explain how the public param-

eters pars are sampled. Fix some k ∈ N, invoke G ←$ GGen(1λ) where G = (G, q, P). Let

D2k,k be a fixed matrix distribution, we sample A←$ D2k,k and A0 ←$ U2k,k where A

and A0 are both full rank. Additionally select A1 ∈ Z2k×k
q according to U2k,k with the re-

striction A0 = A1. Let H0 and H1 be universal hash function generators returning func-

tions h0 : Gk2+1 → Zk×kq and h1 : Gk+1 → Zkq respectively. Let h0 ←$ H0 and h1 ←$ H1.

Let pars ← (k,G, [A], [A0], [A1], h0, h1) be the public parameters and we assume pars
is an implicit input of all algorithms. The languages are defined as L:= span([A]),

Lsnd := span([A]) ∪ span([A0]) and L̃snd := span([A]) ∪ span([A0]) ∪ span([A1]).

The construction7 of Lsnd-qualified proof system PS = (PGen,PPrv,PVer,PSim) in

[GHK17] is shown in Figure 10.

PGen(pars):

KX ←$ Z(k2+1)×2k
q

Ky ←$ Z(k+1)×2k
q

[PX]← KX[A] ∈ G(k2+1)×k

[Py]← Ky[A] ∈ G(k+1)×k

ppk← ([PX], [Py])

psk← (KX,Ky)

Return (ppk, psk)

PSim(ppk, psk, [c]):

X← h0(KX[c])

y← h1(Ky[c])

[π]← [A0] ·X + [c] · y>

[K]← [A0] ·X + [c] · y>

[κ]← trace([K])

Return ([π], [κ])

PPrv(ppk, [c], r):

X← h0([PX]r) ∈ Zk×kq

y← h1([Py]r) ∈ Zkq
[π]← [A0] ·X + [c] · y> ∈ Gk×k

[K]← [A0] ·X + [c] · y> ∈ Gk×k

[κ]← trace([K]) ∈ G
Return ([π], [κ])

PVer(ppk, psk, [c], [π∗]):

([π], [κ])← PSim(ppk, psk, [c])

Return

{
(1, [κ]) If [π] = [π∗]

(0,⊥) Otherwise

Fig. 10. Construction of the Lsnd-qualified proof system PS = (PGen,PPrv,PVer,PSim) in

[GHK17].

7 This construction in Figure 10 is an updated version of [GHK17] from a personal communi-

cation.

20 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

According to Theorem 1 of [GHK17], PS is Lsnd-qualified and L̃snd-extensible, both

admitting tight security reductions to the MDDH assumption. More precisely,

AdvcsndLsnd,PS,A(λ),Advcsnd
L̃snd,P̃S,A

(λ) ≤ 2k · Advmddh
D2k,k,GGen,B(λ) + 2−Ω(λ), AdvPS-ind

Lsnd ≤ 2−Ω(λ).

We now prove that PS has pseudorandom simulated proof with Theorem 4.

Theorem 4. The Lsnd-qualified proof system PS in Figure 10 has pseudorandom sim-

ulated proof if Uk-MDDH assumption holds. Specifically, for each PPT adversary A, we

can build a PPT adversary B with T(B) ≤ T(A) + (Qsim +Qver) · poly(λ) such that the

advantage

Advpr-proofPS,A (λ) ≤ 2Advmddh
Uk,GGen,B(λ) + 2−Ω(λ).

where Qsim(Qver) is the total number of Osim(Over) queries made by A and poly(λ) is a

polynomial independent of T(A).

Proof of Theorem 4.

Exppr-proof
PS,A (λ):G0 G1 −G3

b←$ {0, 1}

V←$ Z(k2+1)×k
q

KX ←$ Z(k2+1)×2k
q

Ky ←$ Z(k+1)×2k
q

[PX]← KX[A]

[Py]← Ky[A]

ppk← ([PX], [Py])

b′ ←$ AOsim(),Over(·,·)(ppk)

Return b′

Osim(): G0 G1 G2 G3

r←$ Zkq , [c]← [A0]r

Π0 ←$ Gk×k

X← h0(KX[c])

X← h0([Vr])

X←$ Zk×kq

y← h1(Ky[c])

Π1 ← [A0] ·X + [c] · y>

Π1 ←$ Gk×k

Return ([c], Πb)

Over([c], Π∗): G0 −G3

X← h0(KX[c])

y← h1(Ky[c])

Π ← [A0] ·X + [c] · y>

[K]← [A0] ·X + [c] · y>

[κ]← trace([K])

If

[
[c] /∈ span([A])

∨Π 6= Π∗

]
:

Return ⊥
Return [κ]

Fig. 11. Games G0 −G3 in the proof of Theorem 4.

For a fixed PPT adversary A, consider an experiment Exppr-proofPS,A (λ) which first uni-

formly selects b←$ {0, 1}, then calls Exppr-proof-bPS,A (λ) and gets its output b′. It is straight-

forward that

Advpr-proofPS,A (λ) = 2
∣∣∣Pr[b′ = b in Exppr-proofPS,A (λ)]− 1

2

∣∣∣ .
Now we rewrite Exppr-proofPS,A (λ) in Figure 11 and make changes to it gradually through

game G0 to G3. Games G0 −G3 are defined as follows.

Game G0. This game is the same as Exppr-proofPS,A (λ). Then

Advpr-proofPS,A (λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (14)

Game G0 −G1. G1 is almost the same as G0 except for the Osim oracle.

• In G0, X = h0(KX[c]), where [c] = [A0]r and r←$ Zkq for each Osim query.

• In G1, X = h0([Vr]), where (i) a fresh r is uniformly chosen from Zkq for each Osim

query; (ii) V is uniformly chosen from Z(k2+1)×k
q beforehand but will be fixed for each

Osim query.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 21

Define U := KXA0, so (PX|U) = KX(A|A0). Note that, the square matrix (A|A0)

is of full rank with probability 1 − 2−Ω(λ), then the entropy of KX is transferred to

(PX|U) intactly. Recall that KX is uniform over Z(k2+1)×2k
q . Therefore, (PX|U) is uni-

form over Z(k2+1)×2k
q as well. Consequently, U is uniformly distributed over Z(k2+1)×k

q

even conditioned on PX.

In G0, the Over oracle rejects all [c] /∈ [span(A)]. Therefore, the information of KX

leaked through Over is characterized by the public key PX. Together with the fact that

[c] = [A0]r in Osim of G0 and G1, the computation of KX[c] = [KXA0]r in Osim of G0

can be replaced with [V]r for V←$ Z(k2+1)×k
q in G1. Thus we have

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ 2−Ω(λ). (15)

Game G1 −G2. G2 is the same as G1 except for the Osim oracle.

• In G1, X = h0([Vr]) is computed with the same V but a fresh r←$ Zkq .

• In G2, X is uniformly selected from Zk×kq for each Osim oracle.

We will show that

|Pr1[b′ = b]− Pr2[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (16)

To prove (16), we define two intermediate games G′1 and G′′1 .

G′1 is the same as G1 except for the generation of r in Osim. For each Osim query,

− in G1, r←$ Zkq ;

− in G′1, r←Ws with a fresh s←$ Zkq but the same W, which is uniformly selected

from Zk×kq beforehand.

Since W is invertible with probability 1− 2−Ω(λ), we have that

|Pr1[b′ = b]− Pr1′ [b
′ = b]| ≤ 2−Ω(λ). (17)

G′′1 is the same with G′1 except for the Osim oracle. For each Osim query,

− G′1 sets [c]← A0[W]s and X← h0([VW]s), where s←$ Zkq ;

− G′′1 sets [c]← A0[r] and X← h0([u]), where r←$ Zkq ,u←$ Zk2+1
q .

Note that, with overwhelming probability, [B] = [W
VW] distributes uniformly over

G(k2+k+1)×k. Then we can build an adversary B and show that

|Pr1′ [b
′ = b]− Pr1′′ [b

′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (18)

To prove (18), we construct an adversary B′ and show that

|Pr1′ [b
′ = b]− Pr1′′ [b

′ = b]| ≤ AdvQsim-mddh
Uk2+k+1,k,GGen,B′(λ). (19)

Upon receiving a challenge (G, [B] ∈ G(k2+k+1)×k, [H] := ([h1| · · · |hQsim
]) ∈ G(k2+k+1)×Qsim)

for the Qsim-fold Uk2+k+1,k-MDDH problem, B′ simulates game G′1(G′′1). In the simula-

tion of the i-th Osim oracle query for i ∈ [Qsim], B′ embeds [hi] in [c] with [c]← A0[hi].

Then B′ embeds [hi] in X with X← h0([hi]).

If [hi] is uniformly chosen from span([B]) for all i ∈ [Qsim], then [hi] = [W
VW] si,

[hi] = [W]si and [hi] = [VW]si with si ←$ Zkq . In this case, B′ perfectly simulates G′1.

If [hi] is uniformly chosen from Gk2+k+1 for all i ∈ [Qsim], then both [hi] and [hi] are

uniform. In this case, B′ perfectly simulates G′′1 .

From above, (19) follows.

Finally, (18) follows from (19), Lemma 6 and Lemma 3.

22 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

In G′′1 , X ← h0([u]) for a uniform u ←$ Zk2+1
q . Since h0 is universal, by Lemma 2

and a union bound, we have that

|Pr1′′ [b
′ = b]− Pr2[b′ = b]| ≤ Qsim

2
√
q

= 2−Ω(λ). (20)

Then (16) follows from (17, 18) and (20).

Game G2 −G3. G3 is the same as G2 except for the Osim oracle.

For each Osim query,

• in G2, Π1 = [A0] ·X + [c] · y> for [c] = [A0]r and a fresh X←$ Zk×kq ;

• in G3, Π1 is uniformly selected from Gk×k.

Note that in G2,

Π1 = [A0] ·X + [c] · y> = [A0](X + r · y>).

Due to the uniformness of X, Π1 has the same distribution as [A0]X. Since A0 is an

invertible matrix, [A0]X is uniformly distributed over Gk×k. Thus we have

Pr2[b′ = b] = Pr3[b′ = b]. (21)

Game G3. In G3, Π0 distributes identically to Π1 and

Pr3[b′ = b] =
1

2
. (22)

Finally, Theorem 4 follows from (14, 15, 16, 21) and (22). �

(pkkem, skkem)←$ KGen(1λ):

(ppk, psk)←$ PGen(pars)

k0,k1 ←$ Z2k
q , [p>0]← k>0 [A] ∈ G1×k, [p>1]← k>1 [A] ∈ G1×k

Return pkkem ← (ppk, [p>0], [p>1]), skkem ← (psk,k0,k1)

(ψ, γ)←$ KEnc(pkkem):

r←$ Zkq , [c]← [A]r ∈ G2k

(Π, [κ])←$ PPrv(ppk, [c], r)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← ([p>0] + τ [p>1]) · r + [κ] ∈ G

Return (ψ ← ([c], Π), γ)

//Ψ = G2k ×Gk×k, Γ = G

γ/⊥ ← KDec(skkem, ψ):

Parse ψ = ([c], Π)

(v ∈ {0, 1}, [κ])← PVer(psk, [c], Π)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← (k>0 + τk>1) · [c] + [κ] ∈ G

Return

{
γ If v = 1

⊥ Otherwise

Fig. 12. Construction of KEMqps = (KGen,KEnc,KDec) in [GHK17]

KEM from Qualified Proof System. The construction of the qualified PS based

KEM KEMqps = (KGen,KEnc,KDec) from [GHK17] is shown in Figure 12. Suppose H
is a hash generator outputting functions H : Gk → {0, 1}λ. The parameters pars used in

this construction are specified in Section 5.2.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 23

Theorem 2 in [GHK17] has shown that KEMqps is IND-CCCA secure. Now we prove

that KEMqps is mPR-CCCA secure (through Theorem 5) and is RER secure (through

Theorem 6), both admitting tight security reductions.

Theorem 5. The KEM KEMqps in Figure 12 is mPR-CCCA secure if the D2k,k-MDDH

assumption holds, H outputs collision-resistant hash function, PS is Lsnd-qualified, L̃snd-

extensible and has pseudorandom simulated proof. Specifically, for each PPT adversary

A with negligible uncertainty uncertA(λ), we can build PPT adversaries B1, · · · ,B7 with

T(B1) ≈ · · · ≈ T(B7) ≤ T(A)+(Qenc+Qdec)·poly(λ) and uncertB4
(λ) = uncertB6

(λ) =

uncertA(λ), such that the advantage

Advmpr-ccca
KEMqps,A(λ) ≤ 2AdvcrH,B1

(λ) + (4λ+ 3k)Advmddh
D2k,k,GGen,B2

(λ)

+ 7Advmddh
Uk,GGen,B3

(λ) + AdvcsndLsnd,PS,B4
(λ) + AdvPS-ind

Lsnd,PS,P̃S,B5
(λ)

+ λAdvcsnd
L̃snd,P̃S,B6

(λ) + 2Advpr-proofPS,B7
(λ)

+ ((λ+ 2) ·Qenc + 3) ·Qdec · uncertA(λ) + 2−Ω(λ).

where Qenc(Qdec) is the total number of Oenc(Odec) queries made by A and poly(λ) is a

polynomial independent of T(A).

Proof of Theorem 5. For a fixed PPT adversaryA with negligible uncertainty uncertA(λ),

consider an experiment Expmpr-ccca
KEMqps,A(λ) which first randomly selects b ←$ {0, 1}, then

calls Expmpr-ccca-b
KEMqps,A (λ) and gets its output b′. It is straightforward that Advmpr-ccca

KEMqps,A(λ) =

2
∣∣∣Pr[b′ = b in Expmpr-ccca

KEMqps,A(λ)]− 1
2

∣∣∣ . Then we rewrite experiment Expmpr-ccca
KEMqps,A(λ) in Fig-

ure 13 and make changes to it gradually through game G0 to G9 which are defined as

follows.

Game G0. This game is identical to Expmpr-ccca
KEMqps,A(λ). Then

Advmpr-ccca
KEMqps,A(λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (23)

Game G0 −G1. G1 is the same as G0 except that an additional rejection rule is added

in Odec. More precisely, in G1, we use a set T to log all the tags τb = H([cb]) used in

oracle Oenc, and any Odec(pred, ψ = ([c], Π)) query will be rejected if τ = H([c]) ∈ T .

Lemma 1.

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ AdvcrH,B1
(λ) +

k

2
· Advmddh

D2k,k,GGen,B2
(λ)

+
1

2
Advmddh

Uk,GGen,B3
(λ) +

3

2
Qdec · uncertA(λ) + 2−Ω(λ).

We put the proof of this lemma in Appendix F.

Game G1 −G2. G2 is almost the same as G1 except for two changes in Oenc. The first

change is that PPrv is replaced with PSim. The second change is that skKEM is used to

calculate γ1. More precisely, for [c1] = [A]r1 in oracle Oenc,

• in G1, (Π1, [κ1])← PPrv(ppk, [c1], r1), γ1 ← ([p>0] + τ1[p>1]) · r1 + [κ1];

• in G2, (Π1, [κ1])← PSim(psk, [c1]), γ1 ← (k>0 + τ1k
>
1) · [c1] + [κ1].

Due to the perfect zero-knowledge property of PS, we have PPrv(ppk, [c1], r1) =

PSim(psk, [c1]). Meanwhile, [p>0] = k>0 [A] and [p>1] = k>1 [A], so we have ([p>0]+τ1[p>1])·
r1 + [κ1] = (k>0 + τ1k

>
1) · [c1] + [κ1].

24 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

Expmpr-ccca
KEMqps,A(λ):

G0 G1 −G5 G6 G7 −G9

b←$ {0, 1} T ← ∅ [v]←$ Zkq
(ppk, psk)←$ PGen(pars)

k0,k1 ←$ Z2k
q

[p>0]← k>0 [A], [p>1]← k>1 [A]

pkkem ← (ppk, [p>0], [p>1])

b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Odec(pred, ψ = ([c], Π)):

G0 G1 −G4 G5 −G9

(v, [κ])← PVer(psk, [c], Π)

τ ← H([c]) ∈ {0, 1}λ ⊆ Zq
γ ← (k>0 + τk>1) · [c] + [κ]

If

([c], Π) ∈ ψenc

∨ v = 0

∨ pred(γ) = 0

∨[c] /∈ span([A])

∨τ ∈ T

:

Return ⊥
Return γ

Oenc(): G0 G1

�� ��G2 G3 G4G5�
�

�
�G6

�� ���� ��G7

�� ���� ��G8

�� ���� ��G9

(ψ0, γ0)←$ Ψ × Γ
ψ0 = ([c0], Π0)

τ0 ← H([c0])

r1 ←$ Zkq
[c1]← [A]r1 [c1]← [A0]r1

[c1]←$ G2k

(Π1, [κ1])← PPrv(ppk, [c1], r1)�� ��(Π1, [κ1])← PSim(psk, [c1])

Π1 ←$ Gk×k

ψ1 ← ([c1], Π1)

ψenc ← ψenc ∪ {ψb}
τ1 ← H([c1]) ∈ {0, 1}λ ⊆ Zq
T ← T ∪ {τb}
γ1 ← ([p>0] + τ1[p>1]) · r1 + [κ1]�� ��γ1 ← (k>0 + τ1k

>
1) · [c1] + [κ1]

γ1 ← [v>r1] + τ1k
>
1 [c1] + [κ1]�

�
�

�

�
	u1 ←$ Zq

γ1 ← [u1] + τ1k
>
1 [c1] + [κ1]

Return (ψb, γb)

Fig. 13. Game G0 −G9 in the proof of Theorem 5.

These changes are only conceptual, so G1 is identical to G2 and

Pr1[b′ = b] = Pr2[b′ = b]. (24)

Game G2 −G3. G3 is the same as G2 except for one difference in Oenc.

• In game G2, [c1] is uniform over span([A]) for each Oenc query.

• In game G3, [c1] is uniform over G2k for each Oenc query.

We can build an adversary B2 and show that

|Pr2[b′ = b]− Pr3[b′ = b]| ≤ k · Advmddh
D2k,k,GGen,B2

(λ) + 2−Ω(λ). (25)

The reduction is straightforward, since B2 can simulate G2(G3) by generating the secret

key itself and embed its own challenge in [c1]. We omit the details.

A similar proof can be found in Appendix F.

Game G3 −G4. G4 is the same as G3 except for one difference in Oenc.

• In game G3, [c1] is uniform over G2k for each Oenc query.

• In game G4, [c1] is uniform over span([A0]) for each Oenc query.

We can build an adversary B3 and show that

|Pr3[b′ = b]− Pr4[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (26)

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 25

The reduction is straightforward and the proof of (26) is almost the same as (25).

Game G4 −G5. G5 is almost the same as G4 except that a rejection rule is added

in Odec. More precisely, in G5, an Odec(pred, ψ = ([c], Π)) query is directly rejected if

[c] /∈ span([A]). We have that

|Pr4[b′ = b]− Pr5[b′ = b]| ≤1

2
AdvcsndLsnd,PS,B4

(λ) +
1

2
AdvPS-ind

Lsnd,PS,P̃S,B5
(λ)

+2λ · Advmddh
D2k,k,GGen,B2

(λ) +
λ

2
Advcsnd

L̃snd,P̃S,B6
(λ)

+
λ+ 2

2
·Qenc ·Qdec · uncertA(λ) +Qenc · 2−Ω(λ).

(27)

The proof of (27) is the same as Lemma 9 in [GHK17]. We refer [GHK17] for details.

Game G5 −G6. G6 is almost the same as G5 except for one difference in Oenc.

• In game G5, γ1 = (k>0 + τ1k
>
1) · [c1] + [κ1] for each Oenc query.

• In game G6, γ1 = [v>r1] + τ1k
>
1 [c1] + [κ1] where v is uniformly chosen from Zkq

beforehand but will be fixed for each Oenc query.

We have that

|Pr5[b′ = b]− Pr6[b′ = b]| ≤ 2−Ω(λ). (28)

The proof of (28) is almost the same as that of (15). We put it in Appendix G and omit

the details here.

Game G6 −G7. G7 is almost the same as G6 except for one difference in Oenc.

• In game G6, γ1 = [v>r1] + τ1k
>
1 [c1] + [κ1] for each Oenc query.

• In game G7, γ1 ← [u1] + τ1k
>
1 [c1] + [κ1] where u1 ←$ Zq for each Oenc query. In

other words, γ1 is uniform for each Oenc query in G7.

We have that

|Pr6[b′ = b]− Pr7[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (29)

The proof of (29) is almost the same as that of (16). We can set r1 = Ws and

[B] =
[

W
v>W

]
∈ G(k+1)×k which has the distribution Uk+1,k overwhelmingly. Then we

can reduce the indistinguishability between G6 and G7 to the Qenc-fold Uk+1,k-MDDH
assumption. We omit the detailed proof here.

Note that, in game G7, [κ1] is not needed any longer since we can just select a uni-

form γ1 for each Oenc query.

Game G7 −G8. G8 is almost the same as G7 except for one difference in Oenc.

• In game G7, Π1 is the output of PSim(psk, [c1]) for each Oenc query.

• In game G8, Π1 is uniform selected for each Oenc query.

We can build an adversary B7 and show that

|Pr7[b′ = b]− Pr8[b′ = b]| ≤ Advpr-proofPS,B7
(λ). (30)

On input ppk, B7 uniformly selects b ←$ {0, 1} and sets T ← ∅. Then B7 uniformly

selects k0,k1 ←$ Z2k
q and sets [p>0]← k>0 [A], [p>1]← k>1 [A], pkKEM ← (ppk, [p>0], [p>1]).

Then B7 calls AOenc(),Odec(·,·)(pkKEM) by simulating the two oracles for A in the following

way.

26 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– For A’s Oenc() query, B7 uniformly chooses (ψ0, γ0) and calculates τ0 just like game

G7(G8). Then B7 submits an Osim query to its own oracle and gets ([c], Π) where

[c] is uniform over Lsnd\L = span([A0]) and Π is either an output of PSim(psk, [c])

or uniformly chosen from Π. After that B7 sets [c1] ← [c] and Π1 ← Π. Then B7
sets ψenc, calculates τ1 from [c1] and uniformly selects γ1 just like game G7(G8).

Finally B7 returns (ψb, γb) to A.

– For A’s Odec(pred, ψ = ([c], Π)) query, B7 submits Over([c], Π) query to its own

oracle and gets the response K. If K = ⊥, B7 returns ⊥ to A. Since K = ⊥ means

[c] /∈ span([A]) or the verification PVer(psk, [c], Π) does not pass, B7 acts exactly the

same as game G7(G8) in such cases. If [κ] = K 6= ⊥, B7 calculates τ and γ just like

game G7(G8). Then B7 tests if ([c], Π) ∈ ψenc or pred(γ) = 0 or ∨τ ∈ T happens.

If so, B7 returns ⊥ to A. Otherwise B7 returns γ to A.

Finally, according to A’s output b′, B7 outputs 1 if and only if b′ = b. It is clear that

if Π is an output of PSim(psk, [c]) for each Osim query, B7 perfectly simulates game G7

for A. And if Π is uniformly chosen from Π for each Osim query, B7 perfectly simulates

game G8 for A. Thus (30) follows.

Game G8 −G9. G9 is the same as G8 except for one difference in Oenc.

• In game G8, [c1] is uniform selected from span([A0]) for each Oenc query.

• In game G9, [c1] is uniform selected from G2k for each Oenc query.

We can build an adversary B3 and show that

|Pr8[b′ = b]− Pr9[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (31)

The reduction is straightforward and the proof of (31) is the same as the proof for (25).

We omit the details here.

Game G9. In game G9, (ψ1, Π1) is uniform over Ψ × Γ for each Oenc query, which

distributes exactly the same as (ψ0, Π0). Thus we have

Pr9[b′ = b] =
1

2
. (32)

Finally, Theorem 5 follows from (23), Lemma 1, (24)−(32). �

Theorem 6. The KEM KEMqps in Figure 12 is RER secure. Specifically, for each PPT

adversary A with negligible uncertainty uncertA(λ), the advantage

AdvrerKEMqps,A(λ) ≤ 2−Ω(λ).

Proof of Theorem 6. In Exprer-bKEMqps,A(λ), among all the Ocha(ψ, pred) queries submitted

by A, if ψ /∈ ψran, the oracle Ocha will answer A with pred(KDec(skKEM, ψ)). Thus no

information about b is leaked to A.

Therefore, we only consider thoseOcha(ψ, pred) queries such that ψ = ([c], Π) ∈ ψran.

In this case, both [c] and Π are uniform.

If b = 0, Ocha(ψ, pred) will always return 0 in Exprer-0KEMqps,A(λ).

If b = 1, Ocha(ψ, pred) will use KDec(skKEM, ψ) to decapsulate ψ. More precisely,

it will invoke PVer(psk, [c], Π) to obtain (v, [κ]) and output ⊥ if v = 0. By the proof

uniqueness of PS and the uniformness of Π, the probability that v = 1 in this query

is at most 1
|Π| . Taking into account all the Qcha queries, a union bound suggests that

Ocha(ψ, pred) always outputs 0 in Exprer-1KEMqps,A(λ) except with probability at most Qcha

|Π| =

2−Ω(λ).

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 27

Thus

AdvrerKEMqps,A(λ) =
∣∣∣Pr
[
Exprer-0KEMqps,A(λ) = 1

]
− Pr

[
Exprer-1KEMqps,A(λ) = 1

]∣∣∣ ≤ 2−Ω(λ).

�

Acknowledgments. Lin Lyu, Shengli Liu and Shuai Han are supported by the Na-

tional Natural Science Foundation of China Grant (61672346, 61373153). Dawu Gu is

supported by the National Natural Science Foundation of China Grant (U1636217) to-

gether with Program of Shanghai Academic Research Leader (16XD1401300).

References

[BHK12] Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening se-

curity. In: Fischlin, M., Buchmann, J.A., Manulis, M. (eds.) Public Key Cryp-

tography - PKC 2012 - 15th International Conference on Practice and Theory in

Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,

Lecture Notes in Computer Science, vol. 7293, pp. 522–539. Springer (2012)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-

tion and commitment secure under selective opening. In: Joux, A. (ed.) Advances

in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cologne, Germany, April

26-30, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5479, pp. 1–35.

Springer (2009)

[CG13] Canetti, R., Garay, J.A. (eds.): Advances in Cryptology - CRYPTO 2013 - 33rd

Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.

Proceedings, Part II, Lecture Notes in Computer Science, vol. 8043. Springer

(2013)

[CW13] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:

Canetti and Garay [CG13], pp. 435–460

[DN00] Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based

on a general complexity assumption. In: Bellare, M. (ed.) Advances in Cryptol-

ogy - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 20-24, 2000, Proceedings, Lecture Notes in

Computer Science, vol. 1880, pp. 432–450. Springer (2000)

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th

Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 Octo-

ber, 1999, New York, NY, USA, pp. 523–534. IEEE Computer Society (1999)

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework

for diffie-hellman assumptions. In: Canetti and Garay [CG13], pp. 129–147

[FHKW10] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against

chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) Advances in

Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, French Riviera, May 30

- June 3, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6110, pp.

381–402. Springer (2010)

[GHK17] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In: Katz

and Shacham [KS17], pp. 133–160

[GHKW16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly cca-secure encryption with-

out pairings. In: Fischlin, M., Coron, J. (eds.) Advances in Cryptology - EURO-

CRYPT 2016 - 35th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,

Part I, Lecture Notes in Computer Science, vol. 9665, pp. 1–27. Springer (2016)

28 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.

vol. 28(2), pp. 270–299 (1984)
[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator

from any one-way function. SIAM J. Comput. vol. 28(4), pp. 1364–1396 (1999)
[HJR16] Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based

selective-opening security and compact ciphertexts. In: Hirt, M., Smith, A.D.

(eds.) Theory of Cryptography - 14th International Conference, TCC 2016-B,

Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, Lecture

Notes in Computer Science, vol. 9986, pp. 146–168 (2016)
[HLOV11] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Con-

structions from general assumptions and efficient selective opening chosen cipher-

text security. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASI-

ACRYPT 2011 - 17th International Conference on the Theory and Application of

Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.

Proceedings, Lecture Notes in Computer Science, vol. 7073, pp. 70–88. Springer

(2011)
[HLQ13] Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against

chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) Public-

Key Cryptography - PKC 2013 - 16th International Conference on Practice and

Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.

Proceedings, Lecture Notes in Computer Science, vol. 7778, pp. 369–385. Springer

(2013)
[HLQC13] Huang, Z., Liu, S., Qin, B., Chen, K.: Fixing the sender-equivocable encryp-

tion scheme in eurocrypt 2010. In: 2013 5th International Conference on Intelli-

gent Networking and Collaborative Systems, Xi’an city, Shaanxi province, China,

September 9-11, 2013, pp. 366–372. IEEE (2013)
[Hof12] Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Jo-

hansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Cambridge, UK, April 15-19, 2012. Proceedings, Lecture Notes in Com-

puter Science, vol. 7237, pp. 209–227. Springer (2012)
[Hof17] Hofheinz, D.: Adaptive partitioning. In: Coron, J., Nielsen, J.B. (eds.) Advances

in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Paris, France, April

30 - May 4, 2017, Proceedings, Part III, Lecture Notes in Computer Science, vol.

10212, pp. 489–518 (2017)
[KS17] Katz, J., Shacham, H. (eds.): Advances in Cryptology - CRYPTO 2017 - 37th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

20-24, 2017, Proceedings, Part III, Lecture Notes in Computer Science, vol. 10403.

Springer (2017)
[LDL+14] Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure

against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald,

E. (eds.) Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Copenhagen, Denmark, May 11-15, 2014. Proceedings, Lecture Notes in Computer

Science, vol. 8441, pp. 77–92. Springer (2014)
[LP15] Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE

from key encapsulation mechanisms. In: Katz, J. (ed.) Public-Key Cryptography

- PKC 2015 - 18th IACR International Conference on Practice and Theory in

Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,

Proceedings, Lecture Notes in Computer Science, vol. 9020, pp. 3–26. Springer

(2015)
[LSSS17] Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor

functions and selective opening chosen-ciphertext security from LWE. In: Katz

and Shacham [KS17], pp. 332–364

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 29

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:

Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of

Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pp. 187–196.

ACM (2008)

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authentication

and set equality. J. Comput. Syst. Sci. vol. 22(3), pp. 265–279 (1981)

A Supplementary Materials for Preliminaries

A.1 Hash Functions

A hash function generator H is a PPT algorithm that, on input 1λ, outputs an efficiently

computable function H : X → Y.

Definition 10 (Collision Resistance). A hash function generator H outputs colli-

sion resistant hash function H or H is collision resistant if for each PPT adversary A,

AdvcrH,A(λ) := Pr[x 6= x′ ∧ H(x) = H(x′) | H←$ H(1λ), (x, x′)← A(1λ,H)] is negligible.

Definition 11 (Universal hash [WC81]). A hash function generator H outputs uni-

versal hash function H : X → Y, or H is universal, if for all x, x′ ∈ X with x 6= x′, it

follows that Pr[H(x) = H(x′) | H←$ H(1λ)] ≤ 1/|Y|.

We state a simplified version of Leftover Hash Lemma with uniform input.

Lemma 2 (Leftover Hash Lemma [HILL99]). Suppose that a hash function gen-

erator H outputs universal hash function H : X → Y. Then for H ←$ H(1λ), it holds

that ∆ ((H,H(UX)), (H, UY)) ≤ 1
2 ·
√
|Y|/|X |, where UX ←$ X , UY ←$ Y, H and UX are

independent and ∆(·) denotes the statistical distance.

A.2 Matrix Decision Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assumptions

in [EHK+13].

Definition 12 (Matrix Distribution). Let k, ` ∈ N, with ` > k. D`,k is called a

matrix distribution if it outputs matrices in Z`×kq of full rank k in polynomial time.

Define Dk := Dk+1,k.

Without loss of generality, for A←$ D`,k, we assume that A is invertible.

Definition 13 (D`,k-Matrix Decision Diffie-Hellman Assumption, D`,k-MDDH).

Let D`,k be a matrix distribution. The D`,k-Matrix Decision Diffie-Hellman (D`,k-MDDH)

Assumption holds relative to GGen if for each PPT adversary A,

Advmddh
D`,k,GGen,A(λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]|

is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ D`,k,w ←$ Zkq
and u←$ Z`q.

For each k ≥ 1, specific distributions Lk,SCk, Ck (and others) over Z(k+1)×k
q were

specified in [EHK+13]. Lk-MDDH is the well-known k-Linear Assumption.

Definition 14 (Uniform Distribution). Let `, k ∈ N, with ` > k. Denote by U`,k the

uniform distribution over the set of all full-rank `×k matrices over Zq. Let Uk := Uk+1,k.

30 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

Lemma 3 (Uk-MDDH ⇔ U`,k-MDDH [GHKW16]). Let `, k ∈ N, with ` > k. For any

PPT adversary A, there exists a PPT adversary B (and vice versa) such that T(B) ≈
T(A) and Advmddh

U`,k,GGen,A(λ) = Advmddh
Uk,GGen,B(λ).

Lemma 4 (D`,k-MDDH ⇒ Uk-MDDH [EHK+13]). Let D`,k be a matrix distribution.

For any PPT adversary A, there exists a PPT adversary B such that T(B) ≈ T(A) and

Advmddh
D`,k,GGen,B(λ) = Advmddh

Uk,GGen,A(λ).

Definition 15 (Q-Fold D`,k-Matrix Decision Diffie-Hellman Assumption, Q-fold

D`,k-MDDH). Let Q ≥ 1 and D`,k be a matrix distribution. The Q-fold D`,k-Matrix Deci-

sion Diffie-Hellman (Q-fold D`,k-MDDH) Assumption holds relative to GGen if for each

PPT adversary A,

AdvQ-mddh
D`,k,GGen,A(λ) := |Pr[A(G, [A], [AW]) = 1]− Pr[A(G, [A], [U]) = 1]|

is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ U`,k,W ←$

Zk×Qq ,U←$ Z`×Qq .

Lemma 5 (Random Self-Reducibility of D`,k-MDDH [EHK+13]). Let `, k,Q ∈ N
with ` > k and Q > `− k. For any PPT adversary A, there exists a PPT adversary B
such that T(B) ≈ T(A) + Q · poly(λ) where poly is a polynomial independent of T(A)

and

AdvQ-mddh
D`,k,GGen,A(λ) ≤ (`− k) · Advmddh

D`,k,GGen,B(λ) +
1

q − 1

= (`− k) · Advmddh
D`,k,GGen,B(λ) + 2−Ω(λ).

According to [EHK+13], for the special case of D`,k = U`,k there exists a tight reduction

between the Q-fold U`,k-MDDH problem and the U`,k-MDDH problem.

Lemma 6 (Random Self-Reducibility of U`,k-MDDH [EHK+13]). Let `, k,Q ∈ N
with ` > k. For any PPT adversary A, there exists a PPT adversary B such that

T(B) ≈ T(A) + Q · poly(λ) where poly is a polynomial independent of T(A) and

AdvQ-mddh
U`,k,GGen,A(λ) ≤ Advmddh

U`,k,GGen,B(λ) + 1
q−1 = Advmddh

U`,k,GGen,B(λ) + 2−Ω(λ).

Recall that the Decisional Diffie-Hellman (DDH) assumption is a special case of the

MDDH assumption.

Definition 16 (DDH Assumption). We say that the DDH assumption holds relative

to a prime order group G if for each PPT adversary A,

AdvddhG,A(λ) := |Pr[A(G, [a], [r], [ar]) = 1]− Pr[A(G, [a], [r], [s]) = 1]|

is negligible, where the probability is taken over G = (G, q, P)←$ GGen(1λ) and a, r, s←$

Zq.
DDH assumption is equivalent to D2,1-MDDH assumption where D2,1 is the distri-

bution that outputs matrix (1
a) for a←$ Zq.

A.3 Public Key Encryption

A PKE scheme PKE is made up of three PPT algorithms (Gen,Enc,Dec), Gen(1λ) out-

puts a public key and a secret key (pk, sk); Enc(pk,m) takes as input the public key pk and

a message m, and outputs a ciphertext C; Dec(sk, C) takes as input the secret key sk and

a ciphertext C, and it either outputs a message m or a failure symbol ⊥. The correctness

of a PKE scheme is relaxed to allow a negligible decryption error ε(λ). That is, for all

m in the message space, all (pk, sk)← Gen(1λ), Pr [Dec(sk,Enc(pk,m)) = m] ≥ 1− ε(λ)

where the probability is taken over the randomnesses used in encryption.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 31

A.4 Concrete Instance of XAC.

For completeness, we include below the construction of `-cross-authentication codes

proposed by Fehr et al. in [FHKW10]. It is also strong and semi-unique as shown in

[LDL+14].

– Let Fp be a finite field of size p, where p’s bit-length is a function of the security

parameter λ.

– XK = Kx ×Ky = F2
p and XT = F`p ∪ {⊥}.

– (x, y)←$ XGen(1λ), where (x, y)←$ F2
p.

– T ← XAuth((x1, y1), · · · , (x`, y`)). Let A ∈ F`×`p be a matrix consisting of rows

(1, xi, x
2
i , · · · , x

`−1
i) for i ∈ [`] and B = (y1, · · · , y`)> ∈ F`p. If AT = B has no

solution or more than one solutions, set T := ⊥. Otherwise, A is a Vandermonde

matrix. Let tag T = (T0, · · · , T`−1)> be the unique solution of the linear system

AT = B.

– Define T (z) = T0 + T1z + · · · + T`−1z
`−1 ∈ Fp[z] with T = (T0, · · · , T`−1)>.

XVer((x, y), T) = 1 if and only if T 6= ⊥ ∧ T (x) = y.

– For (x, y)←$ XK = F2
p and any fixed T ∈ XT , Pr[T (x) = y] = 1

p . So εimp
XAC(λ) ≤ 1

p .

– According to [FHKW10], εsubXAC(λ) ≤ 2 · `−1p .

– (x, y) ← ReSamp(T, i). Choose x ←$ Fp and compute y := T (x). Conditioned on

T = XAuth((x1, y1), · · · , (x`, y`)) and (xj , yj)j∈[`\i], the statistical distance between

(x, y) and (xi, yi) is `−1
p . So δ(λ) = `−1

p .

– Any x ∈ Fp uniquely determines y := T (x) = T0 + T1x + · · · + T`−1x
`−1 such that

XVer((x, y), T) = 1.

B Detailed description of simulator construction

Here, we illustrate how the simulator is constructed for the SIM-SO-CCA proof.

– S1 calls Gen to obtain (pk, sk). Then it calls ADec(·)
1 (pk) to obtain α and the state

a1. Note that S1 possesses sk and is able to provide the decryption oracle Dec(·) to

A1. The view of A1 is exactly the same as that in Expso-cca-realPKE,A,n,M,R(λ).

– Without knowledge of m = (m1, · · · ,mn), which is the output of M(α), S2 gen-

erates the challenge ciphertext vector C = (C1, · · · ,Cn) with each Ci being an

encryption of ` ones, i.e.,

Ci = Enc(pk, 1`; Ri).

Then S2 calls ADec/∈C(·)
2 (a1,C) to get the corruption set I and the state a2. Recall

in the ‘real’ experiment Expso-cca-realPKE,A,n,M,R(λ), A2 receives encryptions of real messages

m.

– S3 opens the challenge ciphertext vector CI where Ci = Enc(pk, 1`; Ri) = (ψi,1, · · · , ψi,`, Ti)
according to the corrupted set of messages mI .

• If mi,j = 1, S3 opens with the original randomnesses;

• If mi,j = 0, S3 utilizes ReSamp to re-sample K̂i,j so as to hide the real key Ki,j ,

and then uses Sample−1XK to recover a properly distributed randomness for K̂i,j .

It also uses Sample−1Ψ to recover a properly distributed randomness for ψi,j .

Finally, S3 collects the newly opened randomness R̂I and calls ADec/∈C(·)
3 (a2,mI , R̂I)

to get the output outA as its own output.

32 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

C Proof of Theorem 2

For a bit string τ ∈ {0, 1}∗, we view τ as a vector and denote by τ i the i-th bit of τ . We

use || to denote the concatenation of bit strings. For i ∈ [|τ |], define τ |i := τ 1|| · · · ||τ i
which is the prefix of τ . And let τ |0 := ε.

Fix a PPT adversary A, consider an experiment ExpKEMmddh,A(λ) which selects a

random bit b←$ {0, 1}, then calls Expmpr-ccca-b
KEMmddh,A(λ) and gets its output b′. It is straight-

forward that

Advmpr-ccca
KEMmddh,A(λ) = 2

∣∣∣∣Pr[b′ = b in ExpKEMmddh,A(λ)]− 1

2

∣∣∣∣ .
We will focus on the event b′ = b in experiment ExpKEMmddh,A(λ) and gradually change

this experiment to one in which Pr[b′ = b] = 1
2 . The difference caused by each change

can be shown to be very small through a tight security reduction or an information

theoretical analysis. These changes is shown in Figure 14 and game H0 is almost the

same as ExpKEMmddh,A(λ). If we use the notation Pri[E] to denote the probability that

event E happens in game Hi, then Advmpr-ccca
KEMmddh,A(λ) = 2

∣∣Pr0[b′ = b]− 1
2

∣∣.

ExpKEMmddh,A(λ):

H0 −H2 H3 −H6 H7.i

b←$ {0, 1} Tenc, Tdec ← ∅
M←$ U3k,k
M⊥ ←$ U3k,2k s.t. M>M⊥ = 0

Simulate random function

RFi : {0, 1}i → Z2k
q

k1,0, · · · ,kλ,1 ←$ Z3k
q

pkkem ←
(

G,H, [M]

([M>kj,β])1≤j≤λ0≤β≤1

)
b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Oenc(): H0 H1, H2

H3, H4 H5

�� ��H6 H7.i

(ψ0, γ0)←$ G3k ×G

ψ0 ←$ span([M]) τ0 ← H(ψ0)

[y1]←$ span([M])
�� ��[y1]←$ G3k

ψ1 ← [y1], τ1 ← H([y1])

If τ b ∈ Tenc ∪ Tdec
Return ⊥

Tenc ← Tenc ∪ {τ b}
kτ1 ←

∑λ
j=1 kj,τ1j

+M⊥RFi(τ
1
|i)

γ1 ← [y>1]kτ1

ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ = [y]): H0, H1

H2 H3 H4 −H6 H7.i

If ψ ∈ ψenc ∨y /∈ span(M) :

Return ⊥
τ ← H([y])

If

[
∃[y′] ∈ ψenc s.t.

τ = H([y′]) ∧ y 6= y′

]
Return ⊥

Tdec ← Tdec ∪ {τ}
kτ ←

∑λ
j=1 kj,τj +M⊥RFi(τ|i)

γ ← [y>]kτ

If pred(γ) = 0:

Return ⊥
Return γ

Fig. 14. Games H0 −H6 and H7.i for i ∈ {0, · · · , λ}.

Game H0. This game is almost the same as ExpKEMmddh,A(λ) except for only one differ-

ence in Oenc.

– In ExpKEMmddh,A(λ), the calculation of γ1 is done publicly. It randomly selects [y1]

from span([M]) with randomness r1, τ1 ← H([y1]) and calculates γ1 using public

key and r1, i.e., γ1 ← r>1 ·
∑λ
j=1[M>kj,τ1

j
].

– In H0, the calculation of γ1 uses secret key. It randomly selects [y1] from span([M]),

τ1 ← H([y1]) and calculates kτ1 ←
∑λ
j=1 kj,τ1

j
using the secret key. Finally it sets

γ1 ← [y>1]kτ1 .

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 33

Since r>1 ·
∑λ
j=1[M>kj,τ1

j
] = [(Mr1)>]

∑λ
j=1 kj,τ1

j
= [y>1]kτ1 , this difference is only

conceptual and H0 is almost the same as ExpKEMmddh,A(λ). So

Advmpr-ccca
KEMmddh,A(λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (33)

Game H0 −H1. H1 is almost the same as H0 except for only one difference in Oenc.

– In H0, ψ0 is randomly selected from G3k in each Oenc query.

– In H1, ψ0 is randomly selected from span([M]) in each Oenc query.

We can build an adversary B and show that

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (34)

LetQenc be the total number ofOenc queries submitted byA. To prove (34), we construct

an adversary B′ and show that

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ AdvQenc-mddh
U3k,k,GGen,B′(λ). (35)

Upon receiving a challenge (G, [M] ∈ G3k×k, [H] := ([h1| · · · |hQenc
]) ∈ G3k×Qenc) for

the Qenc-fold U3k,k-MDDH problem, B′ simulates game H0(H1). It randomly selects

b ←$ {0, 1} and invoke AOenc(),Odec(·,·)(pkKEM). Note that pkKEM and Odec oracle can

be perfectly simulated by B′. To reply the i-th Oenc query made by A, B′ embeds [hi]

to ψ0, i.e., ψ0 ← [hi]. Finally B′ gets A’s output b′ and outputs 1 ⇔ (b′ = b). Thus,

if each column [hi] of [H] is uniformly random over G3k, B′ perfectly simulates H0. If

each column [hi] of [H] is uniformly random over span([M]), B′ perfectly simulates H1.

So (35) follows.

Finally (34) follows from (35), Lemma 6 and Lemma 3.

Game H1 −H2. H2 is almost the same as H1 except for only one difference in Odec.

A new “rejection rule”(outputting failure symbol ⊥ if some condition is satisfied) is

added into Odec. This new rule rejects any Odec(pred, ψ = [y]) query if y /∈ span(M).

Note that this condition can be determined efficiently by fist sampling M⊥ ←$ U3k,2k s.t.

M>M⊥ = 0 and utilizing the relation y /∈ span(M)⇔ (M⊥)>y 6= 0⇔ (M⊥)>[y] 6= [0].

So, H2 differs from H1 only when A submits some Odec(pred, ψ = [y]) query s.t.

y /∈ span(M) ∧ pred([y>]kτ) = 1. (36)

If we denote this event as Bad, then it is straightforward that

|Pr1[b′ = b]− Pr2[b′ = b]| ≤ Pr1[Bad] = Pr2[Bad] (37)

Suppose the adversary A submits Qdec Odec queries in total. Then

Pr2[Bad] ≤
Qdec∑
i=1

Pr2[Bad happens in the i-th query]. (38)

Let’s fix some i ∈ [Qdec] and consider in H2 the probability that Bad happens in the

i-th Odec query. To do this, we use the fact that k1,β ←$ Z3k
q are identically distributed

as k1,β + M⊥w for β ∈ {0, 1}, where k1,β ←$ Z3k
q ,w ←$ Z2k

q and M⊥ ∈ Z3k×2k
q s.t.

M>M⊥ = 0. Then we will show that w is hidden from A until the i-th Odec query.

34 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– The public key pkKEM does not leak any information about w since

M>(k1,β + M⊥w) = M>k1,β .

– Oenc also hides w since w is only used in the generation of γ1.

γ1 = [y>1 (kτ1 + M⊥w)] = [y>1 kτ1] (39)

due to y1 ∈ span(M) in H2 and y>1 M⊥ = 0.

– The first i−1 Odec(pred, [y]) queries also hides w. Since in H2, all y /∈ span(M) will

be rejected by the rejection rule and will be independent of w; all y ∈ span(M) will

not leak w due to similar reason of (39).

Thus w is not leaked toA at all until the i-thOdec query. So in this queryOdec(predi, [y]),

if y /∈ span(M),

γ = [y>(kτ + M⊥w)] = [y>kτ + y>M⊥︸ ︷︷ ︸
6=0

w]

will be random due to the randomness of w. In this case,

Pr2[Bad happens in the i-th query] = Pr
γ←$Γ

[predi(γ)].

So by (37) and (38), we have

|Pr1[b′ = b]− Pr2[b′ = b]| ≤ Pr2[Bad] ≤
Qdec∑
i=1

Pr
γ←$Γ

[predi(γ)] = Qdec · uncertA(λ). (40)

Game H2 −H3. H3 is almost the same as H2 except for adding one reject rule in Oenc

and one reject rule in Odec. H3 initializes two sets Tenc and Tdec, and use them to store

all τ b = H(ψb) used in Oenc and all τ = H(ψ) used in Odec, respectively.

– In Oenc, the oracle rejects if τ b ∈ Tenc ∪ Tdec.
– In Odec, the oracle rejects if ∃[y′] ∈ ψenc s.t.τ = H([y′]) ∧ y 6= y′.

We will use Badenc and Baddec to denote these two events, respectively. It is straightfor-

ward that

|Pr2[b′ = b]− Pr3[b′ = b]| ≤ Pr3[Badenc ∨ Baddec]. (41)

We will show that Pr3[Badenc ∨ Baddec] ≤ AdvcrH,B(λ). We construct an adversary B
against the collision resistant property of H as follows.

On input (1λ,H) where H ←$ H(1λ), B can use H to perfectly simulate game H3

and detect whether event Badenc or event Baddec happens.

– If Badenc happens, with probability 1 − Qenc(Qenc+Qdec)
qk

= 1 − 2−Ω(λ), each Oenc

query will sample a ψb such that its upper part ψb is fresh. By “fresh”, we mean

that this ψb is distinct from all previous upper parts sampled in Oenc or submitted

to Odec. The reason is that in the Oenc of H3, each ψb is uniformly random over

span([M]) = Zkq . So if τ b = H(ψb) ∈ Tenc ∪ Tdec happens, we found a collision.

– If Baddec happens, i.e., τ = H([y]) = H([y′]) for some y′ 6= y and y′ ∈ ψenc, we also

find a collision for H. The reason is that y ∈ span(M) (otherwise it is rejected by

Odec), y′ ∈ span(M) (since ψenc contains ψb in Oenc and they are all in M’s span)

and y′ 6= y can imply y′ 6= y (since M is invertible). Thus H([y]) = H([y′]) implies

a collision for H.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 35

Overall, if Badenc ∨ Baddec happens, B finds a collision for H with probability 1 −
2−Ω(λ), i.e., (1−2−Ω(λ)) Pr3[Badenc∨Baddec] ≤ AdvcrH,B(λ). Thus Pr3[Badenc∨Baddec] ≤
AdvcrH,B(λ) + 2−Ω(λ). Together with inequality (41), we have

|Pr2[b′ = b]− Pr3[b′ = b]| ≤ AdvcrH,B(λ) + 2−Ω(λ). (42)

Game H3 −H4. H4 is almost the same as H3 except for canceling the rejection rule

added in H2, i.e., it does not reject y /∈ span(M) anymore in Odec. The analysis for this

difference is almost the same as the analysis for the difference between H1 and H2, we

omit the details and only state the conclusion here.

|Pr3[b′ = b]− Pr4[b′ = b]| ≤ Qdec · uncertA(λ). (43)

Game H4 −H5. H5 is almost the same as H4 with only one difference in Oenc.

– In H4, ψ0 is randomly selected from span([M]) in each Oenc query.

– In H5, ψ0 is randomly selected from G3k in each Oenc query.

The analysis for this difference is almost the same as the analysis for the difference

between H0 and H1, we omit the details and only state the conclusion here.

|Pr4[b′ = b]− Pr5[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (44)

Game H5 −H6. H6 is almost the same as H5 with only one difference in Oenc.

– In H5, ψ1 is randomly selected from span([M]) in each Oenc query.

– In H6, ψ1 is randomly selected from G3k in each Oenc query.

The analysis for this difference is almost the same as the analysis for the difference

between H0 and H1, we omit the details and only state the conclusion here.

|Pr5[b′ = b]− Pr6[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (45)

Game H7.i. For i ∈ {0, · · · , λ}, we define game H7.i. In this game, a random function

RFi : {0, 1}i → Z2k
q is simulated. For i = 0, all τ ∈ {0, 1}λ is mapped to the same

random variable RF0(τ|0) = RF0(ε) by RF0. For i = λ, each τ ∈ {0, 1}λ is mapped to a

distinct random variable RFλ(τ|λ) = RFλ(τ) by RFλ.

Furthermore, in H7.i, an additional term is added when calculating kτ in both Oenc

and Odec, i.e.,

kτ ←
∑λ

j=1
kj,τj +M⊥RFi(τ|i) .

Game H6 −H7.0. H7.0 is almost the same as H6 except for adding M⊥RF0(ε) when

calculating kτ in both Oenc and Odec. Observe that k1,β ←$ Z3k
q are identically dis-

tributed as k1,β + M⊥RF0(ε) for β ∈ {0, 1}, where k1,β ←$ Z3k
q . So this change is only

conceptual and

Pr6[b′ = b] = Pr7.0[b′ = b]. (46)

Game H7.0 −H7.λ. We will prove that

|Pr7.0[b′ = b]− Pr7.λ[b′ = b]| ≤ 4λAdvmddh
Uk,GGen,B(λ)+4λQdec ·uncertA(λ)+2−Ω(λ). (47)

First we prove the following lemma.

36 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

ExpKEMmddh,A(λ):

H7.i H7.i.1 H7.i.2 H7.i.3

b←$ {0, 1}
Tenc, Tdec ← ∅
M←$ U3k,k M0 ,M1←$ U2k,k
M⊥ ←$ U3k,2k s.t. M>M⊥ = 0

M∗
0,M

∗
1 ←$ U3k,k with special span

Simulate random functions

RFi : {0, 1}i → Z2k
q

RF
(0)
i ,RF

(1)
i : {0, 1}i → Zkq

k1,0, · · · ,kλ,1 ←$ Z3k
q

pkkem ←
(

G,H, [M]

([M>kj,β])1≤j≤λ0≤β≤1

)
b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Oenc():

H7.i H7.i.1 H7.i.2 H7.i.3

(ψ0, γ0)←$ G3k ×G
τ0 ← H(ψ0), r←$ Zkq
[y1]← [M]r, τ1 ← H([y1])

If τ b ∈ Tenc ∪ Tdec
Return ⊥

Tenc ← Tenc ∪ {τ b}
kτ1 ←

∑λ
j=1 kj,τ1j

+ M⊥RFi(τ
1
|i)

kτ1 ←
∑λ
j=1 kj,τ1j

+M∗
0RF

(0)
i (τ1|i) + M∗

1RF
(1)
i (τ1|i)

If τ1i+1 = 0:

[y1]←$ G2k

r0 ←$ Zkq , [y1]← [Mr + M0r0]

Else: //τ1i+1 = 1

[y1]←$ G2k

r1 ←$ Zkq , [y1]← [Mr + M1r1]

ψ1 ←
[
y1

y1

]
, γ1 ← [y>1]kτ1

ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ = [y]):

H7.i, H7.i.1, H7.i.2 H7.i.3

If ψ ∈ ψenc:

Return ⊥
τ ← H([y])

If

[
∃[y′] ∈ ψenc s.t.

τ = H([y′]) ∧ y 6= y′

]
Return ⊥

Tdec ← Tdec ∪ {τ}
kτ ←

∑λ
j=1 kj,τj + M⊥RFi(τ|i)

kτ ←
∑λ
j=1 kj,τj

+M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

γ ← [y>]kτ

If pred(γ) = 0:

Return ⊥
Return γ

Fig. 15. Games H7.i, H7.i.1, H7.i.2 and H7.i.3.

Lemma 7 (H7.i −H7.i+1). Let Qdec be the total number of Odec queries submitted by

A. Then, for all i ∈ {0, · · · , λ− 1},

|Pr7.i[b
′ = b]− Pr7.i+1[b′ = b]| ≤ 4Advmddh

Uk,GGen,B(λ) + 4Qdec · uncertA(λ) + 2−Ω(λ).

Then (47) follows from Lemma 7 since there are λ hops between H7.0 and H7.λ.

Proof of Lemma 7. We first rewrite game H7.i and define new games H7.i.1 −H7.i.3 in

Figure 15. We make some change in oracle Oenc and game H7.i in Figure 15 appears to

be different from the one in Figure 14. In Figure 15, we first select [y1] randomly from

span([M]) and calculate τ1 = H([H1]). Then we select [y1] randomly from G2k. Since

M is invertible, we have that [y1] is uniform over Gk. So [y1] =

[
y1

y1

]
is uniform over

G3k and the oracles Oenc in these two figures are actually the same.

Game H7.i −H7.i.1. H7.i.1 is almost the same as H7.i except for changing how [y1] is

generated in Oenc.

– In H7.i, [y1] is uniform over G2k.

– In H7.i.1, when τ1i+1 = 0, r0 ←$ Zkq is selected and [y1] is set to [Mr + M0r0] for

some M0 ←$ U2k,k.

We can build an adversary B and show that

|Pr7.i[b
′ = b]− Pr7.i.1[b′ = b]| ≤ Advmddh

Uk,GGen,B(λ) + 2−Ω(λ). (48)

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 37

Let Qenc be the total number of Oenc queries submitted by A. To prove (48), we

construct an adversary B′ and show that

|Pr7.i[b
′ = b]− Pr7.i.1[b′ = b]| ≤ AdvQenc-mddh

U2k,k,GGen,B′(λ). (49)

Upon receiving a challenge (G, [M0] ∈ G2k×k, [H] := ([h1| · · · |hQenc]) ∈ G2k×Qenc) for

the Qenc-fold U2k,k-MDDH problem, B′ simulates game H7.i(H7.i.1). To reply the i-th

Oenc query made by A, B′ embeds [hi] to [y1] if τ1i+1 = 0, i.e., [y1] ← [hi] + [M]r.

Finally B′ gets A’s output b′ and outputs 1 ⇔ (b′ = b). Thus, if each column [hi]

of [H] is uniformly random over G3k, B′ perfectly simulates H7.i (since if τ1i+1 = 0,

[y1] = [hi] + [M]r is uniform). If each column [hi] of [H] is uniformly random over

span([M]), B′ perfectly simulates H7.i.1. So (49) follows.

Finally (48) follows from (49), Lemma 6 and Lemma 3.

Game H7.i.1 −H7.i.2. H7.i.2 is almost the same as H7.i.1 except for changing how [y1]

is generated in Oenc.

– In H7.i.1, when τ1i+1 = 1, [y1] is uniform over G2k.

– In H7.i.2, when τ1i+1 = 1, r1 ←$ Zkq is selected and [y1] is set to [Mr + M1r1] for

some M1 ←$ U2k,k.

We can build an adversary B and show that

|Pr7.i.1[b′ = b]− Pr7.i.2[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) +

1

q − 1
= Advmddh

Uk,GGen,B(λ) + 2−Ω(λ).

(50)

The proof idea is almost the same as the one used in proving (48). We omit the proof

details.

Game H7.i.2 −H7.i.3. We first specify how M∗
0 and M∗

1 are selected. Note that with

probability at least 1− 2k
q = 1−2−Ω(λ) over the randomness of M0 and M1,

(
M

M

0

M0

0

M1

)
forms an invertible matrix over Z3k×3k

q . Therefore, Ker(M>) = span(M⊥) = Ker

((
M

M

0

M0

)>)
⊕

Ker

((
M

M

0

M1

)>)
. We can select M∗

0,M
∗
1 ∈ Z3k×k

q such that span(M∗
0) = Ker

((
M

M

0

M1

)>)

and span(M∗
1) = Ker

((
M

M

0

M0

)>)
. Thus we have span(M⊥) = span(M∗

1)⊕ span(M∗
0)

In this case, for all τ ∈ {0, 1}λ, we can replace M⊥RFi(τ|i) (used in H7.i.2) to

M∗
0RF

(0)
i (τ|i)+M∗

1RF
(1)
i (τ|i) (used in H7.i.3) where RF

(0)
i and RF

(1)
i are two independent

random function from {0, 1}i to Zkq . So with probability at least 1−2−Ω(λ), game H7.i.3

is almost the same with H7.i.2 and

|Pr7.i.2[b′ = b]− Pr7.i.3[b′ = b]| ≤ 2−Ω(λ). (51)

We then rewrite game H7.i.3 and define new games H7.i.4 −H7.i.7 in Figure 16.

Game H7.i.3 −H7.i.4.H7.i.4 is almost the same asH7.i.3 except for replacing the random

function RF
(0)
i : {0, 1}i → Zkq with RF

(0)
i+1 : {0, 1}i+1 → Zkq .

38 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

ExpKEMmddh,A(λ):

H7.i.3 H7.i.4 H7.i.5 H7.i.6, H7.i.7 = H7.i+1

b←$ {0, 1}
Tenc, Tdec ← ∅
M←$ U3k,k,M0,M1 ←$ U2k,k
M⊥ ←$ U3k,2k s.t. M>M⊥ = 0

M∗
0,M

∗
1 ←$ U3k,k with special span

Simulate random functions

RF
(0)

i+1
: {0, 1}i+1 → Zkq

RF
(1)

i+1
: {0, 1}i+1 → Zkq

RFi+1 : {0, 1}i+1 → Z2k
q

k1,0, · · · ,kλ,1 ←$ Z3k
q

pkkem ←
(

G,H, [M]

([M>kj,β])1≤j≤λ0≤β≤1

)
b′ ←$ AOenc(),Odec(·,·)(pkkem)

Return b′

Oenc():

H7.i.3 H7.i.4 H7.i.5 H7.i.6

�� ��H7.i.7 = H7.i+1

(ψ0, γ0)←$ G3k ×G
τ0 ← H(ψ0), r←$ Zkq
[y1]← [M]r, τ1 ← H([y1])

If τ b ∈ Tenc ∪ Tdec
Return ⊥

Tenc ← Tenc ∪ {τ b}
kτ1 ←

∑λ
j=1 kj,τ1j

+M∗
0RF

(0)

i+1
(τ1|i+1

) + M∗
1RF

(1)

i+1
(τ1|i+1)

kτ1 ←
∑λ
j=1 kj,τ1j

+ M⊥RFi+1(τ1|i+1)

If τ1i+1 = 0:

r0 ←$ Zkq , [y1]← [Mr + M0r0]

Else: //τ1i+1 = 1

r1 ←$ Zkq , [y1]← [Mr + M1r1]�� ��[y1]←$ G2k

ψ1 ←
[
y1

y1

]
, γ1 ← [y>1]kτ1

ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ = [y]):

H7.i.3 H7.i.4 H7.i.5 H7.i.6, H7.i.7 = H7.i+1

If ψ ∈ ψenc:

Return ⊥
τ ← H([y])

If

[
∃[y′] ∈ ψenc s.t.

τ = H([y′]) ∧ y 6= y′

]
Return ⊥

Tdec ← Tdec ∪ {τ}
kτ ←

∑λ
j=1 kj,τj

+M∗
0RF

(0)

i+1
(τ|i+1) + M∗

1RF
(1)

i+1
(τ|i+1)

kτ ←
∑λ
j=1 kj,τj + M⊥RFi+1(τ|i+1)

γ ← [y>]kτ

If pred(γ) = 0:

Return ⊥
Return γ

Fig. 16. Games H7.i.3 −H7.i.7.

Consider the following function RF
(0)
i+1,

RF
(0)
i+1(τ|i+1) =

{
RF

(0)
i (τ|i) If τi+1 = 0

RF
(0)
i (τ|i) + RF

′(0)
i (τ|i) If τi+1 = 1

This is indeed a random function with i + 1 bits input if RF
′(0)
i : {0, 1}i → Zkq is an

independent random function. If we use this function in H7.i.4, then for all τ ∈ {0, 1}λ

such that τi+1 = 0, RF
(0)
i+1(τ|i+1) = RF

(0)
i (τ|i) and H7.i.4 will be the same with H7.i.3 in

such cases.

Observe that for all τ ∈ {0, 1}λ such that τi+1 = 1 and all y ∈ span

(
M

M

0

M1

)
H7.i.4︷ ︸︸ ︷

y>(

λ∑
j=1

kj,τj + M∗
0RF

(0)
i (τ|i) +M∗

0RF
′(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i))

= y>(

λ∑
j=1

kj,τj + M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i))︸ ︷︷ ︸

H7.i.3

, (52)

since span(M∗
0) = Ker

((
M

M

0

M1

)>)
and y>M∗

0 = 0.

Then we have

– Oenc will be almost the same in H7.i.4 and H7.i.3. Since when τ1i+1 = 1, y1 ∈

span

(
M

M

0

M1

)
.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 39

– Odec(pred, [y]) will be almost the same inH7.i.4 andH7.i.3 for any y ∈ span

(
M

M

0

M1

)
with τi+1 = 1.

Thus, game H7.i.4 differs from H7.i.3 only if A submits some Odec(pred, [y]) query

such that y /∈ span

(
M

M

0

M1

)
but τi+1 = 1. We will call such a query an “ill-formed”

query.

To show that “ill-formed” queries are rejected overwhelmingly in both games, we

define two intermediate games H7.i.3′/4′ . These two games are almost the same with

H7.i.3/4 except for explicitly reject all ill-formed Odec queries. According to the analysis

above, we have that

Pr7.i.3′ [b
′ = b] = Pr7.i.4′ [b

′ = b]. (53)

We will prove that

|Pr7.i.3[b′ = b]− Pr7.i.3′ [b
′ = b]| ≤ Qdec · uncertA(λ), (54)

and

|Pr7.i.4[b′ = b]− Pr7.i.4′ [b
′ = b]| ≤ Qdec · uncertA(λ). (55)

To prove (54), we define the event Bad as the adversary A submits a Odec(pred, [y])

such that 1). [y] /∈ ψenc; 2). τi+1 = 1 for τ = H([y]); 3). y /∈ span

(
M

M

0

M1

)
and 4).

pred([y>]kτ) = 1 where kτ =
∑λ
j=1 kj,τj + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i). It is straight-

forward that game H7.i.3 will be almost the same with game H7.i.3′ if event Bad does

not happen. So we have

|Pr7.i.3[b′ = b]− Pr7.i.3′ [b
′ = b]| ≤ Pr7.i.3[Bad] = Pr7.i.3′ [Bad]. (56)

Let Qdec be the total number of decryption queries submitted by A, we have that

Pr7.i.3′ [Bad] ≤
Qdec∑
i=1

Pr7.i.3′ [Bad happens in the i-th Odec query]. (57)

So we will fix some i ∈ [Qdec] and consider the i-th Odec(predi, [y]) query submitted by

A in game H7.i.3′ . We will show that Bad will not happen overwhelmingly in this Odec

query.

We use the fact that ki+1,1 contains some entropy that is hidden from A. More

precisely, we use the fact that ki+1,1 ←$ Z3k
q is identically distributed with ki+1,1+M∗

0w

where ki+1,1 ←$ Z3k
q and w←$ Zkq . We will show that in game H7.i.3′ , w is hidden from

A until the i-th Odec query.

– pkKEM does not leak any information about w. Since M>(ki+1,1+M∗
0w) = M>ki+1,1.

This is due to the fact that span(M∗
0) = Ker

((
M

M

0

M1

)>)
⊂ Ker(M>).

– Oenc oracle does not leak any information about w. This is because in the Oenc

oracle of game H7.i.3′ , w is used only in the generation of γ1 when τ1i+1 = 1. In such

cases, since y1 ∈ span

(
M

M

0

M1

)
, γ1 = [y>1 (ki+1,1 + M∗

0w) + · · ·] = [y>1 ki+1,1 +

y>1 M∗
0w + · · ·] = [y>1 ki+1,1 + · · ·].

40 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– Odec oracle does not leak any information about w. This is because in the Odec oracle

of game H7.i.3′ , w is used only in the generation of γ when τi+1 = 1. Similarly, if

y ∈ span

(
M

M

0

M1

)
, γ does not contain any information about w. So w might be

used only when y /∈ span

(
M

M

0

M1

)
and τi+1 = 1. However, such case satisfies the

definition of ill-formed query and will be rejected directly in game H7.i.3′ , so the

response is independent of w.

Therefore, w is not leaked to A until the i-th Odec(predi, [y]) query.

So, if τi+1 = 1 and y /∈ span

(
M

M

0

M1

)
,

predi(γ) = predi([y
>kτ])

= predi([y
>(

λ∑
j=1

kj,τj + M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i))])

= predi([y
>(ki+1,1 + M∗

0w) + y>(
∑
j 6=i+1

kj,τj + M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i))])

= predi([y
>M∗

0︸ ︷︷ ︸
6=0

w + y>(

λ∑
j=1

kj,τj + M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i))]).

Since y>M∗
0 6= 0, the input of predi is uniform due to the fresh randomness of w. Thus

we have

Pr7.i.3′ [Bad happens in the i-th Odec query] = Pr
γ←$Γ

[predi(γ) = 1]. (58)

Thus (54) follows from (58), (57) and (56). Similarly, we can prove (55).

Combining (53), (54) and (55), we have that

|Pr7.i.3[b′ = b]− Pr7.i.4[b′ = b]| ≤ 2Qdec · uncertA(λ). (59)

Game H7.i.4 −H7.i.5.H7.i.5 is almost the same asH7.i.4 except for replacing the random

function RF
(1)
i : {0, 1}i → Zkq with RF

(1)
i+1 : {0, 1}i+1 → Zkq . We have that

|Pr7.i.4[b′ = b]− Pr7.i.5[b′ = b]| ≤ 2Qdec · uncertA(λ). (60)

The proof of (60) is similar to the one of (59). Consider the following function RF
(1)
i+1,

RF
(1)
i+1(τ|i+1) =

{
RF

(1)
i (τ|i) + RF

′(1)
i (τ|i) If τi+1 = 0

RF
(1)
i (τ|i) If τi+1 = 1

This is indeed a random function with i + 1 bits input if RF
′(1)
i : {0, 1}i → Zkq is an

independent random function. The rest of the proof is also symmetric. Define the ill-

formed query as a Odec(pred, [y]) query such that y /∈ span

(
M

M

0

M0

)
but τi+1 = 0.

When analyze the probability that event Bad happens, use the entropy in ki+1,0, i.e.,

ki+1,0 distributes identically to ki+1,0 + M∗
1w and show w is not leaked at all. We omit

the proof details here.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 41

Game H7.i.5 −H7.i.6.H7.i.6 is almost the same asH7.i.5 except for replacing M∗
0RF

(0)
i+1(τ|i+1)+

M∗
1RF

(1)
i+1(τ|i+1) with M⊥RFi+1(τ|i+1) for an independent random function RFi+1 :

{0, 1}i+1 → Z2k
q . Similar to the analysis of (51), we have that

|Pr7.i.5[b′ = b]− Pr7.i.6[b′ = b]| ≤ 2−Ω(λ). (61)

We omit the detailed analysis here.

Game H7.i.6 −H7.i.7. H7.i.7 is almost the same as H7.i.6 except for selecting [y1] uni-

formly random from G2k. Similarly, we can show that

|Pr7.i.6[b′ = b]− Pr7.i.7[b′ = b]| ≤ 2Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (62)

The proof of (62) can be seen as a combination of the proof of (49) and the proof of

(50). We omit the proof details here.

Game H7.i.7. H7.i.7 is almost the same with H7.i+1 and

Pr7.i.7′ [b
′ = b] = Pr7.i+1[b′ = b]. (63)

Thus, combining (48, 50, 51, 59, 60, 61, 62) and (63), Lemma 7 follows.

�
Game H7.λ. In this game, b is leaked to A only through γb (the output of Oenc). We will

show that, γ1 is actually uniform random over G, just like γ0. This conclusion follows

from the following facts.

– Note that the oracle Odec in game H7.λ has the rejection rule

([y] ∈ ψenc) ∨
(
∃[y′] ∈ ψenc s.t. H([y]) = H([y′]) ∧ y 6= y′

)
.

This condition is equivalent to τ = H([y]) ∈ Tenc. It means if the random function

RFλ takes τ1 as input in some Oenc query, it will not take the same input τ1 in any

Odec query.

– RFλ will take distinct input τ1 in each Oenc query. This is due to the rejection rule

of Oenc.

– With probability 1− 2−Ω(λ), y1 /∈ span(M) for all the Oenc queries.

Thus, for each γ1 in Oenc query,

γ1 =

y>1

λ∑
j=1

kj,τ1
j

+ y>1 M⊥︸ ︷︷ ︸
6=0

RFλ(τ1)

 is random.

Since RFλ(τ1) is not used anywhere else. Thus, γ0 and γ1 are (almost) identically dis-

tributed and we can conclude that∣∣∣∣Pr7.λ[b′ = b]− 1

2

∣∣∣∣ ≤ 2−Ω(λ). (64)

Finally, combining (33, 34, 40, 42, 43, 44, 45, 46, 47) and (64), Theorem 2 follows.

�

42 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

D Proof of Theorem 3

Proof of Theorem 3. Before we proving Theorem 3, we first prove the following lemma.

Lemma 8. For the KEM KEMmddh in Figure 7, for any polynomial n = ploy(λ) and

any PPT algorithm A,

|Pr[A(pkKEM, skKEM, ψ1, · · · , ψn) = 1]− Pr[A(pkKEM, skKEM, ψ
′
1, · · · , ψ′n) = 1]|

≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ)

where (pkKEM, skKEM) ←$ KGen(1λ) and (ψi, γi) ←$ KEnc(pkKEM), ψ′i ←$ Ψ for all i ∈
[n].

Proof of Lemma 8. This lemma follows from the fact that the encapsulation ψ (which

is the output of KEnc(pkKEM)) is a random vector over span([M]) and is independent of

skKEM. More precisely, we can build a MDDH adversary B′ such that

|Pr[A(pkKEM, skKEM, ψ1, · · · , ψn) = 1]− Pr[A(pkKEM, skKEM, ψ
′
1, · · · , ψ′n) = 1]|

≤ Advn-mddh
U3k,k,GGen,B′(λ).

(65)

Upon receiving a challenge (G, [M] ∈ G3k×k, [H] := ([h1| · · · |hn]) ∈ G3k×n) for the

n-fold U3k,k-MDDH problem, B′ random selects k1,0, · · · ,kλ,1 ←$ Z3k
q and calculates

([M>kj,β])1≤j≤λ,0≤β≤1. Thus B′ can perfectly simulate a properly distributed key pair

(pkKEM, skKEM). Then B′ calls A(pkKEM, skKEM, [h1], · · · , [hn]) and outputs whatever A
outputs. Thus, if each column [hi] of [H] is uniformly random over G3k, B′ outputs

A(pkKEM, skKEM, ψ
′
1, · · · , ψ′n). If each column [hi] of [H] is uniformly random over span([M]),

B′ outputs A(pkKEM, skKEM, ψ1, · · · , ψn). Thus (65) follows.

Finally Lemma 8 follows from (65), Lemma 6 and Lemma 3.

�
Now we prove Theorem 3. For any PPT adversary A with negligible uncertainty

uncertA(λ), consider an experiment ExprerKEMmddh,A(λ) which first randomly selects b ←$

{0, 1}, then calls Exprer-bKEMmddh,A(λ) and gets its output b′. It is straightforward that

AdvrerKEMmddh,A(λ) = 2

∣∣∣∣Pr[b′ = b in ExprerKEMmddh,A(λ)]− 1

2

∣∣∣∣ . (66)

Then we rewrite ExprerKEMmddh,A(λ) in Figure 17 and make changes to it gradually through

G0 to G3. Game G0 −G3 are defined below in Figure 17.

Game G0. This game is almost the same as ExprerKEMmddh,A(λ). Then

AdvspecialKEMmddh,A(λ) = 2

∣∣∣∣Pr0[b′ = b]− 1

2

∣∣∣∣ . (67)

Game G0 −G1. G1 is almost the same as G0 except for the generation of ψi.

– In G0, ψi is uniform over Ψ for all i ∈ [n].
– In G1, ψi is the output of KEnc(pkKEM) for all i ∈ [n].

By Lemma 8, we have that

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (68)

The reduction is straightforward and we omit the details here.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 43

ExprerKEMmddh,A(λ):

G0 G1, G2 G3

b←$ {0, 1}
(pkkem, skkem)←$ KGen(1λ)

ψran ← ∅
(st, 1n)←$ AOcha(·,·)(pkkem)

For i ∈ [n]:

ψi ←$ Ψ

(ψi, γi)←$ KEnc(pkkem)

(ψi, γi)←$ Ψ × Γ
ψran ← {ψ1, · · · , ψn}
b′ ←$ AOcha(·,·)(st,ψran)

Return b′

Ocha(ψ, pred):

G0, G1 G2, G3

If ψ /∈ ψran:

γ ← KDec(skkem, ψ)

Return pred(γ)

Else: //ψ = ψi ∈ ψran

If b = 1:

γ ← KDec(skkem, ψi)

γ ← γi

Return pred(γ)

Else:

Return 0

Fig. 17. Games G0 −G3 with respect to ExprerKEMmddh,A(λ).

Game G1 −G2. G2 is almost the same as G1 except for one change in Ocha oracle.

In G2, for a Ocha(ψ, pred) query where ψ = ψi ∈ ψran and b = 1, instead of using

γ ← KDec(skKEM, ψi), γ is set to γi which is generated by (ψi, γi)←$ KEnc(pkKEM).

Since KEMmddh is perfectly correct, this change is conceptual. Then we have

Pr1[b′ = b] = Pr2[b′ = b]. (69)

Game G2 −G3. G3 is almost the same as G2 except for the generation of (ψi, γi).

– In G2, (ψi, γi) is the output of KEnc(pkKEM) for all i ∈ [n].
– In G3, (ψi, γi) is uniform over Ψ × Γ for all i ∈ [n].

We will reduce the indistinguishability betweenG2 andG3 to the mPR-CCCA security of

KEMmddh. More precisely, we will build an adversary B (with uncertB(λ) = uncertA(λ))

against the mPR-CCCA security of KEMmddh such that

|Pr2[b′ = b]− Pr3[b′ = b]| ≤ Advmpr-ccca
KEMmddh,B(λ). (70)

On input pkKEM, B simulates game G2(G3) as follows.

– B randomly selects b←$ {0, 1}.
– B calls AOcha(·,·)(pkKEM) to get (st, 1n).

– To simulate Ocha(ψ, pred) for A, B submits a (pred, ψ) query to its own Odec

oracle. Since B has not submitted any Oenc query yet, set ψran is empty. So it will

always get a bit d = pred(KDec(skKEM, ψ)) as response. Then B forwards to A the

bit d as response.
– B queries Oenc() oracle n times and gets the response (ψi, γi) for i ∈ [n].
– B sets ψran ← {ψ1, · · · , ψn} and calls AOcha(·,·)(st,ψran) to get b′.

– To simulate Ocha(ψ, pred) for A, note that now ψran = ψenc. Thus

• If ψ /∈ ψran, B asks it own oracle to answer the Ocha(ψ, pred) query from A as

before.

• If ψ = ψi ∈ ψran, to make sure that uncertB(λ) = uncertA(λ), B first queries its

own oracle Odec(pred, ψi) and gets the response 0 (since ψi ∈ ψran = ψenc). Then B
returns 0 if b = 0 and returns pred(γi) if b = 1.

44 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– B outputs 1 if and only if (b′ = b).

B perfectly simulates game G2 for A if the response of Oenc() oracle (ψi, γi) is the out-

put of KEnc(pkKEM) for all i ∈ [n] and perfectly simulates game G3 for A if (ψi, γi) is

uniform over Ψ × Γ for all i ∈ [n]. Thus, (70) follows.

Game G3. We will show that∣∣∣∣Pr3[b′ = b]− 1

2

∣∣∣∣ ≤ Qcha · uncertA(λ). (71)

We first define Iin := {j ∈ [Qcha] | ψ ∈ ψran in the j-th Ocha(ψ, predj) query}. Consider

the j-th Ocha(ψ, predj) query for j ∈ Iin. Suppose ψ = ψi ∈ ψran. Then Ocha will

respond to A as follows{
predj(γi) if b = 1

0 if b = 0
. Suppose b = 1, now let’s consider the probability that there exists

j ∈ Iin such that the j-th Ocha query returns 1, i.e., Pr[∃j ∈ Iin, predj(γi) = 1]. In game

G3, since each γi is uniform over Γ , we have that

Pr[∃j ∈ Iin, predj(γi) = 1] ≤
∑
j∈Iin

Pr
γ←$Γ

[predj(γ) = 1]

≤
∑

j∈[Qcha]

Pr
γ←$Γ

[predj(γ) = 1] = Qcha · uncertA(λ).

Thus, no adversary can have an advantage greater than Qcha · uncertA(λ) in game G3

and (71) follows.

Finally, combining (67, 68, 69, 70) and (71), Theorem 3 follows.

�

E Supplementary Materials for Qualified Proof System

Recall the definition of Lsnd-indistinguishability of two proof systems in [GHK17].

Definition 17 (Lsnd-indistinguishability of two proof systems). Let PS0 = (PGen0,
PPrv0,PVer0,PSim0) and PS1 = (PGen1,PPrv1,PVer1,PSim1) be two proof systems for

a family of languages L = Lpars. Let Lsnd = {Lsnd
pars} be a family of languages, such that

Lpars ⊆ Lsnd
pars. For any adversary A, define experiment ExpPS-ind

Lsnd,PS0,PS1,A(λ) in Figure 18.

We say PS0 and PS1 are Lsnd-indistinguishable, if for all unbounded adversary A, the

advantage

AdvPS-ind
Lsnd,PS0,PS1,A(λ) :=

∣∣∣∣Pr
[
ExpPS-ind

Lsnd,PS0,PS1,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Now we recall the definition of L̃snd-extensibility of a proof system proposed in

[GHK17].

Definition 18 (L̃snd-extensibility of a proof system). Let L ⊆ Lsnd ⊆ L̃snd be three

family of languages. An Lsnd-qualified proof system PS is said to be L̃snd-extensible if

there exists a proof system P̃S for L that complies with L̃snd-constrained soundness and

such that PS and P̃S are Lsnd-indistinguishable.

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 45

ExpPS-ind
Lsnd,PS0,PS1,A(λ):

b←$ {0, 1}
(ppk, psk)←$ PGenb(pars)

b′ ←$ AOsim(),Obver(·,·,·)(ppk)

Return

{
1 If b′ = b

0 Otherwise

Osim():

x←$ Lsnd\L
(Π,K)← PSimb(psk, x)

Return (x,Π,K)

Over(x,Π, pred):

(v,K)← PVerb(psk, x,Π)

If

[
x /∈ Lsnd ∨ v = 0

∨pred(K) = 0

]
:

Return ⊥
Return K

Fig. 18. Experiment in the definition of Lsnd-indistinguishability of two proof systems.

F Proof of Lemma 1

Proof of Lemma 1. Game G1 differs from G0 if and only if A submits an Odec(pred, ψ =

([c], Π)) query such that

([c], Π) /∈ ψenc ∧ v = 1 ∧ pred(γ) = 1 ∧ τ ∈ T .

τ ∈ T means there exist a previous Oenc query such that [cb] is sampled and H([c])

equals H ([cb]). We will denote this event as Bad and G1 differs from G0 if and only if

Bad happens. So we have

|Pr0[b′ = b]− Pr1[b′ = b]| ≤ Pr0[Bad]. (72)

Since we have

Pr0[Bad] =
1

2
Pr0[Bad | b = 1] +

1

2
Pr0[Bad | b = 0], (73)

we then bound Pr0[Bad] with Lemma 9 and Lemma 10.

Lemma 9.

Pr0[Bad | b = 1] ≤ AdvcrH,B1
(λ) +Qdec · uncertA(λ).

Proof of Lemma 9. We define game H which is exactly the same with G0 when b = 1.

We denote PrH [E] the probability that event E happens in game H. Then we have

Pr0[Bad | b = 1] = PrH [Bad]. (74)

Recall that, Bad happens when A submits an Odec(pred, ψ = ([c], Π)) query such that

([c], Π) /∈ ψenc ∧ v = 1 ∧ pred(γ) = 1 ∧ τ ∈ T .

We decompose it into two subevents, Badin := Bad ∧ [c] ∈ span([A]) and Badout :=

Bad ∧ [c] /∈ span([A]). It is straightforward that

PrH [Bad] ≤ PrH [Badin] + PrH [Badout]. (75)

First we bound PrH [Badin]. In H, τ ∈ T means that there exists a previous Oenc query

such that [c1] = [A]r1 is sampled and H([c]) equals H ([c1]). We further decompose this

event into three cases as follows.

– For the case [c] 6= [c1], we found a collision for H.

46 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

– For the case [c] = [c1] ∧ [c] 6=
[
c1
]
, it will never happen. Since [c], [c1] ∈ span([A])

and [A] forms an invertible matrix, [c] = [c1] would imply [c] =
[
c1
]
.

– For the case [c] = [c1]. ([c1] , Π1) ∈ ψenc for (Π1, [κ1]) ← PPrv(ppk, [c1], r1). Since

([c], Π) /∈ ψenc, we have that Π 6= Π1. By the perfect completeness property of

PS, the verification PVer(psk, [c1], Π1) will always pass. However, v = 1 implies that

the verification PVer(psk, [c] = [c1], Π) also passes. This contradicts to the proof

uniqueness property of PS. So this case will never happen.

Thus, we can build a PPT adversary B1 and show that,

PrH [Badin] ≤ AdvcrH,B1
(λ). (76)

Next, we bound PrH [Badout]. For i ∈ [Qdec], we define event Badouti be the event that

Badout first happens in the i-th Odec query. Thus we have,

PrH [Badout] =

Qdec∑
i=1

PrH [Badouti]. (77)

We define a new event B̃ad be A submits an Odec(pred, ψ = ([c], Π)) query such that

pred(γ) = 1 ∧ [c] /∈ span([A]).

Meanwhile, for i ∈ [Qdec], we define B̃adi as the event that B̃ad first happens in the i-th

Odec query. Then Badouti is a subevent of B̃adi and

PrH [Badouti] ≤ PrH [B̃adi]. (78)

Then we bound PrH [B̃adi]. We use the fact that half of the k0’s entropy is hidden

from A. More precisely, k0 ←$ Z2k
q is identically distributed as k0 + A⊥w, where

k0 ←$ Z2k
q ,w ←$ Zkq and A⊥ ∈ Z2k×k

q s.t. A>A⊥ = 0. Then we will show that, in

game H, w is hidden from A before B̃ad first happens in the i-th Odec query.

– The public key pkkem does not leak any information about w since

(k>0 + w>(A⊥)>)A = k>0 A.

– Oenc also hides w since Oenc in H only uses pkkem.
– The first i− 1 Odec(pred, ψ = ([c], Π)) queries also hides w. Since in H, before the

i-th Odec query,
– if [c] /∈ span([A]) then pred(γ) = 0 (otherwise B̃ad first happens before the i-th

query). So these queries are rejected directly and is independent of w;
– if [c] ∈ span([A]), since

((k0 + A⊥w)> + τk>1) · [c] + [κ] = (k>0 + τk>1) · [c] + [κ] + w> (A⊥)>[c]︸ ︷︷ ︸
=[0]

,

w is not used yet.

Thus w is completely hidden fromA until the i-thOdec query. So in the i-thOdec(predi, ψ =

([c], Π)) query, if [c] /∈ span([A]), since

γ = (k>0 + τk>1) · [c] + [κ] + w> (A⊥)>[c]︸ ︷︷ ︸
6=[0]

,

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 47

γ will be random due to the randomness of w. In this case,

PrH [B̃adi] = Pr
γ←$Γ

[predi(γ)]. (79)

So combining (77), (78) and (79). We have that

PrH [Badout] =

Qdec∑
i=1

PrH [Badouti] ≤
Qdec∑
i=1

Pr
γ←$Γ

[predi(γ)] = Qdec · uncertA(λ). (80)

Finally, Lemma 9 follows from (74), (75), (76) and (80).

�

Lemma 10.

Pr0[Bad | b = 0] ≤ AdvcrH,B1
(λ) + k · Advmddh

D2k,k,GGen,B2
(λ) + Advmddh

Uk,GGen,B3
(λ)

+ 2Qdec · uncertA(λ) + 2−Ω(λ)

Proof of Lemma 10. We define game J which is identical to G0 conditioned on b = 0.

We denote PrJ [E] the probability that event E happens in game J . Then we have

Pr0[Bad | b = 0] = PrJ [Bad]. (81)

Recall Bad is the event that A submits an Odec(pred, ψ = ([c], Π)) query such that

∃([c0], Π0) ∈ ψenc

([c], Π) /∈ ψenc ∧ v = 1 ∧ pred(γ) = 1 ∧ H([c]) = H([c0]).

Similarly, we can further decompose this event into three cases as follows.

– For the case [c] 6= [c0], we found a collision for H.

– For the case [c] = [c0] ∧ [c] 6=
[
c0
]
. We denote this subevent by BadA.

– For the case [c] = [c0]. We denote this subevent by BadB.

Thus, we can build a PPT adversary B1 and show that,

PrJ [Bad] ≤ AdvcrH,B1
(λ) + PrJ [BadA] + PrJ [BadB]. (82)

To bound PrJ [BadA], we first change game J to JA.

– In game J , [c0] is uniformly chosen from G2k in each Oenc query.

– In game JA, [c0] is uniformly chosen from span([A]) in each Oenc query.

We can build an adversary B2 and show that

|PrJ [BadA]− PrJA [BadA]| ≤ k · Advmddh
D2k,k,GGen,B2

(λ) + 2−Ω(λ). (83)

To prove (83), we construct an adversary B′2 and show that

|PrJ [BadA]− PrJA [BadA]| ≤ AdvQenc-mddh
D2k,k,GGen,B′

2
(λ). (84)

Upon receiving a challenge (G, [M] ∈ G2k×k, [H] := ([h1| · · · |hQenc
]) ∈ G2k×Qenc) for

the Qenc-fold U2k,k-MDDH problem, B′2 simulates game J(JA). To reply the i-th Oenc

query made by A, B′2 embeds [hi] to [c0], i.e., [c0] ← [hi]. Finally B′2 outputs 1 if and

only if event BadA happens. Thus, if each column [hi] of [H] is uniformly random over

48 Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

G2k, B′2 perfectly simulates game J . If each column [hi] of [H] is uniformly random over

span([A]), B′2 perfectly simulates game JA. So (84) follows.

Furthermore, (83) follows from (84) and Lemma 5.

In game JA, we further decompose event BadA into two subevents. BadinA := BadA ∧
[c] ∈ span([A]) and BadoutA := BadA ∧ [c] /∈ span([A]). So we have

PrJA [BadA] ≤ PrJA [BadinA] + PrJA [BadoutA]. (85)

Similar to (80), we have

PrJA [BadoutA] ≤ Qdec · uncertA(λ). (86)

For BadinA , since [c], [c0] ∈ span([A]) and A forms an invertible matrix. Then [c] = [c0]

would imply that [c] =
[
c0
]
. So BadinA never happens in game JA and

PrJA [BadinA] = 0. (87)

Combining (83), (85), (86) and (87), we have that

PrJ [BadA] ≤ k · Advmddh
D2k,k,GGen,B2

(λ) +Qdec · uncertA(λ) + 2−Ω(λ). (88)

To bound PrJ [BadB], we first change game J to JB .

– In game J , [c0] is uniformly chosen from G2k in each Oenc query.
– In game JB , [c0] is uniformly chosen from span([A0]) in each Oenc query.

Similar to (84), we can build an adversary B′3 and show that

|PrJ [BadB]− PrJB [BadB]| ≤ AdvQenc-mddh
U2k,k,GGen,B′

3
(λ). (89)

By Lemma 6 and Lemma 3, we can build an adversary B3 and show that

|PrJ [BadB]− PrJB [BadB]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (90)

Similarly, we can further decompose event BadB into two subevents. BadinB := BadB∧
[c] ∈ span([A]) and BadoutB := BadB ∧ [c] /∈ span([A]). So we have

PrJB [BadB] ≤ PrJB [BadinB] + PrJB [BadoutB]. (91)

Similar to (80), we have

PrJB [BadoutB] ≤ Qdec · uncertA(λ). (92)

For BadinB , since [c] ∈ span([A]) and [c0] ∈ span([A0]), [c] = [c0] means that [c] =

[c0] ∈ span([A]) ∩ span([A0]). With overwhelming probability span([A]) ∩ span([A0]) =

{[0] ∈ G2k}. Since [c0] is uniform over span([A0]), [c0] = [0] happens with probability

only 2−Ω(λ). Thus we have

PrJB [BadinB] ≤ 2−Ω(λ). (93)

Combining (90, 91, 92) and (93), we have that

PrJ [BadB] ≤ Advmddh
Uk,GGen,B3

(λ) +Qdec · uncertA(λ) + 2−Ω(λ). (94)

Then, Lemma 10 follows from (81, 82, 88) and (94).

Finally, Lemma 1 follows from (72), (73), Lemma 9 and Lemma 10.

�

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions 49

G Proof of (28)

Define u> := k>0 A0, so (p>0 |u>) = k>0 (A|A0). Note that, the square matrix (A|A0) is

of full rank with probability 1−2−Ω(λ), then the entropy of k>0 is transferred to (p>0 |u>)

intactly. Recall that k>0 is uniform over Z1×2k
q . Therefore, (p>0 |u>) is uniform over Z1×2k

q

as well. Consequently, u> is uniformly distributed over Z1×k
q even conditioned on p>0 .

In G5, the Odec oracle rejects all [c] /∈ [span(A)]. Therefore, the information of k>0
leaked through Odec is characterized by the public key p>0 . Together with the fact that

[c1] = [A0]r1 in Oenc of G5 and G6, the computation of k>0 [c1] = [k>0 A0]r1 in Oenc of

G5 can be replaced with [v>]r for v> ←$ Z1×k
q in G6. Thus (28) follows.

Table of Contents

Tightly SIM-SO-CCA Secure Public Key Encryption from Standard

Assumptions . 1

Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu

1 Introduction . 1

1.1 Our Contribution . 3

1.2 Technique Overview . 3

1.3 Instantiation Overview . 4

2 Preliminaries . 5

2.1 Prime-order Groups . 6

2.2 Simulation-based, Selective-Opening CCA Security of PKE 6

2.3 Efficiently Samplable and Explainable (ESE) Domain 7

2.4 Cross-Authentication Codes . 7

3 Key Encapsulation Mechanism. 8

3.1 mPR-CCCA Security for KEM . 8

3.2 RER Security of KEM . 9

4 SIM-SO-CCA Secure PKE from KEM . 9

4.1 PKE Construction . 9

4.2 Tight Security Proof of PKE . 9

5 Instantiations . 16

5.1 KEM from MDDH . 16

5.2 KEM from Qualified Proof System with Compact Public Key 17

The Qualified Proof System in [GHK17]. 19

KEM from Qualified Proof System. 22

A Supplementary Materials for Preliminaries . 29

A.1 Hash Functions . 29

A.2 Matrix Decision Diffie-Hellman Assumption . 29

A.3 Public Key Encryption . 30

A.4 Concrete Instance of XAC. 31

B Detailed description of simulator construction . 31

C Proof of Theorem 2 . 32

D Proof of Theorem 3 . 42

E Supplementary Materials for Qualified Proof System . 44

F Proof of Lemma 1 . 45

G Proof of (28) . 49

	Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions
	Introduction
	Our Contribution
	Technique Overview
	Instantiation Overview

	Preliminaries
	Prime-order Groups
	Simulation-based, Selective-Opening CCA Security of PKE
	Efficiently Samplable and Explainable (ESE) Domain
	Cross-Authentication Codes

	Key Encapsulation Mechanism
	mPR-CCCA Security for KEM
	RER Security of KEM

	SIM-SO-CCA Secure PKE from KEM
	PKE Construction
	Tight Security Proof of PKE

	Instantiations
	KEM from MDDH
	KEM from Qualified Proof System with Compact Public Key
	The Qualified Proof System in DBLP:conf/crypto/GayHK17.
	KEM from Qualified Proof System.

	Supplementary Materials for Preliminaries
	Hash Functions
	Matrix Decision Diffie-Hellman Assumption
	Public Key Encryption
	Concrete Instance of XAC.

	Detailed description of simulator construction
	Proof of Theorem 2
	Proof of Theorem 3
	Supplementary Materials for Qualified Proof System
	Proof of Lemma 1
	Proof of (28)

