
Publicly Verifiable Proofs of Space
Markus Jakobsson, Agari

Abstract—We introduce a simple and practical Proof of Space
(PoS) with applicability to ledger-based payment schemes1. It
has a dramatically simpler structure than previous proposals,
and with that, becomes very easy to analyze. A proof can be as
short as a few hundred bits, and can be publicly verified using
only two hash function computations.

I. INTRODUCTION

While hardly anybody beyond cryptographers paid much
attention to Nakamoto’s 2008 Bitcoin publication [1] as it was
published, only ten years later, it is hard to find somebody who
has not heard about the methods described in the paper. Along
with the growth of interest in BitCoin has also come a dramatic
increase in the computational requirements associated with
mining. This, in turn, has caused notable increases in power
consumption.

While not all Bitcoin variants impose the same energy
costs, the variations are relatively minor, prompting calls
for alternative methods with the same principal functionality,
but with dramatically lower power consumption impact. A
promising approach replaces the underlying Proof of Work
(PoW) – which is intrinsically related to power consumption
– with a Proof of Space (PoS).

The last few years have, accordingly, seen research into
PoS-based payment schemes. Ateniese et al. [2] and Dziem-
bowski et al. [3] independently of each other introduced the
notion of PoS, based on pebbling of a tree-based structure, for
which an interactive proof of knowledge is added for purposes
of verification. While the need for interaction arising from the
use of challenge-response protocols makes these approaches
impractical for use in payment schemes, this drawback can
be avoided using standard random oracle based techniques.
However, the use of non-interactive proofs of knowledge
results in very large proofs.

The first large-scale implementation of a payment scheme
relying on a PoS was put forth by Burstcoin [4]. However, as
pointed out by Park et al. [5], Burstcoin does not disincentivize
computationally bound mining, and requires a large amount of
storage to be accessed – not just configured and possessed –
for the mining to work. Park et al. introduce a solution that
improves on Burstcoin, but which still relies on a challenge-
response structure to obtain public verifiability.

We introduce a solution that, by relying on a much more
straightforward data structure dramatically simplifies the ap-
proach, resulting in a PoS solution with a tiny proof –
just above 300 bits in one configuration. The proof can be
efficiently verified and does not rely on a challenge-response
method. Our solution is backwards compatible with typical

1Copyright 2018 Markus Jakobsson, all rights reserved. Patent Pending.

PoWs used in payment schemes, but for a minor difference in
the transaction scheduling (that we think is necessary for any
true PoS to be secure). The maybe most notable feature of
our scheme is its simplicity, among other things making our
security claims straightforward – including the proofs relating
to the probability of success for a miner with limited storage
resources.

II. SOLUTION

As for any PoS or PoW with applications to payments, there
are four parties:
• An authority A that publishes a set of algorithms and set

of parameters, defined by an initial ledger L0.
• A miner M that attempts to derive a new entry Ej+1

to the ledger Lj by solving a task; this is referred to as
mining.

• A verifier V that wishes to verify a tentative new entry
Ej+1 to ledger Lj . Typically, any miner would want to
do this before embarking on a mining effort.

• A payer who creates a transaction, comprising a message
with a digital signature. To record transactions (e.g., avoid
double-spending) transactions are posted to the ledger,
and are not considered completed until the ledger has
incorporated them.

We will now describe the basic version of our solution:

Configuration. A specifies the mining/verification algorithms
(detailed below), selects a root R and a parameter b that
dictates the difficulty of mining. A then creates an initial
ledger L0 = (b, h(V)). Here, h is a hash function and V
is a specification of how to verify a ledger entry. A closes
L0 by concatenating an entry E1 generated using the mining
operation specified below, using (E−1, E0) = (0, 0) for boost-
rapping. The resulting new ledger L1 = L0|E1 is made public.

Here, R may be a 256 bit pseudo-random number and b =
58. The hash function h may be selected as SHA256.

Mining Setup. As illustrated in figure 1, a miner M selects
a public key pkM, computes id = h(pkM); then generates
and stores n pairs (leafi, i), where i is will be referred to
as a witness, and leafi = h(R, id, i). These pairs are stored,
lexicographically ordered by leafi.

Transactions. A transaction is an event that needs to be
recorded; an example transaction is a payment. The transac-
tions are recorded by a ledger entry being added, where the
ledger entry is a function of the transactions in question.

The selection of what transactions to include in the genera-
tion of a task in the mining operation depends on whether the
mining operation uses a PoW or a PoS, as explained in the

Figure 1. The figure shows the mining setup process, wherein miner M
generates leaf values leafi and corresponding witnesses i from root R, by
computing a hash of (R, id, i), where R is the public root value, id is a hash
of public key pkM, and i is a counter. The leaves and witnesses are stored,
sorted with respect to the value of leafi.

Appendix. For PoW-based mining, a new ledger entry is based
on the previous ledger entry and a collection of transactions
posted after the old ledger entry [1].

A slightly more complicated transaction selection structure,
shown in figure 2, is necessary for any scheme based on PoS-
based mining to avoid the abuse detailed in the Appendix.
Here, the transactions recorded between the two most recent
ledger entries – along with these entries – are used to generate
the challenge for a new ledger entry.

Figure 2. The figure shows how a new ledger entry Ej+1 depends on
recorded transactions and previous ledger entries Ej−1 and Ej in a PoS-based
scheme. This structure prevents a cheating miner from increasing his success
probability by converting the PoS to a PoW, as described in the Appendix.

Mining. The miner M computes a task t = h(Ej−1, Ej , Tj),
where Tj is a hash value of a list of transactions, selected
as described above, and ordered based on the time they were
posted to the ledger. Here, Ej is the most recently posted ledger
entry. M then determines whether it has stored a value leafi
that matches t, i.e., for which the b least significant bits are
the same. (See fig. 3.) If so, M publishes a new ledger entry
Ej+1 = (id, i), where i is the witness associated with leafi.

Verification. A verifier V verifies a new ledger entry Ej+1 =
(id, i) by computing t = h(Ej−1, Ej , Tj) and comparing the
b least significant bits of t and h(R, id, i); if these match,
then V concludes that Lj+1 ← Lj |Ej+1, where | denotes
concatenation.

Figure 3. The figure shows the mining process. The miner computes a task
t and compares it to stored values leafi. If the b least significant bits are the
same, it is a match, and the witness i is output. Given lexicographic ordering
of the pairs (leafi, i) with respect to the value of leafi, the search operation
takes O(log n) memory accesses, where n is the number of pairs the miner
stores.

Generating a transaction. A minerM with a public key pkM
that is a hash of a value id in a ledger entry can compute a
digital signature s on a message m and output (m, s, pkM, j)
where j indicates the entry Ej associated with pkM. This is
verified by computing id = h(pkM), verifying that id is part
of a valid ledger entry Ej ; and then verifying that s is a valid
signature on m with respect to the public key pkM.

Here, the message m may include another public key pkP
associated with a second party P , who may use this key
to generate transactions, etc. Such signatures are verified by
checking that the chain of signatures is valid, and that the
“original” public key pkM is part of a valid ledger entry.

To avoid double-spending of financial resources, and to
timestamp agreements, transactions are recorded in the ledger,
as described above.

Analysis. It is easy to see that the probability of success of one
mining operation is upper bounded by n/2b for a miner M
storing n leaf/witness pairs, since h acts as a random oracle.

Here, the storage requirements are roughly n× (log n+ b)
bits, assuming only the b bits of the leaf value that will be used
for matching are stored. In other words, if n = 238 and b =
58 then this requires approximately 3.3 Terabytes, and results
in a success probability of about one in a million. The time
to perform the mining is approximately that of 38 memory
accesses, which on a typical high-performance hard drive takes
approximately 0.1s. The size of a ledger entry is the size of
the hash function output plus the size of the witness.

Fairness. It can be seen that this type of PoS is fair in that
a party with twice the storage capacity allocated to mining
would have twice the success probability. To favor larger play-
ers – or promote massive collaboration – one can require that a
valid ledger entry Ej contains several witnesses corresponding
to multiple, statistically independent, task values2. This has the
advantage of tightening up the requirements on the amount
of storage needed; for example, having less than half of the
“required” storage in a scheme requiring 20 witnesses results
in a probability of success of one in a million, whereas

2For example, a collection of statistically independent tasks tc can be
computed as h(L, c) where c is a counter.

an entity in possession of the required storage is essentially
guaranteed success.

Consensus. Our PoS proposal is compatible with existing
ledger-based schemes, and potential race conditions are ad-
dressed using consensus-based methods, just like for BitCoin
[1]. An important aspect relating to consensus is to determine
that all selected transactions were, indeed, posted before the
last ledger entry, due to the abusive strategy described in the
Appendix. As a result, verifiers observing a transaction near-
simultaneously to a ledger entry benefit from assuming that the
transaction came in last, as this minimizes abuse, and abuse
results in a relative loss for parties not performing the abuse.
This, in turn, means that verifiers in doubt will choose the
strategy that most others will choose, as consensus benefits
those supporting it.

Verifiers will also use consensus to choose the ledger
entry among competing (i.e., near-simultaneous) entries. If
race conditions between posted ledger entries are starting to
become common or the average arrival time between ledger
entries fall below a threshold then an authority can make
mining more difficult. T

Difficulty. The difficulty of mining can simply be raised by
increasing the value for b. This is best done by A by a signed
announcement, relating to a future3 ledger state, such as a
statement corresponding to “after another valid entry has been
made to the ledger, increase b by one.” Increasing b by 1, of
course, increases the difficulty of mining by a factor 2 for a
party that stores less than 2b unique leaf values4.

However, smaller increments of the mining difficulty are
also possible, and can be made in a practical manner. For
example, A can announce three bit positions (p1, p2, p3)
of witnesses and an associated disallowed pattern – such
as (0, 0, 1). This effectively makes 1/8th of all witnesses
temporarily invalid, thereby increasing the level of difficulty
correspondingly.

Privacy. The description above has, for simplicity of deno-
tation, focused on only one id per miner. However, it is
straightforward to generalize this to multiple public keys and
associated ids. A miner can either partition its storage in
terms of what id is used (which increases the number of
read operations of the mining) or store a tag indicating the
id used for each leaf/witness pair (requiring a slight increase
in storage requirements). Matching to a task will be done to the
leaves of all ids. If any one results in a witness, that witness
and corresponding id are posted. A miner that successfully
produces a ledger entry Ej can replace all entries in its storage
corresponding to the id of Ej to avoid repeatedly using the
corresponding public key.

3Making the announcement relative to a current state introduces a potential
divergence risk, where some miners are using one set of guidelines and others
use another.

4This suggests a storage strategy in which miners would store at least the
b bits currently required to verify a potential match.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008,
https://bitcoin.org/bitcoin.pdf.

[2] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of Space:
When Space is of the Essence,” 2013, https://eprint.iacr.org/2013/805.pdf.

[3] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
Space,” 2013, https://eprint.iacr.org/2013/796.pdf.

[4] “BURSTCOIN Celebrates Birthday With Release Of New
Energy Efficient HDD Mining Wallet,” Aug 11, 2015,
http://us.newsbtc.com/burstcoin-celebrates-birthday-with-release-of-
new-energy-efficient-hdd-mining-wallet/.

[5] S. Park, A. Kwon, J. Alwen, G. Fuchsbauer, P. Gazi, and K. Pietrzak,
“SpaceMint: A Cryptocurrency Based on Proofs of Space,” 2015,
https://eprint.iacr.org/2015/528.pdf.

APPENDIX

PoW-based mining uses challenges that are set as a function
of the current ledger (or most recent ledger entry,) combined
with a representation of a list of transactions posted after the
last transaction included in the previous ledger entry. This
is possible because in PoW-based mining, every challenge is
equally difficult to solve as another, which means that there is
no incentive for miners to include transactions simply for the
reason of changing the challenge. That, however, is not true
in PoS-based mining schemes.

Figure 4. The figure shows how a cheating miner generates (but does not
post) a large number of potential transactions, then determining whether the
posted list of transactions combined with any of the potential transactions
results in a task that the miner can answer. If so, then the miner posts the
successful potential transaction and the corresponding ledger entry in rapid
succession.

If the selection of transactions of a PoW scheme were to
be used in a PoS scheme, a miner in possession of a certified
public key could therefore create a very large number p of
potential transactions, which we will denote τ1...τp, each one
corresponding to a unique valid digital signature on a message
(see Figure 4.) It would then determine, for each τk, what
challenge ck would result from posting τk to the ledger. If
the miner has a witness that matches this challenge ck, then
it would post τk and, in rapid succession, the ledger entry
that contains a valid witness with respect to the set of posted
transactions. See Figure 4. Since each PoS takes only fractions
of a second to generate, this would be a practical approach for
miners to dramatically increase their success by effectively
turning the PoS into a memory-bound PoW.

To stop such abuse, it is necessary to change the method
of selecting transactions so that transactions need to be posted
before they can be selected. The most practical way of achiev-
ing that is to use new ledger entries as “punctuation” – where
the most recent entry also effectively serves as a randomizer
of the challenge that results from it and the transactions posted
before it, as illustrated in Figure 2. Consensus-based methods
will provide assurance that the ordering is adhered to.

