
Two-Factor Authentication with End-to-End

Password Security

Stanislaw Jarecki1, Hugo Krawczyk2, Maliheh Shirvanian3, and Nitesh Saxena3

1 University of California Irvine. sjarecki@uci.edu
2 IBM Research. hugo@ee.technion.ac.il

3 University of Alabama at Birmingham. maliheh,saxena@uab.edu

Abstract. We present a secure two-factor authentication (TFA) scheme
based on the possession by the user of a password and a crypto-capable
device. Security is �end-to-end" in the sense that the attacker can attack
all parts of the system, including all communication links and any subset
of parties (servers, devices, client terminals), can learn users' passwords,
and perform active and passive attacks, online and o�ine. In all cases
the scheme provides the highest attainable security bounds given the set
of compromised components. Our solution builds a TFA scheme using
any Device-Enhanced PAKE, de�ned by Jarecki et al., and any Short
Authenticated String (SAS) Message Authentication, de�ned by Vau-
denay. We show an e�cient instantiation of this modular construction
which utilizes any password-based client-server authentication method,
with or without reliance on public-key infrastructure. The security of the
proposed scheme is proven in a formal model that we formulate as an
extension of the traditional PAKE model.
We also report on a prototype implementation of our schemes, including
TLS-based and PKI-free variants, as well as several instantiations of the
SAS mechanism, all demonstrating the practicality of our approach.

1 Introduction

Passwords provide the dominant mechanism for electronic authentication, pro-
tecting a plethora of sensitive information. However, passwords are vulnerable to
both online and o�ine attacks.4A network adversary can test password guesses
in online interactions with the server while an attacker who compromises the au-
thentication data stored by the server (i.e., a database of salted password hashes)
can mount an o�ine dictionary attack by testing each user's authentication infor-
mation against a dictionary of likely password choices. O�ine dictionary attacks
are a major threat, routinely experienced by commercial vendors, and they lead
to the compromise of billions of user accounts [7, 6, 15, 20, 17, 12]. Moreover, be-
cause users often re-use their passwords across multiple services, compromising
one service typically also compromises user accounts at other services.

Two-factor password authentication (TFA), where user U authenticates to
server S by �proving possession� of an auxiliary personal device D (e.g. a smart-
phone or a USB token) in addition to knowing her password, forms a common

4 This is a full version of a paper which appeared in PKC'18 [38].

defense against online password attacks as well as a second line of defense in
case of password leakage. A TFA scheme which uses a device that is not directly
connected to U's client terminal C typically works as follows: D displays a short
one-time secret PIN, either received from S (e.g. using an SMS message) or com-
puted by D based on a key shared with S, and the user manually types the PIN
into client C in addition to her password. Examples of systems that are based on
such one-time PINs include SMS-based PINs, TOTP [10], HOTP [14], Google
Authenticator [4], FIDO U2F [2], and schemes in the literature such as [48].

Vulnerabilities of traditional TFA schemes. Existing TFA schemes, both
PIN-based and those that do not rely on PINs, e.g. [8, 1], combine password
authentication and 2nd-factor authentication as separate authentication mech-
anisms leading to several limitations. Chief among these is that such TFA solu-
tions remain vulnerable to o�ine dictionary attacks upon server compromise in
the same way as non-TFA password authentication schemes (i.e. via exposure
of users' salted hashes), thus perpetuating the main source of password leakage.
Moreover, existing TFA's have several vulnerabilities against online attacks: (1)
The read-and-copy PIN-transfer is subject to a variety of eavesdropping attacks,
including SMS hijacking 5, shoulder-sur�ng, PIN recording, client-side or device-
side attacks via keyloggers or screen scrapers, e.g. [43], and PIN phishing [16].
(2) The read-and-copy PIN-transfer allows only limited PIN entropy and while,
say, a 6-digit PIN is hard to guess, PIN guessing can be used in a large-scale
online attack against accounts whose passwords the attacker already collected,
e.g. [15, 20, 17, 12]. For example, if the attacker obtains password information
for a large set of accounts, PINs are 6-digit long, and the attacker can try 10
PIN guesses per account, one expects a successful impersonation per 100,000
users. (3) Current PIN-based TFAs perform sequential authentication using the
password and the PIN, i.e. C sends the password to S (over TLS), S con�rms
whether pwd is correct, and only then C sends to S the PIN retrieved from D.
This enables online password attacks without requiring PIN guessing or inter-
action with a device, thus voiding the e�ects of PIN on password-guessing or
password-con�rmation online attacks.

Our Contributions. In this paper we aim to address the vulnerabilities of the
currently deployed TFA schemes by (1) introducing a precise security model for
TFA schemes capturing well-de�ned maximally-attainable security bounds, (2)
exhibiting a practical TFA scheme which we prove to achieve the strong secu-
rity guaranteed by our formal model, and (3) prototyping several methods for
validating user's possession of the secondary authentication factor. We expand
on each of these aspects next.

TFA Security Model with End-to-End Security. We introduce a Two-
Factor Authenticated Key Exchange (TFA-KE) model in which a user authenti-
cates to server S by (1) entering a password into client terminal C and (2) proving

5 E.g., SIM card swap attacks [18] and SMS re-direction where PINs are diverted to
the attacker's phone exploiting SS7 vulnerabilities [21]. The latter led to NIST's
recent decision to deprecate SMS PINs as a TFA mechanism [19].

2

possession of a personal device D which forms the second authenticator factor.
In the TFA-KE model, possession of D is proved by the user con�rming in the
device equality of a t-bit checksum displayed by D with a checksum displayed by
C. Following [51] (see below), this implements a t-bit C-to-D user-authenticated
channel, which con�rms that the same person is in control of client C and device
D. This channel authentication requirement is weaker than the private channel
required by current PIN-based TFAs and, as we show, it allows TFA schemes to
be both more secure and easier to use.

The TFA-KE model, that we de�ne as an extension of the standard Password-
Authenticated Key Exchange (PAKE) [24] and the Device-Enhanced PAKE
(DE-PAKE) [37] models, captures what we call end-to-end security by allow-
ing the adversary to control all communication channels and compromise any
protocol party. For each subset of compromised parties, the model speci�es best-
possible security bounds, leaving inevitable (but costly) exhaustive online guess-
ing attacks as the only feasible attack option. In particular, in the common case
that D and S are uncorrupted, the only feasible attack is an active simultaneous
online attack against both S and D that also requires guessing the password and
the t-bit checksum. Compromising server S allows the attacker to impersonate
S, but does not help in impersonating the user to S, and in particular does not
enable an o�ine-dictionary attack against the user's password. Compromising
device D makes the authentication e�ectively password-only, hence o�ering best
possible bounds in the PAKE model (in particular, the o�ine dictionary attack
is possible only if D and S are both compromised). Finally, compromising client
C leaks the password, but even then impersonating the user to the server requires
an active attack on D. We prove our protocols in this strong security model.

Practical TFA with End-to-End Security.Our main result is a TFA scheme,
GenTFA that achieves end-to-end security as formalized in our TFA-KE model
and is based on two general tools. The �rst is a Device-Enhanced Password Au-
thenticated Key Exchange (DE-PAKE) scheme as introduced by Jarecki et. al
[37]. Such a scheme assumes the availability of a user's auxiliary device, as in
our setting, and utilizes the device to protect against o�ine dictionary attacks
in case of server compromise. However, DE-PAKE schemes provide no protec-
tion in case that the client machine C is compromised and, moreover, security
completely breaks down if the user's password is leaked. Thus, our approach
for achieving TFA-KE security is to start with a DE-PAKE scheme and ar-
mor it against client compromise (and password leakage) using our second tool,
namely, a SAS-MA (Short-Authentication-String Message Authentication) as
de�ned by Vaudenay [51]. In our application, a SAS-MA scheme utilizes a t-bit
user-authenticated channel, called a SAS channel, to authenticate data sent from
C to D. More speci�cally, the SAS channel is implemented by having the user
verify and con�rm the equality of two t-bit strings, called checksums, displayed
by both C and D. It follows from [51] that if the displayed checksums coincide
then the information received by D from C is correct except for a 2−t probability
of authentication error. We then show how to combine a DE-PAKE scheme with
such a SAS channel to obtain a scheme, GenTFA, for which we can prove TFA-

3

KE security, hence provably avoiding the shortcomings of PIN-based schemes.
Moreover, the use of the SAS channel relaxes the required user's actions from a
read-and-copy action in traditional schemes to a simpler compare-and-con�rm
which also serves as a proof of physical possession of the device by the user (see
more below).

We show a concrete practical instantiation of our general scheme GenTFA,
named OpTFA, that inherits from GenTFA its TFA-KE security. Protocol OpTFA
is modular with respect to the (asymmetric) password protocol run between
client and server, thus it can utilize protocols that assume PKI as the traditional
password-over-TLS, or those that do not require any form of secure channels, as
in the (PKI-free) asymmetric PAKE schemes [25, 32]. In the PKI case, OpTFA
can run over TLS, o�ering a ready replacement of current TFA schemes in the
PKI setting. In the PKI-free case one gets the advantages of the TFA-KE setting
without relying on PKI, thus obtaining a strict strengthening of (password-only)
PAKE security [24, 45] as de�ned by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with
4 exponentiations by C and 3 by D, plus the cost of a password authentication
protocol between C and S. In the PKI setting the latter is the cost of establishing
a server-authenticated TLS channel, while in the PKI-free case one can use an
asymmetric PAKE (e.g., [27, 36]) with cost (some of it computable o�ine) of 3
exponentiations for C, 2 for S, and one multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol
OpTFA, in both the PKI and PKI-free versions, with the client implemented
as a Chrome browser extension, the device as an Android app, and D-C com-
munication implemented using Google Cloud Messaging. We also designed and
implemented several instantiations of the human-assisted C-to-D SAS channel
required by our TFA-KE solution and model. Recall that a SAS channel re-
places the user's read-and-copy action of a PIN-based TFA with the compare-
and-con�rm action used to validate the checksums displayed by C and D. The
security of a SAS-model TFA-KE depends on the checksum entropy t, called
the SAS channel capacity, hence the two important characteristics of a physical
design of a SAS channel are its capacity t and the ease of the compare-and-
con�rm action required of the user. In Section 6 we show several SAS designs
that present di�erent options in terms of channel capacity and user-friendliness.

Related Works. We discuss related works in greater detail in Section 7. The
main observations are: First, multiple methods have been proposed in the crypto
literature for strengthening password authentication against o�ine dictionary
attacks in case of server compromise by introducing an additional party in the
protocol (e.g., password-hardened or device-enhanced authentication [31, 27, 23,
37] and Threshold-PAKE or 2-PAKE, e.g. [44, 28, 40]), but these schemes of-
fer no security against an active attacker in case of password leakage or client
compromise, hence they are not TFAs. Second, many TFA schemes o�er alter-
natives to PIN-based TFAs, but none of them o�er protection against o�ine
attacks upon server compromise except for the scheme of [48] (see Section 7).
Moreover, if these schemes consider D as an independent entity (rather than a

4

local component of client C) then they either have on-line security vulnerabili-
ties or they require a pre-set secure full-bandwidth C-D channel. In our case, we
do with just a SAS channel that as we show in Section 6 has several practical
implementations. Third, we are not aware of any attempt to model security of
TFA schemes where D and C are not co-located, nor do we know any PKI-free
TFA schemes proposed for this setting.

Road-Map In Section 2 we present TFA-KE security model. In Section 3 we
describe our protocol building blocks, including the SAS-MA protocol of [51].
In Section 4 we present a practical TFA-KE protocol OpTFA, and we provide
informal rationale for its design choices. In Section 5 we show a more general
TFA-KE protocol GenTFA, of which OpTFA is an instance, together with its
formal security proof. In Section 6 we report on the implementation and testing
of protocol OpTFA, and we describe several SAS channel designs. In Section 7
we include a more detailed discussion of related works.

2 TFA-KE Security

We introduce the Two-Factor Authenticated Key Exchange (TFA-KE) security
model that de�nes the assumed environment and participants in our protocols
as well as the attacker's capabilities and the model's security guarantees. Our
starting point is the Device-Enhanced PAKE (DE-PAKE) model, introduced
in [37], which extends the well-known two-party Password-Authenticated Key
Exchange (PAKE) model [24] to a multi-party setting that includes users U,
communicating from client machines C, servers S to which users log in, and
auxiliary devices D, e.g. a smartphone. A DE-PAKE scheme has the security
properties of a two-server PAKE (2-PAKE) [28, 40] where D plays the role of the
2nd server. Namely, a compromise of either S or D (but not both) essentially does
not help the attacker, and in particular leaks no information about the user's
password. However, whereas 2-PAKE might be insecure in case of a compromise
of both S and D, in a DE-PAKE the adversary who compromises S and D must
stage an o�ine dictionary attack to learn anything about the password. We recall
the standard PAKE model of [24] and its Device-Enhanced PAKE (DE-PAKE)
extension of [37] in Appendix A.

The TFA-KE model considers the same set of parties as in the DE-PAKE
model and all the same adversarial capabilities, including controlling all com-
munication links, the ability to mount online active attacks, o�ine dictionary
attacks, and to compromise devices and servers. However, the DE-PAKE model
does not consider client corruption or password leakage. Indeed, in case of pass-
word leakage an active adversary can authenticate to S by impersonating the
legitimate user in a single DE-PAKE session with D and S. Since a TFA scheme
is supposed to protect against the client corruption and password leakage attacks,
our TFA-KE model enhances the DE-PAKE model by adding these capabilities
to the adversary while preserving all the other strict security requirements of DE-
PAKE. In general, DE-PAKE requirements were such that the only allowable
attacks on the system, under a given set of corrupted parties, are the unavoidable

5

exhaustive online guessing attacks for that setting; the same holds for TFA-KE
but with additional best resilience to client compromise and password leakage.

Note, however, that if C,D,S communicate only over insecure links then an
attacker who learns the user's password will always be able to authenticate to S
as in the case of DE-PAKE, by impersonating the user to D and S. Consequently,
to allow device D to become a true second factor and maintain security in case
the password leaks, one has to assume some form of authentication in the C to
D communication which would allow the user to validate that D communicates
with the user's own client terminal C and not with the attacker who performs a
man-in-the-middle attack and impersonates this user to D.

To that end our TFA-KE model augments the communication model by an
authentication abstraction on the client-to-device channel, but it does so without
requiring the client to store any long-term keys (other than the user's password).
Namely, we assume a uni-directional C-to-D �Short Authenticated String� (SAS)
channel, introduced by Vaudenay [51], which allows C to communicate t bits
to D that cannot be changed by the attacker. The t-bit C-to-D SAS channel
abstraction comes down to a requirement that the user compares a t-bit checksum
displayed by both C and D, and approves (or denies) their equality by choosing
the corresponding option on device D.

As is standard, we quantify security by attacker's resources that include the
computation time and the number of instances of each protocol party the adver-
sary interacts with. We denote these as qD, qS , qC , q

′
C , where the �rst two count

the number of active sessions between the attacker and D and S, resp., while
qC (resp. q′C) counts the number of sessions where the attacker poses to C as S
(resp. as D). Security is further quanti�ed by the password entropy d (we assume
the password is chosen from a dictionary of size 2d known to the attacker), and
parameter t, which is called the SAS channel capacity. As we explain in Section
3, a C-to-D SAS channel allows for establishing a D-authenticated secure channel
between D and C, except for the 2−t probability of error [51], which explains 2−t

factors in the TFA-KE security bounds stated below.

TFA Security De�nition.We consider a communication model of open chan-
nels plus the t-bit SAS-channel between C and D, and a man-in-the-middle ad-
versary that interacts with qD, qS , qC , q

′
C sessions of D,S,C, as described above.

The adversary can also corrupt any party, S, D, or C, learning its stored secrets
and the internal state as that party executes its protocol, which in the case of
C implies learning the user's password. All other adversarial capabilities as well
as the test session experiment de�ning the adversary's goal are as in DE-PAKE
(and PAKE) models � see Appendix A. In particular, the adversary's advantage
is, as in DE-PAKE and PAKE, an advantage in distinguishing between a random
string and a key computed by S or C on a test session.

The security requirements set by De�nition 1 below are the strictest one can
hope for given the communication and party corruption model. That is, wher-
ever we require the attacker's advantage to be no more than a given bound with
a set of corrupted parties, then there is an (unavoidable) attack - in the form of
exhaustive guessing attack - that achieves this bound under the given compro-

6

mised parties. Importantly, and in contrast to typical two-factor authentication
solutions, the TFA-KE model requires that the second authentication factor D
not only provides security in case of client and/or password compromise, but
that it also strengthens online and o�ine security (by 2t factors) even when the
password has not been learned by the attacker.

De�nition 1. A TFA-KE protocol TFA is (T, ε)-secure if for any password dic-
tionary Dict of size 2d, any t-bit SAS channel, and any attacker A bounded by
time T , A's advantage AdvTFAA in distinguishing the tested session key output
by the protocol from random is bounded as follows, for qS , qC , q

′
C , qD as de�ned

above:

1. If S, D, and C are all uncorrupted:

AdvTFAA ≤ min{qC + qS/2
t, q′C + qD/2

t}/2d + ε

2. If only D is corrupted: AdvTFAA ≤ (qC + qS)/2d + ε

3. If only S is corrupted: AdvTFAA ≤ (q′C + qD/2
t)/2d + ε

4. If only C is corrupted (or the user's password leaks by any other means):
AdvTFAA ≤ min(qS , qD)/2t + ε

5. If both D and S are corrupted (but not C), and qS and qD count A's
o�ine operations performed based on resp. S's and D's state: AdvTFAA ≤
min{qS , qD}/2d

Explaining the bounds. The security of the TFA scheme relative to the
DE-PAKE model can be seen by comparing the above bounds to those in
De�nition 3 in Appendix A. Here we explain the meaning of some of these
bounds. In the default case of no corruptions, the adversary's probability of at-
tack is at most min(qC+qS/2

t, q′C+qD/2
t)/2d improving on DE-PAKE bound

min(qC+qS , q
′
C+qD)/2d and on the PAKE bound (qC+qS)/2d. For simplicity,

assume that qC = q′C = 0 (e.g., in the PKI setting where C talks to S over TLS
and the communication from D to C is authenticated), in which case the bound
reduces to min(qS , qD)/2t+d. The interpretation of this bound, and similarly for
the other bounds in this model, is that in order to have a probability q/2t+d

to impersonate the user, the attacker needs to run q online sessions with S and
also q online sessions with D. (In each such session the attacker can test one
password out of a dictionary of 2d passwords, and can do so successfully only if
its communication with D is accepted over the SAS channel, which happens with
probability 2−t.) This is the optimal security bound in the TFA-KE setting since
an adversary who guesses both the user's password and the t-bit SAS-channel
checksum can successfully authenticate as the user to the server.

In case of client corruption (and password leakage), the adversary's proba-
bility of impersonating the user to the server is at most min(qS , qD)/2t, which
is the best possible bound when the attacker holds the user's password. In case

7

of device corruption, the adversary's advantage is at most (qC+qS)/2d, which
matches the optimal PAKE probability, namely, when a device is not available.
Finally, upon server corruption, the adversary's probability of success in imper-
sonating the user to any uncorrupted server session is (assuming q′C = 0 for
simplicity) at most qD/2

t+d. In other words, learning server's private informa-
tion necessarily allows the adversary to authenticate as the server to the client,
but it does not help to impersonate as the client to the server. In contrast, widely
deployed PIN-based TFA schemes that transmit passwords and PINs over a TLS
channel are subject to an o�ine dictionary attack in this case.

Extension: The Case of C and S Corruption. Note that when C and D are
corrupted, there is no security to be o�ered because the attacker has possession
of all authenticator factors, the password and the auxiliary device. However, in
the case that both C and S are corrupted one can hope that the attacker could
not authenticate to sessions in S that the attacker does not actively control.
Indeed, the above model can be extended to include this case with a bound of
qD/2

t. Our protocols as described in Figures 3 and 4 do not achieve this bound,
but it can be easily achieved for example by the following small modi�cation
(refer to the �gures): S is initialized with a public key of D and before sending
the value zid to D (via C), S encrypts it under D's public key.

3 Building Blocks

We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [51]. The Short Authentication String Mes-
sage Authentication (SAS-MA) scheme allows the transmission of a message
from a sender to a receiver so that the receiver can check the integrity of the re-
ceived message. A SAS-MA scheme considers two communication channels. One
that allows the transmission of messages of arbitrary length and is controlled
by an active man-in-the-middle, and another that allows sending up to t bits
that cannot be changed by the attacker (neither channel is assumed to provide
secrecy). We refer to these as the open channel and the SAS channel, respec-
tively, and call the parameter t the SAS channel capacity. A SAS-MA scheme is
called secure if the probability that the receiver accepts a message modi�ed by
a (computationally bounded) attacker on the open channel is no more than 2−t

(plus a negligible fraction). In Figure 1 we show a secure SAS-MA implementa-
tion of [51] for a sender C and a receiver D. The SAS channel is abstracted as a
comparison of two t-bit strings checksumC and checksumD computed by sender
and receiver, respectively. As shown in [51], the probability that an active man-
in-the-middle attacker between D and C succeeds in changing message MC while
D and C compute the same checksum is at most 2−t. Note that this level of
security is achieved without any keying material (secret or public) pre-shared
between the parties. Also, importantly, there is no requirement for checksums to
be secret. (In Section 5 we present a formal SAS-MA security de�nition.)

Thus, the SAS-MA protocol reduces integrity veri�cation of a received mes-
sage MC to verifying the equality of two strings (checksums) assumed to be

8

transmitted �out-of-band", namely, away from adversarial control. In our appli-
cation, the checksums will be values displayed by device D and client C whose
equality the user veri�es and con�rms via a physical action, e.g. a click, a QR
snapshot, or an audio read-out (see Section 6). In the TFA-KE application this
user-con�rmation of checksum equality serves as evidence for the physical con-
trol of the terminal C and device D by the same user, and a con�rmation of
user's possession of the 2nd authentication factor implemented as device D.

Input: Sender C holds message MC; Receiver D holds MC
′.

Output: Receiver D accepts if MC = MC
′ and rejects otherwise.

Assumptions: C-to-D SAS channel with capacity t; security parameter κ; hash func-
tion Hcom onto {0, 1}κ.

SAS-MA Protocol:

1. C sends Com = Hcom(MC, RC , d) to D for random RC , d s.t. |RC | = t and |d| = κ;
2. D sends to C a random string RD of length t;
3. C sends (RC , d) to D and enters checksumC = RC⊕RD into C-to-D SAS channel;
4. D sets checksumD = RC⊕RD and it accepts if and only if Com = Hcom(MC

′, RC , d)
and checksumC received on the SAS channel equals checksumD.

Fig. 1: SAS Message Authentication (SAS-MA) [51]

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a
con�dential channel from D to C. The transformation is standard: To send a
message m securely from D to C (in our application m is a one-time key and
D's PTR response, see below), C picks a CCA-secure public key encryption key
pair (sk, pk) (e.g., pair (x, gx)) for an encryption scheme (KG,Enc,Dec), sends
pk to D, and then C and D execute the SAS-MA protocol on MC = pk. If D
accepts, it sends m encrypted under pk to C, who decrypts it using sk. The
security of SAS-MA and the public-key encryption imply that an attacker can
interceptm (or modify it to some related message) only by supplying its own key
pk′ instead of C's key, and causing D to accept in the SAS-MA authentication
of pk′ which by SAS-MA security can happen with probability at most 2−t.
The resulting protocol has 4 messages, and the cost of a plain Di�e-Hellman
exchange if implemented using ECIES [22] encryption. We refer to this scheme
as SAS-SMT (SMT for �secure message transmission").

aPAKE. Informally, an aPAKE (for asymmetric or augmented PAKE) is a
password protocol secure against server compromise [25, 32], namely, one where
the server stores a one-way function of the user's password so that an attacker
who breaks into the server can only learn information on the password through an
exhaustive o�ine dictionary attack. While the aPAKE terminology is typically
used in the context of password-only protocols that do not rely on public keys,
we extend it here (following [37]) to the standard PKI-based password-over-

9

TLS protocol. This enables the use of our techniques in the context of TLS, a
major bene�t of our TFA schemes. Note that this standard protocol, while secure
against server compromise is not strictly an aPAKE as it allows an attacker
to learn plaintext passwords (decrypted by TLS) for users that authenticate
while the attacker is in control of the server. As shown in [37], dealing with this
property requires a tweak in the DE-PAKE protocol (C needs to authenticate
the value b sent by D in the PTR protocol described below - see also Sec. 6).

DE-PAKE. A Device-Enhanced PAKE (DE-PAKE) [37] is an extension of the
asymmetric PAKE model by an auxiliary device, which strengthens aPAKE
protocols by eliminating o�ine dictionary attacks upon server compromise. We
discuss DE-PAKE in more detail in Section 2 and recall its formal model in
Appendix A. We use DE-PAKE protocols as a main module in our general con-
struction of TFA-KE, and our practical instantiation of this construction, pro-
tocol OpTFA, uses the DE-PAKE scheme of [37] which combines an asymmetric
aPAKE with a password hardening procedure PTR described next.

Password-to-Random Scheme PTR. A PTR is a password hardening proce-
dure that allows client C to translate with the help of device D (which stores a
key k) a user's master password pwd into independent pseudorandom passwords
(denoted rwd) for each user account. The PTR instantiation from [37] is based
on the Ford-Kaliski's Blind Hashed Di�e-Hellman technique [31]: Let G be a
group of prime order q, let H ′ and H be hash functions which map onto, respec-
tively, elements of G and κ-bit strings, where κ is a security parameter. De�ne
Fk(x) = H(x, (H ′(x))k), where the key k is chosen at random in Zq. In PTR this
function is computed jointly between C and D where D inputs key k and C inputs
x = pwd as the argument, and the output, denoted rwd = Fk(pwd), is learned
by C only. The protocol is simple: C sends a = (H ′(pwd))r for r random in Zq,
D responds with b = ak, and C computes rwd = H(x, b1/r). Under the One-
More (Gap) Di�e-Hellman (OM-DH) assumption in the Random Oracle Model
(ROM), this scheme realizes a universally composable oblivious PRF (OPRF)
[36], which in particular implies that x = pwd is hidden from all observers and
function Fk(·) remains pseudorandom on all inputs which are not queried to D.

4 OpTFA: A Practical Secure TFA-KE Protocol

In Section 5 we present and prove a general design, GenTFA, of a TFA-KE
protocol based on two generic components, namely, a SAS-MA and DE-PAKE
protocols. But �rst, in this section, we show a practical instantiation of GenTFA
using the speci�c building blocks presented in Section 3, namely, the SAS-MA
scheme from Fig. 1 and the DE-PAKE scheme from [37] (that uses the DH-
based PTR scheme described in that section composed with any asymmetric
PAKE). This concrete instantiation serves as the basis of our implementation
work (Section 6) and helps explaining the rationale of our general construction.
OpTFA is presented in Figure 3. A schematic representation is shown in Figure 2.

10

k, Kz

PTR (k , pwd) rwd

σ(rwd), Kz

checksumD

z = RKz(zid)

zid

uKEKCS KCS

Insecure Channel

SAS-MA (Mc)

Encrypted and Authenticated Channel under KCS

z

Encrypted under pk, with C’s messages authenticated by SAS-MA along with Mc

Step 1:

uKE

+ zid

Step 3:

aPAKE

Step 2:

SAS-MA

+ PTR

aPAKE

(rwd , σ) K

pwd

User validates checksum

K

checksumC

C picks (pk, sk)

Encrypted and Authenticated Channel under both KCS and one-time key z

Mc = (pk, zid)

z = RKz(zid)

Fig. 2: Schematic Representation of Protocol OpTFA of Fig. 3

Enhanced TFA via SAS. Before going into the speci�cs of OpTFA, we de-
scribe a general technique for designing TFA schemes using a SAS channel. In
traditional TFA schemes, a PIN is displayed to the user who copies it into a login
screen to prove access to that PIN. As discussed in the introduction, this mecha-
nism su�ers of signi�cant weaknesses mainly due to the low entropy of PINs (and
inconvenience of copying them). We suggest automating the transmission of the
PIN over a con�dential channel from device D to client C. To implement such
channel, we use the SAS-SMT scheme from Sec. 3 where security boils down
to having D and C display t-bit strings (checksums) that the user checks for
equality. In this way, low-entropy PINs can be replaced with full-entropy values
(we refer to them as one-time keys (OTK)) that are immune to eavesdropping
and bound active attacks to a success probability of 2−t. These active attacks
are impractical even for t = 20 (more a denial-of-service than an impersonation
threat) and with larger t's as illustrated in Sec. 6 they are just infeasible. Note
that this approach works with any form of generation of OTK's, e.g., time-based
mechanisms, challenge-response between device and server, etc.

4.1 OpTFA Explained

Protocol OpTFA (Fig. 3) requires several mechanisms that are necessary to ob-
tain the strong security bounds of the TFA-KE model. To provide rationale for

11

Components: In addition to the SAS-MA, PTR and aPAKE tools introduced in
Sec. 3, OpTFA uses an unauthenticated KE (uKE) protocol, a PRF R, a CCA-secure
public key encryption scheme (KG,Enc,Dec), and a MAC function.

Initialization:

1. On input the user's password pwd, pick random k in Zq and set rwd = Fk(pwd) =
H(pwd, (H ′(pwd))k);

2. Initialize the asymmetric PAKE scheme aPAKE on input rwd and let σ denote the
user's state at the server.

3. Choose random key Kz for PRF R, and set zidSet to the empty set;

4. Give (k,Kz, zidSet) to D and (σ,Kz) to S.

Login step I (C-S uKE + zid generation):

1. S and C run a (unauthenticated) key exchange uKE which establishes session key
KCS between them;

2. S generates random κ-bit nonce zid, computes z ← R(Kz, zid), and sends zid to
C authenticated under key KCS .

Login step II (C-D SAS-MA + PTR):

1. C generates PKE key pair (sk, pk) ← KG, t-bit random value RC , κ-bit random
value d, and random r in Zq. C then computes a ← H ′(pwd)r, MC ← (pk, zid, a),
Com← Hcom(MC, RC , d), and sends (MC,Com) to D;

2. D on ((pk, zid, a),Com), aborts if zid ∈ zidSet, otherwise it adds zid to zidSet and
sends random t-bit value RD to C.

3. C receives RD, computes checksumC ← RC⊕RD, sends (RC , d) to D, and inputs
checksumC into the C-to-D SAS channel.

4. D computes checksumD ← RC⊕RD and upon receiving checksumC on the C-to-D
SAS channel, it checks if checksumC = checksumD and Com = Hcom(MC, RC , d)
and aborts if not. Otherwise D computes b ← ak and z ← R(Kz, zid), and sends
eD ← Enc(pk, (z, b)) to C.

5. C computes (z, b)← Dec(sk, eD) and rwd← H(pwd, b1/r) [= Fk(pwd)], and aborts
if Dec outputs ⊥.

Login step III (C-S aPAKE over Authenticated Link):

1. C and S run protocol aPAKE on resp. inputs rwd and σ with all aPAKE messages
authenticated by keys z and KCS (each key is used to compute a MAC on each
aPAKE message).

Each party aborts and sets local output to ⊥ if any of the MAC veri�cations fails.

2. The �nal output of C and S equals their outputs in the aPAKE instance: either a
session key K or a rejection sign ⊥.

Fig. 3: OpTFA: E�cient TFA-KE Protocol with Optimal Security Bounds

12

the need of these mechanisms we show how the protocol is built bottom-up to de-
liver the required security properties. We stress that while the design is involved
the resultant protocol is e�cient and practical. The presentation and discussion
of security properties here is informal but the intuition can be formalized as we
do via the TFA-KE model (Sec. 2), the generic protocol GenTFA in next section
and the proof of Theorem 1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR
scheme from Sec. 3 and enhanced with fresh OTKs transmitted from D to C
via the above SAS-SMT mechanism. The OTK is generated by the device and
server for each session and then included in the aPAKE interaction between C
and S. We note that OpTFA treats aPAKE generically, so any such scheme can
be used. In particular, we start by illustrating how OpTFA works with the stan-
dard password-over-TLS aPAKE, and then generalize to the use of any aPAKE,
including PKI-free ones.

• OpTFA 0.0. This is standard password-over-TLS where the user's password is
transmitted from C to S under the protection of TLS.

• OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mecha-
nism described above. First, C transmits the user's password to S over TLS and
if the password veri�es at S, S sends a nonce zid to C who relays it to D. On the
basis of zid (which also acts as session identi�er in our analysis), D computes a
OTK z = RKz (zid) where R is a PRF and Kz a key shared between D and S.
D transmits z to C over the SAS-SMT channel and C relays it to S over TLS.
The user is authenticated only if the received value z is the same as the one
computed by S.

This scheme o�ers defense in case of password leakage. With a full-entropy
OTK it ensures security against eavesdroppers on the D-C link and limits the
advantage of an active attacker to a probability of 2−t for SAS checksums of
length t. However, the scheme is open to online password attacks (as in current
commonly deployed schemes) because the attacker can try online guesses without
having to deal with the transmission of OTK z. In addition, it o�ers no security
against o�ine dictionary attacks upon server compromise.

• OpTFA 0.2. We change OpTFA 0.1 so that the user's password pwd is only
transmitted to S at the end of the protocol together with the OTK z (it is
important that if z does not verify as the correct OTK, that the server does
not reveal if pwd is correct or not). This change protects the protocol against
online guessing attacks and reduces the probability of the successful testing of a
candidate password to 2−(d+t) rather than 2−d in version 0.1.

• OpTFA 0.3. We add defense against o�ine dictionary attacks upon server
compromise by resorting to the DE-PAKE construction of [37] and, in particular,
to the password-to-random hardening procedure PTR from Sec. 3. For this, we
now assume that the user has a master password pwd that PTR converts into
randomized passwords rwd for each user account. By registering rwd with server
S and using PTR for the conversion, DE-PAKE security ensures that o�ine
dictionary attacks are infeasible even if the server is compromised (case (3)

13

in Def. 1). Note that the PTR procedure runs between D and C following the
establishment of the SAS-SMT channel.

• OpTFA 0.4. We change the run of PTR between D and C so that the value
a computed by C as part of PTR is transmitted over the SAS-authenticated
channel from C to D. Without this authentication the strict bound of case (3)
in Def. 1 (simpli�ed for q′C = 0), namely, AdvTFAA ≤ qD/2

d+t + ε upon server
compromise, would not be met. Indeed, when the attacker compromises server
S, it learns the key Kz used to compute the OTK z so the defense provided by
OTK is lost. So, how can we still ensure the 2t denominator in the above bound
expression? The answer is that by authenticating the PTR value a under SAS-
MA, the attacker is forced to run (expected) 2t sessions to be able to inject its
own value a over that channel. Such injection is necessary for testing a password
guess even when Kz is known. When considering a password dictionary of size
2d this ensures the denominator 2d+t in the security bound.

• OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization
of an authentication session (for a given user), C and S run an unauthenticated
(a.k.a. anonymous) key exchange uKE (e.g., a plain Di�e-Hellman protocol) to
establish a shared keyKCS that they use as a MAC key applied to all subsequent
OpTFA messages. To see the need for uKE assume it is omitted. For simplicity,
consider the case where attacker A knows the user's password. In this case, all A
needs for impersonating the user is to learn one value of z which it can attempt
by acting as a man-in-the-middle on the C-D channel. After qD such attempts, A
has probability of qD/2

t to learn z which together with the user's password allows
A to authenticate to S. In contrast, the bound required by Def. 1 in this case is
the stricter min{qS , qD}/2t. This requires that for each attempt at learning z in
the C-D channel, not only A needs to try to break SAS-MA authentication but
it also needs to establish a new session with S. For this we resort to the uKE
channel. It ensures that a response z to a value zid sent by S over a uKE session
will only be accepted by S if this response comes back on the same uKE session
(i.e., authenticated with the same keys used by S to send the challenge zid). It
means that both zid and z are exchanged with the same party. If zid was sent
to the legitimate user then the attacker, even if it learns the corresponding z,
cannot use it to authenticate back to S. We note that uKE is also needed in
the case that the attacker does not know the password. Without it, the success
probability for this case is about a factor 2d/qS higher than acceptable by Def. 1.

Note. When all communication between C and S goes over TLS, there is no need
to establish a dedicated uKE channel; TLS serves as such.

• OpTFA 0.6. We stipulate that D never responds twice to the same zid value
(for this, D keeps a stash of recently seen zid's; older values become useless to
the attacker once they time out at the server). Without this mechanism the
attacker gets multiple attempts at learning z for a single challenge zid. However,
this would violate bound (1) (for the case qC = q′C = 0) min{qS , qD}/2d+t which
requires that each guess attempt at z be bound to the establishment of a new
session of the attacker with S.

14

• OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as
the last stage of OpTFA (after PTR generates rwd) can be implemented with any
asymmetric aPAKE protocol, with or without assuming PKI, using the server-
speci�c user's password rwd. As shown in [37], running any aPAKE protocol on
a password rwd produced by PTR results in a DE-PAKE scheme, a property that
we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of z to S, namely, we
specify that both C and S use z as a MAC key to authenticate the messages sent
by protocol aPAKE (this is in addition to the authentication of these messages
with key KCS). Without this, an attack is possible where in case that OpTFA
fails the attacker learns if the reason for it was an aPAKE failure or a wrong z.
This allows the attacker to mount an online attack on the password without the
attacker having to learn the OTK. (When the aPAKE is password-over-TLS the
above MAC mechanism is not needed, the same authentication e�ect is achieved
by encrypting rwd and z under the same CCA-secure ciphertext [33].)

• OpTFA. Version 0.7 constitutes the full speci�cation of the OpTFA protocol,
described in Fig. 3, with generic aPAKE.

Performance: The number of exponentiations in OpTFA is reported in the intro-
duction; implementation and performance information is presented in Section 6.

OpTFA Security. Security of OpTFA follows from that of protocol GenTFA
because OpTFA is its instantiation. See Theorem 1 in Section 5 and Corollary 1.

5 The Generic GenTFA Protocol

In Figure 4 we show protocol GenTFA which is a generalization of protocol OpTFA
shown in Fig. 3 in Section 4. Protocol GenTFA is a compiler which converts any
secure DE-PAKE and SAS-MA schemes into a secure TFA-KE. It uses the same
uKE and CCA-PKE tools as protocol OpTFA, but it also generalizes two other
mechanisms used in OpTFA as, resp. a generic symmetric Key Encapsulation
Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A Key Encapsulation Mechanism, denoted (KemE,KemD) (see e.g. [49]), al-
lows for encrypting a random session key given a (long-term) symmetric key Kz,
i.e., if (zid, z)← KemE(Kz) then z ← KemD(Kz, zid). A KEM is secure if key z
corresponding to zid 6∈ {zid1, ..., zidq} is pseudorandom even given the keys zi
corresponding to all zidi's. In protocol OpTFA of Figure 3, KEM is implemented
using PRF R: zid is a random κ-bit string and z = R(Kz, zid). We also generalize
the usage of the MAC function in OpTFA as an Authenticated Channel, de�ned
by a pair ACSend,ACRec, which implements bi-directional authenticated com-
munication between two parties sharing a symmetric key K [29, 34]. Algorithm
ACSend takes inputs key K and message m and outputs m with authentication
tag computed with key K, while the receiver procedure, ACRec(K, ·), outputs
either a message or the rejection symbol ⊥. We assume that the AC scheme is
stateful and provides authenticity and protection against replay.

The security of GenTFA is stated in the following theorem:

15

Initialization: Given the user's password pwd, we initialize the DE-PAKE scheme
on pwd. Let k and σ be the resulting user-speci�c states stored at resp. D and S.
Let Kz be a random KEM key. Let zidSet be an empty set. D is initialized with
(k,Kz, zidSet) and S is initialized with (σ,Kz).

Login step I (C-S KE + KEM generation):

1. S and C create shared key KCS using a (non-authenticated) key exchange uKE.
2. S generates (zid, z)← KemE(Kz), sets eS ← ACSend(KCS , zid), and sends eS

to C, who computes zid← ACRec(KCS , eS), or aborts if decryption fails.

Login step II (C-D SAS-MA + KEM decryption):

1. C generates a PKE key pair (sk, pk)← KG, sends MC = (pk, zid) to D, and C
and D run SAS-MA to authenticate MC using the t-bit C-to-D SAS channel.

2. D aborts if zid ∈ zidSet or if the SAS scheme fails. Otherwise, D adds zid
to zidSet, computes z ← KemD(Kz, zid), picks a random MAC key KCD,
computes eD ← Enc(pk, (z,KCD)) and sends eD to C.

3. C computes (z,KCD)← Dec(sk, eD) (aborts if ⊥).

Login step III (DE-PAKE over Authenticated Links):

C, D, and S run DE-PAKE on resp. inputs pwd, k, and σ, modi�ed as follows:

(a) All communication between D and S is routed through C.

(b) Communication between C and D goes over a channel authenticated by key
KCD, i.e. it is sent via ACSend(KCD, ·) and received via ACRec(KCD, ·), Either
party aborts if its ACRec ever outputs ⊥.
(c) Communication between C and S goes over a channel authenticated by key z
and then the result of that is sent over a channel authenticated by key KCS , i.e. it
is sent via ACSend(KCS ,ACSend(z, ·)) and received via ACRec(KCS ,ACRec(z, ·)).
Each party aborts and sets local output to ⊥ if its ACRec instance ever outputs ⊥.
The �nal outputs of C and S are their respective outputs in this DE-PAKE instance,
either session key K or a rejection ⊥.

Fig. 4: Generic TFA-KE Scheme: Protocol GenTFA

Theorem 1. Assuming security of the building blocks DE-PAKE, SAS, uKE,
PKE, KEM, and AC, protocol GenTFA is a (T, ε)-secure TFA-KE scheme for ε
upper bounded by

εDEPAKE + n · (εSAS + εuKE + εPKE + εKEM + 6εAC) + n2/2κ

for n = qHbC + max(qS , qD, qC , q
′
C) where qHbC denotes the number of GenTFA

protocol sessions in which the adversary is only eavesdropping, and each quantity
of the form εP is a bound on the advantage of an attacker that works in time
≈ T against the protocol building block P.

16

As a corollary we obtain a proof of TFA-KE security for protocol OpTFA
from Fig. 3 which uses speci�c secure instantiations of GenTFA components.
The corollary follows by applying the result of Vaudenay [51], which implies in
particular that the SAS-MA scheme used in OpTFA is secure in ROM, and the
result of [37], which implies that the DE-PAKE used in OpTFA is secure under
the OM-DH assumption if the underlying aPAKE is a secure asymmetric PAKE.

We note that protocol OpTFA optimizes GenTFA instantiated with the DE-
PAKE of [37] by piggybacking the C-D round of communication in that protocol,
a = H ′(pwd)r and b = ak, onto resp. C's message MC and the plaintext in D's
ciphertext eD. The security proof extends to this round-optimized case because
SAS-MA authentication of MC and CCA-security of PKE bind DE-PAKE mes-
sages a, b to this session just as the ACSend(KCD, ·) mechanism does in (non-
optimized) protocol GenTFA.

Corollary 1. Assuming that aPAKE is a secure asymmetric PAKE, uKE is se-
cure Key Exchange, (KG,Enc,Dec) is a CCA-secure PKE, R is a secure PRF,
and MAC is a secure message authentication code, protocol OpTFA is a secure
TFA-KE scheme under the OM-DH assumption in ROM.

Security de�nition of SAS authentication. For the purpose of the proof be-
low we state the security property assumed of a SAS-MA scheme which was infor-
mally described in Section 3. While [51] de�nes the security of SAS-MA using a
game-based formulation, here we do it via the following (universally composable)
functionality FSAS[t]: On input a message [SAS.SEND, sid , P ′,m] from an honest
party P , functionality FSAS[t] sends [SAS.SEND, sid , P, P ′,m] to A, and then, if
A's response is [SAS.CONNECT, sid], then FSAS[t] sends [SAS.SEND, sid , P,m] to
P ′, if A's response is [SAS.ABORT, sid], then FSAS[t] sends [SAS.SEND, sid , P,⊥]
to P ′, and if A's response is [SAS.ATTACK, sid ,m′] then FSAS[t] throws a coin ρ
which comes out 1 with probability 2−t and 0 with probability 1− 2−t, and if
ρ = 1 then FSAS[t] sends succ to A and [SAS.SEND, sid , P,m′] to P ′, and if ρ = 0
then FSAS[t] sends fail to A and [SAS.SEND, sid , P,⊥] to P ′.

In our main instantiation of the generic protocol GenTFA of Figure 4, i.e. in
protocol OpTFA of Figure 3, we instantiate SAS-MA with the scheme of [51], but
even though the original security argument given for it in [51] used the game-
based security notion, it is straightforward to adopt this argument to see that
this scheme securely realizes the above (universally composable) functionality.

Proof of Theorem 1. Let A be an adversary limited by time T playing the
TFA-KE security game, which we will denote G0, instantiated with the TFA-KE
scheme GenTFA. Let the security advantage de�ned in De�nition 1 for adversary
A satisfy AdvTFAA = ε. Let ΠS

i , Π
C
j , Π

D
l refer to respectively the i-th, j-th, and

l-th instances of S, C, and D entities which A starts up. Let t be the SAS channel
capacity, κ the security parameter, qS , qD, qC , q

′
C the limits on the numbers of

rogue sessions of S, D, C when communicating with S, and C when communicat-
ing with D, and let qHbC be the number of GenTFA protocol sessions in which
A plays only a passive eavesdropper role except that we allow A to abort any of

17

these protocol executions at any step. Let nS = qS + qHbC , nD = qD + qHbC ,
nC = qC + q′C + qHbC , and note that these are the ranges of indexes i, j, l for
instances ΠS

i , Π
C
j , and Π

D
l . We will use [n] to denote range {1, ..., n}.

The security proof goes by cases depending on the type of corrupt queries
A makes. In all cases the proof starts from the security-experiment game G0

and proceeds via a series of game changes, G1, G2, etc, until a modi�ed game Gi
allows us to reduce an attack on the DE-PAKE with the same corruption pattern
(except in the case of corrupt client C) to the attack on Gi. In the case of the
corrupt client the argument is di�erent because it does not rely on the underlying
DE-PAKE (note that DE-PAKE does not provide any security properties in the
case of client corruption). In some game changes we will consider a modi�ed
adversary algorithm, for example an algorithm constructed from the original
adversary A interacting with a simulator of some higher-level procedure, e.g. the
SAS-MA simulator. Wlog, we use Ai for an adversary algorithm in game Gi.

We will use pi to denote the probability that Ai interacting with game Gi
outputs b′ s.t. b′ = b where b is the bit chosen by the game on the test session.
Recall that when A makes the test session query test(P, i), for P ∈ {S,C}, then,
assuming that instance ΠP

i produced a session key sk, game G0 outputs that
session key if b = 1 or produces a random string of equal size if b = 0 (and if
session ΠP

i did not produce the key then G0 outputs ⊥ regardless of bit b). Note
that by assumption AdvTFAA = ε we have that p0 = 1/2+1/2 ·AdvTFAA = 1/2+ε/2.

Case 1: No party is compromised. This is the case when A makes no corrupt
queries, i.e. it's the default �network adversary� case. Below we describe only
the game changes in the proof, and we state what we claim about the e�ects of
that game change and what assumption we use. The full details of the proof are
included in Appendix B.

GameG1: Let Z be a random function which maps onto κ-bit strings. If (zidi, zi)
dentes the KEM (ciphertext,key) pair generated by ΠS

i then in G1 we set zi =
Z(zidi) instead of using KemE, and we abort if there is ever a collision in zi
values. Security of KEM implies that p1 ≤ p0 + εKEM(nS) + n2S/2

κ.

GameG2: Here we replace the SAS-MA procedure with the simulator SIMSAS

implied by the UC security of the SAS-MA scheme of [51]. In other words, when-
ever ΠC

j and ΠD
l execute the SAS-MA sub-protocol, we replace this execution

with a simulator SIMSAS interacting with A and the ideal SAS-MA functionality
FSAS[t]. For example, ΠC

j , instead of sending MC = (pk, zid) to A1 and starting a

SAS-MA instance to authenticate MC to D, will send [SAS.SEND, sid , ΠD
l ,MC]

to FSAS[t], which triggers SIMSAS to start simulating to A the SAS-MA protocol

on input MC between ΠC
j and ΠD

l . The rules of FSAS[t] imply that A can make

this connection either succeed, abort, or, if it attacks it then ΠD
l will abort with

probability 1 − 2−t, but with probability 2−t it will accept A's message MC
∗

instead of MC. Security of SAS-MA implies that p2 ≤ p1 + min(nC , nD) · εSAS.
GameG3: Here we re-name entities involved in game G2. Note that adversary
A2 interacts with G2 which internally runs algorithms SIMSAS and FSAS[t], and
that SIMSAS interacts only with FSAS[t] on one end and A2 on the other. We can

18

therefore draw the boundaries between the adversarial algorithm and the se-
curity game slightly di�erently, by considering an adversary A3 which executes
the steps of A2 and SIMSAS, and a security game G3 which executes the rest
of game G2, including the operation of functionality FSAS[t]. In other words, G3

interacts with A3 using the FSAS[t] interface to SIMSAS, i.e. G3 sends to A3 mes-

sages of the type [SAS.SEND, sid , ΠC
j , Π

D
l ,MC], and A3's response must be one

of [SAS.CONNECT, sid], [SAS.ABORT, sid], and [SAS.ATTACK, sid ,MC
∗]. Since

we are only re-drawing the boundaries between the adversarial algorithm and
the security game, we have that p3 = p2.

GameG4: Here we change game G3 s.t. if A sends [SAS.CONNECT, sid] to let the
SAS-MA instance go through between ΠC

j and ΠD
l with MC containing ΠC

j 's key

pk, then we replace the ciphertext eD subsequently sent by ΠD
l by encrypting a

constant string instead of Enc(pk, (z,KCD)), and if A passes this eD to ΠC
j then

it decrypts it as (z,KCD) generated by ΠD
l . In other words, we replace the en-

cryption under SAS-authenticated key pk by a �magic� delivery of the encrypted
plaintext. The CCA security of PKE implies that p4 ≤ p3 + min(nC , nD) · εPKE.
GameG5: Here we abort if, assuming that key pk and ciphertext eD were ex-
changed between ΠC

j and ΠD
l correctly, any party accepts wrong messages in

the subsequent DE-PAKE execution authenticated by KCD created by ΠD
l . The

authentic channel security implies that p5 ≤ p4 + min(nC , nD) · εAC.
GameG6: We perform some necessary cleaning-up, and abort if the SAS-MA
instance between ΠC

j and ΠD
l) sent MC correctly, but adversary did not deliver

ΠD
l 's response eD back toΠC

j and yetΠD
l did not abort in subsequent DE-PAKE.

Since this way ΠC
j has no information about key KCD we get p6 ≤ p5 + qD · εAC.

GameG7: We replace the keys created by uKE for every ΠS
i -Π

C
j session in step

I.1 on which A was only an eavesdropper, with random keys. Security of uKE
implies that p7 ≤ p6 + min(nC , nS) · εuKE.

At this point the game has the following properties: If A is passive on the
C-S key exchange in step I then A is forced to be passive on the C-S link in the
DE-PAKE in step III. Also, if A does not attack the SAS-MA and delivers D's
response to C then A is forced to be passive on the C-D link in the DE-PAKE
in step III (and if A does not deliver D's response to C then this D instance will
abort too). The remaining cases are either (1) active attacks on the key exchange
in step I or (2) when A attacks the SAS-MA sub-protocol and gets D to accept
MC∗ 6= MC or (3) A sends e∗D 6= eD to C. In handling these cases the crucial issue
is what A does with the zid created by S. Consider any S instance ΠS

i in which
the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key KCS output by ΠS

i in this
step. Note that D keeps a variable zidSet in which it stores all zid values it ever
receives, and that D aborts if it sees any zid more than once. Therefore each
game execution de�nes a 1-1 function L : [nS]→ [nD]∪{⊥} s.t. if L(i) 6=⊥ then
L(i) is the unique index in [nD] s.t. ΠD

L(i) receives MC = (pk, zidi) in step II.1 for

some pk, and L(i) =⊥ if and only if no D session receives zidi. If L(i) 6=⊥ then

19

we consider two cases: First, if MC = (pk, zidi) which contains zidi originates
with some session ΠC

j , and second if MC = (pk, zidi) is created by the adversary.

GameG9: Let Π
S
i and ΠC

j be rogue sessions s.t. A sends zidi to Π
C
j in step I.2,

but then stop ΠC
j from getting the corresponding zi by either attacking SAS-

MA or misdelivering D's response eD. In that case neither ΠC
j nor A have any

information about zi, and therefore ΠS
i should reject. Namely, if in G9 we set

ΠS
i 's output to ⊥ in such cases then p9 ≤ p8 + qS · εAC.

GameG10: Let Π
S
i and ΠC

j be rogue sessions and A send zidi to Π
C
j as above,

but now consider the case that A lets ΠC
j learn zi but A does not learn zi itself,

i.e. A lets SAS-MA and eD go through. In this case we will abort if in DE-
PAKE communication in Step III between ΠS

i and ΠC
j either party accepts a

message not sent by the other party. Since A has no information about zi the
authenticated channel security implies that p10 ≤ p9 + min(qC , qS) · εAC.

Note that at this point if A interferes with the KE in step I.1 with ses-
sion ΠS

i , sends zidi to some ΠC
j and does not send it to some ΠD

l by sending
[SAS.ATTACK, sid , (pk∗, zidi)] for any l then A is forced to be a passive eaves-
dropper on the DE-PAKE protocol in step III. Note that this holds when L(i) = l
s.t. the game issues [SAS.SEND, sid , ΠC

j , Π
D
l , (pk, zidi)] for some pk, i.e. if some

ΠD
l receives value zidi, it receives it as part of a message MC sent by some ΠC

j .

GameG11: Finally consider the case when A itself sends zidi to D, i.e. when
L(i) = l s.t. A sends [SAS.ATTACK, sid ,MC

∗ = (pk∗, zidi)] in response to
[SAS.SEND, sid , ΠC

j , Π
D
l ,MC], but the FSAS[t] coin-toss comes out ρl = 0, i.e. A

fails in this SAS-MA attack. In that case we can let ΠS
i abort in step III because

if ρl = 0 then A has no information about zi = Z(zidi), hence p11 ≤ p10+qS ·εAC.
After these game changes, we �nally make a reduction from an attack on

underlying DE-PAKE to an attack on TFA-KE. Namely, we construct A∗ which
achieves advantage AdvDEPAKE

A∗ = 2 · (p11 − 1/2) against DE-PAKE, and makes
q∗S , q

∗
D, qC , qC rogue queries respectively to S, D, to C on its connection to S, and

to C on its connection with D, where q∗S = q∗D = q∗ where q∗ is a random variable
equal to the sum of q = min(qS , qD) coin tosses which come out 1 with probability
2−t and 0 with probability 1− 2−t. Recall that AdvTFAA = 2 · (p0− 1/2) and that
by the game changes above we have that |p11 − p0| is a negligible quantity, and
hence AdvDEPAKE

A∗ is negligibly close to AdvTFAA .
The reduction goes through because after the above game-changes A can

either essentially let a DE-PAKE instance go through undisturbed, or it can
attempt to actively attack the underlying DE-PAKE instance either via a rogue
C session or via rogue sessions with device S and server D. However, each rogue
D session is bound to a unique rogue S session, because of the uKE and (zid, z)
mechanism, and for each such D,S session pair, the probability that an active
attack is not aborted is only 2−t. This implies that the (qS , qD, qC) parameters
characterizing the TFA-KE attacker A scale-down to (qS/2

t, qD/2
t, qC) parame-

ters for the resulting DE-PAKE attacker A∗, which leads to the claimed security
bounds by the security of DE-PAKE. The details of construction for A∗ and the
above argument are included in Appendix B

20

Case 2: Party corruptions. In the forthcoming revision of this paper we will
include formal security proofs for the cases of client corruption and of device
and/or server corruption, showing that our scheme achieves all the bounds from
De�nition 1. Here we just comment on how these bounds are derived. For the case
of device corruption, the value z is learned by the attacker hence it is equivalent
to setting t = 0. Also, rogue queries to D are free for the attacker hence qD is
virtually unbounded (can think of it as "in�nity"). Setting these values in the
bound of Case 1, one obtains the claimed bound (qC + qS)/2d for the case of
device corruption. Similarly, in case of server corruption one sets qS to "in�nity".
In addition, and in spite of the attacker learning z in this case, one obtains a
bound involving 2−t thanks to the fact that we run the PTR protocol over the
SAS channel, hence reducing the probability of the attacker successfully testing
a candidate password pwd′ by 2−t. In the case of client compromise where the
attacker learns the user's password pwd, we set d = 0 (a dictionary of size 1)
and set qC = q′C = 0 since C is corrupted and the attacker cannot choose a test
session at C. Finally, when both D and S (but not C) are corrupted one gets
the same security as plain DE-PAKE, namely, requiring a full o�ine dictionary
attack to recover pwd.

6 System Development & Testing

Here we report on an experimental prototype of protocol OpTFA from Figure 3
on page 12 and present novel designs for the SAS channel implementation. We ex-
periment with OpTFA using two di�erent instantiations of the password protocol
between C and S. One is PKI-based that runs OpTFA over a server-authenticated
TLS connection; in particular, it uses this connection in lieu of the uKE in step
I and implements step III by simply transmitting the concatenation of password
rwd and the value z under the TLS authenticated encryption. The second pro-
tocol we experimented with is a PKI-free asymmetric PAKE borrowed from [36,
27]. Roughly, it runs the same PTR protocol as described in Section 3 but this
time between C and S. C's input is rwd and the result Fk(rwd) serves as a user's
private key for the execution of an authenticated key-exchange between C and S.
We implement the latter with HMQV [41] (as an optimization, the DH exchange
used to implement uKE in step I of OpTFA is �reused" in HMQV).

In Table 1 we provide execution times for the various protocol components,
including times for the TLS-based protocol and the PKI-free one with some
elements borrowed from the implementation work from [37]. We build on the
following platform. The webserver S is a Virtual Machine running Debian 8.0
with 2 Intel Xeon 3.20GHz and 3.87GB of memory. Client terminal C is a Mac-
Book Air with 1.3GHz Intel Core i5 and 4GB of memory. Device D is a Samsung
Galaxy S5 smartphone running Android 6.0.1. C and D are connected to the same
WiFi network with the speed of 100Mbps and S has Internet connection speed of
1Gbps. The server side code is implemented in HTML5, PHP and JavaScipt. On
the client terminal, the protocol is implemented in JavaScript as an extension
for the Chrome browser and the smartphone app in Java for Android phones.

21

Table 1: Average execution time of OpTFA and its components (10,000 iterations)

Protocol Purpose Parties
Average Time
in ms (std. dev.)

SAS (excluding user's
checksum validation)

Authenticate
C-D Channel

C and D 128.59 (0.48)

PTR Reconstruct rwd C and D 160.46 (3.71)

PKI-free PAKE PAKE C and S 182.27 (3.67)

PKI PAKE (TLS) C-S link encryption C and S 32.54 (1.38)

Overall in PKI-free Model C, D and S 410.77 ms

Overall in PKI Model C, D and S 263.27 ms

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use
elliptic curve NIST P-256, and hashing and PRF use HMAC-SHA256. Hashing
into the curve is implemented with simple iterated hashing till an abscissa x on
the curve is found (it will be replaced with a secure mechanism such as [26]).

Communication between C and S uses a regular internet connection between
the browser C and web server S. Communication between C and D (except for
checksum comparison) goes over the internet using a bidirectional Google Cloud
Messaging (GCM) [5], in which D acts as the GCM server and C acts as the
GCM client. GCM involves a registration phase during which GCM client (here
C) registers with the GCM generated client ID to the GCM server (here D), to
assure that D only responds to the registered clients. In case that the PAKE
protocol in OpTFA is implemented with password-over-TLS, [37] speci�es the
need for D to authenticate the PTR value b sent to C (see Sec. 3). In this case,
during the GCM registration we install at C a signature public key of D.

6.1 Checksum Validation Design

An essential component in our approach and solutions (in particular in protocol
OpTFA) is the use of a SAS channel implemented via the user-assisted equal-
ity veri�cation of checksums displayed by both C and D (denoted hereafter as
checksumC and checksumD, resp.). Here we discuss di�erent implementations of
such user-assisted veri�cation which we have designed and experimented with.

Manual Checksum Validation. In the simplest approach, the user compares
the checksums displayed on D and C and taps the Con�rm button on D in
case the two match [50]. Although, this type of code comparison has recently
been deployed in TFA systems, e.g., [8], it carries the danger of neglectful users
pressing the con�rm button without comparing the checksum strings. Another
common solution for checksum validation is �Copy-Con�rm� [50] where the user
types the checksum displayed on C into D, and only if this matches D's checksum
does D proceeds with the protocol. We implemented this scheme using a 6 digit
number. We stress that in spite of the similarity between this mechanism and
PIN copying in traditional TFA schemes, there is an essential security di�erence:
Stealing the PIN in traditional schemes su�ces to authenticate instead of the

22

user (for an attacker that holds the user's password) while stealing the checksum
value entered by the user in OpTFA is worthless to the attacker (the checksum
is a validation code, not the OTK value needed for authentication).

The above methods using human visual examination and/or copying limit the
SAS channel capacity (typically to 4-6 digits) and may degrade usability [47].
As an alternative we consider the following designs (however one may fallback
to the manual schemes when the more secure schemes below cannot be used,
e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, we en-
code the full, 256-bit checksum computed in protocol OpTFA into a hexstring
and show it as a 230 × 230 pixel QR Code on the web-page. We used ZXing
library to encode the QR code and display it on the web page and read and de-
code it D. To send the checksum to D, the user opens the app on D and captures
the QR code. D decodes the QR code and compares checksums, and proceeds
with the protocol if the match happens. In this setting, the user does not need
to enter the checksum but only needs to hold her phone and capture a picture
of the browser's screen. With the larger checksum (t = 256) active attacks on
SAS-SMT turn infeasible and the expressions 2−t in De�nition 1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum
validation approach that assumes a microphone-equipped device (typically a
smartphone) where the user speaks a numerical checksum displayed by the client
into the device. The device D receives this audio, recognizes and transcribes it
using a speech recognition tool, and then compares the result with the checksum
computed by D itself. The client side uses a Chrome extension as in the manual
checksum validation case while on the device we developed a transcriber applica-
tion using Android.Speech API. The user clicks on a �Speak� button added to the
app and speaks out loud the displayed number (6-digit in our implementation).
The transcriber application in D recognizes the speech and convert it to text
that is then compared to D's checksum. To further improve the usability of this
approach one can incorporate a text-to-speech tool that would speak the check-
sum automatically (i.e., replacing the user). The transcription approach would
perhaps be easy for the users to employ compared to the QR-based approach,
but would only be suitable if the user is in an environment that is non-noisy
and allows her to speak out-loud. We note that the QR-code and audio-based
approaches do not require a browser plugin or add-on and can be deployed on
any browser with HTML5 support.

Performance Evaluation. As preliminary information, we report on 30 check-
sum validation iterations performed by one experimenter. The time taken by
manual checksum validation was 8.50s on average (standard deviation 2.84s).
The time taken by QR-Coded validation was 4.87s on average for capturing
the code (standard deviation 1.32s) and 0.02s on average for decoding the code
(standard deviation 0.00s). The time taken by audio-based validation was 4.08s
on average for speaking the checksum (standard deviation 0.34s) and 1.18s on
average for transcribing the spoken checksum (standard deviation 0.42s). The

23

average time for these tasks may vary between di�erent users. The time taken
by the device to perform the checksum comparison is negligible. Our preliminary
testing of these two channels shows virtually-0 error rate.

7 Discussion of Related Work

Device-enhanced password-authentication with security against o�ine
dictionary attacks (ODA). There are several proposals in cryptographic lit-
erature for password authentication schemes that utilize an auxiliary computing
component to protect against ODA in case of server compromise. This was a
context of the Password Hardening proposal of Ford-Kaliski [31], which was
generalized as Hidden Credential Retrieval by Boyen [27], and then formalized
as (Cloud) Single Password Authentication (SPA) by Acar et al. [23] and as a
Device-Enhanced PAKE (DE-PAKE) by Jarecki et al. [37]. These schemes are
functionally similar to a TFA scheme if the role of the auxiliary component is
played by the user's device D, but they are insecure in case of password leakage
e.g. via client compromise.6 The threat of an ODA attack on compromise of an
authentication server also motivated the notion of Threshold Password Authenti-
cated Key Exchange (T-PAKE) [44], i.e. a PAKE in which the password-holding
server is replaced by n servers so that a corruption of up to t < n of them leaks
no information about the password. In addition to general T-PAKE's, several
solutions were also given for the speci�c case of n= 2 servers tolerating t= 1 cor-
ruption, known as 2-PAKE [28, 40], and every 2-PAKE, with the user's device D
playing the role of the second server, is a password authentication scheme that
protects against ODA in case of server compromise. However, as in the case of
[31, 27, 23, 37], if a password is leaked then 2-PAKE o�ers no security against an
active attacker who engages with a single 2-PAKE session.

TFA with ODA security. Shirvanian et al. [48] proposed a TFA scheme which
extends the security of traditional PIN-based TFAs against ODA in case of server
compromise. However, OpTFA o�ers several advantages compared to [48]: First,
[48] relies on PKI (the client sends the password and the one-time key, OTK, to
the PKI-authenticated server) while OpTFA has both a PKI-model and a PKI-
free instantiation. Second, [48] assumes full security of the t-bit D-C channel
for OTK transmission while we reduce this assumption to a t-bit authenticated
channel between C and D. Consequently, we improve user experience by replacing
the read-and-copy action with simpler and easier compare-and-con�rm. On the
other hand, [48] can use only the t-bit secure D-C link while OpTFA requires
transmission of full-entropy values between D and C.

6 We note that [23] also show a Mobile Device SPA, which provides client-compromise
resistance, but it requires the user to type the password onto the device D, and to
copy a high-entropy key from D to C, thus increasing manually transmitted data
even in comparison to traditional TFAs. By contrast, OpTFA dispenses entirely with
manual transmission of information to and from D.

24

TFA with the 2nd factor as a local cryptographic component. Some
Two-Factor Authentication schemes consider a scenario where the 2nd factor is
a device D capable of storing cryptographic keys and performing cryptographic
algorithms, but unlike in our model, D is connected directly to client C, i.e. it
e�ectively communicates with C over secure links. (However, security must hold
assuming the adversary can stage a lunch-time attack on device D, so D cannot
simply hand o� its private keys to C.) The primary example is a USB stick, like
YubiKey [13], implementing e.g. the FIDO U2F authentication protocol [2, 42].
A generalized version of this problem, including biometric authentication, was
formalized by Pointcheval and Zimmer as Multi-Factor Authentication [46], but
the di�erence between that model and our TFA-KE notion is that we consider
device D which has no pre-set secure channel with client C. Moreover, to the best
of our knowledge, all existing MFA/TFA schemes even in the secure-channel D-
C model are still insecure against ODA on server compromise, except for the
aforementioned TFA of Shirvanian et al. [48].

Alternatives to PIN-based TFA with remote auxiliary device. Many
TFA schemes improve on PIN-based TFAs by either reducing user involvement,
by not requiring the user to copy a PIN from D to C, or by improving on its online
security, but none of them protect against ODA in case of server compromise,
and their usability and online security properties also have downsides.

PhoneAuth [30] and Authy [11] replace PINs with S-to-D challenge-response
communication channeled by C, but they require a pre-paired Bluetooth con-
nection to secure the C-D channel. A full-bandwidth secure C-D channel reduces
the three-party TFA notion to a two-party setting, where device D is a local
component of client C, but requiring an establishment of such secure connec-
tion between a browser C and a cell phone D makes a TFA scheme harder to
use. TFA schemes like SlickLogin (acquired by Google) [3], Sound-Login [9], and
Sound-Proof [39] in essence attempt to implement such secure C-to-D channel
using physical security assumptions on physical media e.g. near-ultrasounds [3],
audible sounds [9], or ambient sounds detecting proximity of D to C [39], but
they are subject to eavesdropping attacks and co-located attackers.

Several TFA proposals, including Google Prompt [8] and Duo [1], follow a
one-click approach to minimize user's involvement if D is a data-connected de-
vice like a smartphone. In [8, 1] S communicates directly over data-network to D,
which prompts the user to approve (or deny) an authentication session, where the
approve action prompts D to respond in an entity authentication protocol with
S, e.g. following the U2F standard [2]. This takes even less user's involvement
than the compare-and-con�rm action of our TFA-KE, but it does not establish
a strong binding between the C-S login session and the D-S interaction. E.g., if
the adversary knows the user's password, and hence the TFA security depends
entirely on D-S interaction, a man-in-the-middle adversary who detects C's at-
tempt to establish a session with S, and succeeds in establishing a session with
S before C does, will authenticate as that user to S because the honest user's
approval on D's prompt will result in S authenticating the adversarial session.

25

References

1. Duo Security Two-Factor Authentication. https://goo.gl/wT3ur9.
2. FIDO Universal 2nd Factor. https://www.yubico.com/.
3. Google acquires slicklogin, the sound-based password alternative.

https://goo.gl/V9J8rv.
4. Google Authenticator Android app. https://goo.gl/Q4LU7k.
5. Google Cloud Messaging. https://goo.gl/EFvXt9.
6. LinkedIn Con�rms Account Passwords Hacked. http://goo.gl/UBWuY0.
7. RSA breach leaks data for hacking securid tokens. http://goo.gl/tcEoS.
8. Sign in faster with 2-Step Veri�cation phone prompts. https://goo.gl/3vjngW.
9. Sound Login Two Factor Authentication. https://goo.gl/LJFkvT.
10. TOTP: Time-Based One-Time Password Algorithm. https://goo.gl/9Ba5hv.
11. Two-factor authentication - authy. https://www.authy.com/.
12. Yahoo Says 1 Billion User Accounts Were Hacked. https://goo.gl/q4WZi9.
13. YubiKeys: Your key to two-factor authentication. https://goo.gl/LLACvP.
14. RFC 4226 HOTP: An HMAC-based One-Time Password Algorithm, 2005.

https://goo.gl/wxHBvT.
15. Russian Hackers Amass Over a Billion Internet Passwords, 2014.

https://goo.gl/KCrFjS.
16. London Calling: Two-Factor Authentication Phishing From Iran, 2015.

https://goo.gl/w6RD67.
17. Hack Brief: Yahoo Breach Hits Half a Billion Users, 2016. https://goo.gl/nz4uJG.
18. SIM swap fraud: The multi-million pound security issue that UK banks won't

talk about, 2016. http://www.ibtimes.co.uk/sim-swap-fraud-multi-million-pound-
security-issue-that-uk-banks-wont-talk-about-1553035.

19. SMS Deprecated, 2016. https://github.com/usnistgov/800-63-3/issues/168.
20. Over 560 Million Passwords Discovered in Anonymous Online Database, 2017.

https://goo.gl/upDqzt.
21. Real-World SS7 Attack - Hackers Are Stealing Money From Bank Accounts, 2017.

https://thehackernews.com/2017/05/ss7-vulnerability-bank-hacking.html.
22. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Di�e-Hellman Assumptions

and an Analysis of DHIES. In Topics in Cryptology - CT-RSA '01, volume 2020
of Lecture Notes in Computer Science. Springer, 2001.

23. T. Acar, M. Belenkiy, and A. Küpçü. Single password authentication. Computer
Networks, 57(13), 2013.

24. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology � Eurocrypt, 2000.

25. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password �le compromise. In
ACM Conference on Computer and Communications Security, 1993.

26. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. 2013.

27. X. Boyen. Hidden credential retrieval from a reusable password. In Proc. of
ASIACCS, 2009.

28. J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach for
authentication with short secrets. In 12th USENIX Security Symp, 2003.

29. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 453�474, 2001.

26

30. A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz. Strengthening user
authentication through opportunistic cryptographic identity assertions. In Pro-
ceedings of ACM conference on Computer and communications security, 2012.

31. W. Ford and B. S. K. Jr. Server-assisted generation of a strong secret from a
password. In WETICE, pages 176�180, 2000.

32. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In Advances in Cryptology. 2006.

33. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Trans. Inf. Syst. Secur., 2(3):230�268, Aug. 1999.

34. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in
the standard model. In CRYPTO, pages 273�293, 2012. Also Cryptology ePrint
Archive, Report 2011/219.

35. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and t-pake in the password-only model. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 233�253.
Springer, 2014.

36. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly E�cient and Composable
Password-Protected Secret Sharing. In 1st IEEE European Symposium on Security
and Privacy (EuroS&P). 2015.

37. S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-enhanced pass-
word protocols with optimal online-o�ine protection. In ASIACCS 2016, 2016.
http://eprint.iacr.org/2015/1099.

38. S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Two-factor authentication
with end-to-end password security. In International Conference on Practice and
Theory of Public Key Cryptography (PKC), 2018.

39. N. Karapanos, C. Marforio, C. Soriente, and S. Capkun. Sound-proof: usable two-
factor authentication based on ambient sound. In 24th USENIX Security Sympo-
sium (USENIX Security 15), 2015.

40. J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only
authenticated key exchange. In ACNS, pages 1�16, 2005.

41. H. Krawczyk. HMQV: A high-performance secure di�e-hellman protocol. In An-
nual International Cryptology Conference, pages 546�566, 2005.

42. J. Lang, A. Czeskis, D. Balfanz, M. Schilder, and S. Srinivas. Security keys: Prac-
tical cryptographic second factors for the modern web, 2016.

43. C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang. Screenmilker: How to milk your android
screen for secrets. In Network & Distributed System Security Symposium, 2014.

44. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In Advances in Cryptology � CRYPTO. 2002.

45. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In Advances in Cryptology - CRYPTO 2002, In-
ternational Cryptology Conference, 2002.

46. D. Pointcheval and S. Zimmer. Multi-factor authenticated key exchange. In Applied
Cryptography and Network Security, 6th International Conference, ACNS 2008,
New York, NY, USA, June 3-6, 2008. Proceedings, pages 277�295, 2008.

47. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing
based on a visual channel. In Security and Privacy, IEEE Symposium on, 2006.

48. M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. Two-factor authentication
resilient to server compromise using mix-bandwidth devices. In Network & Dis-
tributed System Security Symposium, 2014.

49. V. Shoup. ISO 18033-2: An emerging standard for public-key encryption, Dec.
2004. Final Committee Draft.

27

50. E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing meth-
ods. In Financial Cryptography and Data Security. 2007.

51. S. Vaudenay. Secure communications over insecure channels based on short au-
thenticated strings. In Advances in Cryptology - CRYPTO, number 3621 in Lecture
Notes in Computer Science, pages 309 � 326. Springer Verlag, 2005.

A PAKE and DE-PAKE Security Models

We recall the Device-Enhanced PAKE (DE-PAKE) security model of [37], which
forms a basis of our TFA model, and which extends the PAKE model (also
reviewed below) to the case where the user controls an auxiliary device which
constitutes the user's second authentication token in addition to the password.

A.1 PAKE Security Model [24]

Protocol participants. There are two types PAKE protocol participants, users
and servers. Each user U is associated with a unique server S while servers may
be associated with multiple users.

Protocol execution. A PAKE protocol has two phases: initialization and key
exchange. In the initialization phase each user U chooses a random password pwd
from a given dictionary Dict and interacts with its associated server S producing
a user's state σS(U) that S stores while U only remembers its password pwd.
Initialization is assumed to be executed securely, e.g., over secure channels. In
the key exchange phase, users interact with servers over insecure (adversary-
controlled) channels to establish session keys. Both users and servers may execute
the protocol multiple times in a concurrent fashion. Each execution of the PAKE
protocol by U or S de�nes a (user or server) protocol instance, also referred to
as a protocol session, denoted respectively ΠU

i or ΠS
i , where integer pointer

i serves to di�erentiates between multiple protocol instances executed by the
same party. Each protocol session is associated with the following variables: a
session identi�er sid, which we equate with the message transcript observed by
this instance (where both U and S order their interaction transcripts starting
with U's message), a peer identity pid, and a session key sk. For a user instance
the peer is always the user's server while for a server instance the peer is the
user authenticated in the session. The output of an execution consists of the
above three variables which can be set to ⊥ if the party aborts the session (e.g.,
when authentication fails, a misformed message is received, etc.). When a session
outputs sk 6=⊥ we say that the session accepts.

PAKE Security. To de�ne security we consider a probabilistic attacker A which
schedules all actions in the protocol and controls all communication channels
with full ability to transport, modify, inject, delay or drop messages. In addition,
the attacker knows (or even chooses) the dictionaries used by users. The model
de�nes the following queries or activations through which the adversary interacts
with, and learns information from, the protocol's participants.

28

send(P, i, P ′,M): Delivers message M to instance ΠP
i purportedly coming from

P ′. In response to a send query the instance takes the actions speci�ed by the
protocol and outputs a message given to A. When a session accepts, a message
indicating acceptance is given to A. A send message with a new value i (pos-
sibly with null M) creates a new instance at P with pid P ′. For simplicity, we
assume that the pair {P, P ′} in any send message contains a user and the server
associated to that user (a non-compliant message causes the receiving instance
to abort). The send query can also create a new instance of party P : If ΠU

i does
not exist then query send(U, i,S, init) creates a new instance ΠU

i which executes
with pid = S on U's chosen password pwd. Similarly, if ΠS

i does not exist then
send(S, i,U,M) creates a new instance ΠS

i which executes with pid = U on S's
input σS(U), with U's �rst message set to M . (This formalism assumes that
protocol exchanges are initiated by users, which is the operational setting in
PAKE.)

reveal(P, i): If instance ΠP
i has accepted, outputs the respective session key sk;

otherwise outputs ⊥.

corrupt(P): Outputs all data held by party P and A gains full control of P . We
say that P is corrupted.

compromise(S,U): Outputs state σS(U) at S. We say that S is U-compromised.

test(P, i): If instance ΠP
i has accepted, this query causes ΠP

i to �ip a random
bit b. If b = 1 the instance's session key sk is output and if b = 0 a string drawn
uniformly from the space of session keys is output. A test query may be asked at
any time during the execution of the protocol, but may only be asked once. We
will refer to the party P against which a test query was issued and to its peer
as the target parties.

The following notion taken from [35] is used in the security de�nition below
to ensure that legitimate messages exchanged between honest parties do not help
the attacker in online password guessing attempts (only adversarially-generated
messages count towards such online attacks). It has similar motivation as the
execute query in [24], but the latter fails to capture the ability of the attacker to
delay and interleave messages from di�erent sessions.

Rogue send queries/activations: We say that a send(P, i, P ′,M) query is rogue if
it was not generated or delivered according to the speci�cation of the protocol,
i.e. messageM has been changed or injected by the attacker, or the delivery order
di�ers from what is stipulated by the protocol (delaying message delivery or
interleaving messages from di�erent sessions is not considered a rogue operation
as long as internal session ordering is preserved). We also consider as rogue any
send(P, i, P ′,M) query where P is uncorrupted and P ′ is corrupted. We refer to
messages delivered through rogue send queries as rogue activations by A.

Matching sessions. A session in instance ΠP
i and a session in instance ΠP ′

j

are said to be matching if both have the same session identi�er sid (i.e., their
transcripts match), the �rst has pid = P ′, the second has pid = P , and both
have accepted.

29

Fresh sessions. A session at instance ΠP
i with peer P ′ s.t. {P, P ′} = {U,S}

is called fresh if none of the queries corrupt(U), corrupt(S), compromise(S,U),
reveal(P, i) or reveal(P ′, i′) were issued, where ΠP ′

i′ is an instance whose session

matches ΠP
i (if such ΠP ′

i′ exists).

Correctness. Matching sessions between uncorrupted peers output the same ses-
sion key.

Attacker's advantage. Let PAKE be a PAKE protocol and A be an attacker with
the above capabilities running against PAKE. Assume that A issues a single
test query against a fresh session at a user or server and ends its run with an
output bit b′. We say that A wins if b′ = b where b is the bit chosen internally
by the test session. The advantage of A against PAKE is de�ned as AdvPAKEA =
2 · Pr [A wins against PAKE]− 1.

De�nition 2. A PAKE protocol PAKE is (qS , qC , T, ε)-secure if it is correct and
for any password dictionary Dict and any attacker A that runs in time T , it holds
that AdvPAKEA ≤ qC+qS

|Dict| + ε where qC is the number of rogue send queries having

the target user U as recipient7 and qS is the number of rogue send queries having
the target S as recipient.

Dictionary size 2d. Our treatment works for any dictionary size, but for nota-
tional convenience we denote it as 2d.

A.2 DE-PAKE Security Model [37]

We present the extension of the PAKE model to the DE-PAKE setting. Besides
servers and users in the PAKE model, each user is associated with a device
D with which it communicates over a two-way link. (We stress that the role
of D can be played by any data-connected entity, including a hand-held device
or an auxiliary web service.) The initialization phase of PAKE is extended to
include the user-device communication that establishes the state stored at D. As
before, users only remember their passwords. As in the PAKE case, initialization
(including the user-device interaction) is assumed to run over secure channels.
After initialization, the links between users and devices are subject to the same
man-in-the-middle adversarial activity as in the links between users and servers.
Device instances ΠD

i are created similarly to user and server instances, and
are activated by A via send queries that include users and devices as senders
and receivers. However, device instances do not produce output other than the
outgoing messages. In particular, reveal queries do not apply to them, but corrupt
queries can be issued against devices, in which case the internal state of the
device is revealed to A who then controls the device. The session-related notions,
including the test query, do not apply to devices.

7 The subscript C in qC indicates rogue queries to the client machine used by U; this
is in line with the notation used in the TFA case.

30

The following security de�nition captures the maximal-attainable online and
o�ine security from a DE-PAKE protocol as informally discussed in the intro-
duction. The attacker's goal is as in PAKE, i.e. to win the test experiment at
a user or server instance. The correctness property is also unchanged. However,
to the attacker resources we add the number of rogue client sessions (see Sec-
tion A.1) with the device as the sender, denoted q′C , and the number of rogue
device sessions with the client as the sender, denoted qD. We refer to this more
powerful adversary as a DE-PAKE attacker. Let DEPAKE be a DE-PAKE pro-
tocol and A be an attacker with the above capabilities running against DEPAKE.
As in the PAKE model, we assume that A issues a single test query against
some C or S session and ends its run by outputing bit b′. We say that A wins if
b′ = b where b is the bit chosen by the test session. We de�ne the advantage of
A against DEPAKE as AdvDEPAKE

A = 2 · Pr [A wins against DEPAKE]− 1.

De�nition 3. A DE-PAKE protocol is called (qS , qC , q
′
C , qD, T, ε)-secure if it is

correct, and for any password dictionary Dict of size 2d and any attacker that
runs in time T , the following properties hold: (for qS , qC , q

′
C , qD as de�ned above)

1. If S and D are uncorrupted, the following bound holds:

AdvDEPAKE
A ≤ min{qC + qS , q

′
C + qD}

2d
+ ε. (1)

2. If D is corrupted then AdvDEPAKE
A ≤ (qC + qS)/2d + ε.

3. If S is corrupted then AdvDEPAKE
A ≤ (q′C + qD)/2d + ε.

4. When both D and S are corrupted, expression (1) holds but qD and qS are
replaced by the number of o�ine operations performed based on D's and S's
state, respectively.

Note. The original de�nition in [37] uses notation qU instead of qC to denote the
number of rogue queries to the user. Here we use qC which refers to queries to
the client machine and is in line with the notation in the TFA context.

Strong KCI Resistance: Discussion. DE-PAKE is intended to provide
stronger notion of security in case of server compromise than PAKE. In PAKE
the adversary can authenticate to S in case of U-compromise through an o�ine
dictionary attack, but in DE-PAKE this is prohibited. To formalize this require-
ment we follow the treatment of KCI resistance from [41] and we strengthen the
attacker capabilities through a more liberal notion of fresh sessions at a server S.
This is why all sessions considered fresh in the PAKE model are also considered
fresh in the DE-PAKE model, but in addition, in the DE-PAKE model a ses-
sion ΠS

i at server S with peer U is considered fresh even if queries corrupt(S) or
compromise(S,U) were issued as long as all other requirements for freshness are
satis�ed and the attacker A does not have access to the temporary state informa-
tion created by session ΠS

i . This relaxation of the notion of freshness captures
the case where the attacker A might have corrupted S and gained access to S's
secrets (including long-term ones), yet A is not actively controlling S during the

31

generation of session ΠS
i . In this case we would still want to prevent A from

authenticating as U to S on that session. De�nition 3 (item 2) ensures that this
is the case for DE-PAKE secure protocols even when unbounded o�ine attacks
against S are allowed.

B Proof of Theorem 1 (Sec. 5): Details of Game Changes

The security proof for Theorem 1 included in Section 5 contains only the high-
level description of the game-changes and the claims we make about them. Here
we provide all the missing details.

GameG1: Let (zidi, zi) be the KEM (ciphertext,key) pair generated in Step I.1
by ΠS

i . Let Z be a random function which maps onto κ-bit strings. Let EZcol

be the event that any two S sessions pick the same zid �eld, i.e. that for any
i1, i2 in [nS] we have i1 6= i2 and zidi1 = zidi2 . Let A1 = A0 and let game G1

be like G0 except that (1) it aborts if EZcol happens and (2) it sets each zi as
zi ← Z(zidi). Note that p1 ≤ p0 + εKEM(nS) +n2S/2

κ where the last term follows
from the fact that zid-collision implies a z-collision, and z-collision occurs in nS
random z samples with probability at most n2S/2

κ.

GameG2: Let SIMSAS be the simulator for the SAS-MA scheme. Let A2 = A1,
and let G2 be like G1 except that in Step II.1 when instance ΠC

j of C and

instance ΠD
l of D execute the SAS-MA sub-protocol, we replace this SAS-MA

execution with a simulator SIMSAS interacting with A1 and the ideal SAS-MA
functionality FSAS[t]. Namely, instance ΠC

j , instead of sending MC = (pk, zid) to
A1 and starting a SAS-MA instance to authenticateMC to D, will issue command
[SAS.SEND, sid , ΠD

l ,MC] to FSAS[t], which triggers SIMSAS to start simulating to

A1 the SAS-MA protocol between ΠC
j and ΠD

l on message MC as an input.
Depending on the way A1 responds, SIMSAS can act in one of the following
three ways: (1) If SIMSAS sends [SAS.CONNECT, sid] to FSAS[t] then FSAS[t] sends

[SAS.SEND, sid , ΠC
j ,MC] to ΠD

l and ΠD
l proceeds to step II.2 using this received

message; (2) If SIMSAS sends [SAS.ABORT, sid] to FSAS[t] then FSAS[t] sends ⊥ to

ΠD
l and ΠD

l aborts; (3) If SIMSAS sends [SAS.ATTACK, sid ,MC
∗] to SIMSAS for

some MC
∗ (w.l.o.g. MC

∗ 6= MC) then FSAS[t] throws a coin ρl which comes out 1
with probability 2−t and 0 with probability 1 − 2−t, and if ρ = 0 then FSAS[t]

sends fail to SIMSAS and ⊥ to ΠD
l and ΠD

l aborts, and if ρ = 1 then FSAS[t]

sends succ to A and [SAS.SEND, sid , ΠC
j ,MC

∗] to ΠD
l , and then ΠD

l proceeds
to step II.2 using message MC

∗. Since the SAS-MA protocol realizes the UC
functionality FSAS[t] with at most error εSAS (per instance), and the simulator
SIMSAS executes independently from the rest of the security game G2, it follows
that p2 ≤ p1 + min(nC , nD) · εSAS.
GameG3: Note that in the above security game adversary A2 interacts with
game G2 which internally runs interactive algorithms SIMSAS and FSAS[t]. Note
also that the SIMSAS algorithm interacts only with FSAS[t] on one end and A2

on the other. We can, therefore, draw the boundaries between the adversarial

32

algorithm A and the security game G slightly di�erently: Consider an adver-
sarial algorithm A3 which executes the steps of A2 and SIMSAS, and a secu-
rity game G3 which executes the rest of game G2, including the operation of
functionality FSAS[t]. Note that G3 does not execute the SAS-MA protocol, but
interacts with A3 using the FSAS[t] interface to SIMSAS, i.e. G3 sends to A3 mes-

sages of the type [SAS.SEND, sid , ΠC
j , Π

D
l ,MC], and A3's response must be one

of [SAS.CONNECT, sid], [SAS.ABORT, sid], and [SAS.ATTACK, sid ,MC
∗]. Since

we are only re-drawing the boundaries between the adversarial algorithm and
the security game, we have that p3 = p2.

GameG4: Let A4 = A3 and let G4 be as G3 except that for every mes-
sage [SAS.SEND, sid , ΠC

j , Π
D
l ,MC] send by G3 for some (j, l) pair, if A4 sends

[SAS.CONNECT, sid] in response, then we make the following changes: First, the
eD value sent by ΠD

l is formed as Enc(pk, (0κ, 0κ)) instead of Enc(pk, (z,KCD))
as in G3, for pk speci�ed in MC = (pk, zid). Secondly, if A3 passes this eD value
to ΠC

j then ΠC
j decrypts it as the (z,KCD) pair which was generated by ΠD

l .
Otherwise the game does not change, and in particular if A3 passes some other
ciphertext e∗D 6= eD to ΠC

j then ΠC
j decrypts e∗D in a standard way. By the

reduction to CCA security of the PKE scheme (KG,Enc,Dec), it follows that
p4 ≤ p3 + min(nC , nD) · εPKE.
GameG5: Let EACbreak(CD) be an event that there is some session pair (ΠC

j , Π
D
l)

s.t. (a) A4 responded with [SAS.CONNECT, sid] to [SAS.SEND, sid , ΠC
j , Π

D
l ,MC],

and (b) A4 delivered eD sent by ΠD
l to ΠC

j , and (c) in the DE-PAKE interaction

between ΠC
j and ΠD

l authenticated by key KCD in step III either party accepts
a message either not sent by the counterparty or delivered out of order. Let
A5 = A4 and G5 be as G4 except that G5 aborts if EACbreak(CD) ever happens. Since
in game G4, under conditions (a) and (b), the adversary has no information about
key KCD used by both ΠC

j and ΠD
l , by the security of the authentic channel

implementation we have that condition (c) can hold with probability at most
min(nC , nD) · εAC, hence p5 ≤ p4 + min(nC , nD) · εAC.
GameG6: Let EACbreak(CD′) be an event that there is some session pair (ΠC

j , Π
D
l)

s.t. (a) A4 responded with [SAS.CONNECT, sid] to [SAS.SEND, sid , ΠC
j , Π

D
l ,MC],

(b) A4 did not deliver eD sent by ΠD
l to ΠC

j , and (c) instance Π
D
l did not abort in

step III. Let A6 = A5 and G6 be as G5 except that G6 aborts if EACbreak(CD′) ever

happens. Since in game G5, under conditions (a) and (b), only ΠD
l has informa-

tion on key KCD, by the security of the authenticated channel implementation
we have that condition (c) can hold with probability at most qD · εAC, hence
p6 ≤ p5 + qD · εAC.
GameG7: Let A7 = A6 and G7 be as G6 except that for every instance of uKE
executed in step I.1, e.g. between ΠS

i and Π
C
j , if the adversary is an eavesdropper

on such instance then G7 replaces key KCS established by ΠS
i and ΠC

j with a
random key. By the security of the key exchange scheme uKE, it follows that
p7 ≤ p6 + min(nC , nS) · εuKE.
GameG8: Let EACbreak(CS) be an event that there is some session pair (ΠS

i , Π
C
j)

s.t. (a) the adversary is passive on the KE executed in step I.1 and (b) in the

33

DE-PAKE interaction between ΠC
j and ΠS

i authenticated by key KCS in step III
either party accepts a message either not sent by the counterparty or delivered
out of order. Let A8 = A7 and G8 be as G7 except that G8 aborts if EACbreak(CS)

ever happens. Since in game G7 the adversary has no information about KCS ,
by the security of the authenticated channel implementation we have that p8 ≤
p7 + max(nC , nS) · εAC.

Note that at this point the game has the following properties: If A is passive
on the C-S key exchange in step I then A is forced, by game G8, to be passive on
the C-S link in the DE-PAKE in step III. Also, if A does not attack the SAS-MA
sub-protocol and delivers D's ciphertext to C in step II then A is forced, by game
G5, to be passive on the C-D link in the DE-PAKE in step III (and if A does not
deliver D's ciphertext to C then this D instance will not respond to any further
messages, by game G6). The remaining cases are thus active attacks on the key
exchange in step I and the case when A either attacks the SAS-MA sub-protocol
and gets D to accept MC∗ 6= MC or sends e∗D 6= eD to C.

We will handle these cases next, and the crucial issue will be what the adver-
sary does with the zid values created by S. Consider any S instance ΠS

i in which
the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key KCS output by ΠS

i in this
step. Note that D keeps a variable zidSet in which it stores all zid values it ever
receives, and that D aborts if it sees any zid more than once. Therefore each
game execution de�nes a 1-1 function L : [nS]→ [nD]∪{⊥} s.t. if L(i) 6=⊥ then
L(i) is the unique index in [nD] s.t. ΠD

L(i) receives MC = (pk, zidi) in step II.1

for some pk, and L(i) =⊥ if and only if no D session receives zidi. If L(i) 6=⊥
then consider two cases: First, if MC = (pk, zidi) which contains zidi originates
with some session ΠC

j , and second if MC = (pk, zidi) is created by the adversary.

GameG9: Consider �rst the case of a rogue session Π
S
i and a rogue session ΠC

j to
which the adversary sends zidi in step I.2. Consider �rst the case when the ad-
versary stops ΠC

j from getting the corresponding zi. Namely, let EzidOmit(i) be an
event s.t. the adversary (a) either never issues [SAS.ATTACK, sid ,MC

∗] for MC
∗

containing zidi or it does but the corresponding coin toss comes out ρ = 0, (b)
does not send zidi to any C instance, or it does send it to ΠC

j for some j ∈ [nC],

but either responds with [SAS.ABORT, sid] to [SAS.SEND, sid , ΠC
j , Π

D
l ,MC] in

step II.1 or responds with [SAS.CONNECT, sid] but does not deliver eD sent by
ΠD
l to ΠC

j in step II.2. Note that by conditions (a) and (b), and the fact that
already in game G4 ciphertext eD created in response to [SAS.CONNECT, sid]
does not contain any information about zi = Z(zidi), neither session ΠC

j nor
the adversary have any information about zi. Therefore by the security of the
authenticated channel implementation ΠS

i should reject. Consider A9 = A8 and
G9 like G8 except G9 sets ΠS

i 's output to ⊥ at the end of step III if EzidOmit(i)

happens. By the argument above we have that p9 ≤ p8 + qS · εAC.

GameG10: Consider the same case of a rogue session ΠS
i and a rogue session ΠC

j

to which the adversary sends zidi in step I.2, but now consider the possibility
that the adversary lets ΠC

j get the corresponding zi but does not learn zi itself.

34

Namely, let EzidPass(i,j) be an event for some i ∈ [nS] and j ∈ [nC], (a) ΠC
j re-

ceives zidi in step I.2, (b) the adversary responds with [SAS.CONNECT, sid]
to [SAS.SEND, sid , ΠC

j , Π
D
l ,MC] in step II.1, (c) the adversary never issues

[SAS.ATTACK, sid ,MC
∗] for MC

∗ containing zidi, and (d) the adversary delivers
eD sent by ΠD

l to ΠC
j in step II.2. Consider A10 = A9 and G10 like G9 except

that if EzidPass(i,j) happens and in the DE-PAKE interaction between ΠC
j and

ΠS
i (where both parties use zi to authenticate this interaction), if the adversary

does not deliver to either ΠS
i or ΠC

j the messages of the counterparty in the cor-
rect order, G10 makes this party abort and sets its output to ⊥. (Note that this
means that the other party will also abort, unless the misdelivered message was
the last message this party sent.) Note that by conditions (a) and (b) instance
ΠD
l receives zidi in MC sent by ΠC

j . By condition (c) this is the �rst time D

receives zidi, hence it will not abort, and by condition (d) ΠC
j will receive zi

corresponding to zidi. Since the adversary has no information about zi, by the
security of the authenticated channel implementation it follows that ΠC

j and ΠS
i

output K 6=⊥ only (except for the probability of an attack on the authenticated
channel) if the adversary passes the DE-PAKE messages m′ (authenticated by
z) between these two rogue instances as a man-in-the-middle. It follows that
p10 ≤ p9 + min(qC , qS) · εAC.

Note that by the changes done by games G9 and G10, if the adversary in-
terferes with the KE in step I.1 with session ΠS

i , sends zidi to some ΠC
j and

does not send it to some ΠD
l in a [SAS.ATTACK, sid , (pk∗, zidi)] message for any

l then the adversary is forced to be a passive eavesdropper on the DE-PAKE
protocol in step III, or otherwise ΠS

i will output ⊥. Note that this is the case
when L(i) = l s.t. the game issues [SAS.SEND, sid , ΠC

j , Π
D
l , (pk, zidi)] for some

pk, i.e. if some ΠD
l receives value zidi, it receives it as part of a message MC

originated by some client session ΠC
j .

GameG11: Consider now the case when the adversary sends zidi to D by it-
self, i.e. when L(i) = l s.t. the adversary does sends [SAS.ATTACK, sid ,MC

∗ =
(pk∗, zidi)] for some pk∗ in response to [SAS.SEND, sid , ΠC

j , Π
D
l ,MC] for some j

and MC. Let EzFail(i,l) be an event that (a) the above conditions hold, (b) that
the adversary does not send zidi to any client instance in step I.2, and (c) that
ρl = 0, i.e. that ΠD

l rejects MC
∗ and aborts. Consider A11 = A10 and G11 just

like G10 except that G10 makes ΠS
i abort in step III and sets its output to ⊥

in case of event EzFail(i,l) for any l ∈ [nD]. Note that by condition (a) and (b)
session l = L(i) of D is the only one which gets zidi, hence if ρl = 0 then the
adversary has no information about zi = Z(zidi), hence by the security of the
authenticated channel it follows that p11 ≤ p10 + qS · εAC.

After these game changes, we are �nally ready to make a reduction from an
attack on underlying DE-PAKE to an attack on the TFA-KE. Speci�cally, we
will construct an algorithm A∗ which runs in time comparable to A, achieves
advantage AdvDEPAKE

A∗ = 2 · (p11−1/2) against the underlying DE-PAKE scheme,
and makes q∗S , q

∗
D, qC , qC rogue queries respectively to S, D, to C on its connection

to S, and to C on its connection with D, where q∗S = q∗D = q∗ where q∗ is a random

35

variable equal to the sum of q = min(qS , qD) coin tosses which come out 1 with
probability 2−t and 0 with probability 1−2−t. Recall that AdvTFAA = 2 ·(p0−1/2)
and that by the game changes above we have that |p11 − p0| is a negligible
quantity, and hence AdvDEPAKE

A∗ is negligibly close to AdvTFAA .

Reducing DE-PAKE attack to TFA-KE attack. The reduction works by A∗ in-
ternally running algorithm A and emulating entities S, C, and D to A as in game
G11. If A starts up an instance ΠS

i , Π
C
j , and Π

D
l , A

∗ starts up its local state for

these sessions, which we will denote Π̄S
i , Π̄

C
j , and Π̄

D
l .

Emulation of Step I of GenTFA to A: When A∗ starts up Π̄S
i or Π̄C

j , it runs

the KE on their behalf in step I.1. Let KS
CS,i, K

C
CS,j be the keys these instances

output from the KE step. If A connects Π̄S
i and Π̄C

j in HbC fashion, we call this

pair HbC-paired, and A∗ sets KS
CS,i = KC

CS,j to a random key, as in G11 (see G7).

In Step I.2 for Π̄S
i , A

∗ picks zidi and sets zi = Z(zidi) as in G11 (see G1), and
sends ACSend(KS

CS,i, 1, zidi). Denote this (zidi, zi) pair as (zidSi , z
S
i). When Π̄C

j

receives a message in step I.2, it decodes it as zidCj using ACRec(KC
CS,i, 1, ·). If

ACRec fails then Π̄C
j aborts. If Π̄S

i and Π̄C
j are not HbC-paired but zidCj = zidSi ,

we call these instances zid-paired.

Emulation of Step II of GenTFA to A: A∗ picks (sk, pk) as C in step II.1
and sends [SAS.SEND, sid , ΠC

j , Π
D
l ,MC] to A for MC = (pk, zid) and zid =

zidCj , where l is some new index in [nD] speci�ed by A. If A responds with

[SAS.CONNECT, sid] and zid was not sent to D before (otherwise Π̄D
l aborts),

A∗ generates eD as an encryption of two �xed bitstrings as in G11 (see G4). If
A forwards this eD to Π̄C

j , A
∗ sets zCj = Z(zidCj), picks a random key KC

CD,j ,

sets KD
CD,l = KC

CD,j , and denotes such Π̄C
j , Π̄

D
l instances as paired. If, on the

other hand, A responds with [SAS.ATTACK, sid ,MC
∗] for MC∗ = (pk∗, zid∗) s.t.

zid∗ was not sent to D before (otherwise Π̄D
l aborts), A∗ picks a coin ρl as

in G11 (see G2) and aborts Π̄D
l unless ρl = 1 (which happens with probabil-

ity 2−t). If Π̄D
l does not abort, A∗ picks a random key KD

CD,l and sends out

eD = Enc(pk∗, (Z(zid∗),KD
CD,l)). If A didn't respond with [SAS.CONNECT, sid]

or it did but Π̄C
j receives e∗D which is di�erent from eD sent by Π̄D

l , A
∗ sets

(zCj ,K
C
CD,j)← Dec(sk, e∗D).

As in G11, A∗ can abort some sessions at this point: (1) A∗ aborts Π̄D
l

if A responds with [SAS.CONNECT, sid] above but doesn't forward eD to Π̄C
j

(see G6); (2) A∗ aborts Π̄S
i and sets its output to ⊥ if the conditions of event

EzidOmit(i) are satis�ed (see G9), i.e. (a) A was not HbC in the key exchange

with Π̄S
i in step I, (b) A either does not send [SAS.ATTACK, sid , ·] with zidSi

or it does but the corresponding coin-toss ρ comes out 0, (c) A doesn't sent
zidSi to any Π̄C

j session, or it does for some j but then either does not do
[SAS.CONNECT, sid] or does not deliver the resulting eD to Clinstprimej; (3)
A∗ aborts Π̄S

i and sets its output to ⊥ if the conditions of event EzFail(i,l) are sat-

is�ed for some l ∈ [nD] (see G11), i.e. A does not send zidSi to any Π̄C
j instance,

sends [SAS.ATTACK, sid , (pk∗, zidSi)] to some Π̄D
l but coin ρl comes out 0.

36

Emulation of Step III of GenTFA to A: Finally, A∗ emulates step III of TFA-
KE by using the state held by Π̄P

i for any P ∈ {S,C,D} and i s.t. Π̄P
i reached

step III of GenTFA without aborting. A∗ performs this emulation by imple-
menting the Authenticated Channel layer as in step III of GenTFA using the
corresponding state computed above, i.e. KS

CS,i, z
S
i for Π̄S

i , K
C
CS,j , z

C
j ,K

C
CD,j for

Π̄C
j , and K

D
CD,l for Π̄

D
l , and implementing the DE-PAKE messages by initiating

and communicating with the external DE-PAKE parties, resp. ΠS
i , Π

C
j , and Π

D
l .

However, if at any point the authenticated channel receiver ACRec(·, ·, ·) outputs
⊥ for any Π̄P

i , A
∗ aborts this Π̄P

i and never communicates withΠP
i again. More-

over A∗ aborts whenever (1) event EACbreak(CD) ever happens for paired sessions

Π̄C
j , Π̄

D
l (see G5), (2) event EACbreak(CS) ever happens for HbC-paired sessions

Π̄C
j , Π̄

S
i (see G8), (3) if Π̄

S
i and Π̄C

j are zid-paired and Π̄C
j and Π̄D

l are paired

(i.e. if event EzidPass(i,j) occurs), but Π̄
S
i or Π̄C

j accept any message except that
sent by the counterparty in the corrent order (see G10).

By the above rules the only ΠS
i instances on which A∗ can be rogue are

s.t. A was not passive in the key exchange with Π̄S
i in step I, and there is

a unique l ∈ [nS] s.t. A sent [SAS.ATTACK, sid , (pk∗, zidSi)] in response to
[SAS.SEND, sid , ΠC

j , Π
D
l , ·], and Π̄D

l did not abort which in particular implies

that coin ρl came out 1. Note also that the only ΠD
l instances on which

A∗ can be rogue are s.t. A sent [SAS.ATTACK, sid , (pk∗, zid∗)] in response to
[SAS.SEND, sid , ΠC

j , Π
D
l , ·], and Π̄D

l did not abort, implying again ρl = 1. There-

fore each rogue session ΠS
i corresponds to a unique rogue session ΠD

l , hence
w.l.o.g. we can assume that there is a 1-1 relation between rogue ΠS

i sessions
and rogue ΠD

l sessions. Since for each such pair of sessions A∗ aborts them unless
ρl comes out 1, which happens with probability 2−t, we have that the number of
both S and D rogue sessions A∗ makes is bounded by q∗S = q∗D = q∗ where q∗ is a
random variable equal to the sum of q = min(qS , qD) coin tosses which come out
1 with probability 2−t and 0 with probability 1−2−t. Since the interaction of A∗

with the DE-PAKE scheme emulates the security experiment G11 to A exactly, it
follows that A∗ advantage in this DE-PAKE attack is AdvDEPAKE

A∗ = 2·(p11−1/2),
and hence AdvTFAA ≤ AdvDEPAKE

A∗ + 2(p11 − p0).

Finally, we need to attacker A∗ which makes (q∗S , q
∗
D, qC , q

′
C) rogue queries

of respective type where q∗S = q∗D = q∗ is a random variable as above to the
overall advantage of A∗. We will treat qC , q

′
C , qD, qS as constants, we will set

q = min(qS , qD), and we will treat q∗ as a random variable. Note that for every
(qC , q

′
C , q

∗
S , q
∗
D) where q∗S = q∗D = q∗, the assumption of DE-PAKE security

implies that AdvDEPAKE
A∗ is bounded by a linear expression of the type a·qC+b·q′C+

c ·q∗. Since q∗ is a random variable whose expectation is q/2−t when we measure
AdvDEPAKE

A∗ over all the randomness in the reduction and the DE-PAKE game,
which includes the randomness in q∗ (i.e. the coins ρl for l ∈ [nD]), the overall
contribution of term c ·q∗ will be

∑q
i=0 Pr[q∗ = i]∗ (c ·q∗) = c ·Exp(q∗) = c ·q/2t.

Hence over all the randomness of A ,A∗, and the DE-PAKE security game,
AdvDEPAKE

A∗ is bounded by a · qC + b · q′C + c · min(qS , qD)/2t. Consequently, if
the DE-PAKE is (T ′, εDEPAKE)-secure for T ′ comparable to T (namely T plus

37

the emulation work of A∗ which takes at most a few symmetric-cipher ops per
each party instance) then the TFA-KE scheme GenTFA is (T, ε)-secure for ε ≤
εDEPAKE + (p11 − p0) ≤ n · (εKEM + εSAS + εPKE + εuKE + 6εAC) + n2/2κ where
n = qHbC + max(qS , qD, qC , q

′
C), which implies the theorem statement for the

case where no party is corrupted.

38

