
Faster AVX2 optimized NTT multiplication for
Ring-LWE lattice cryptography

Gregor Seiler∗

IBM Research Zurich
grs@zurich.ibm.com

Abstract. Constant-time polynomial multiplication is one of the most time-consuming
operations in many lattice-based cryptographic constructions. For schemes based
on the hardness of Ring-LWE in power-of-two cyclotomic fields with completely
splitting primes, the AVX2 optimized implementation of the Number-Theoretic
Transform (NTT) from the NewHope key-exchange scheme is the state of the art for
fast multiplication. It uses floating point vector instructions. We show that by using
a modification of the Montgomery reduction algorithm that enables a fast approach
with integer instructions, we can improve on the polynomial multiplication speeds of
NewHope and Kyber by a factor of 4.2 and 6.3 on Skylake, respectively.
Keywords: lattice cryptography · NTT · implementation · AVX

1 Introduction
Lattice-based cryptography has emerged as a promising candidate for public-key cryptog-
raphy that is still secure after the likely advent of quantum computers.

From a computational point of view, many lattice-based cryptographic schemes are
based on operations in polynomial rings of the form (Z/qZ)[X]/(f(x)) where f is an
irreducible polynomial over Z and q is a prime number. For schemes whose security is
based on the (presumed) hardness of the Ring-LWE problem, f is usually chosen to be a
power-of-two cyclotomic Xn + 1 whose roots have order 2n and q is a prime that splits
completely (in the number field). The latter condition is equivalent to q ≡ 1 (mod 2n).
The reason for power-of-two cyclotomic rings and fully splitting primes is that the splitting
behaviour of such primes in these rings allows for fast multiplication using the Fast Fourier
Transform (FFT), which is also called the Number-Theoretic Transform (NTT) if it is
performed over the base field Zq. A full NTT-based multiplication of two polynomials
needs two forward NTTs to transform the input polynomials, a cheap pointwise vector
multiplication and one inverse NTT. An advantage of NTT-based multiplication over other
multiplication methods is that one can often save NTTs by sampling polynomials directly
in the NTT domain, by storing the NTT domain representation of polynomials for later
use, or by making use of the linearity of the NTT when computing sums of products of
polynomials. This leads to important speed-ups as multiplication is frequently the most
time consuming single operation in lattice-based schemes.

Producing fast constant-time implementations of the NTT for power-of-two cyclotomic
fields has received considerable attention in cryptography during the last couple of years
[GOPS13, ADPS16, GS16b, LN16]. For optimal speed on current Intel processors one
has to exploit the fact that the NTT is easily vectorizable and needs to make use of

∗Gregor Seiler was supported by the SNSF ERC Transfer Starting Grant CRETP2-166734-FELICITY
and the H2020 Project SAFEcrypto

mailto:grs@zurich.ibm.com


2 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

SIMD instructions. Unfortunately, “optimizing” compilers are not good at automatically
producing vectorized code which means one has to manually implement the NTT algorithm
using these instructions if one cares about speed.

Central to such an implementation are vectorized constant-time modular operations
in the base field Zq. For high speed one wants to work with densely packed vectors but
the intermediate result of a multiplication before modular reduction occupies twice the
width. This together with the fact that in floating point arithmetic modular reductions
are very easy – multiplying with a precomputed inverse of the modulus q, rounding down
to the next integer, multiplying with q and subtracting yields the standard representative
– has led some schemes to employ implementations of the NTT that use floating point
arithmetic. For instance NewHope [ADPS16] and Ring-TESLA [GS16a].

Floating point arithmetic on current Intel processors is extremely fast. Floating point
multiplications are even slightly faster than integer multiplications but additions are slower
[Fog17]. In fact, the floating point NTT of NewHope is, to our knowledge, the fastest
NTT implementation used in cryptography prior to this work. The authors state that they
“experimented with multiple different approaches to speed up the NTT in AVX” and also
tried a “vectorized Montgomery arithmetic” integer approach but found that the floating
point approach was faster. Longa and Naehrig [LN16] have also tried an integer approach
with a novel modular reduction scheme but their AVX2 optimized NTT is still slightly
slower than the floating point one from [ADPS16].

Next to the overhead needed for converting between integer and floating point represen-
tations, the most important downside of the floating point approach is that by representing
the base field elements in 64 bit double values, only four elements fit in an AVX2 register
with a width of 256 bits. So especially for moduli that fit into 16 bits, as for instance in
the case of NewHope and Kyber [ADPS16, DLL+17], this is quite far from densely packed.

In this work we report on the first, to our knowledge, implementation of the NTT for 16
bit primes that uses integer arithmetic on densely packed 16 dimensional vectors and runs
in constant time. For multiplications in the base field we use a modification of the original
Montgomery multiplication algorithm [Mon85], which allows the integer multiplications to
be split into separate short low and high products. See Tables 1 and 2 for the speed of our
implementation. On Haswell it is faster by factors of 3.8 and 5.4 compared to the original
AVX2 optimized implementations from NewHope and Kyber, respectively. On Skylake it
is faster by factors of 4.2 and 6.3.

This work has started with working on an improved optimized integer-arithmetic NTT
for the Dilithium signature scheme [DLL+17]. We could significantly speed-up the NTT
for Dilithium but the major technique presented in this paper is not applicable. The reason
is that Dilithium uses a 32 bit prime and the AVX2 instruction set does not offer separate
high and low short multiplication instructions for 32 bit integers. Our implementations are
now used in Kyber and Dilithium in the versions submitted to the NIST post-quantum
cryptography standardization process available from https://pq-crystals.org.

1.1 Notation
Let q ∈ Z be a prime number. We write Zq for the residue class field Z/qZ and Z×q
for its unit group. Let n = 2e be a power of two and q be a prime number such that
q ≡ 1 (mod 2n). Then we denote by R = Z[X]/(Xn + 1) the ring of integers in the
2n-th cyclotomic field and by Rq is quotient R/qR = Zq[X]/(Xn + 1). In our notation we
carefully distinguish between two integers a and b being congruent to each other modulo
m, and a being the standard representative of the residue class of b modulo m, i.e. a− b
is divisible by m and 0 ≤ a < m. For the former we write a ≡ b (mod m) and for the
latter a = b mod m. Sometimes we need the centralized representative −m2 ≤ a <

m
2 of b

modulo m and write a = bmod±m.

https://pq-crystals.org


Gregor Seiler 3

Table 1: Haswell cycle counts of our AVX2 optimized NTT multiplication implementation
and of the original AVX2 optimized implementations from NewHope and Kyber. The
counts are the medians of 10000 executions each. NewHope uses the ring Zq[X]/(X1024 +1)
with q = 213 + 212 + 1 and Kyber the ring Zq[X]/(X256 + 1) with q = 213 − 29 + 1. A full
multiplication consists of two forward NTTs, one inverse NTT and the pointwise vector
multiplication.

NewHope Kyber
Original This work Original This work

Forward NTT 9, 820 2, 784 2, 536 460
Inverse NTT 9, 780 2, 272 2, 557 440

Full multiplication 30, 408 8, 084 7, 800 1, 432

Table 2: Skylake cycle counts of our AVX2 optimized NTT multiplication implementation
and of the original AVX2 optimized implementations from NewHope and Kyber. The
counts are the medians of 10000 executions each. NewHope uses the ring Zq[X]/(X1024 +1)
with q = 213 + 212 + 1 and Kyber the ring Zq[X]/(X256 + 1) with q = 213 − 29 + 1. A full
multiplication consists of two forward NTTs, one inverse NTT and the pointwise vector
multiplication.

NewHope Kyber
Original This work Original This work

Forward NTT 9, 113 2, 433 2, 427 419
Inverse NTT 9, 037 2, 020 2, 367 394

Full multiplication 29, 583 7, 047 8, 019 1, 278

1.2 NTT-based multiplication
The fact that q is a prime number such that q ≡ 1 (mod 2n) means that 2n divides the
order q − 1 of the cyclic group Z×q . So Zq contains n = ϕ(2n) primitive 2n-th roots of
unity ζi where i = 1, 3, . . . , 2n− 1. It follows that Xn + 1 factors into linear polynomials
X − ζi over Zq. Now recall that the Chinese remainder theorem says the natural ring
homomorphism

f 7→
(
f (ζ) , f

(
ζ3) , . . . , f (ζ2n−1)) : Zq[X]/(Xn + 1)→

∏
i

Zq[X]/(X − ζi)

is in fact an isomorphism. The NTT computes this isomorphism and we write NTT :
Rq → Znq for it. Then the product fg of two polynomials f, g ∈ Rq can be computed as
fg = NTT−1(NTT(f) NTT(g)) which involves two forward NTTs one inverse NTT and
the pointwise multiplication in Znq . Sometimes one can save NTTs. For example,

t∑
i=1

figi =
t∑
i=1

NTT−1(NTT(fi) NTT(gi)) = NTT−1

(
t∑
i=1

NTT(fi) NTT(gi)
)
.

Such sums of products of polynomials need to be computed in the matrix vector multi-
plication of schemes relying on the Module-LWE problem. As an example consider the
Dilithium signature scheme with the parameters of the highest security level where the
matrix A has dimensions 6 × 5. Since A is sampled uniformly random, one can save
30 NTTs by sampling directly in the NTT representation. Then the vector needs only
transformed once, saving another 25 NTTs, and because of the linearity of the NTT we
only need 6 inverse NTTs, which saves 24 inverse NTTs. So instead of the naive 90 (inverse)
NTTs one only needs 11; 5 NTTs to transform the vector and 6 inverse NTTs.



4 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

1.3 Outline
In Section 2 we recall the standard theory of how the NTT can be computed in a fast way.
This is independent of the base field Zq and the same algorithm applies to the complex
case over C. In Section 3 we turn to the modular arithmetic in Zq and present different
reduction algorithms used in our NTT. In particular, in this section we present the modified
Montgomery reduction algorithm that allows to split multiplications in separate high and
low short products. Section 4 contains a description of our implementation strategy and
in Section 5 we compare our implementation to the original ones of NewHope and Kyber.

2 The Fast Fourier Transform
We recall the FFT-trick. See the excellent survey [Ber01]. The Fast Fourier Transform is
the observation that isomorphisms such as the one above can be computed quickly in a
divide and conquer fashion. Concretely, as Xn + 1 = Xn − ζn, one can first compute the
Chinese remainder map

f 7→
(
f mod Xn/2 − ζn/2, f mod Xn/2 + ζn/2

)
Zq[X]/(Xn − ζn)→ Zq[X]/(Xn/2 − ζn/2)× Zq[X]/(Xn/2 + ζn/2)

and then continue separately in the two rings of polynomials of degree less than n/2, noting
that Xn/2 +ζn/2 = Xn/2−ζn+n/2. This is very effective because computing the remainders
of a polynomial f of degree less then n modulo the two polynomials Xn/2± ζn/2 only takes
n/2 multiplications, n/2 subtractions and n/2 additions in Zq. More precisely, if ci and
cn/2+i are the i-th and (n/2 + i)-th coefficients of f , then the i-th coefficients c′i and c′′i of
the two reduced polynomials are given by c′i = ci + ζn/2cn/2+i and c′′i = ci − ζn/2cn/2+i.
Such an operation is called a butterfly and is sometimes given the name Cooley-Tukey
butterfly. The FFT can be easily performed in place. After the k-th level, 0 ≤ k < log(n),
it produces the vector of polynomials with pairs of coefficients

f mod
(
Xn/2k+1

− ζbrv(2k+i)
)
, f mod

(
Xn/2k+1

+ ζbrv(2k+i)
)
,

in the order i = 0, . . . , 2k − 1 where brv maps an log(n)-bit number to its bitreversal,
brv(blog(n)−12log(n)−1 + · · ·+ b12 + b0) = b02log(n)−1 + · · ·+ blog(n)−22 + blog(n)−1. So, after
all log(n) levels we get the vector in Znq with pairs of coefficients

f
(
ζbrv(n/2+i)

)
, f
(
−ζbrv(n/2+i)

)
for i = 0, . . . , n/2− 1. This representation of f is called the CRT representation or the
NTT domain representation.

The inverse transform is computed in much the same way by iteratively inverting the
CRT maps which in each level needs precisely the same number of multiplications, additions
and subtractions as the forward transform. For instance, coming back to the example from
above, c′i + c′′i = (ci + ζn/2cn/2+i) + (ci − ζn/2cn/2+i) = 2ci and ζ−n/2(c′i − c′′i ) = 2cn/2+i.
Here the butterflies differ to those of the forward transform in that addition and subtraction
come before multiplying with a root of unity. These butterflies are called Gentleman-
Sande butterflies in some works. Dividing out the factors of 2 can be postponed to after
the last level by exploiting the linearity of the CRT maps. Then one needs to multiply
all coefficients with n−1. Half of these multiplications are best done together with the
multiplications with the last root of unity, yielding n/2 additional multiplications.



Gregor Seiler 5

2.1 Twisting
A slight modification of the standard FFT from above is the following. We have the
twisting isomorphism

X 7→ ζX : Zq[X]/(Xn + 1)→ Zq[X]/(Xn − 1).

Then the CRT map followed by twisting the second factor yields the map

Zq[X]/(Xn−1)→ Zq[X]/(X n
2 −1)×Zq[X]/(X n

2 +1)→ Zq[X]/(X n
2 −1)×Zq[X]/(X n

2 −1)

which can be iterated to 1-dimensional factors. This map can be computed by butterflies
of the form of the inverse transform, i.e. Gentleman-Sande butterflies. If, in addition, one
reorders the coefficients with the bitreversal permutation before and after the transform,
then both the forward and the inverse transform can be computed with the same code
by only multiplying with different roots. For the small transforms needed in lattice
cryptography this reordering has a significant cost. We therefore advise not to do this and
instead implement two different algorithms for the forward and inverse transform.

Also, since the constant coefficients do not change under twisting, the number of
multiplications needed is the same. But in a vectorized implementation it is difficult
to omit multiplying the constant coefficients thus yielding algorithms that perform n/2
additional multiplications. Therefore we don’t do any twisting in our implementations.
Theoretically we think it is the best approach to do twisting during the inverse transform
which leads to Cooley-Tukey butterflies in the forward and inverse transform that are a
bit more favourable to the modular reduction scheme. Here the additional multiplications
are not a concern since they can be hidden with the additional multiplications by n−1. In
the NTT from [ADPS16] twisting and reordering is used in the forward transform whereas
the NTT from [LN16] uses the standard approach.

We give iterative pseudocode for the NTT in Algorithms 2.1 and 2.1.

Algorithm 1 Forward NTT of a polynomial f = c0 +c1X . . . cn−1X
n−1 ∈ Zq[X]/(Xn+1)

with precomputed roots of unity ζk = ζbrv(k), 0 ≤ k < n.
k ← 1
for l← n/2; l > 0; l← l/2 do

for s← 0; s < n; s← j + l do
for j ← s; j < s+ l; j ← j + 1 do

t← ζk · cj+l
cj+l ← cj − t
cj ← cj + t

end for
k ← k + 1

end for
end for

2.2 Recursive Implementations
The divide and conquer structure means that the FFT can be implemented most easily in
a recursive way. Moreover, for large transforms, a recursive implementation quickly reaches
polynomials that fit into cache. Therefore, the FFT literature often advises to a recursive
approach. For the comparatively small transforms needed in lattice cryptography and
today’s cache sizes where the full input polynomial usually fits into cache, the favourable
data access pattern of a recursive implementation is not an advantage and instead the
overhead of the recursion is very significant. Hence for fast FFTs in lattice cryptography



6 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

Algorithm 2 Inverse NTT of a polynomial f = c0 + c1X . . . cn−1X
n−1 ∈ Zq[X]/(Xn + 1)

with precomputed roots of unity ζk = ζ−(brv(k)+1), 0 ≤ k < n.
k ← 0
for l← 1; l < n; l← 2l do

for s← 0; s < n; s← j + l do
for j ← s; j < s+ l; j ← j + 1 do

t← cj
cj ← t+ cj+l
cj+l ← t− cj+l
cj+l ← ζk · cj+l

end for
k ← k + 1

end for
end for
for j ← 0; j < n; j ← j + 1 do

cj ← cj/n
end for

written in assembly language we advise against recursive implementations. But note that for
a reference implementations in C the better readability of a recursive implementation might
be worth considering. Even more so as in our experiments the gcc compiler completely
unrolls such implementations yielding even slightly faster transforms than a corresponding
iterative implementation in C.

3 Constant-time modular reduction
As we have already hinted at in the introduction, the modular reduction strategy is
central for obtaining a fast vectorized NTT implementation. Since we want to construct a
vectorized NTT algorithm based on integer arithmetic we will discuss reduction algorithms
in integer arithmetic in this section. In particular a modified version of the Montgomery
reduction algorithm and a Barrett-style algorithm.

Divisions need to be avoided for fast modular reductions. In principle, Division-less
reductions are achieved by multiplying with a precomputed approximate inverse of the
modulus to obtain a candidate quotient from which a candidate remainder can be computed
with a second multiplication and a subtraction [BZ10]. Contrary to the floating point case,
the precomputed inverse is more complicated in integer arithmetic. In the simplest variant
it is a fixed point representation of the inverse of the modulus from which the candidate
quotient can be obtained by a multiplication and a shift. The lower precision of such
a fixed-point reciprocal means that the candidate remainder will in general not be the
standard representative. The true remainder then follows after a couple of correction steps.
Since the modulus is known at compile time, optimizing compilers generally use such a
strategy. The problem for cryptographic applications lies in that if the correction steps
are implemented with branching instructions, then the algorithms are not constant time.
One can not rely on a compiler to do this in a constant time manner without carefully
checking the assembler output of that particular compiler. So this means one must not
use the “%” operator of the C programming language for reducing finite field elements
that depend on secret data. Instead one has to manually implement a constant time
reduction algorithm. One can construct such an algorithm by leaving out the correction
steps and only mapping to the standard representative when the result of a field operation
would otherwise overflow. For example, to map 0 ≤ a < 2q to its standard representative
in constant time one can use the standard trick of first subtracting q and then shifting



Gregor Seiler 7

arithmetically to the right by l − 1 where l is the width of a. The result is −1, i.e. a bit
string with all 1’s, if 0 ≤ a < q and 0 if q ≤ a < 2q. So by adding the logical AND of this
and q we get the standard representative.

3.1 Montgomery reduction
Let β = 2l be the word size needed so that q fits in one word. For instance β = 216 if
q < 216 and β = 232 if q < 232. Let a ∈ Z be a double word with 0 ≤ a < qβ. For example
a can be the product of a word x, 0 ≤ x < β, and a y with 0 ≤ y < q. We want to reduce
a modulo q. Next to the standard or LSB remainder 0 ≤ r < q defined by a = mq + r
for some m ∈ Z, one can define the so-called Hensel or MSB remainder r′ such that
a = mq + r′β for 0 ≤ m < β. The advantage of Hensel remainders is that there is a very
fast algorithm [Mon85], known as the Montgomery reduction algorithm, that computes
Hensel remainders. A disadvantage is that instead of computing a representative of the
residue class of a modulo q, r′ is congruent to aβ−1 mod q. For reductions of products
inside the NTT this is not a problem because one has to multiply by the roots of unity
which are compile-time constants. So one can just precompute them with an additional
factor of β mod q so that the results after Montgomery reduction are in fact congruent to
the desired value a. This was already done in [ADPS16] and we use the same strategy.
Contrary to [ADPS16] we also use Montgomery reductions for the pointwise multiplications
of the transformed polynomials. As one can not get the Montgomery factor β mod q in
at this point these pointwise products are in fact Hensel remainders. We then make use
of the linearity of the NTT and multiply with an additional Montgomery factor together
with n−1 after the inverse transform.

The Montgomery reduction algorithm that is usually stated in the literature and in
Montgomery’s original publication [Mon85] is the following. First note that a ≡ mq
(mod β) which implies m = aq−1 mod β. So by multiplying a with the inverse of −q
modulo β one gets −m mod β = β −m, i.e. the negative of the Hensel quotient modulo β.
Then (a+ (β −m)q)/β yields q + r′. Therefore, Montgomery reduction can be performed
by one multiplication modulo β to get β −m, one full multiplication to get (β −m)q and
finally an addition and an exact division by β where the latter can be implemented by a
right shift. The reason for multiplying with the inverse of −q instead of the inverse of q is
that this leads to the non-negative result q + r′. Indeed, we have

r′ = a−mq
β

> −βq
β

= −q.

On the other hand, r′ < q and thus 0 < q + r′ < 2q. In order to get the standard
representative of aβ−1 modulo q there is at most one correction step necessary.

In the computation of the sum a+ (β −m)q of two double words the low words cancel
since a+ (β −m)q = r′β. So it is tempting to compute only the high word of the product
(β −m)q which is often cheaper than the full product. Unfortunately, we can not rule out
the possibility that the low word of a and hence also that of (β −m)q is zero so that there
is no carry into the high word. Because of this we will use a sightly modified Montgomery
reduction algorithm where we multiply by q−1 mod β and subtract mq from a in signed
arithmetic. The algorithm can reduce the product of a signed word x, −β2 ≤ x < β

2 ,
and a signed word y such that −q < y < q. It outputs the Hensel remainder r′ defined
by a = mq + r′β where −β2 ≤ m < β

2 , which differs from the one above in that m is
now the centralized remainder of aq−1 modulo β. See Algorithm 3 and Lemma 2. This
signed Montgomery reduction algorithm is cheaper than the original one. Instead of a full
multiplication, a double word addition and a double word shift we only need a short high
product and a one word subtraction. Also notice that the full a is never needed. Instead,
for Algorithm 3 it is enough to separately have the high part a1 and low part a0 of a. This
is very important in our vectorized NTT algorithm.



8 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

Definition 1. Let a ∈ Z and q be an odd positive integer. The Hensel remainder r′ of a
modulo q with respect to the word size β = 2l such that q < β

2 is the unique integer r′

such that a = mq + r′β with −β2 ≤ m < β
2 .

Lemma 1. The Hensel remainder r′ of −β2 q ≤ a <
β
2 q modulo q fulfills −q < r′ < q.

Proof. From the defining equation,

r′ = a−mq
β

<
βq + βq

2β = q

and similarly r′ > −q.

Algorithm 3 Signed Montgomery reduction
Require: 0 < q < β

2 odd, −β2 q ≤ a = a1β + a0 <
β
2 q where 0 ≤ a0 < β

Ensure: r′ ≡ β−1a (mod q), −q < r′ < q
1: m← a0q

−1 mod ±β . signed low product, q−1 precomputed
2: t1 ←

⌊
mq
β

⌋
. signed high product

3: r′ ← a1 − t1

Lemma 2. Let q be an odd positive integer that fits in one signed word, 0 < q < β
2 , and

let −β2 q ≤ a < β
2 q. Algorithm 3 correctly computes the Hensel remainder of a modulo q

with respect to the word size β.

Proof. From the defining equation a = mq + r′β it follows that a ≡ mq (mod β) and
aq−1 ≡ m (mod β). By splitting a in its high and low words, a1 and a0, respectively,
i.e. a = a1β + a0 where 0 ≤ a0 < β, we get a ≡ a0 (mod β) and thus aq−1 ≡ a0q

−1 ≡ m
(mod β). Since, by definition, −m2 ≤ m < m

2 , the signed low product of a0 and q−1

as computed in Line 1 of the algorithm yields m; that is, a0q
−1 mod ±β = m. Define

t = t1β + t0 = mq so that t1 as computed in line 2 is the high word of t = mq. Now
observe that a − t = (a1 − t1)β + (a0 − t0) = r′β which implies a0 ≡ t0 (mod β) and,
since 0 ≤ a0, t0 < β, a0 = t0. Hence, a− t = (a1 − t1)β = r′β and a1 − t1 = r′. Last, as
both a, t ≥ −β2 q = − q+1

2 β + β
2 and a, t < β

2 q = q−1
2 β + β

2 we have −β4 ≤ −
q+1

2 ≤ a1, t1 ≤
q−1

2 < β
4 . So, the subtraction a1 − t1 in line 3 does not overflow when performed as a one

word signed subtraction.

If one wants to compute a standard representative 0 ≤ r′ < q in constant time, then
this can easily be done by using a trick along the lines of the one before this section.
Concretely, by shifting the output r′ of Algorithm 3 arithmetically to the right by l − 1,
computing the logical AND of the shifted value and q and adding the result to r′. Note
that we don’t have to first subtract q. This is another advantage of the signed Montgomery
reduction. We map to standard representatives in our NTT implementation when q is
close to the word size boundary. See Section 3.4 for the details.

3.2 Specialized reduction
We use Montgomery reduction for reducing two word numbers. Especially when performing
additions and subtractions we want to stay within one word. For reducing one word integers
better methods than Montgomery reduction exist.

When setting parameters for Ring-LWE based schemes, only the size of the prime q
and its splitting behaviour in the cyclotomic ring play a role. Therefore, in the case of fully
splitting primes, all prime numbers q in a certain interval and such that q ≡ 1 (mod 2n)



Gregor Seiler 9

can be chosen. It is therefore advisable to choose primes of a form that allows for fast
specialized reduction algorithms and sometimes also fast multiplication. For instance, the
NewHope key exchange scheme uses the prime 213 + 212 + 1, Kyber uses 213 − 29 + 1
and the Dilithium signature scheme 223 − 213 + 1. We exemplify with the Kyber prime
q = 213 − 29 + 1 how one can do specialized reduction with a prime of such a form.

Algorithm 4 Specialized reduction for the Kyber prime q = 213 − 29 + 1
Require: −215 ≤ a < 215

Ensure: r ≡ a (mod q), −215 + 4q ≤ r < 215 − 3q
1: t←

⌊
a

213

⌋
. arithmetic right shift

2: u← a mod 213 . logical and
3: u← u− t
4: t← t · 29 . left shift
5: r ← u+ t

Lemma 3. If −215 ≤ a < 215, then Algorithm 4 computes an integer r congruent to a
modulo q = 213 − 29 + 1 such that −215 + 4q ≤ r < 215 − 3q.

Proof. Let t, u ∈ Z be the quotient and remainder of a divided by 213, i.e. a = t213+u where
0 ≤ u < 213. Note that t and u are correctly computed in lines 1 and 2, respectively. The
fact that −215 ≤ a < 215 implies −4 ≤ t < 4. Now, from 213 ≡ 29 − 1 (mod q), it follows
that a = t213 +u ≡ t(29− 1) +u = r. So r as computed in line 5 is indeed a representative
of a modulo q. For the bound we find r = t(29−1)+u ≤ 3 · (29−1)+213−1 = 215−1−3q
and r ≥ −4(29 − 1) = −211 + 4 = −215 + 4q.

3.3 Barrett reduction
We turn to the one word reduction algorithm that we use for general primes q. In the
reference C implementation of NewHope, a short Barrett reduction algorithm is used that
employs the precomputed one word approximate reciprocal

v =
⌊
β

q

⌋
.

With this reciprocal, when reducing unsigned one-word integers, one achieves representa-
tives that are less then 2q. When the prime is close to β

2 , as is the case for the NewHope
prime, we use a higher precision one word reciprocal. Namely,

v =
⌊

2blog(q)c−1β

q

⌉
.

Note that 2blog(q)c−1

q < 1
2 implies v < β

2 , i.e. v fits into one signed word. The corresponding
reduction algorithm is stated in Algorithm 5.

It is easy so see that the t in line 2 can be computed by a signed high product and an
arithmetic right shift by blog(q)c − 1. For completeness we give the following lemma.

Lemma 4. Let q be an odd positive integer that fits in one signed word, 0 < q < β
2 , and

let −β2 ≤ a < β
2 . Algorithm 5 correctly computes a representative r of a modulo q such

that 0 ≤ r ≤ q.

Proof. We separately consider the two cases where a is non-negative and negative, respec-



10 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

Algorithm 5 General reduction for signed one word integers
Require: 0 ≤ q < β

2 , −
β
2 ≤ a <

β
2

Ensure: r ≡ a (mod q) with 0 ≤ r ≤ q
1: v ←

⌊
2blog(q)c−1β

q

⌉
. precomputed

2: t←
⌊

av
2blog(q)c−1β

⌋
. signed high product and arithmetic right shift

3: t← tq mod β . signed low product
4: r ← a− t

tively. So first assume a ≥ 0. Then, with k = blog(q)c − 1 and modulo β,

r ≡ a−
⌊
av

2kβ

⌋
q < a− av

2kβ q + q

≤ a− a2kβ
2kβq q + aq

2blog(q)cβ
+ q = aq

2blog(q)cβ
+ q

< q + 1.

Here we have used that q
2blog(q)c < 2 and a < β

2 . On the other hand,

a−
⌊
av

2kβ

⌋
q ≥ a− av

2kβ q ≥ −
aq

2blog(q)cβ
> −1.

We turn to a < 0. In this case we have

r ≡ a−
⌊
av

2kβ

⌋
q = a+

⌈
(−a)v
2kβ

⌉
q.

Now it follows similar as for the case a ≥ 0 that the right hand side is bigger than −1 and
smaller than q + 1. The claim follows by observing that r is integral and −β2 ≤ r <

β
2 .

A nice feature of this reduction algorithm is that by using the negative −v of the
reciprocal and adding t in line 4 one gets a representative between −q and 0. By carefully
alternating between these two modes one can arrange for the sum of two reduced elements
to stay in [−q, q].

3.4 Lazy reduction
Depending on the size of the modulus and the headroom to the word size boundary, it
is not always necessary to reduce the results modulo q when computing additions and
subtractions in Zq.

In the forward NTT, the size of the coefficients of the polynomials grow by less then
q from one level to the next. Recall the Cooley-Tukey butterflies c′i = ci + ζ · ci+l,
c′′i = ci − ζ · ci+l. So the coefficients only grow by q because the coefficients c′i, c′′i of the
reduced polynomials are the sum or difference of a previous coefficient ci and a Montgomery
reduced product ζ · ci+l of a coefficient and a root of unity where −q < ζ · ci+l < q. Since
the coefficients can grow both towards plus and minus infinity, the width of the interval
they are known to lie in grows by at most 2q. In the special case of the Kyber prime
q = 213 − 29 + 1, where all the values in the interval [−4q, 4q] fit into one signed word of
16 bit, this means that we have to reduce the lower half ci, 0 ≤ i < l, of the coefficients of
each polynomial in every third level. The dimension of the Kyber ring is n = 256. In the 8
levels of the forward NTT, next to the Montgomery reductions, we have to do additional
reductions in the third and sixth level. We use Algorithm 4 for this task. Then the output
polynomials are known to lie in the interval ]− 215 + 2q, 215 − q[. This is a bit too much



Gregor Seiler 11

for the Montgomery reductions in the pointwise multiplications. Therefore, we also reduce
in the last level 7. In total we need 3 · 128 = 768 additional reductions.

This can be improved by mapping the Montgomery reduced values to standard repre-
sentatives as described at the end of Section 3.1. Then the intervals only grow by q in a
known direction. So by strategically adding a suitable multiple of q to the coefficients they
can be held in [−4q, 4q] for 7 levels before they need to be reduced. So it is possible to get
rid of the additional reductions in the third and sixth level and only reduce in the last
level. It turns out that the more complex Montgomery reductions outweigh the savings
and we do not do this in the case of the Kyber prime.

For the NewHope prime q = 213 +212 +1 the situation is different. Here q fits only twice
into one signed word. Without mapping the Montgomery reduced products to non-negative
values, the coefficients of the reduced polynomials can already be up to 2q after the first
level. So we have to reduce them in the second level before we can compute the coefficients
of the next smaller polynomials. This pattern repeats and we see that we have to reduce
in every level. Here it is worth to make the products ζci+l be standard representatives.
Then we can arrange for the coefficients after the zeroth level be in ]− q, q[, after the first
in ]− q, 2q[, and after the second in ]− 2q, 2q[. Consequently, we only need to reduce in
the third and then again in the sixth and ninth level (the NewHope dimension is 1024).

The inverse NTT with its Gentleman-Sande butterflies is a bit less favourable to
reductions. In each level coefficients get added or subtracted that can be Montgomery
reduced or not reduced in the level before. This makes it more difficult to design a fast
reduction scheme for the Gentleman-Sande butterflies. For the Kyber prime we carefully
keep track on the size of individual coefficients and only reduce them when they get to
large. For the NewHope prime we reduce half of the coefficients in every level, namely
those that get not multiplied by roots and Montgomery reduced.

4 AVX2 optimized implementation
We now give details about our AVX2 optimized NTT for 16 bit primes. The AVX2 instruc-
tion set offers separate short low and high multiplication instructions for 16 bit packed
integers. They are vpmulhuw and vpmulhw for unsigned and signed high multiplications,
respectively, and vpmullw for low multiplications. They all have a latency of 5 cycles on
both Haswell and Skylake CPUs [Fog17]. So one can compute a full product of 16 integers
with 16 bits each in 10 cycles. In contrast the vpmulld instruction computes only 8 such
products in also 10 cycles. Moreover, if one only needs the low or high product as is the
case in our Montgomery reduction algorithm, then these instructions are 4 times faster
then vpmulld.

We use the 16 vector registers in the following way. We reserve 2 registers for the
constants q and q−1 mod 216. Both contain 16 packed copies of these two constants. At
all times we have 128 coefficients packed in 8 vector registers. Then we use five registers
for temporary results during the computations. Let us exemplify this for a transform of
a polynomial c0 + c1X + · · · + c255X

255 in dimension n = 256. Before the zeroth level
we load the coefficients c0, . . . , c63 into four of the coefficient registers and coefficients
c128, . . . , c191 into the other four. Then by loading 16 copies of the first root into one of
the temporary registers we can compute half of the first level. The other half is computed
by loading coefficients c64, . . . , c127 and c192, . . . , c255. After the first level we are left with
two polynomials of degrees 127. Each of this fits completely into our 8 coefficient registers.
So we load them completely once and transform them to linear factors inside the registers.
In each level we have to multiply half of the coefficients; that is, we have to do four
parallel vector multiplications and Montgomery reductions. By interleaving these we can
considerably hide the latencies of the multiplication instructions. We also interleave the 8
vector additions and subtractions that are needed.



12 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

Shuffling. Starting from level 4, the polynomials have degree less then 16. So they only
occupy at most one register. We only need to multiply half of the coefficients of each
polynomial with a root. Therefore we shuffle the vectors to group together coefficients that
need to be multiplied. Concretely, in level 4, we swap the upper 8 coefficients of a register
representing one polynomial with the lower 8 coefficients of a register containing another
polynomial using the vperm2i128 instructions. Then the second register contains all the
high coefficients that need to be multiplied. After the butterflies and at the beginning
of level 5 every half register with 8 coefficients represents one polynomial. We swap the
upper 4 coefficients in each 128 bit lane of one register with the lower 4 coefficients of
another register using the vshufpd instruction. We continue in this way in levels 6 and 7
with vpshufd/vpblendd and vpshufb/vpblendw, respectively.

Precomputed roots. Instead of loading single precomputed roots and populating the
vector registers with broadcast and various shuffling instructions, which is slow, we
precompute vectors of roots that can be loaded into a vector register with one aligned load
instruction vmovdqa only.

5 Comparison
We performed experiments with our optimized NTT multiplication code and compared it to
the original AVX2 optimized floating point NTT multiplication code from NewHope and Ky-
ber. Note that Kyber uses the new NTT from this work now. We have taken the NewHope
code from https://cryptojedi.org/crypto/data/newhope-20160815.tar.bz2 and the
original Kyber code from https://github.com/pq-crystals/kyber. The experiments
were conducted on two machines with an Intel Haswell and and Intel Skylake processor,
respectively. The Haswell computer is equipped with an Intel Core i7-4770K CPU running
at the constant clock frequency of 3500 Mhz. Hyperthreading and Turbo Boost were
switched off. The system runs Debian stable with Linux kernel version 3.16.0 and the
code was compiled with gcc 6.3.0. The Skylake computer is a laptop with an Intel Core
i7-6600U CPU at a clock frequency of 2600 Mhz with Hyperthreading and Turbo Boost
off. The system runs Ubuntu with Linux kernel 4.8.0 and the code was compiled with gcc
6.2.0.

Table 1 gives the numbers for Haswell and Table 2 the ones for the Skylake computer.
The cycle counts are the medians of 10000 executions each. A full multiplication incorpo-
rates two forward NTTs, one inverse NTT and the pointwise multiplication. In the case of
the floating point implementations from NewHope and Kyber, the forward NTTs contain
the bitreversal permutation. This is different to the numbers in [ADPS16] and [BDK+17].
There the authors give the cycle counts for the forward NTTs without permuting because
in applications one can sometimes omit this step when the input polynomial is a random
polynomial where all the coefficients are independently identically distributed. So these
works show numbers for the forward NTT which are smaller than those for the inverse
transform. As we are interested in the general multiplication speeds we decided to measure
the times of forward transforms as they are needed in a proper multiplication.

One reason why we measure a higher speedup on Skylake is that floating point additions
have a latency of 4 cycles on Skylake compared to only 3 cycles on Haswell. For floating
point multiplications Skylake is faster with a latency of 4 cycles compared to 5 cycles. But
additions are the bottleneck in the floating point NTTs; see the discussion in [ADPS16].

Interestingly, the more elaborate reduction scheme in our implementation of the forward
NTT for the NewHope prime is actually slower. The reason is that the more complex
Montgomery reductions make the dependency chains longer for working on the coefficients
that need to be multiplied. In contrast, when reducing the other half of the coefficients,
the CPU is able to schedule these reductions concurrently with the multiplications and



Gregor Seiler 13

Montgomery reductions using out of order execution and register renaming. So these
additional reductions are very cheap. It is hence easy to improve on our numbers in the
case of the NewHope prime.

Other multiplication algorithms Some designs choose rings and moduli for various
reasons that do not allow for fast NTT-based multiplication, for example the NTRU
KEM from [HRSS17] and NTRU Prime [BCLvV16]. They typically use Toom-Cook and
Karatsuba multiplication. In [HRSS17] the modulus 8192 is a power of two that enables
extremely simple modular reduction. The authors report that their AVX2 optimized code
uses 11722 Haswell cycles to multiply in the 701-dimensional ring Z8192[X]/(X701 − 1).
Although this ring is much lower dimensional then the 1024-dimensional ring in NewHope,
our NTT-based multiplication for NewHope only needs 8084 Haswell cycles. The AVX2
optimized implementation of NTRU Prime need 26682 cycles to multiply in the 761-
dimensional field Z4591[X]/(X761 −X − 1).

6 Outlook
The upcoming AVX512 instruction set offers twice as many vector registers of twice the
width compared to AVX2. So in this instruction set the NTT in a cyclotomic ring of
dimension up to 512 and with a prime of 16 bits can be computed completely inside the
registers by using our dense approach. It will be interesting to see the multiplication
performance of these processors.

7 Bibliography

References
[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-

quantum key exchange - A new hope. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 327–343,
2016.

[BCLvV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. Ntru prime: reducing attack surface at low cost. Cryptology
ePrint Archive, Report 2016/461, 2016. https://eprint.iacr.org/2016/
461.

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. Crystals – kyber:
a cca-secure module-lattice-based kem. Cryptology ePrint Archive, Report
2017/634, 2017. https://eprint.iacr.org/2017/634.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians, 2001.

[BZ10] Richard P. Brent and Paul Zimmermann. Modern computer arithmetic (version
0.5.1). CoRR, abs/1004.4710, 2010.

[DLL+17] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehle. Crystals – dilithium: Digital signatures from
module lattices. Cryptology ePrint Archive, Report 2017/633, 2017. https:
//eprint.iacr.org/2017/633.

[Fog17] Agner Fog. Instruction tables, 2017.

https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2017/633


14 Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7,
2013. Proceedings, pages 67–82, 2013.

[GS16a] Shay Gueron and Fabian Schlieker. Optimized ring-tesla, 2016.

[GS16b] Shay Gueron and Fabian Schlieker. Speeding up R-LWE post-quantum key
exchange. In Secure IT Systems - 21st Nordic Conference, NordSec 2016,
Oulu, Finland, November 2-4, 2016, Proceedings, pages 187–198, 2016.

[HRSS17] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
High-speed key encapsulation from NTRU. In Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 232–252, 2017.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Cryptology and
Network Security - 15th International Conference, CANS 2016, Milan, Italy,
November 14-16, 2016, Proceedings, pages 124–139, 2016.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, 1985.


	Introduction
	Notation
	NTT-based multiplication
	Outline

	The Fast Fourier Transform
	Twisting
	Recursive Implementations

	Constant-time modular reduction
	Montgomery reduction
	Specialized reduction
	Barrett reduction
	Lazy reduction

	AVX2 optimized implementation
	Comparison
	Outlook
	Bibliography

