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Abstract. Structure Preserving Signatures (SPS) allow the signatures
and the messages signed to be further encrypted while retaining the
ability to be proven valid under zero-knowledge. In particular, SPS are
tailored to have structure suitable for Groth-Sahai NIZK proofs. More
precisely, the messages, signatures, and verification keys are required to
be elements of groups that support efficient bilinear-pairings, and the sig-
nature verification consists of just evaluating one or more bilinear-pairing
product equations. Since Groth-Sahai NIZK proofs can prove the valid-
ity of such pairing product equations, it leads to interesting applications
such as blind signatures, group signatures, traceable signatures, group
encryption, and delegatable credential systems.
In this paper, we further improve on the SPS scheme of Abe, Hofheinz,
Nishimaki, Ohkubo and Pan (CRYPTO 2017) while maintaining only an
O(λ)-factor security reduction loss to the SXDH assumption. In partic-
ular, we compress the size of the signatures by almost 40%, and reduce
the number of pairing-product equations in the verifier from fifteen to
seven. Since SPS are used in applications by encrypting the messages
and/or the signatures these optimizations are further amplified as prov-
ing pairing-product equations in Groth-Sahai NIZK system is not frugal.
While our scheme uses an important novel technique introduced in the
above mentioned paper, i.e. structure-preserving adaptive partitioning,
our approach to building the signature scheme is different and this leads
to the optimizations mentioned. Thus we make progress towards an open
problem stated by Abe et al (CRYPTO 2017) to design more compact
SPS-es with smaller number of group elements.

Keywords: Structure-preserving signatures, bilinear pairings, SXDH, Matrix-
DDH, Groth-Sahai, Cramer-Shoup, QA-NIZK

1 Introduction

Structure-Preserving Signatures (SPS), introduced in [AFG+10], allow the sig-
natures and the messages signed to be further encrypted while retaining the



ability to be proven valid under zero-knowledge. In particular, SPS are tailored
to have structure suitable for Groth-Sahai NIZK proofs [GS12]. More precisely,
the messages, signatures, and verification keys are required to be elements of
groups that support efficient bilinear-pairings (bilinear groups), and the signa-
ture verification consists of just evaluating one or more bilinear-pairing product
equations. Since GS-NIZK proofs can (with zero-knowledge) prove the valid-
ity of such pairing product equations, it leads to interesting applications such
as blind signatures [AO09,AFG+10], group signatures [AHO10], traceable sig-
natures [ACHO11], group encryption [CLY09], and delegatable credential sys-
tems [Fuc11].

While there is a long sequence of works starting with Groth in 2006 [Gro06],
and with the formalization of definition of SPS in [AFG+10], recently there
have been major efficiency improvements in terms of signature size, number
of pairing-product equations and verification time [KPW15,LPY15,JR17]. With
the exception of [HJ12], most of these works that are based on static assumptions
such as SXDH or k-LIN, incur a security reduction loss of factor O(q) or even
O(q2), where q is the number of signature queries. Recently, in a remarkable
work, Abe et al [AHN+17] show a SPS scheme which is quite compact and
yet has only a O(λ) factor security loss, where λ is the security parameter4.
The security is based on the SXDH assumption in asymmetric bilinear-pairing
groups, which is essentially the decisional Diffie-Hellman (DDH) assumption in
each of the two asymmetric groups.

In this work, we further improve on the SPS scheme of [AHN+17] while main-
taining only a O(λ)-factor security reduction loss. In particular, we compress the
size of the signatures by 43% of that in [AHN+17], and reduce the number of
pairing-product equations in the verifier from fifteen to seven (see Table 1 for
more details). Recall, structure-preserving signatures are used in applications by
encrypting the messages and/or the signatures, and hence these optimizations
are further amplified as proving pairing-product equations in Groth-Sahai NIZK
system is not frugal. While our scheme uses an important novel technique intro-
duced in [AHN+17], i.e. structure-preserving adaptive partitioning, our approach
to building the signature scheme is different and this leads to the optimizations
mentioned. It was mentioned as an open problem in [AHN+17] to design more
compact SPSes with smaller number of group elements.

At a high level, signature schemes usually encrypt a secret and prove in
zero-knowledge that such a secret is encrypted in the signature. Since we con-
sider security under chosen-message attacks (EUF-CMA), this entails some type
of simulation-soundness requirement on the zero-knowledge proof. For example,
the encryption scheme may then be required to be CCA2. In the standard model,
CCA2 encryption schemes have more or less followed two paradigms: (a) The
Naor-Yung paradigm [NY90] of double CPA encryption, and a simulation-sound
NIZK proof that the double encryption is valid [Sah99], or (b) An augmented
ElGamal Encryption (reminiscent of [Dam92]) along with a hash proof that the

4 The work of [HJ12] only encountered a constant factor security loss. However, the
scheme produces signatures that require hundreds of group elements.
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augmentation is valid [CS98]. However until very recently, known solutions to
both these approaches have had two limitations, i.e. these schemes were inher-
ently tag-based and hence not amenable to structure-preservation, and further
they had at least O(q)-factor security loss in reduction to standard assumptions.
In the context of signature schemes, IBEs and CCA2-encryption, a recent flurry
of works [CW13,BKP14,LPJY15,AHY15,GHKW16,Hof17], starting with Chen
and Wee’s almost tightly-secure IBE scheme [CW13], do manage to handle the
second concern but these works (except one) rely on tag-based approaches5,
and hence do not lead to (almost) tightly-secure SPS. The one exception be-
ing the recent work [AHN+17] mentioned above. The work [AHN+17] however
does build on earlier string of works in obtaining tight-security, and in particular
it enhances a technique of [Hof17], called adaptive-partitioning, so as to enable
structure-preservation.

We now briefly discuss message-space partitioning techniques, which is used
in both [AHN+17] and our new SPS. Chen and Wee consider partitioning the
message space (resp. identity space in IBEs) repeatedly into two sets based on
a bit derived from the message or a tag. In this iterative reduction process, they
adjust signatures for messages in one of the two sets so that after logarithmic
number of steps (say, in the size of the tag space) all modified signatures hide
the secret. The partitioning scheme is however based on the message or tag, and
hence this does not lead to structure-preserving signatures. Hofheinz [Hof17]
introduced “adaptive partitioning” in which the partitioning is decided dynam-
ically based on an encrypted partitioning-bit embedded in the signature. This
leads to public-keys that are constant sized (as opposed to O(λ)-sized), but the
strategy is still “tag”-based, and hence not structure-preserving.

In [AHN+17], simulation-soundness (for the Naor-Yung encryption paradigm)
is achieved using Groth-Sahai NIZK proofs for “OR”-systems. The scheme has al-
most tight-security reduction due to adaptive partitioning and yet it is structure-
preserving as tags (or hashes) are not used. Very concisely, the public-key con-
tains a commitment to a bit x which is initially set to zero. Each signature also
contains an encryption of a bit y, which is set arbitrarily in the scheme (i.e. real
world). The “OR” system proves that either y == x or the double encryptions
of the secret are consistent. Simulation-soundness is achieved by ensuring that
inconsistent double encryptions are only generated in signatures where the sim-
ulator was able to ensure y = x. This requires an intricate sequence of reduction
steps where yi (i.e. y in i-th signature) is first set to M i

j (i.e. the j-bit in the

message M i) and x is set to be the complement of a guess of y∗ (i.e. adver-
sary’s y). Since x 6= y∗ with probability at least half, this enforces soundness of
consistency of double encryption, and the result follows by complexity leverag-
ing. The security argument also requires enacting a strategy of “dynamically”
augmenting/strengthening the language that is verified.

5 A tag is usually either computed using a 1-1 or collision-resistant function or is
chosen afresh at random. In some cases it is clear that the resulting scheme is not
SPS, but there are cases of the latter variety [KPW15,LPY15,JR17] that lead to
SPS, but where it is not clear if a tight reduction can be obtained or not.
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Table 1. Comparison with existing SPS schemes with table adapted from [AHN+17].
(n1, n2) denotes n1 G1 elements and n2 G2 elements. The table gives message, sig-
nature and public key sizes and finally the security loss in the reduction to the listed
assumption(s). For [HJ12], the parameter d limits number of signing to 2d. The pa-
rameters q and λ represent the number of signing queries and the security parameter,
respectively.

|M | |σ| |pk| Sec. Loss Assumption

[HJ12] 1 10d+ 6 13 8 DLIN

[ACD+12] (n1, 0) (7, 4) (5, n1 + 12) O(q) SXDH, XDLIN
[ACD+12] (n1, n2) (8, 6) (n2 + 6, n1 + 13 O(q) SXDH, XDLIN
[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(q) SXDH, XDLIN
[KPW15] (n1, n2) (7, 3) (n2 + 1, n1 + 7) O(q2) SXDH

[KPW15] (n1, 0) (6, 1) (0, n1 + 6) O(q2) SXDH
[JR17] (n1, 0) (5, 1) (0, n1 + 6) O(q log q) SXDH
[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH
[AHN+17] (n1, n2) (14, 14) (n2 + 19, n1 + 12) O(λ) SXDH

This paper (n1, 0) (9, 6)ab (7, n1 + 14) O(λ) SXDH
This paper (n1, n2) (10, 8) (n2 + 8, n1 + 15) O(λ) SXDH

a Based on the optimization in Section 5.2; otherwise (9, 7).
b The batched-pairing optimization of Sec. 5.3 has (10, 7).

Table 2. Comparison of factors relevant to computational efficiency in SPS schemes
with smaller signature sizes. Third column indicates the no. of scalar multiplications
in G1,G2 for signing. Multi-scalar multiplications are counted with a weight 1.5.
For [JR17] a constant pairing is included. Column “Batched” shows the no. of pairings
in a verification when pairing product equations are aggregated by batch verification
techniques [BFI+10].

|M | #(s.mult)
#(PPEs)

#(Pairings)
in signing Plain Batched

[KPW15]

(n1, 0)

(6, 1) 3 n1 + 11 n1 + 10
[JR17] (6, 1) 2 n1 + 8 n1 + 6
[AHN+17] (15, 15) 15 n1 + 57 n1 + 16
This paper (12, 6) 7 n1 + 33 n1 + 22
This paper, Sec. 5.3 (13, 7) 10 n1 + 39 n1 + 16

[KPW15]

(n1, n2)

(8, 3.5) 4 n1 + n2 + 15 n1 + n2 + 14
[AHN+17] (17.5, 16) 16 n1 + n2 + 61 n1 + n2 + 18
This paper (13, 8) 8 n1 + n2 + 37 n1 + n2 + 24
This paper, Sec. 5.3 (14, 9) 11 n1 + n2 + 43 n1 + n2 + 18

In our work, we advantageously use simple split-CRS6 (quasi-adaptive) QA-
NIZK for affine languages introduced in [JR13], wherein the verifier CRS does
not depend on the affine component of an affine language. This greatly sim-

6 In a split-CRS QA-NIZK, the CRS can be split into two parts, a prover CRS and a
verifier CRS. to prove a statement only the prover CRS is required, and to verify a
statement and its proof only the verifier CRS is required.
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plifies the security proof while also yielding smaller signatures and verification
(PPE) equation sizes. In particular, we do not employ the strategy of augment-
ing/strengthening the language that is verified, but more or less follow the strat-
egy of obtaining signature schemes using augmented ElGamal encryption along
with hash proofs. Moreover, using the enhanced adaptive partitioning technique
of [AHN+17] we are able to do this without using tags or hashes of messages and
hence our scheme is structure-preserving and simultaneously (almost) tightly-
secure. The strategy of obtaining SPS from split-CRS QA-NIZK for affine lan-
guages was first used in [JR17], but that scheme incurred an O(q log q)-factor
loss in security in reduction to the SXDH assumption. Another advantage of
using the split-CRS QA-NIZK of [JR13] is that it is also true-simulation sound
(i.e. it is unbounded simulation-sound when the simulator only issues proofs on
true statements), and this allows us to give an SPS that does not need discrete
logarithm of message (group) elements. This was required in the construction
of [AHN+17], and thus the final scheme required boot-strapping using a Par-
tial One-time Signature (POS) scheme (or more complicated GS-NIZK proofs of
PPEs). Moreover, while [AHN+17] also use the POS for boosting an SPS for a
single coordinate message to an SPS for vector messages, we directly construct
our SPS for message vectors, which saves us a couple of elements in the signa-
ture. We leverage the constant size of QA-NIZKs to achieve this saving. In order
to maintain O(λ) security we first map the message vector to an O(λ)-length
bit-string and then let the reduction games hop through each bit position of this
bit-string.

Our scheme also utilizes Groth-Sahai NIZK proofs for “OR”-systems. In par-
ticular, we follow [AHN+17] by having a commitment to bit x in the public-key,
and including an encryption of bit y in each signature. The “OR” system now
proves that either x == y or the augmentation in augmented ElGamal encryp-
tion is correct. In other words, the signature contains ρ = gr, ρ̂ = gbr, and an
(ElGamal) encryption of a secret k0 using randomness r (and ElGamal secret
key d). In Cramer-Shoup CCA2-encryption scheme the hash proof system proves
that ρ and ρ̂ are consistent, i.e. ρ̂ = ρb where gb is in the public-key. Here we
prove the same using Groth-Sahai NIZK and further only as a consequent of
x 6= y. At a high level, the security reduction works iteratively as follows (for
simplicity, assume that the discrete log m of each message M is available to the
simulator): in each round j, yi is set to mi

j . Next x is guessed to be the comple-
ment of y∗. With probability half the guess is correct, and then only in messages
where yij == x the simulator uses a DDH challenge to replace d = d1 + b · d2 by

d′ = d1 + b′ · d2. This of course requires soundness of ρ̂∗ = (ρ∗)b, which would
indeed hold because the guess x is not equal to y∗, and further one can easily
switch between Groth-Sahai binding and hiding commitments as all “OR”-proofs
in signed messages always remain true. The security proof requires careful use
of pairwise independence to replace k0 by a random function of the prefix of the
message bits mi

≤j , but otherwise uses standard arguments.

We now briefly remark about the efficiency implications of tight-security
reductions. For standard bilinear pairings groups, this point has been well argued
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in [AHN+17], where for instance the authors point out that the next standard
level of security for pairings friendly groups from 128-bit security is 192-bits or
256-bits. Moreover, as SPS schemes are just building blocks for applications, the
loss in efficiency is amplified. The authors point out that computing a pairing
in the 192-bit security level is slowed by a factor of 6 to 12 as compared to
those in 128-bit security levels. As shown in Table 2, with batching of pairings
computations in the various pairing-product equations required for signature
verification, both [AHN+17] and our new construction has only at most 2.5
factor more pairings than the most efficient [JR17] non-tight scheme. Thus, our
scheme (or the [AHN+17] scheme) running at 128-bit security can verify 2.5
to 4.5 times faster than [JR17] running at 192-bit security. Moreover, our new
scheme has signatures that are shorter than [AHN+17] by 43% (see Table 1).

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A>B as
A ·B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Zl×kq which is full-ranked with overwhelming
probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Zkq and s′ ← Zlq, the tuple ([A], [As]) is computationally indis-
tinguishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by
Dk.

2.1 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.
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For our SPS construction we will also need a property called true-simulation-
soundness and an extension of QA-NIZKs called strong split-CRS QA-NIZK. We
recall the definitions of these concepts below.

Definition 1 (Strong Split-CRS QA-NIZK [JR13]). We call a tuple of
efficient algorithms (pargen, crsgenv, crsgenp, prover, ver) a strong split-CRS
QA-NIZK proof system for an ensemble of distributions {Dη} on collection of
witness-relations Rη = {Rρ} with associated parameter language Lpar if there
exists probabilistic polynomial time simulators (crssimv, crssimp, sim), such that
for all non-uniform PPT adversaries A1,A2,A3, and η ← pargen(1λ), we have:

Quasi-Adaptive Completeness:

Pr


(CRSv, st)← crsgenv(η), ρ← Dη
CRSp ← crsgenp(η, ρ, st)
(x,w)← A1(η,CRSv,CRSp, ρ)
π ← prover(CRSp, x, w)

:
ver(CRSv, x, π) = 1 if

Rρ(x,w)

 = 1

Quasi-Adaptive Soundness:

Pr

 (CRSv, st)← crsgenv(η), ρ← Dη
CRSp ← crsgenp(η, ρ, st)
(x, π)← A2(η,CRSv,CRSp, ρ)

:
ver(CRSv, x, π) = 1 and

not (∃w : Rρ(x,w))

 ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr

 (CRSv, st)← crsgenv(η)
ρ← Dη
CRSp ← crsgenp(η, ρ, st)

: Aprover(CRSp,·,·)
3 (η,CRSv,CRSp, ρ) = 1


≈

Pr

 (CRSv, trap, st)← crssimv(η)
ρ← Dη
CRSp ← crssimp(η, ρ, st)

: Asim
∗

(trap,·,·)
3 (η,CRSv,CRSp, ρ) = 1

 ,
where sim∗(trap, x, w) = sim(trap, x) for (x,w) ∈ Rρ and both oracles (i.e.
prover and sim∗) output failure if (x,w) 6∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if soundness holds even when an adaptive adversary has ac-
cess to simulated proofs on language members. More precisely, for all PPT A,

Pr

[
(CRS, trap)← crssim(η, ρ)

(x, π)← Asim(CRS,trap,·,·)(CRS, ρ)
:

x 6∈ Lρ and
ver(CRS, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x 6∈ Lρ.

In this paper, we use a strong split-CRS QA-NIZK (pargen, crsgenv, crsgenp,
prover, ver) for affine linear subspace languages {L

[M]1,[a]1
}, consisting of words

of the form [Mx + a]1, with parameters sampled from a robust and efficiently
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witness-samplable distribution D over the associated parameter language Lpar
and with soundness under a Dk-mddh assumption. Robustness means that the
top square matrix of M is full-ranked with overwhelming probability. The con-
struction is described in [JR17], with a single element proof under the sxdh
assumption.

2.2 Groth-Sahai NIWI Proofs

The Groth-Sahai NIWI (non-interactive witness-indistinguishable) and NIZK
Proof system provides highly efficient proofs for groups with efficient bilinear
pairings [GS12]. We refer the reader to the cited paper for detailed definitions,
constructions and proofs. Here we give a brief overview. As usual, and in line with
Section 2.1, a non-interactive proof system for a witness relation R consists of
four probabilistic polynomial time algorithms: pargen, crsgen, prover, ver. Groth-
Sahai proof system satisfies perfect completeness and soundness. Moreover, it
satisfies composable witness indistinguishability. This requires that there be an
efficient probabilistic algorithm crssim such that for all non-uniform polynomial
time adversaries A we have CRS indistinguishability, i.e.,

Pr
[
η ← pargen(1λ), crs← crsgen(η) : A(crs) = 1

]
≈ Pr

[
η ← pargen(1λ), simcrs← crssim(η) : A(simcrs) = 1

]
,

and for all adversaries A we also have (perfect witness-indistinguishability)

Pr[η ← pargen(1λ), simcrs← crssim(η); (x,w0, w1)← A(simcrs);

π ← prover(simcrs, x, w0) : A(π) = 1]

= Pr[η ← pargen(1λ), simcrs← crssim(η); (x,w0, w1)← A(simcrs);

π ← prover(simcrs, x, w1) : A(π) = 1],

where we require that both (x,w0) and (x,w1) are in R.
Groth-Sahai system is a commit and prove system, i.e. all free variables

are first committed to, and then equations are proven w.r.t. the variables in
the commitment. In other words prover above may have two components, one a
randomized commitment algorithm and another an actual prover. An integer (or
Zq) variable can be committed to in either group G1 or G2. These randomized
commitments algorithms are denoted by com1(crs, x; r) or com2(crs, x; r). In the
context of Groth-Sahai NIWI proofs, the algorithm crsgen is referred to as BG,
i.e binding generator, since such crs lead to binding commitments. The algorithm
crssim is referred to as HG, i.e. hiding generator, as such simcrs lead to hiding
commitments.

The GS proof system is itself structure-preserving for proving satisfiability
of linear multi-scalar equations and a non-linear quadratic equation. It is also
known that its CRS indistinguishability is tightly reduced to the SXDH assump-
tion [GS12]. The maximum (absolute-value) of the difference in the two prob-
abilities (over all efficient adversaries) will be denoted by ADVcrsind. More
details about the actual commitment schemes can be found in Section 5.2. For
full details the reader is referred to [GS12].
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2.3 Public-Key Encryption Schemes

Let GEN be an algortihm that, on input security parameter λ, outputs par that
includes parameters of pairing groups.

Definition 3 (Public-key encryption). A Public-Key Encryption scheme (PKE)
consists of proabilistic polynomial-time algorithms PKE := (Gen,Enc,Dec):

– Key generation algorithm Gen(par) takes par← GEN(1λ) as input and gener-
ates a pair of public and secret keys (pk, sk). Message spaceM is determined
by pk.

– Encryption algorithm Enc(pk,M) returns a ciphertext ct.
– Decryption algorithm Dec(sk, ct) is deterministic and returns a message M.

For correctness, it must hold that, for all par ← GEN(1λ), (pk, sk) ← Gen(par),
messages M ∈M, and ct← Enc(pk,M), Dec(sk, ct) = M.

Definition 4 (IND-mCPA Security [BBM00]). A PKE scheme PKE is indis-
tinguishable against multi-instance chosen-plaintext attack (IND-mCPA-secure)
if for any qe ≥ 0 and for all ppt adversaries A with access to oracle Oe at most
qe times the following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr

[
b′ = b

∣∣∣∣par← GEN(1λ); (pk, sk)← Gen(par);
b← {0, 1}; b′ ← AOe(·,·)(pk)

]
− 1

2

∣∣∣∣ ,
where Oe(M0,M1) runs ct∗ ← Enc(pk,Mb), and returns ct∗ to A.

There exist public-key encryption schemes that are structure-preserving,
IND-mCPA secure, and have tight reductions based on compact assumptions. Ex-
amples are ElGamal encryption [ElG84] and Linear encryption [BBS04] based
on the DDH assumption and the Decision Linear assumption, respectively.

2.4 Structure-Preserving Signatures

Definition 5 (Structure-Preserving Signature). A structure-preserving sig-
nature scheme SPS is defined as a triple of probabilistic polynomial time (PPT)
algorithms SPS = (Gen,Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret
key (pk, sk), where pk ∈ Gnpk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message space M := Gn for some n ∈ poly(λ).

– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ Gnσ
for nσ ∈ poly(λ).

– The deterministic verification algorithm Verify(pk, [m], σ) only consists of
pairing product equations and returns 1 (accept) or 0 (reject).

Perfect correctness holds if for all (pk, sk)← Gen(par) and all messages [m] ∈M
and all σ ← Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.
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Definition 6 (Existential Unforgeability against Chosen Message At-
tack). To an adversary A and scheme SPS we associate the advantage function:

ADVCMA
SPS (A) := Pr

[
(pk, sk)← Gen(par)
([m∗], σ∗)← ASignO(·)(pk)

:
[m∗] /∈ Qmsg and

Verify(pk, [m∗], σ∗) = 1

]
where SignO([m]) runs σ ← Sign(sk, [m]), adds the vector [m] to Qmsg (initial-
ized with ∅) and returns σ to A. An SPS is said to be (unbounded) EUF-CMA-
secure if for all PPT adversaries A, ADVCMA

SPS (A) is negligible.

3 The New (Almost) Tightly-Secure SPS Scheme

The new scheme is conveniently described in Figure 1. While a brief overview of
the new scheme was given in the introduction, we now describe it in more detail.

As a first step, we follow the signature scheme of [JR13] (which itself is built
on Cramer-Shoup CCA2-encryption) where the split-CRS QA-NIZK for affine
languages is used. The affine component is a secret k0 which is only part of the
prover CRS of the QA-NIZK and is not part of the verifier CRS (and hence
public key of SPS). The secret k0 or its group representation is encrypted using
an augmented ElGamal encryption scheme. In other words, the signer picks r,
computes s = br, and outputs ρ = [r]1, and ρ̂ = [s]1, where b is a secret key
(normally, in a Cramer-Shoup style CCA-secure encryption scheme [b]1 would be
part of the public key). Since, we cannot use tags (for example by hashing ρ, ρ̂)
in a structure-preserving scheme, the last component of the augmented ElGamal
encryption γ is just computed as [k0]1 + dρ + k · µ, where k is another vector
of secret keys of length n, µ ∈ Gn1 is a length n (adversarially supplied) input
message and ‘·’ denotes inner product.

The signer provides a QA-NIZK Π3 that γ and ρ̂ are well-formed, as the
language L3 (see Figure 1) is an affine subspace language. However, so far the
signature components constructed are malleable, as we do not use tags. To this
end, the signer also encrypts a bit z using another ElGamal encryption with
keys (pke, ske). Call the encryption ζ. The bit z is just set to zero. However, in
addition, the signer proves using a Groth-Sahai NIWI that either z is same as
x (where x is a bit committed in the public key) or s = br. To this end, it also
provides a Groth Sahai commitment cδ to (s−br) (i.e. δ in Figure 1). The signer
must prove that this relates to the same r in the augmented ElGamal encryption.
This is achieved by proving a QA-NIZK for the linear subspace language L1 (see
Fig 1). Finally, it must also be proven that the ElGamal encryption of z, i.e ζ
is indeed that of z used in the Groth-Sahai “OR” proof. This can be proven by
either a Groth-Sahai proof or a QA-NIZK for language L2.

Thus, the signer produces the following signature on µ:

(ρ, ρ̂, γ, ζ, cδ, cz, π, π1, π2, π3) ∈ G9
1 ×G7

2

The verification of the signature just involves checking all the proofs, i.e. the
Groth-Sahai “OR” proof π for language L, and the three QA-NIZK proofs π1,
π2, π3 for languages L1, L2, L3.

10



The (almost) tight security of this scheme is proved in the next section. The
crux of the proof is in Lemmas 1 and 2. The hybrid games for these lemmas
are summarized in Figures 3 and 4. Further, the main transitions in the various
hybrid games in these two lemmas are depicted in Figures 5 and 6.

4 Security of the SPS Scheme

In this section we state and prove the security of the scheme SPSsxdh described
in Figure 1.

Theorem 1. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the scheme SPSsxdh is at most

ADVtss
Π3

+ 12L(ADVtss
Π1

+ ADVtss
Π2

) + 8L ·ADVsxdh

+(12L+ 1)ADVcrsind
Π + 2L ·ADVmCPA

ElGamal +
6L+ (qs + 1)2 + qs

q

Here L is the least integer greater than the bit size of q, and qs is an upper bound
on the number of signature queries issued by the adversary.

Remark 1. ADVtss
Πi of a QA-NIZK Πi reduces to sxdh by a factor of (n − t)

where the (affine) linear subspace language is of dimension t within a full space
of dimension n. Also, ADVcrsind

Π of a Groth-Sahai NIZK Π reduces to sxdh
by a factor of 1. Thus the overall reduction in Theorem 1 to sxdh is O(λ).

Proof. We go through a sequence of Games G0 to G3 which are described below
and summarized in Figure 2. In the following, Probi[X] will denote probability
of predicate X holding in probability space defined in game Gi and WINi will
denote the winning condition for the adversary in game Gi.

Game G0: This game exactly replicates the real construction to the adversary.
So the adversary’s advantage in G0 (defined as WIN0 below) is the EUF-CMA
advantage we seek to bound.

WIN0
4
= (µ∗ 6∈ M) and Verify(pk, µ∗, σ∗)

Game G′0: In Game G′0, the challenger lazily simulates (by maintaining a table)
a random function rp from Gn1 to L-bit strings. Define COL to be the predicate
which returns true when there is a collision, i.e., when any pair of message vectors
from the set of signature queries union the adversarial response message at the
end get mapped to the same output L-bit string. In this game, the adversary is
allowed to win outright if COL is true at the end:

WIN′0
4
= COL or ((µ∗ 6∈ M) and Verify(pk, µ∗, σ∗))

11



Gen (q,G1,G2,GT , e, [1]1, [1]2, n) :
Sample crs as a Groth-Sahai NIWI BG-CRS.
Sample (CRSip,CRS

i
v, trapi)← Πi.crssim() for i = 1, 2, 3.

Sample rx ← Zq. Set x = 1 and cx = com2(crs, x; rx).
Sample (b, k0, d)← Z3

q, k← Znq and (pke, ske)← ElGamal.Gen(G2).

Set pk := (crs, CRS1
v, CRS2

v, CRS3
v, cx).

Set sk := (b, k0, k, d, trap1, trap2, trap3, pke, rx).

Return (pk, sk).

Sign (sk, µ ∈ Gn1 ):
Sample (r, rδ, rz)← Z4

q.
Set s = t = br, δ = s− t, cδ = com1(crs, δ; rδ).
Let ρ = [r]1, ρ̂ = [s]1, γ = k · µ + [k0 + dr]1.

Set z = 0, cz = com2(crs, z; rz) and sample ζ ← ElGamal.Enc(pke, z).

Let π := Π.prover(crs, (cδ, cz, cx), (rδ, rz, rx)).
Let π1 := Π1.sim(trap1, (ρ, ρ̂, cδ)).
Let π2 := Π2.sim(trap2, (ζ, cz)).
Let π3 := Π3.sim(trap3, (µ, ρ, ρ̂, γ)).

Return σ := (ρ, ρ̂, γ, ζ, cδ, cz, π, π1, π2, π3) ∈ G9
1 ×G7

2.

Verify (pk, µ, σ) :
Check all the NIZK proofs:
Π.ver(crs, (cδ, cz, cx), π) and Π1.ver(CRS

1
v, (ρ, ρ̂, cδ), π1) and

Π2.ver(CRS
2
v, (ζ, cz), π2) and Π3.ver(CRS

3
v, (µ, ρ, ρ̂, γ), π3).

Languages:

Π is a GS-NIZK for L
def
= {(cδ, cz, cx) | ∃(δ, z, x, rδ, rz, rx) : δ·(z−x) = 0 and cδ =

com1(δ; rδ) and cz = com2(z; rz) and cx = com2(x; rx)}.

Π1 is a QA-NIZK for L1
def
= {(ρ, ρ̂, cδ) | ∃(r, s, rδ) : ρ = [r]1 and ρ̂ =

[s]1 and cδ = com1(s− br; rs)}, with parameters (com1, b · com1).

Π2 is a QA-NIZK for L2
def
= {(ζ, cz) | ∃(z, re, rz) : ζ =

ElGamal.Enc(pke, [z]2; re) and cz = com2(z; rz)}, with parameters (com2, pke).

Π3 is a QA-NIZK for L3
def
= {(µ, ρ, ρ̂, γ) | ∃(m, r) : µ = [m]1 and ρ =

[r]1 and ρ̂ = [br]1 and γ = [k ·m + k0 + dr]1}, with parameters ([b]1,k, k0, d).

Fig. 1. Structure Preserving Signature SPSsxdh
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Gen() : · · ·
Games 0-1 crs← GS-NIWI-BG

Games 2-3 simcrs← GS-NIWI-HG

Sample β ← {0, 1}, rx ← Zq
Set x = 1

Games 0-1 cx = com2(crs, x; rx)

Games 2-3 cx = com2(simcrs, 0; rx)

Sample d← Zq

Sign(sk, µi ∈ Gn1 ) :

Sample ρi ← G1.

Simulate a random function rp : Gn1 → {0, 1}L. Let νi = rp(µi).

Set zi = 0

Games 0-1 ciz = com2(crs, zi; riz)

Games 2-3 ciz = com2(simcrs, 0; riz)

Let (ρ̂i, γi) :=

Games 0-2 (bρi, k · µi + [k0]1 + dρi)

Game 3 (bρi, k · µi + [rfL(νi)]1 + dρi)

· · ·

WIN
4
=

Games 0’-3 if COL (as defined in the text) return true; else

σ∗ = (ρ∗, ρ̂∗, γ∗, ζ∗, c∗δ , c
∗
z, π
∗, π∗1 , π

∗
2 , π
∗
3) :

(µ∗ 6∈ M) and Verify(pk, µ∗, σ∗)

Games 1-3 and γ∗ == k · µ∗ + [θ]1 + dρ∗ and (θ ∈ Z)

Games 1-3 and ρ̂∗ == bρ∗

Fig. 2. Top level games and winning conditions
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The difference in advantage is at most the collision probability, which is
bounded by (qs + 1)2/q.

Game G1: The challenge-response in this game is the same as G0. The winning
condition is now defined as:

WIN1
4
= COL or

WIN0 and σ∗ = (ρ∗, ρ̂∗, γ∗, · · · ) s.t.

(γ∗ = k · µ∗ + [θ]1 + d · ρ∗)
and (θ ∈ Z)

and (ρ̂∗ == bρ∗),

where Z is the set Z =
⋃
i{γi − k · µi − d · ρi}. Note that in this game, by

the way γi are defined, the set Z is just the singleton set {k0}. Hence, the
difference in advantages of the adversary is upper bounded by the unbounded
true-simulation-soundness of Π3:

|Prob1[WIN1]− Prob0[WIN0]| ≤ ADVtss
Π3

(1)

Game G2: In this game, the Groth-Sahai CRS is generated as a hiding CRS, i.e.,
simcrs. Moreover, since all zero is a solution of the equation (s−t)(z−x) = 0, by
witness-indistinguishability property of Groth-Sahai under the hiding CRS, all
proofs and commitments can be generated with all zero witness (i.e., (s, t, z, x) =
(0, 0, 0, 0)). The winning condition WIN2 remains the same as WIN1.

|Prob2[WIN2]− Prob1[WIN1]| ≤ ADVcrsind
Π (2)

Game G3: In this game, the challenger also lazily maintains a function rfL
mapping L-bit strings to Zq. The function rfL has the property that it is a
random and independent function from L-bit strings to Zq . In G3, each sig-
nature component γi is generated as k · µi + [rfL(rp(µi))]1 + dρi, instead of
k · µi + [k0]1 + dρi. For ease of exposition, we will denote rp(µi) as νi. The
winning condition WIN3 remains the same as WIN2, except that the set Z is
now defined as

Z =
⋃
i

{rfL(rp(µi))}.

Lemma 1. |Prob3[WIN3]− Prob2[WIN2]| ≤

12L(ADVtss
Π1

+ ADVtss
Π2

) + 8L ·ADVsxdh

+12L ·ADVcrsind
Π + 2L ·ADVmCPA

ElGamal +
6L

q
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We will prove this lemma in Section 4.1. We now claim that Prob3[WIN3] ≤
qs/q.

We prove this claim by employing the union bound, and prove that for each
signature oracle-query j, the probability of WIN3 holding with θ = RFL(νj)
is at most 1/q. Now, observe that each entry in Z is absent from the public
key as well as from all the signature responses, except at most one response
by property of rfL and rp and the conjunct COL, which ensures that no rp
collision occurred. For all queries i 6= j, we observe that RFL(νi) is uniformly
random and independent of both k and RFL(νj). So all the γis, for i 6= j, might
as well be sampled independently and randomly.

Coming back to the j-th query, let k∗ = RFL(νj). We claim that [k∗]1 +k·µ∗
is uniformly random and independent of [k∗]1 + k · µj , given that µ∗ 6= µj .
This linear algebra fact is most conveniently seen by the following information-

theoretic argument: Let α
def
= [k∗]1 + k ·µj and β

def
= [k∗]1 + k ·µ∗. Now sample

k ← Znq , and k′ ← Zq independently and randomly. Set k∗ such that [k∗]1 =
[k′]1−k ·µj . Then, k∗ is still distributed randomly and independently. Then we
have α = [k′]1 and β = [k′]1 + k · (µ∗ − µj). Thus α is uniformly random and
independent of k, while β has an independent uniformly random distribution due
to the additional term k · (µ∗−µj), where k is uniformly random and µ∗−µj is
non-zero. Thus the probability of the adversary producing γ∗−d·ρ∗ = kµ∗+[k∗]1
is bounded in probability by 1/q:

Prob3[WIN3] ≤ qs/q.

4.1 Proof of Lemma 1

To prove Lemma 1, we go through a series of L games, each of which has several
sub-games. We will identify G2 with G2,1,0 and G3 with G2,L,10. These games
are summarized in Figure 3 with a table of transitions given in Figure 5.

In the following, we will consider various functions rfj , j ∈ [0..L]. rfj maps
j-bit length strings to Zq. Define rf0(ε) = k0, where ε denotes the empty string.
We will maintain the induction hypothesis (over j ∈ [0..L]) that the function
rfj is a random function from its domain to its range The base case will hold
(j = 0) in the following game, as k0 will be absent from all other terms other
than ones defining rf.

Game G2,j,0: For all signature responses i, let νi|j−1 be the (j−1)-length prefix
of νi. We generate γi as k · µi + [rfj−1(νi|j−1)]1 + dρi.

When j = 1, G2,j,0 is indeed the same as G2 by definition of rf0(ε). For the
inductive case, we defer the proof of equivalence of G2,j,0 and G2,j−1,10 till the
description of the latter game.

Game G2,j,1: We also sample (d1, d2) ← Z2
q and substitute d with d1 + d2b,

instead of sampling it from random. Consequently, we change the winning con-
dition’s γ∗-test conjunct to γ∗ == k · µ∗ + [θ]1 + d1ρ

∗ + d2ρ̂
∗, which is same

as the earlier winning condition as the winning condition also has the conjunct
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Gen() : · · ·
Games (2,j,3-7) crs← GS-NIWI-BG

Games (2,j,0-2, 8-10) simcrs← GS-NIWI-HG

Sample β ← {0, 1}, rx ← Zq
Games (2,j,0-2,10) Set x = 1

Games (2,j,3-9) Set x = 1− β
Games (2,j,3-7) cx = com2(crs, x; rx)

Games (2,j,0-2, 8-10) cx = com2(simcrs, 0; rx)

Games (2,j,0, 7-10) Sample d← Zq

Games (2,j,1-6) Sample (d1, d2)← Z2
q

Sign(sk, µ
i ∈ Gn1 ) :

Sample ρ
i ← G1.

Simulate a random function rp : Gn1 → {0, 1}
L
. Let ν

i
= rp(µ

i
).

Game (2,j,0,10) Set z
i

= 0

Games (2,j,1-9) Set z
i

= ν
i
j

Games (2,j,3-7) c
i
z = com2(crs, z

i
; r
i
z)

Games (2,j,0-2, 8-10) c
i
z = com2(simcrs, 0; r

i
z)

Let (ρ̂
i
, γ
i
) :=

Games (2,j,0) (bρ
i
, k · µi + [rfj−1(ν

i|j−1)]1 + dρ
i
)

Games (2,j,1-4)
(
bρ
i
, k · µi + [rfj−1(ν

i|j−1)]1 + d1ρ
i

+ d2ρ̂
i
)

Games (2,j,5-6)

(
bρ
i
, k · µi +

[
rfj−1(νi|j−1), if (νij == β)

rf′j−1(νi|j−1), if (νij 6= β)

]
1

+ d1ρ
i

+ d2ρ̂
i

)
Games (2,j,7-10) (bρ

i
, k · µi + [rfj(ν

i|j)]1 + dρ
i
)

· · ·

WIN
4
= if (COL) return true; else

Games (2,j,2-8) if CheckAbort(as defined in the text) return false; else

σ
∗

= (ρ
∗
, ρ̂
∗
, γ
∗
, ζ
∗
, c
∗
δ , c
∗
z , π
∗
, π
∗
1 , π
∗
2 , π
∗
3 ) :

(µ
∗ 6∈ M) and Verify(pk, µ∗, σ∗)

and

Games (2,j,0,7-10) γ
∗

== k · µ∗ + [θ]1 + dρ
∗

and (θ ∈ Z)

Games (2,j,1-6) γ
∗

== k · µ∗ + [θ]1 + d1ρ
∗

+ d2ρ̂
∗

and (θ ∈ Z)

Games (2,j,0-3,6-10) and ρ̂
∗

== bρ
∗

Fig. 3. Going from Game 2 to 3
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ρ̂∗ = bρ∗. Also set zi to be νik = rp(µi)k, the k-th bit of output of applying the
simulated random function to the query message µi.

Difference in advantage is the IND-mCPA security of the ElGamal encryption
scheme, in switching all the zi plaintexts. Rest of the changes are information
theoretic as x is committed with a hiding CRS and d has the same distribution.

Game G2,j,2: The challenger samples a bit β randomly from {0, 1}. In the
winning condition we introduce a predicate called CheckAbort which behaves as
follows: it returns true and forces the adversary to lose outright if the decryption
of ζ∗ is zero or one and equals β. In the case that decryption of ζ∗ is not zero or
one, then it still forces the adversary to lose at random with probability half. If
the CheckAbort predicate does not force a loss for the adversary, then the rest
of the winning condition remains the same as the previous game.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes down by exactly a factor of 2.

Game G2,j,3: The challenger sets x = 1 − β. It goes back to binding-CRS crs
for Π. Thus, zi as set above is used in GS-commitment ciz to zi.

Since si = ti for all i, and hence δi = 0 for all i, by Groth-Sahai witness-
indistinguishability the difference in the adversary’s advantage is at most ADVcrsind

Π .
(Note that Groth-Sahai NIWI has perfect composable witness-indistinguishability.)

Game G2,j,4: The challenger removes the conjunct ρ̂∗ == bρ∗ from the winning
condition.

We first check that QA-NIZKΠ1 andΠ2 are in true-simulation mode, i.e., the
simulator for these QA-NIZK is only issuing simulated proofs on true statements.
For Π1 it is indeed the case as si = b·ri, and δi = 0, and further ciδ = com1(δi; riδ)
and consequently ciδ = com1(si − bri; riδ). For Π2 it is also true, since the GS
commitment of zi is same as zi encrypted in ζi. Now, since dec(ζ∗) 6= x is in
the scope of this removed conjunct, by true-simulation soundness of Π2, z∗ 6=
x is also in the scope of the removed conjunct. This implies by soundness of
the NIWI that δ∗ = 0 and Groth-Sahai (binding) projection (i.e. El Gamal
decryption7) of c∗δ is [δ∗]1 ( = [0]1). Next, by true-simulation soundness of Π1,
ρ∗ = [r∗]1, ρ̂∗ = [s∗]1, and c∗δ is also binding GS-commitment of (s∗−br∗). Thus,
its (binding) projection is also [s∗ − br∗]1. Hence, [s∗]1 = [br∗]1, or ρ̂∗ = bρ∗.
Thus this conjunct is indeed redundant and can be removed. The difference in
advantage is at most ADVtss

Π1
+ ADVtss

Π2
.

Game G2,j,5: We change the computation of γi from

k · µi + [rfj−1(νi|j−1)]1 + d1ρ
i + d2ρ̂

i

to

k · µi +

[
rfj−1(νi|j−1), if (νij == β)
rf′j−1(νi|j−1), if (νij 6= β)

]
1

+ d1ρ
i + d2ρ̂

i.

Here rf′j is another independent random function from j-bit strings to Zq.

7 see Section 5.2 for this interpretation
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Lemma 2. |Prob2,j,4[WIN2,j,4]− Prob2,j,5[WIN2,j,5]| ≤

4(ADVtss
Π1

+ ADVtss
Π2

) + 4 ·ADVsxdh + 4 ·ADVcrsind
Π +

3

q

We will prove this lemma in the next subsection using another sequence of
hybrid games.

Game G2,j,6: We now start rolling the games back. In this game we add back
the condition ρ̂∗ == bρ∗ into the winning condition.

Since z∗ 6= x in the scope of this clause, the difference in advantage is
ADVtss

Π1
+ ADVtss

Π2
due to the true-simulation soundness of the QA-NIZKs

and the perfect soundness of GS-NIZK Π.

Game G2,j,7: Challenger (lazily) defines rfj as follows:

rfj(ν
i|j)

def
=

{
rfj−1(νi|j−1), if (νij = β)
rf′j−1(νi|j−1), if (νij 6= β)

}
Since rf′ is random and independent of rf, the induction hypothesis related

to rf continues to hold.

The challenger also goes back to sampling d from random, instead of setting
it to d1 + bd2. γi is now computed as (k ·µi+ [RFj(ν

i|j)]1 +dρi). It also changes
the winning condition γ∗-conjunct to γ∗ == k · µ∗ + [θ]1 + dρ∗, which holds as
ρ̂∗ = bρ∗.

Changes in this game are statistically indistinguishable from the previous
and hence the advantage of the adversary remains the same.

Game G2,j,8: The challenger goes back to generating the hiding CRS for Π.
Further, the Groth-Sahai NIWI proofs and commitments are now generated
using all zero witnesses (i.e., using 0 in place of x and zi).

The difference in adversary’s advantage is at most ADVcrsind
Π .

Game G2,j,9: In the winning condition, we remove the CheckAbort disjunct
where the adversary lost outright in the previous games, i.e., if the decryption of
ζ∗ was 0/1 and equaled β, or with probability half if the decryption was non-0/1.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes up by exactly a factor of 2.

Game G2,j,10: The challenger sets zi = 0, which also changes the El-Gamal
encryption of zi. It also sets x back to 1.

The difference in adversary’s advantage is the IND-mCPA security of the El-
Gamal encryption scheme, in switching all the zi plaintexts. Rest of the changes
are statistically indistinguishable as x is committed with a hiding CRS.

We now observe that game G2,j,10 is same as G2,j+1,0 for j < L and same
as G3 for j = L. This concludes our proof.
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4.2 Proof of Lemma 2

The various hybrid games to prove this lemma are depicted in Figure 4 with a
table of transitions given in Figure 6.

Game H0: The game H0 is defined to exactly the same as game G2,j,4.

Game H1: In this game, the challenger generates the Groth-Sahai NIWI-CRS
as simcrs, i.e., using the simulator CRS generator. Further, for each query i, if νij
is not equal to β, then instead of just picking ri, the challenger picks ri1 and ri2 at
random, and sets ρi = ρi1 + ρi2 = [ri1 + ri2]1. Similarly, it sets si = ti = b(ri1 + ri2),
and thus ρ̂i = b[ri1 + ri2]1 and a similar change in the generation of γi. Finally, in
generating the Groth-Sahai commitments and proof Π, the challenger uses all
zero witnesses.

By the witness-indistinguishability property of GS-NIWI, and since rest of
the game is statistically the same as the previous game, the adversary’s advan-
tage of winning is at most ADVcrsind

Π .

Game H2: In this game, the adversary also picks a b′ randomly and indepen-
dently from Zq. Next, for each query i, if νij is not equal to β, then the challenger

picks ri1 and ri2 at random, and sets ρi = [ri1 + ri2]1. It sets si = bri1 + b′ri2,
ti = b(ri1 + ri2). It sets ρ̂i = b[ri1]1 + b′[ri2]1 and a similar change in generation of
γi (see Figure 4).

We now prove that the absolute value of the difference of the advantage in ad-
versary’s winning probability in H2 and H1 is at most the maximum advantage
of winning in an SXDH game. In other words,

|ProbH2(WINH2)− ProbH1(WINH1)| ≤ ADVsxdh.

To this end, for each AdversaryA playing against the challenger in games H1 and
H2, we will build another adversary B that plays against the SXDH challenge.
Say, the adversary B receives an SXDH challenge (g,x,y,w), all elements in G1,
where either w is a real DDH element, i.e., w = (logg x)(logg y)g or w is a fake
DDH element, i.e., is random and independent of the other three elements.

Adversary B next emulates the challenger C against A as follows. It starts
emulating C by letting the first element of the challenge being the group generator
for G1. Next, it emulates rest of C perfectly, except for queries i where νij is not

equal to β. In this case, it picks ri1 and ri2 at random, and sets ρi = ri1g + ri2x. It
sets ρ̂i = ri1y+ri2w. It does not need to set si and ti, as these quantities are only
needed in GS commitments and proof, but in game H1 we switched to all zero
witnesses. The quantity γi is also generated using the just defined ρi and ρ̂i (as
well as d1 and d2). Also, the CRS of the QA-NIZK Π1 which includes b · com1

in its language parameter, can also be simulated using the group element y and
the Groth-Sahai CRS generation scalars chosen by C. Similarly, for the CRS of
Π3, [b]1 is ust y.

Now, it is easy to check that if the SXDH challenge was real, then B emulated
game H1 to A, and if the SXDH challenge was fake, then B emulated H2 to A.
This proves the claim above.
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Gen() : · · ·
Games H0,3−5,10−14 crs← GS-NIWI-BG

Games H1−2,6−9 crs← GS-NIWI-HG

Sign(sk, µ
i ∈ G1) : · · ·

Let (ρ̂
i
, γ
i
) :=

Games (2,j,4)
(
bρ
i
, k · µi + [RFj−1(ν

i|j−1)]1 + d1ρ
i

+ d2ρ̂
i
)

Game H0

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ
i + d2ρ̂

i, if (νij 6= β)

)
Game H1

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

b(ρi1 + ρi2), k · µi + [RFj−1(νi|j−1)]1 + (d1 + d2b)ρ
i
1 + (d1 + d2b)ρ

i
2, if (νij 6= β)

)
Game H2, H3

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

bρi1 + b′ρi2, k · µi + [RFj−1(νi|j−1)]1 + (d1 + d2b)ρ
i
1 + (d1 + d2b

′)ρi2, if (νij 6= β)

)
Game H4, H5, H6

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + dρi, if (νij == β)

bρi1 + b′ρi2, k · µi + [RFj−1(νi|j−1)]1 + dρi1 + d′ρi2, if (νij 6= β)

)
Game H7

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + dρi, if (νij == β)

bρi1 + bρi2, k · µi + [RFj−1(νi|j−1)]1 + dρi1 + d′ρi2, if (νij 6= β)

)
Game H8

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + dρi, if (νij == β)

bρi1 + bρi2, k · µi + [RF ′j−1(νi|j−1)]1 + dρi1 + d′ρi2, if (νij 6= β)

)
Game H9, H10

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + dρi, if (νij == β)

bρi1 + b′ρi2, k · µi + [RF ′j−1(νi|j−1)]1 + dρi1 + d′ρi2, if (νij 6= β)

)
Game H11, H12

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

bρi1 + b′ρi2, k · µi + [RF ′j−1(νi|j−1)]1 + (d1 + d2b)ρ
i
1 + (d1 + d2b

′)ρi2, if (νij 6= β)

)
Game H13

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

b(ρi1 + ρi2), k · µi + [RF ′j−1(νi|j−1)]1 + (d1 + d2b)ρ
i
1 + (d1 + d2b)ρ

i
2, if (νij 6= β)

)
Game H14

(
bρi, k · µi + [RFj−1(νi|j−1)]1 + d1ρ

i + d2ρ̂
i, if (νij == β)

bρi, k · µi + [RF ′j−1(νi|j−1)]1 + d1ρ
i + d2ρ̂

i, if (νij 6= β)

)

Games (2,j,5)

(
bρ
i
, k · µi +

[
RFj−1(νi|j−1), if (νij == β)

RF ′j−1(νi|j−1), if (νij 6= β)

]
1

+ d1ρ
i

+ d2ρ̂
i

)
· · ·

WIN
4
= if (COL) return true; else if (CheckAbort) return false; else

σ
∗

= (ρ
∗
, ρ̂
∗
, γ
∗
, ζ
∗
, c
∗
s , c
∗
t , c
∗
z , π
∗
, π
∗
1 , π
∗
2 , π
∗
3 ) :

(µ
∗ 6∈ M) and Verify(pk, µ∗, σ∗)

and

Games H0-H3, H11-H14 γ
∗

== k · µ∗ + [θ]1 + d1ρ
∗

+ d2ρ̂
∗

and (θ ∈ Z)

Games H4-H10 γ
∗

== k · µ∗ + [θ]1 + dρ
∗

and (θ ∈ Z)

Games H3-H4, H10-H11 and ρ̂
∗

== bρ
∗

Fig. 4. Going from Game (2,j,4) to (2,j,5).
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Game H3: In this game, the Challenger goes back to generating the GS-NIWI
CRS as crs, i.e., using the binding CRS generator. It also generates all GS-
commitments and proofs using real witnesses, i.e., si, ti, zi and x. it also re-
introduces the conjunct ρ̂∗ == bρ∗ in the winning condition.

We now show that the adversary’s advantage in winning in H3 is different
from its advantage in winning in game H2 by

ADVtss
Π1

+ ADVtss
Π2

+ ADVcrsind
Π .

We first prove that the real witnesses , i.e., δi = (si − ti), zi and x satisfy the
equation δ · (z − x) == 0. Indeed, if zij = νij is equal to β = 1 − x, i.e., zij 6= x,

then the challenger generated si = ti, thus the quadratic equation holds. On the
other hand, zij = x, in which case also the quadratic equation holds. Thus, by
witness-indistinguishability, the adversary’s advantage in distinguishing between
the two games is at most ADVcrsind

Π .

Next, we prove that the other conjuncts in the winning condition already
imply ρ̂∗ == bρ∗. To ascertain this, we must first check that the QA-NIZK
Π1 and Π2 are in true-simulation mode. For cases such that νij is equal to β,

this is true as ti = si, and hence δi = 0 and further ciδ = com1(δi; riδ) and
consequently ciδ = com1(si−bri; riδ). In the other cases, note that challenger sets
ρ̂i = b[ri1]1 + b′[ri2]1 = [si]1. Also ti = b(ri), where ri = ri1 + ri2, and ρi = [ri]1.
Further in all cases , δi = si − ti, and hence cδ = com1(si − bri; riδ). Thus, the
two QA-NIZK are indeed in true-simulation mode. Then, by the true-simulation
soundness of these two, and the perfect soundness of the Groth-Sahai NIWI it
follows that ρ̂∗ == bρ∗ is implied by the other conjuncts in the winning condition
– the argument is same as given in proof of lemma 4.1 in the indistinguishability
of Game G2,j,4 and Game G2,j,3.

Game H4: In this game, instead of picking d1 and d2 at random, the challenger
picks d, d′ uniformly and randomly. Note d, d′ are independent of b and b′. The
challenger changes the γ∗-test conjunct in the winning condition by replacing
d1ρ
∗ + d2ρ̂

∗ by dρ∗. Further, in each signature query output it modifies the
computation of γi as follows: if νij == β then d1ρ

i + d2ρ̂
i is replaced by dρi.

Otherwise, it replaces (d1 + d2b)ρ
i
1 + (d1 + d2b

′)ρi2 by (d)ρi1 + (d′)ρi2, where
ρi1 = [ri1]1 and ρi2 = [ri2]1.

First note that since ρ̂∗ = bρ∗ is a conjunct in the winning condition, replacing
d1ρ
∗+ d2ρ̂

∗ by dρ∗ is equivalent if d1 + bd2 is replaced by d. It is easy to see (by
pairwise independence) that the adversary’s view in the two games H3 and H4

is statistically indistinguishable, except if b = b′ which happens with probability
at most 1/q.

Game H5: In this game the challenger again removes the conjunct ρ̂∗ = bρ∗

from the winning condition.

We again, first check that the QA-NIZK Π1 and Π2 are in true-simulation
mode. This is indeed the case, as the only change from game H3 to H4 was in
γi computation which is not used in Π1 and Π2. Then by the same argument as
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given in H3 indistinguishability from H2, the adversary’s advantage is different
from advantage in game H4 by at most ADVtss

Π1
+ ADVtss

Π2
.

Game H6: In this game the challenger again generates the GS-NIWI CRS as
simcrs, i.e., using the hiding CRS generator. Further, all GS commitments and
proofs use the all zero witnesses.

The adversary’s advantage in game H6 is different from its advantage in H5

by at most ADVcrsind
Π .

Game H7: In this game, the adversary need not pick b′. Next, for each query i,
if νij is not equal to β, then the challenger picks ri1 and ri2 at random, and sets

ρi = [ri1 + ri2]1. It sets si = ti = b(ri1 + ri2), Note si and ti are not used in the
GS commitments or proof. It sets ρ̂i = b[ri1]1 + b[ri2]1. There is no change in the
generation of γi as it uses d and d′.

By a reduction argument similar to that given for games H1 and H2, the ad-
versary’s advantage in distinguishing between H6 and H7 is at most ADVsxdh.

Game H8: In this game the Challenger lazily defines another random and inde-
pendent function rf′j−1 from (j − 1)-bit strings to Zq. Then, for all i such that

νij is not equal to β, it replaces in the computation of γi, the function rfj−1 by
rf′j−1.

Since in each query i, ri1 and ri2 are chosen afresh randomly and indepen-
dently, and since all other terms (i.e., other that γi) use one linear combination
of ri1 and ri2, namely ri1 + ri2, and γi uses a different linear combination, namely
dri1 + d′ri2, then conditioned on d 6= d′, the transcripts in games H7 and H8 are
statistically identical. The probability of d = d′ is just 1/q, and hence that is the
statistical distance between the distributions of the transcripts in H7 and H8.
Thus, this is also an upper bound on the difference in adversary’s advantage in
the two games.

Game H9: In this game, the adversary also picks a b′ randomly and indepen-
dently from Zq. Next, for each query i, if νij is not equal to β, then the challenger

picks ri1 and ri2 at random, and sets ρi = [ri1 + ri2]1. It sets si = bri1 + b′ri2,
ti = b(ri1 + ri2). Note si and ti are not used in the GS commitments or proof. It
sets ρ̂i = b[ri1]1 + b′[ri2]1. There is no change in generation of γi (see Figure 4).

Again, by a similar reduction argument to SXDH assumption, the difference
in adversary’s advantage in games H9 and H8 is at most ADVsxdh.

Game H10: In this game, the challenger generates the GS-NIWI CRS as crs,
i.e., using the binding CRS generator. It also uses the real witnesses, i.e si, ti, x
and zi in generating the GS commitments and proof. In this game, the challenger
also re-introduces the conjunct ρ̂∗ == bρ∗.

First note that the witnesses si, ti, zi, x do satisfy the quadratic equation for
all queries i, by an argument similar to that given for games H3 and H2. Then
by repeating the argument there, we also conclude that ρ̂∗ == bρ∗ is implied by
other conjuncts. Thus, the difference in adversary’s advantage is at most

ADVtss
Π1

+ ADVtss
Π2

+ ADVcrsind
Π .
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Game H11: In this game, the challenger picks d1, d2 randomly and indepen-
dently (instead of picking d, d′) and setting d = d1 + bd2 and d′ = d1 + b′d2. The
challenger also changes the γ∗-test in the winning condition by replacing dρ∗ by
d1ρ
∗ + d2ρ̂

∗. Further, similar changes are made in the computation of γi (see
Figure 4).

With the conjunct ρ̂∗ == bρ∗ in place in the winning condition, the new
winning condition is equivalent to the previous winning condition. Moreover,
conditioned on b 6= b′, the distribution of d and d′ remains same as in game H10.
Thus, the difference in adversary’s advantage is at most 1/q.

Game H12: In this game, the challenger drops the conjunct ρ̂∗ == bρ∗ from
the winning condition.

Again, by arguments similar to that given for games H2 and H3 the difference
in adversary’s advantage is at most ADVtss

Π1
+ ADVtss

Π2
.

Game H13: In this game the challenger does not pick b′. The challenger picks ri1
and ri2 at random, and sets ρi = [ri1 + ri2]1. Similarly, it sets si = ti = b(ri1 + ri2),
and thus ρ̂i = b[ri1 + ri2]1 and a similar change in generation of γi (see Figure 4).

This is essentially the rewind of going from game H1 to H2. Hence, by a
similar argument, the difference in adversary’s advantage in games H13 and
H12 is at most ADVsxdh.

Game H14: In this game, even for i such that νij is not equal to β, the challenger

just picks ri, and defines ρi = [ri]1, si = ti = bri, and ρ̂i = [si]1.
There is no statistical difference in the two games H14 and H13. Now, note

that game H14 is identical to game G2,j,5. This completes the proof.

5 Extensions and Optimizations

We begin this section by extending our construction to messages with elements in
both groups. We then describe an optimization which reduces one group element
from the ElGamal encryption of z. Next, we describe another optimization that
moves some of the QA-NIZK proofs to Groth-Sahai proofs. While this may
lead to slightly larger signature sizes, it reduces the size of the public-key and
consequently may benefit in batching the various pairings in the verification step.

5.1 Bilateral Message Vectors

We use the same technique employed by [AHN+17] to extend our SPS to sign
bilateral messages, i.e., messages (µ1,µ2) in Gn1

1 ×Gn2
2 . Essentially, we sign µ2

using a Partial One-Time signature scheme (POS) [BS07] of Abe et al [ACD+16]
which has a one-time public key opk consisting of one element of G1 and one-time
signature osig consisting of 2 elements of G2. The public key opk is appended
to the message vector µ1 making it (n1 + 1)-elements long. Then SPSsxdh is
used to sign the extended G1 vector. The final signature consists of (opk, osig)
and the SPSsxdh signature. Thus the signature has 1 G1 and 2 G2 additional
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elements. The public key is extended by (n2 + 1) G1 elements and 1 G2 element
due to the POS public key and an additional SPSsxdh public key for the extra
dimension in G1.

5.2 Double Groth-Sahai Commitments to replace ElGamal

In the SPS scheme described in Figure 1, the signer needs to provide an ElGamal
encryption ζ of z, as well as a Groth-Sahai (binding) commitment cz to z (both
in G2). Under the SXDH assumption, this requires a total of four group elements.
Note, the encryption of z just needs to be IND-mCPA secure, and not CCA-
secure.

While in the proof of security in Section 4, the challenger does need to decrypt
ζ∗ in some hybrid games (namely, games (2, j, 2 − 8)), it is the case that the
security proof does not need to employ IND-mCPA security in those hybrid
games (which is only needed in games (2, j, 0− 1) and (2, j, 9− 10)).

So, it is worthwhile investigating if a double Groth-Sahai commitment which
shares randomness might achieve the same IND-mCPA goal: the decryption to
be performed using a trapdoor for the second commitment, which will not be
used in NIWI proofs. At this point, we briefly describe Groth-Sahai commitments
(under SXDH assumption).

Let g be a generator of group G2 (a cyclic group of order q, with identity
O). The commitment public-key pk is of the form

u1 = (g, Q = χg), u2 = (U ,V).

where χ is chosen at random from Z∗q . Note both u1 and u2 are in G2
2 which

is a Zq-module. The second element u2 can be chosen in two different ways:
u2 = ψu1 or u2 = ψu1 + (O,g). The former choice of u2 gives a perfectly
hiding commitment key, whereas the latter choice of u2 gives a perfectly binding
commitment key (as we will see), and the two choices are indistinguishable under
the DDH assumption in G2.

Commitments com(pk, x; rx) to x ∈ Zq using randomness rx ∈ Zq work as
follows:

com = (rx, x) · (u1, u2),

where the latter “·”is an inner product.
On a hiding key pk, we have u2 = ψu1 and hence u is in the span of 〈u1〉, con-

sequently, we get a perfectly hiding commitment. On a binding key pk, the com-
mitment just becomes an El-Gamal encryption of xg with randomness rx + xψ,
with secret key χ. The El-Gamal decryption under χ is referred to as (binding)
projection of the commitment.

While so far we have described the standard Groth-Sahai commitments, we
now describe an alternate double Groth-Sahai commitment. In this double com-
mitment, the public key is expanded to have u′1 = χ′u1, where χ′ is a random and
independent value from Zq. The value u′2 is again defined in terms of u′1 but using
the same factor ψ as used for u2. Thus, u′2 = ψu1 (hiding) or u′2 = ψu1 + (O,g)
(binding).
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Now double commitments dcom(pk, x; rx) is just 〈c = (rx, x) · (u1, u2), c′ =
(rx, x) · (u′1, u′2)〉.

On a hiding key pk, we have that four-vector (u2;u′2) is in span of four-
vector (u1, u

′
1) (being a ψ-multiple). and hence dcom is a hiding commitment of

x. In the binding setting, both commitments are ElGamal encryptions of x, first
with secret key χ and the second with secret key χ′ (with common randomness
(rx + xψ).

We also have the freedom to make one of the first public key hiding and the
second binding. However, the double commitment is not hiding in this mixed
case. But, if there are other values that are only committed using the first pub-
lic key (i.e. do not use double commitment) then those commitments are still
hiding. Thus, e.g. in the SPS scheme, both x and zi are committed in the group
G2. Now, for each zi we will use double commitment, whereas for x we will only
commit using (u1, u2). If this latter is in hiding mode and (u′1, u

′
2) is in binding

mode, then cx is a hiding commitment, and cz for all i is not hiding. More-
over, if (x, z) and (x′, z) are both witnesses for ρ satisfying a witness-relation
R, then the commitments (in this mixed mode) and the proofs are still witness
indistinguishable. This is easily seen (under SXDH assumption) because for each
commitment there is a unique proof satisfying the verification equation [GS12].

Coming back to the SPS scheme of Fig 1, we first replace the ElGamal
encryption ζ of z by a double commitment of z using the above expanded public
key in G2. Note, only x and z are GS-committed in G2. Next, the QA-NIZK Π2

now has the language

L2
def
=

{
(cz, c

′
z) | ∃(z, rz) : cz = com2(z; rz) and

c′z = 〈rzg + z[ψ]2, rz(χ
′g) + z((χ′ψ + 1)g)〉

}
Note (g, ψg, χ′g, (χ′ψ + 1)g) are public parameters, and the above language

is thus a linear-subspace language, and a single group element QA-NIZK proof
can be given.

Next, note that decryption of ζ∗ which is required in games (2, j, 2− 8) can
be performed using secret key χ′. The property that this is a good decryption
of ζ∗ holds only if the QA-NIZK Π2 is sound and the double commitment is in
binding mode; this in turn requires that that Π2 be in true-simulation mode.
This property is only required in games (2, j, 4− 6), so the double commitments
must be in binding mode in these games. The only games where the challenger
needs to hide z and/or x lie outside these games. However, there are games where
z is being decrypted using χ′, and yet we need to transition between hiding and
binding modes in G2. In particular, in games (2, j, 1− 3) and similarly in games
(2, j, 8 − 10). So instead, now consider an intermediate game between (2, j, 1)
and (2, j, 2) where the commitment pk for G2 is moved to being mixed, i.e.
binding for χ′ and hiding for χ. In this, the adversary’s advantage changes by at
most ADVcrsind

Π . Next, in game (2, j, 2), the challenger introduces decryption
using χ′. In game (2, j, 3) the challenger moves the first public key of the double
commitment also to binding mode (after setting x = 1−β). This incurs another
penalty of ADVcrsind

Π . Hence forth, till game (2, j, 8) the double commitment
remains binding. The argument is reversed in games (2, j, 8− 10).
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While this only saves one group element from the SPS scheme, it is worth
recalling that savings can multiply in applications requiring SPS.

5.3 Mixing Groth-Sahai and QA-NIZK Proofs

While the scheme in Figure 1 is optimized for the size of the signature, its public
key can be larger because of the use of QA-NIZK. In this section, we note that
some of the QA-NIZK (or parts) can be replaced by Groth-Sahai NIZK proofs
without much increase in size of the signatures.

The QA-NIZK Π2 can easily be replaced to be a GS NIZK which just checks
the multi-scalar equation that ζ = (ζa, ζb) satisfy zg2 + ske ζa− ζb = 0, where z
is committed in cz and commitment of El-Gamal secret-key ske is in the public-
key of SPS. The GS proof of this multi-scalar equation is only one group element
(see e.g. equation (22) in [AHN+17]).

Next, the QA-NIZK Π1 can be split into two parts, (i) one proving that ρ and
ct are related, which should remain a QA-NIZK –as this can be costly as a GS
proof, and (ii) the other proving the ρ̂ is [s]1, which is just one group element as
a GS proof. The QA-NIZK Π3 remains as it is since true-simulation soundness
is required.

So, this scheme requires an extra group element in the proof as Π1 has
been split. However, this scheme cannot use the optimization of Section 5.2. As
for the proof of Theorem 1, note that the proof just employed the GS NIWI
property, whereas now we must use the GS NIZK property, for proving ρ̂ = [s]1.
Fortunately, for such equations it is quite straightforward to convert Groth-Sahai
NIWI to NIZK (for more details see [GS12]).

5.4 Sharing Groth-Sahai and QA-NIZK Public-Key Components

Note that the Groth-Sahai CRS (for each group) consists of four group elements
(under the SXDH assumption), these being u1 = (g, Q = χg), and u2 = (U ,V)
as described above in Section 5.2.

The verifier CRS size of a QA-NIZK depends on the language (i.e. the number
of its defining parameters), but some components of the CRS can be general
group parameters and can be shared with GS CRS. From [JR14] recall that in
a QA-NIZK for language with parameters A the prover and verifier CRS, i.e.
CRSp and CRSv are defined as

CRSp := A ·
[
D
R

]
CRSv =

D B
R B
−B

 · g
where B is a k × k matrix in the k-lin setting, and D and R are simulation
trapdoors. Since SXDH is the k-lin setting with k = 1, B is just a single element.
Moreover, this B matrix can be shared among all the QA-NIZK (in the same
group). In fact, it can also be made the same as one component of the GS CRS,
namely U = ψg.
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5.5 Batching Pairings in Pairing-Product-Equations

We first analyze the size of the public key in the scheme of Fig 1, especially
considering the sharing mentioned in Section 5.4. Now the 2 Groth-Sahai CRSes
are of total size (4, 4), including group generators and U that can be shared
for QA-NIZK. The QA-NIZK Π1 verifier CRS is then of size (0, 4). The QA-
NIZK Π2 verifier CRS is of size (4, 0) (or, (3, 0) considering the optimization
in Section 5.2). The QA-NIZK Π3 verifier CRS is of size (0, n1 + 4). Since the
commitment to x is of size (0, 2), the public key is of size (8, n1 +14) (or (7, n1 +
14) with optimization).

As for batch-verification, the number of pairing computations for verification
can be reduced to pairing with g1,g2,U1,U2, cx, cz, and the elements in the
QA-NIZK verification CRSes (other than those shared with GS CRS), which
amounts to a total of (8 + 14 + n1 + 1) = n1 + 23 pairings.

If we use the scheme of Section 5.3 then the number of pairings reduce to
(8 + 7 + n1 + 1) = n1 + 16 pairings (where one of these pairings is a constant
pairing from the affine split-CRS QA-NIZK).
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[CLY09] Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-
interactive realization in the standard model. In Mitsuru Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 179–196. Springer, Hei-
delberg, December 2009.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, Heidelberg, August 1998.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual
system groups. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 435–460. Springer, Heidelberg, August
2013.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar.
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