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Abstract

In many applications, it is important to verify that an RSA public key (N, e) specifies a
permutation, in order to prevent attacks due to adversarially-generated public keys. We design
and implement a simple and efficient noninteractive zero-knowledge protocol (in the random
oracle model) for this task. The key feature of our protocol is compatibility with existing RSA
implementations and standards. The protocol works for any choice of e. Applications concerned
about adversarial key generation can just append our proof to the RSA public key without any
other modifications to existing code or cryptographic libraries. Users need only perform a one-
time verification of the proof to ensure that raising to the power e is a permutation of the
integers modulo N . For typical parameter settings, the proof consists of nine integers modulo
N ; generating the proof and verifying it both require about nine modular exponentiations.

1 Introduction

Many applications use an RSA public key (N, e) that is chosen by a party who may be adversarial.
In such applications, it is often necessary to ensure that the public key defines a permutation over
ZN : that is, raising to the power e modulo N must be bijective, or, equivalently, every integer
between 0 and N − 1 must have an eth root modulo N .

The folklore solution to this problem (used by, for example, [MRV99], [CMS99], [MPS00],
[LMRS04]) is to choose the public RSA exponent e such that e is prime and larger than N . This
solution has three drawbacks.

First, because the folklore solution requires e > N , e is not in the set of standard values typically
used for e in RSA implementations e.g., e ∈ {3, 17, 216 + 1}. Unless a large prime value for e is
standardized, before using the public key, one would have to perform a one-time primality test of
on e, to ensure that that e really is prime. This primality test is quite expensive (see Section 3).

Second, most RSA implementations choose a small value for e, typically from a set of standard
values e ∈ {3, 17, 216 + 1}. Choosing a small e significantly reduces the cost of performing an
RSA public key operation. However, this efficiency advantage is eliminated in the folklore solution,
which requires e > N . Unlike the previous drawback, which results in a one-time cost for each
public key used, this drawback makes every public-key operation about two orders of magnitude
more expensive.

Third, the folklore solution is not compatible with existing RSA standards and off-the-shelf
implementations. This is because the folklore solution does not ensure that the public key operation
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is a permutation over ZN , where ZN = {0, 1, ..., N−1}. Instead, it only ensures only that the public
key operation defines a permutation over the set Z∗N , where Z∗N is the set of values in ZN that are
relatively prime with N .

Thus, there are no assurances about the values in the set ZN−Z∗N , i.e., the set of values that are
less than N but not relatively prime with N . (To see this, consider the example N = 9 and e = 11.)
If the RSA public key is generated honestly, this is not a problem, because the set ZN−Z∗N contains
only a negligible fraction of ZN . However, if an adversary chooses the RSA public key (N, e), it
could choose N so that the set ZN − Z∗N is a large fraction of ZN . To address this attack, the
folklore solution additionally requires the a gcd check along with every RSA pubic-key operation,
to ensure that the exponentiated value is also relatively prime with N .

Performing a gcd check is not expensive, when compared to a full-length modular exponentia-
tion. However, it does violate compliance with existing RSA standards, which do not specify that
every RSA public-key operation be accompanied with a gcd check. (See, for instance, the RSA
PKCS #1, Version 2.2 specification in RFC8017 [MKJR16], Section 5.) For this reason, typical
implementations of RSA do not check that the input is in Z∗N . Instead, they will perform public-key
operations over any value in ZN . Thus, the folklore solution is not compatible with off-the-shelf
RSA implementations, so using it requires modifications to existing code and/or cryptographic li-
braries, a non-trivial task for developers and practitioners which comes with the risk of introducing
new bugs (e.g., because a developer might forget to add the gcd to an RSA operation somewhere
in the code, etc.).

1.1 Our Contribution.

We present a simple noninteractive zero-knowledge proof (NIZK) in the random oracle model,
that allows the holder of an RSA secret key to prove that the corresponding public key defines
a permutation over all of ZN , without leaking information about the corresponding secret key.
Our NIZK can be used even when the RSA exponent e is small, which is useful for applications
that require fast RSA public key operations. In addition to the NIZK algorithm and a concrete
security proof, we present a detailed specification of the prover and verifier algorithms, as well as
production-quality implementation and an analysis of its performance.

Because our NIZK is for all values in ZN , it is compliant with existing cryptographic speci-
fications of RSA (e.g., RFC8017 [MKJR16]). This allows implementors to cleanly combine our
NIZK with off-the-shelf RSA cryptographic libraries and primitives, without modifying any exist-
ing code. We present a production-quality implementation[cod] of our NIZK in C#, that is ready
to be added to the bouncycastle [bou] cryptographic library. In fact, our NIZK implementation
has already been integrated into the TumbleBit open-source project [Ntu], where it is being used
to prevent the TumbleBit Tumbler from choosing an adversarial RSA key that allows it to steal
bitcoins from its users. Integration with TumbleBit was easy, because our NIZK did not require
modifications of any of the existing TumbleBit codebase. Instead, the Tumbler just publishes our
NIZK along with his RSA public key (N, e), and each user that interacts with the Tumbler simply
performs a one-time verification of the NIZK before the interaction begins.

For typical parameter settings, our NIZK consists of 10 elements of ZN . Generating the NIZK
costs roughly 10 full-length RSA exponentiations modulo N . Meanwhile, each verifier pays the
one-time cost of verifying our NIZK, which is also roughly equal to 10 full-length exponentiations.
When compared to the folklore solution we described earlier, our solution (1) avoids the more
expensive one-time primality test and (2) allows the verifier to continue using a small value of e,
resulting in better performance for every public-key verification. Beyond this, our NIZK is simple
to understand and easy to implement.
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1.2 Related Work

Kakvi, Kiltz, and May [KKM12] show how to verify that RSA is a permutation by providing only
the RSA public key (N, e) and no additional information, as long as e > N1/4. They also show that
when e is small, it is impossible, under reasonable complexity assumptions, to verify that (N, e)
is a permutation without any additional information [KKM12, Section 1]. Thus, their approach
cannot be used when e is small. We circumvent their impossibility by having the prover additionally
provide our NIZK (rather than just (N, e)) to the verifier.

Wong, Chan, and Zhu [WCZ03, Section 3.2] and Catalano, Pointcheval, and Pornin [CPP07,
Appendix D.2] present protocols (similar to ours) that work only over Z∗N rather than the entire
ZN . Thus, these protocols, unlike ours, should only be used in applications that additionally verify
gcd(ρ,N) = 1 each time an RSA public-key operation is performed on input ρ. Apart from adding
complexity and potentially harming performance, this is a deviation from cryptographic standards
and thus requires modifications to cryptographic libraries, which risks introducing new bugs.

The protocols of Camenisch and Michels [CM99, Section 5.2] and Benhamouda et al. [BFGN17]
achieve much stronger goals. The former proves N = pq is a product of two safe primes (i.e.,
p, q, (p − 1)/2, and (q − 1)/2 are all prime); the second can prove that any prespecified procedure
for generating the primes p and q was followed. These protocols can be used to prove that (N, e)
specifies a permutation by imposing mild additional conditions on e (and the prime generation
procedure for [BFGN17]). However, these stronger goals are not necessary for our purposes. Our
protocol is considerably simpler and more efficient, and does not restrict p and q in any way.

Our protocol builds on the protocol of Bellare and Yung [BY96], who showed how to prove that
any function is “close” to a permutation. However, “close” is not good enough for our purposes,
because the adversary may be able to force the honest parties to use the few values in ZN at which
the permutation property does not hold. Thus, additional work is required for our setting. This
additional work is accomplished with the help of a simple sub-protocol from Gennaro, Micciancio,
and Rabin [GMR98, Section 3.1] for showing the square-freeness of N (a similar sub-protocol in
the interactive setting was discovered earlier by Boyar, Friedl, and Lund [BFL89, Section 2.2]). We
demonstrate how to combine the ideas of [BY96] and [GMR98] to achieve our design goals.

2 ZK Proof that RSA is a Permutation over ZN
Let φ denote the Euler’s totient function, φ(N) = |Z∗N | (see, e.g., [Sho09, Section 2.6] for the
relevant background). Recall that φ(N) = (p− 1)(q − 1) if N = pq.

In this section we present a two-message public-coin honest-verifier zero-knowledge proof for
the following promise problem:

Lyes = {(N, e) where gcd(N,φ(N)) = 1 and the map x 7→ xe mod N is a permutation
of ZN}

Lno = {(N, e) where the map x 7→ xe mod N is not permutation of ZN}

Recall that in a zero-knowledge proof for a promise problem, we need completeness and zero-
knowledge for instances in Lyes, and soundness against any instance in Lno. (No guarantees are
provided in all other instances.) In our case, the gap between Lyes and the complement of Lno is
caused by the additional constraint gcd(N,φ(N)) = 1 in Lyes. This constraint enables our efficient
construction without hampering its usefulness. That is, the additional constraint in Lyes will hold
for an honestly generated RSA public key, because an honestly generated N will be such that
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N = pq for distinct equal-length primes p and q. Thus, p will not divide q− 1 and q will not divide
p− 1, which ensures that gcd(N,φ(N)) = 1 and the additional constraint is satisfied.

The prover’s witness (for instances in Lyes) is the prime factorization of N .
Our protocol has perfect completeness, perfect honest-verifier zero-knowledge, and statistical

soundness.
In the first message of our protocol, the verifier simply sends some random values from ZN

to the prover, and the prover responds by using her prime factorization of N to perform a mod-
ular exponentiation on each value. In Section 2.3, we use the Fiat-Shamir transform [FS86] to
turn the protocol into a noninteractive zero-knowledge proof (NIZK) in the random oracle model.
Specifically, both parties will generate the verifier’s first message by hashing the input (N, e).

2.1 Overview of our Protocol.

The starting point of our protocol is the observation that if the RSA modulus is square free and
values in Z∗N have eth roots modulo N , then it follows that the values in ZN\Z∗N also have eth roots
modulo N . Thus, our protocol simultaneously tests that N is square free, and that raising to the
power e is permutation over Z∗N .

Square-freeness. Recall that a number N is square free if it can be written as N = p1p2 . . . pk
for distinct prime numbers pi. (N is not square free if it is divisible by p2, where p is some prime.)

It is important to note that RSA will not be a permutation over ZN if N is not square free.
Specifically, if N is not square free, there will be values in ZN\Z∗N that do not have unique eth
roots modulo N . (For instance, suppose that N is not square free because N = p3q for a small
p (e.g., around 1000) and let e = 3 so that gcd(e, φ(N)) = 1 (i.e. e = 3 does not divide p − 1 or
q − 1). Then raising to the power of e = 3 is a permutation of Z∗N , but not of ZN . Why? Any
x ∈ ZN\Z∗N that is divisible by p will also become divisible by p3 after being raised to e = 3. This
implies that any element of ZN that is divisible by p but not p3 will not have an eth root. Thus,
an almost 1/p fraction of elements of ZN will have no eth roots.)

To prove the square-freeness of N , we adapt the protocol of Gennaro, Micciancio, and Ra-
bin [GMR98, Section 3.1] which shows that random elements of Z∗N have Nth roots modulo N . We
modify their protocol so that it works over all of ZN , rather than just Z∗N . This way, we avoid re-
quiring a gcd computation each time a random element is chosen to check that element is in Z∗N and
not in ZN −Z∗N (see Lemma 4.3). Apart from reducing the complexity of our protocol, this modifi-
cation also allows us to easily combine our square-freeness protocol with the permutation-certifying
protocol described in the next paragraph.

Our modified square-freeness protocol simply shows that random elements modulo N have Nth
roots. First, the verifier chooses random elements ρi of ZN . Then, the prover responds by computing
their Nth roots σi = (ρi)

1/N (mod N). Finally, the verifier accepts if ρi = (σi)
N (mod N). We

note that some some square-free integers N will fail this test (for example the integer 21, and more
generally those integers for which gcd(N,φ(N)) > 1). However, all square-free integers N where
gcd(N,φ(N)) = 1 and will pass this test, which suffices for our purposes.

Certifying permutations. Next, we adapt the protocol of Bellare and Yung [BY96], who
showed how to certify that any function is close to a permutation. We observe that for RSA
with a square-free modulus N , raising to eth power is either a permutation or very far from one
(see Lemma 4.4). Thus, the protocol from [BY96] can be used to certify that (N, e) specifies a
permutation. In this protocol, the verifier chooses random elements of ZN and the prover responds
with their eth roots modulo N .
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Combining both protocols. Because any value that has an (eN)th root also has an eth root
and an Nth root, we combine the two protocols simply by checking that random values modulo N
have eNth roots. Specifically, the prover (who holds the RSA secret key) sends the verifier σ1...σm,
where each σi is (eN)th root of a random values ρi ∈ ZN selected by the verifier. The verifier

validates that each σ
(eN)
i = ρi (mod N).

2.2 Detailed Description of our Interactive Protocol

We are now ready to describe the honest-verifier zero-knowledge protocol.
Our protocol depends on two parameters α and e′, which are both primes, at most about 16

bits long. The verifier will reject any N that is divisible by a prime less than α and any e that is
divisible by a prime less than e′. (Formally, let Lα,e′ = {(N, e) such N is divisible by a prime less
than α or e is divisible by a prime less than e′}. We remove Lα,e′ from Lyes and add its complement
to Lno.) Any setting of α and e′ is valid for security; varying these parameters affects only efficiency.
Setting α = e′ = 2 gives the protocol for the original promise problem, but a higher setting gives
better performance. An optimal setting of these parameters is implementation-dependent, since
larger e′ and α will result in some additional work for the verifier, but will also reduce work for
the prover and verifier since m1 and m2 in equation (1) below become smaller. When e is a fixed
prime like 3, 17, or 216 + 1, as is standard for many RSA implementations, then we set e′ equal to
e. We further discuss parameter settings in Section 3.

The prover’s witness is the prime factorization of N . Let κ be a security parameter. The
protocol will achieve statistical soundness error 2−κ.

Basic Protocol.

1. Both prover and verifier let

m1 =

⌈
−κ/ log2

1

α

⌉
and m2 =

⌈
−κ/ log2

(
1

α
+

1

e′

(
1− 1

α

))⌉
. (1)

Notice that m2 ≥ m1 since e′ > 1.

2. The verifier chooses m1 random values ρi ∈ ZN and m2 random values ρj ∈ ZN and sends
them to Prover.

3. The Prover sends back
σi = (ρi)

N−1 mod φ(N) mod N

for i = 1 . . .m1 (these are the Nth roots of ρi modulo N) and

σj = (ρj)
e−1 mod φ(N) mod N

for j = 1 . . .m2 (these are the eth roots of ρj modulo N).

(Note that N−1 mod φ(N) exists because gcd(N,φ(N)) = 1, and e−1 mod φ(N) exists by
Lemma 4.1. The factorization of N allows the prover to compute these values efficiently.)

4. The verifier accepts that (N, e) defines a permutation if all of the following checks pass.

(a) Check that N > 0 and N is not divisible by all the primes less than α.

(Equivalently, one can let P be the product of all primes less than α (also known as
α− 1 primorial) and verify that gcd(N,P ) = 1.)
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(b) Check that e > 0 and is e not divisible by all the primes less than e′. (In most imple-
mentations of RSA, e is a fixed prime, so the verifier can just check that e = e′.)

(c) Verify that ρi = (σi)
N mod N for i = 1 . . .m1. It follows that the gcd(N,φ(N)) = 1 and

therefore N is square-free (with soundness error 2−κ) by Lemma 4.3.

(d) Verify that ρj = (σj)
e mod N for j = 1 . . .m2. It follows that (N, e) define a permutation

given that N is square-free (with soundness error 2−κ) by Lemma 4.4.

Improved Protocol. To improve performance, we observe that any value that has an (eN)th
root also has an eth root and an Nth root, obtained by raising the (eN)th root to the power N
or e, respectively). Thus, instead of requiring the protocol to test m1 + m2 distinct values, we
can instead test just m2 values (because m1 ≤ m2). Specifically, we modify Steps 2-4 of the basic
protocol above as follows:

1. As above.

2. The verifier chooses m2 random values ρi ∈ ZN .

3. The Prover sends back
σi = (ρi)

(eN)−1 mod φ(N) (mod N)

for i = 1 . . .m1 (for convenience, we call this a “weird RSA signature”) and

σi = (ρi)
e−1 mod φ(N) (mod N)

for i = m1 + 1 . . .m2 (which is just a regular RSA signature).

4. The verifier accepts that (N, e) defined a permutation if all of the following checks pass.

(a) As above.

(b) As above.

(c) Verify that ρi = (σi)
eN (mod N) for i = 1 . . .m1. (This is a “weird RSA verification”.)

(d) Verify that ρi = (σi)
e (mod N) for i = m1+1 . . .m2. (This is a regular RSA verification.)

Note that for many natural choices of parameters (e, κ, α), we have m1 = m2, and so step 4d
disappears.

We prove that the above protocols are statistically sound honest-verifier zero-knowledge in
Section 4.

2.3 Making our Protocol Noninteractive.

We use the Fiat-Shamir paradigm [FS86] to make the improved protocol described in Section 2.2
non-interactive in the random oracle model.

Instead of having the verifier select the random values ρi ∈ ZN in Step 2, the Prover samples
ρi ∈ ZN by himself, by computing the output of the random oracle over the concatenation of (1)
the RSA public key (N, e), (2) a salt given as a system parameter , and (3) the index i. Thus, the
RSA key (N, e) and the salt determine a deterministic set of ρi ∈ ZN . The verifier can therefore
compute ρi ∈ ZN on his own, by following the same procedure as the prover, and subsequently
verification proceeds as in Step 4.
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3 Specification, Implementation and Performance

Specification. The full specification of our NIZK is available in Appendix A. We specify the
Improved Protocol of Section 2.2 made non-interactive using the Fiat-Shamir paradigm as described
in Section 2.3. Our specification assumes e is a fixed prime and thus sets e′ = e. It takes in α
and the salt as system parameters. The random oracle used to determinstically select the ρi values
is a “full-domain hash” [BR93] instantiated with the industry-standard MGF1 Mask Generation
Function as defined in [MKJR16, Sec. B.2.1]. We use the industry-standard I2OSP and OS2IP to
convert between octet strings and integers [MKJR16, Sec. 4.1] and the industry-standard RSASP
to perform an RSA secret key operations [MKJR16, Sec. 5.2.1], and RSAVP for RSA public-key
operations [MKJR16, Sec. 5.2.2].

Implementation. An open-source implementation of our specification in C#, based on the
bouncycastle cryptographic library [bou], is publicly available[cod]. We hope that our implemen-
tation will become a part of bouncycastle.

Integration with TumbleBit. Our implementation has already been integrated into the open-
source reference implementation of TumbleBit, which is currently being developed for production
use [Ntu] [Str17]. TumbleBit [HAB+17] is a unidirectional bitcoin payment hub that allows parties
to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the
Tumbler. The security of the TumbleBit protocol rests on the assumption that the Tumbler’s RSA
public key (N, e) defines a permutation over ZN . In the absence of this assumption, the Tumbler
can steal bitcoins from payers.1 Thus, in addition to publishing (N, e), a Tumbler publishes our
NIZK proof that (N, e) defines a permutation, which is verified, during a setup phase, by any payer
or payee who wants to participate in the protocol with this Tumbler. Integration with TumbleBit
was easy. No modification to the existing TumbleBit protocol or codebase were required; instead,
our NIZK was simply added to TumbleBit’s setup phase.

1Specifically, if RSA is not permutation, then the Tumbler can provide the payee Bob with a puzzle z that has
two valid solutions ε1 6= ε2 where z = (ε1)e = (ε2)e mod N , where ε1 allows Bob to decrypt the Tumbler’s signature
on the transaction that allows Bob to claim his bitcoin, but ε2 does not. Then, to steal a bitcoin, the Tumbler
gives payer Alice the solution ε2, so that the Tumbler can claim Alice’s bitcoin (because the TumbleBit puzzle-solver
protocol will complete correctly, since εe2 = z) without passing it on to Bob (because ε2 cannot be used to decrypt
the Tumbler’s signature on the transaction that allows Bob to claim his bitcoin).
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Figure 1: Values of m1 and m2 versus the choice of parameter α for our NIZK, when κ = 128 and
e = e′ = 65537.
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Parameters Permutation Proof
α m1 m2 Prove Verify

41 24 24 632 2326
89 20 20 518 1925

191 17 17 443 1612
937 13 13 334 1216

1667 12 12 311 1127
3187 11 12 308 1042
3347 11 11 281 1025
7151 10 11 284 943
8009 10 10 256 948

19121 9 10 254 853
26981 9 9 233 854
65537 8 9 230 768

319567 7 9 237 713
2642257 6 9 234 956

50859013 5 9 230 6756

Table 1: Proving and verifying times for our C# implementation as observed on an Azure DS1 v2
virtual machine running Windows Server 2016 Datacenter (single-core 2.4 GHz Intel Xeon E5-2673
v3 Haswell processor, 3.5GiB RAM). Time is given in ms. Public exponent is e = e′ = 65537 and
security parameter is κ = 128.

Parameters and performance for TumbleBit. When used with TumbleBit, our NIZK has
parameters κ = 128, the RSA key length is |N | = 2048, the public RSA exponent is e = e′ = 65537,
and the salt is the SHA256 hash of the Genesis block of the Bitcoin blockchain.

The performance of our NIZK largely depends on our choice of the parameter α. A shorter α
means that the verifier has to spend less time trying to divide N by primes less than α, but also
increases m1 and m2, the number of RSA values in the NIZK. The relationship between α and
m1,m2 is determined by equation (1). Specifically for the TumbleBit parameters, we show this
relationship in Figure 1. To evaluate the performance of our NIZK, we choose the smallest value
of α that corresponds a given pair of (m1,m2) values, and benchmark proving and verifying times
for our NIZK for the RSA key length |N | = 2048 bits in Table 1 on a single-core of an Intel Xeon
processor. We can see from the table that choosing α = 319567 (so that m1 = 7 and m2 = 9) gives
optimal performance, though performance for α = 65537 is roughly similar and the optimal choice
is likely implementation-dependent. .

For the optimal choice of α, proving takes about 237 ms (a small fraction of the key generation
cost, which is 2022 ms) and verifying takes about 713 ms. For comparison, verification of our NIZK
is about 8 times faster than the folklore solution discussed in Section 1, which requires the verifier
to spend 5588 ms to perform the Rabin-Miller primality test on a 2048-bit RSA exponent, and also
slows down every public-key operation by a factor of about 60 because e is 2048 bits long (instead
of e = 65537, which is 17 bits long). We should note that even though our solution is much faster
than the folklore one, and adds only 12% to the prover’s normal RSA key generation cost, it is
still relatively expensive for the verifier: for comparison, the public key operation (encryption or
signature verification) with e = 65537 takes only about 1.4ms.

From Table 1 we also see that verifying is generally slower than proving (until α gets so big
that divisibility testing takes too long for the verifier). This follows because proving involves m1
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modular exponentiations (using RSASP), which can be done separately modulo p and modulo q for
N = pq (with the exponent reduced modulo p−1 and q−1), and then combined using the Chinese
Remainder Theorem (CRT). Meanwhile, the verifier does not know p and q, and so cannot use
(CRT); moreover, the exponent used for modular exponentiations (using RSAVP) is slightly longer
than φ(n), but the verifier does not know φ(N) and so cannot reduce it. Thus, exponentiations
performed by the verifier are slower than those performed by the prover.

4 Security Proofs

We present concrete security proofs for completeness, soundness, and honest-verifier zero-knowledge
for the Basic Protocol and Improved Protocol described in Section 2.2. Thus, the security of our
NIZK is standard by the Fiat-Shamir paradigm.

4.1 Perfect Completeness

We need to show that the honest prover will be able to carry out step 3, and the verifier’s checks
in step 4 will pass.

Lemma 4.1. If for some positive integers N and e, gcd(N,φ(N)) = 1 and x 7→ xe mod N is a
permutation of ZN , then gcd(e, φ(N)) = 1.

Proof. Since gcd(N,φ(N)) = 1, there is no prime p such that p2 divides N (else p divides φ(N)
by [Sho09, Theorem 2.10] and therefore gcd(N,φ(N)) ≥ p > 1). Let N = p1p2 . . . pk for distinct
prime numbers pi. By Chinese Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring ZN is
isomorphic to the product of rings Zp1 × · · · × Zpk , and therefore x 7→ xe mod pi is a permutation
of Zpi for every i. It suffices to show that e is relatively prime to pi − 1 for every i, because
φ(N) = (p1 − 1)× (p2 − 1)× · · · × (pk − 1).

Let gi be the primitive root modulo pi (also known as generator of Zpi ; it exists by [Sho09, The-

orem 7.28]). Let hi = g
(pi−1)/ gcd(e,pi−1)
i mod pi. Note that hei mod pi = (h

(pi−1)
i )e/ gcd(e,pi−1) mod

pi = 1 by Fermat’s little theorem. Because 1e mod pi is also 1, and raising to the e is a permutation
of Zpi , we know hi = 1. But since gi is a generator of Z∗pi , the lowest power of gi that is 1 is pi− 1,
and therefore gcd(e, pi − 1) = 1.

Lemma 4.2. If for some positive integers N and f , we have gcd(N,φ(N)) = 1 and gcd(f, φ(N)) =
1, then for g = f−1 mod φ(N) and for all x ∈ ZN , xgf mod N = x.

Proof. By the same argument as in the proof of 4.1, we know N = p1p2 . . . pk for distinct prime
numbers pi. By CRT, it suffices to show that xef mod pi = x for each i. Indeed, fg = tφ(N) + 1
for some integer t, and therefore xfg = (xpi−1)s · x for some integer s, and the result follows by
Fermat’s little theorem when x mod pi 6= 0, and trivially when x mod pi = 0.

Thus, Lemma 4.1 shows that the prover will be able to carry out Step 3, because N , e, and
therefore Ne are relatively prime to φ(N), and therefore their inverses modulo φ(N) (which the
prover can compute given the prime factorization of N) exist and can be obtained via extended
Euclidean algorithm [Sho09, Section 4.3]. Lemma 4.2 shows that the verifier’s checks 4c and 4d
will pass. The verifier’s checks 4a and 4b will pass by construction of Lα,e′ .
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4.2 Statistical Soundness

Let φ(N) denote |Z∗N |. The notation p|N means “p divides N”.

The following lemma shows that one can validate if an integer N is square-free by checking if
random values in ZN have Nth roots. This lemma generalizes the result of Gennaro, Micciancio,
and Rabin [GMR98, Section 3.1], which worked over Z∗N and thus required a gcd computation every
time a random value was selected.

Lemma 4.3. Let N > 1 be an integer and p be a prime such that p2 divides N (i.e., N is not
square free). Then, the fraction of elements of ZN that have an N th root modulo N is at most 1/p.

Proof. Suppose x has an Nth root modulo N . Then there is a value r such that rN ≡ x (mod N).
Hence, N divides rN − x, which means p2 divides rN − x (since p2 divides N), and therefore r is
the Nth root of x modulo p2. Thus, in order to have an Nth root modulo N , x must have an Nth
root modulo p2. Since a uniformly random element x of ZN is also uniform modulo p2, it suffices
to consider what fraction of Zp2 has Nth roots.

By Claim 4.5 below, the number of elements of Z∗p2 that have Nth roots is at most φ(p2)/e′,

where e′ is the largest prime divisor of gcd(N,φ(p2)) = gcd(N, p(p−1)). Since p|N , we have e′ = p.
Thus, the number of elements of Z∗p2 that have Nth roots is at most φ(p2)/p = p− 1.

If x ∈ Zp2−Z∗p2 , then p|x. If x has an Nth root r modulo p2, then p2|(rN−x), hence p|(rN−x),

hence p|rN (because p|x and p|(rN − x)), hence p|r (because p is prime), hence p2|r2, hence p2|rN
(because N > 1), and hence p2|x (because p2|(rN − x) and p2|rN ). We therefore have that x ∈ Zp2
and p2|x, which means that x = 0.

Thus, the total number of elements of Zp2 that have an Nth root is at most p−1 elements from
Z∗p2 and one element from Zp2 −Z∗p2 (namely, the element x = 0), for a total of at most p elements

from Zp2 . Thus, at most a p/|Zp2 | = 1/p fraction of elements of Zp2 have Nth roots. It follows
that at most a 1/p fraction of elements of ZN has Nth roots.

The following lemma shows that if we knowN is square free (which we can test using Lemma 4.3),
then we can check whether raising to the power e is a permutation of ZN , by checking if random
values in ZN have eth roots.

Lemma 4.4. Suppose N > 0 is a square-free integer so that N = p1p2 . . . pk for distinct prime
numbers pi, and e > 0 is an integer. If raising to the power e modulo N is not a permutation over
ZN , then the fraction of elements of ZN that have a root of degree e is at most

1

p
+

1

e′

(
1− 1

p

)
,

where e′ is the smallest prime divisor of e and p is the smallest prime divisor of N (these are
well-defined, because if N = 1 or e = 1, then raising to the eth power is a permutation over ZN ).

Proof. By Chinese Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring ZN is isomorphic
to the product of rings Zp1 × · · · × Zpk . Note that if raising to the power e modulo N is not a
permutation over ZN , then there exist x 6≡ y (mod N) such that xe ≡ ye (mod N). Let i be such
that x 6≡ y (mod pi) (it must exist by CRT); then raising to the power e modulo pi is not an
permutation of Zpi , because xe ≡ ye (mod pi) (by CRT).

Since a uniformly random element x of ZN is uniform modulo pi, it suffices to consider what
fraction of Zpi has eth roots. By Claim 4.5 below, the number of elements of Z∗pi that have eth
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roots is at most φ(Z∗pi)/e
′ = (pi − 1)/e′. The only element in Zpi − Z∗pi is the element 0. So, in

total, at most (pi − 1)/e′ + 1 elements of Zpi have eth roots. Since pi ≥ p,

(pi − 1)/e′ + 1

pi
=

1

e′
+

1

pi

(
1− 1

e′

)
≤ 1

e′
+

1

p

(
1− 1

e′

)
=

1

p
+

1

e′

(
1− 1

p

)
.

The proofs of both lemmas above relied on the claim below.

Claim 4.5. For any integers N > 1 and e > 1, if raising to the power e modulo N is not a
permutation over Z∗N , then gcd(e, φ(N)) > 1 and the number of elements of Z∗N that have a root of
degree e is at most φ(N)/e′, where e′ is the largest prime divisor of gcd(e, φ(N)).

Proof. Suppose there exist x and y in Z∗N such that xe ≡ ye (mod N) but x 6≡ y (mod N). Then
x/y 6≡ 1 (mod N) but (x/y)e ≡ 1 (mod N). Therefore, the multiplicative order of (x/y) is greater
than 1 and divides e [Sho09, Theorem 2.12] and φ(N) [Sho09, Theorem 2.13], which implies that
gcd(e, φ(N)) > 1. Let e′ be the largest prime divisor of gcd(e, φ(N)).

Because e′ is a prime that divides φ(N), Z∗N contains an element z of order e′ [Sho09, Theorem
6.42]. Therefore, the homomorphism that takes each element of Z∗N to the power e has kernel of
size at least e′ (because this kernel contains distinct values z, z2, . . . , ze

′
which are all eth roots

of 1 because e′ divides e). The image of this homomorphism contains exactly the elements that
have roots of degree e, and the size of this image is equal to φ(N) divided by the size of the kernel
[Sho09, Theorem 6.23], i.e., at most φ(N)/e′ .

We now combine the results of the above lemmas to demonstrate soundness. Suppose (N, e) ∈
Lno ∪ Lα,e′ . If x ∈ Lα,e′ , the verifier will reject in steps 4a or 4b, and soundness holds. Therefore,
assume (N, e) ∈ Lα,e′ . Thus, (N, e) ∈ Lno.

Suppose N is not square free. Since the smallest prime divisor of N is at least α, by applying
Lemma 4.3, we know at most 1/α fraction of ZN will have an Nth root. By choosing m1 elements
of ZN and verifying that they have Nth roots, we ensure that the chances that the prover passes
Step 4c with N that is not square-free are at most (1/α)m1 ≤ 2−κ.

Now suppose N is square-free but in Lno. Since N is square free, the smallest prime divisor
of N is at least α, and the smallest prime divisor of e is at least e′, we can apply Lemma 4.4 to
conclude that at most 1/α+(1−1/α)/e′ fraction of ZN have an eth root. By choosing m2 elements
of ZN and verifying that they have eth roots, we ensure that the chances that the prover passes
Step 4d (of the basic protocol) or 4c and 4d (of the improved protocol) are at most(

1

α
+

1

e′

(
1− 1

α

)′)m2

≤ 2−κ .

4.3 Honest-verifier Zero-Knowledge

If (N, e) ∈ Lyes, then the functions x 7→ xN mod N , x 7→ xe mod N , and x 7→ xeN mod N are all
permutations of ZN (by Lemma 4.2). Therefore, the honest verifier’s view consists of uniformly
random values ρ ∈ ZN and their inverses σ under one of these permutations. Equivalently, the
honest verifier’s view consists of uniformly random σ ∈ ZN and their corresponding images ρ under
one of these permutations.

We now build simulators for the basic protocol and for the improved protocol. The simulator
for the basic protocol will generate m1 values σi and m2 values σj chosen uniformly in ZN , and set

11



ρi = σNi mod N and ρj = σej mod N . The simulator for the basic protocol will generate m1 values

σi and m2 −m1 values σj chosen uniformly in ZN , and set ρi = σeNi mod N and ρj = σej mod N .
Both simulators will output all their σ and ρ values.

The output distributions of the simulator and the honest verifier are identical: each value σ is
uniform, and each value ρ is uniquely determined by σ.
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A Detailed Specification

The following specification is for the improved protocol made non-interactive, as described in Sec-
tion 2.2. This specification assumes that the RSA exponent e is prime.

A.1 System Parameters

The system parameters are the RSA modulus length len, the security parameter κ (where by
default κ = 128), a small prime α (about 16 bits long or less), and a publicly-known octet string
salt.

A.2 Proving

System parameters:

1. salt (an octet string),

2. α (a prime number)

3. κ (the security parameter, use 128 by default)

4. e, the fixed prime RSA exponent

5. len, the RSA key length

Auxiliary Function: getRho, defined in Section A.4.

Input: Distinct equal-length primes p and q greater than α such that the RSA modulus is N = pq
is of length len, and e does not divide (p− 1)(q − 1).

Output: (N, e), {σ1, ..., σm2}.

Algorithm:

1. Set m1 and m2 as in equation 1, Section 2.2, with e′ = e.

2. Set N = pq.
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3. Obtain the RSA secret key K as specified by [MKJR16, Sec. 3.2]:

K = (p, q, dNP , dNQ , qInv )

4. Compute the “weird RSA” secret key corresponding to public key (N, eN) (with exponent
eN and modulus N) in the [MKJR16, Sec. 3.2] as

K ′ = (p, q, dNP , dNQ , qInv )

where p, q, qInv are the same as in the normal RSA secret key K and

dNP = (eN)−1 mod (p− 1) dNP = (eN)−1 mod (q − 1) (2)

5. For integer i = 1 . . .m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, let
σi = RSASP1(K ′, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1]. In other words,
σ is the RSA decryption of ρi using the “weird RSA” secret key K ′.

(It follows that σi is (eN)th root of ρi.)

(c) Else let
σi = RSASP1(K, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1]. In other words,
σ is the RSA decryption of ρi using the regular RSA secret key K.

(It follows that σi is eth root of ρi.)

6. Output (N, e), {σ1, ..., σm2}.

A.3 Verifying.

System parameters:

1. salt (an octet string),

2. α (a prime number)

3. κ (the security parameter, use 128 by default)

4. e, the fixed prime RSA exponent

5. len, the RSA key length

Auxiliary Function: getRho, defined in Section A.4.

Input: RSA public key (N, e) and {σ1, ..., σm2}.

Output: VALID or INVALID

Algorithm:
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1. Check that N is an integer and N ≥ 2len−1 and N < 2len. If not, output INVALID and
stop.

2. Check that e is prime. If not, output INVALID and stop.

3. Compute m1 and m2 per equation (1), Section 2.2, with e′ = e.

4. Check that there are exactly m2 values {σ1, ..., σm2} in the input. If not, output INVALID
and stop.

5. Generate the vector Primes(α−1), which includes all primes up to and including α−1. (This
can be efficiently implemented using the Sieve of Eratosthenes when α is small.)

For each p ∈ Primes(α− 1):

• Check that N is not divisible by p. If not, output INVALID and stop.

(Alternatively, let primorial be the product of all values in Primes(α−1). primorial should
be computed once and should be a system parameter. Check that gcd(primorial, N) = 1.)

6. For integer i = 1 . . .m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, check that
ρi = RSAVP1((N, eN), σi)

where RSAVP1 is the RSA verification primitive of [MKJR16, Sec. 5.2.2]. In other
words, check that ρi is the RSA encryption of σi using the “weird RSA” public key
(N, eN). If not, output INVALID and stop.

(Thus, check that ρi = σeNi mod N).

(c) Else check that
ρi = RSAVP1(PK , σi)

In other words, check that the ρi is the RSA encryption of σi using the RSA public key
(N, e)¿ If not, output INVALID and stop.

(Thus, check that ρi = σei mod N).

7. Output VALID.

A.4 Auxiliary function: getRho

This function is for rejection sampling of a pseudorandom element ρi ∈ ZN . It is “deterministic,”
always producing the same output for a given input.

Input:

1. RSA public key (N, e).

2. salt (an octet string)

3. Index integer i.
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4. Length of RSA modulus len

5. Value m2, with i ≤ m2.

Output: ρi

Algorithm:

1. Let
|m2| =

⌈
1
8(log2(m2 + 1))

⌉
be the length of m2 in octets. (Note: This is an octet length, not a bit length!)

2. Let j = 1.

3. While true:

(a) Let PK be the ASN.1 octet string encoding of the RSA public key (N, e) as specified in
[MKJR16, Appendix A].

(b) Let EI = I2OSP(i, |m2|) be the |m2|-octet long string encoding of the integer i. (The
I2OSP primitive is specified in [MKJR16, Sec. 4.2].)

(c) Let EJ = I2OSP(j, |j|) be the |j|-octet long string encoding of the integer j, where
|j| = d18 log2(j + 1)e.

(d) Let s = PK ||salt||EI||EJ be the concatenation of these octet strings.

(e) Let ER = MGF1-SHA256(s, len) where H1 is the MGF1 Mask Generation Function
based on the SHA-256 hash function as defined in [MKJR16, Sec. B.2.1], outputting
values that are len bits long.

(f) Let ρi = OS2IP(ER) be an integer.

(That is, convert ER to an len bit integer ρi using the OS2IP primitive specified in
[MKJR16, Sec. 4.1].)

(g) If ρi ≥ N , then let j = j + 1 and continue; Else, break.

(Note: This step tests if ρi ∈ ZN .)

4. Output integer ρi.
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