
Efficient Noninteractive Certification

of RSA Moduli and Beyond

Sharon Goldberg*, Leonid Reyzin*, Omar Sagga*, and Foteini Baldimtsi†

*Boston University, Boston, MA, USA
goldbe@cs.bu.edu,reyzin@cs.bu.edu,osagga@bu.edu

†George Mason University, Fairfax, VA, USA foteini@gmu.edu

October 3, 2019

Abstract

In many applications, it is important to verify that an RSA public key (N, e) specifies a
permutation over the entire space ZN , in order to prevent attacks due to adversarially-generated
public keys. We design and implement a simple and efficient noninteractive zero-knowledge
protocol (in the random oracle model) for this task. Applications concerned about adversarial
key generation can just append our proof to the RSA public key without any other modifications
to existing code or cryptographic libraries. Users need only perform a one-time verification of
the proof to ensure that raising to the power e is a permutation of the integers modulo N . For
typical parameter settings, the proof consists of nine integers modulo N ; generating the proof
and verifying it both require about nine modular exponentiations.

We extend our results beyond RSA keys and also provide efficient noninteractive zero-
knowledge proofs for other properties of N , which can be used to certify that N is suitable
for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to
the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for
similar languages, our protocols are more efficient and do not require interaction, which enables
a broader class of applications.

1 Introduction

Many applications use an RSA public key (N, e) that is chosen by a party who may be adversarial.
In such applications, it is often necessary to ensure that the public key defines a permutation
over ZN : that is, raising to the power e modulo N must be bijective, or, equivalently, every integer
between 0 and N−1 must have an eth root modulo N . An attacker who deliberately generates a bad
key pair may subvert the security of other users — see for example, [MRV99], [CMS99], [MPS00],
and [LMRS04]. In particular, our work was motivated by TumbleBit [HAB+17], a transaction-
anonymizing system deployed [Str17] on top of Bitcoin, in which a bad key pair can lead to a
devastating attack (see footnote 2 in Section 5 for the attack specifics).

Interactive proofs for correctness of RSA keys are available (see, for example, [AP18] and
references therein), but interaction with the key owner is often not possible in the application.
Thus, the folklore solution, used, for example, in [MRV99], [CMS99], [MPS00], [LMRS04], is to
choose the public RSA exponent e such that e is prime and larger than N . This solution has two
major drawbacks.

1

First, because the folklore solution requires e > N , e is not in the set of standard values typically
used for e in RSA implementations e.g., e ∈ {3, 17, 216 + 1}. Unless a large prime value for e is
standardized, before using the public key, one would have to perform a one-time primality test on
e, to ensure that e really is prime. This primality test is quite expensive (see Section 5).

Second, most RSA implementations choose a small value for e, typically from a set of standard
values e ∈ {3, 17, 216 + 1}. Choosing a small e significantly reduces the cost of performing RSA
public key operations. However, this efficiency advantage is eliminated in the folklore solution,
which requires e > N . Unlike the previous drawback, which results in a one-time cost for each
public key used, this drawback makes every public-key operation about two orders of magnitude
more expensive.

In addition, this solution is not compatible with existing RSA standards and off-the-shelf im-
plementations. This is because the folklore solution does not ensure that the public key operation
is a permutation over ZN , where ZN = {0, 1, ..., N − 1}. Instead, it ensures only that the public
key operation defines a permutation over the set Z∗N , where Z∗N is the set of values in ZN that are
relatively prime with N . Thus, there are no assurances about the values in the set ZN − Z∗N , i.e.,
the set of values that are less than N but not relatively prime with N . (To see this, consider the
example N = 9 and e = 11.) If the RSA public key is generated honestly, this is not a problem,
because the set ZN−Z∗N contains only a negligible fraction of ZN . However, if an adversary chooses
the RSA public key (N, e) maliciously, then it could choose N so that the set ZN − Z∗N is a large
fraction of ZN .1 To address this attack, the folklore solution additionally requires a gcd check along
with every RSA public-key operation, to ensure that the exponentiated value is relatively prime
with N .

1.1 Our Contributions

Proving that an RSA Key Specifies a Permutation over all of ZN We present a simple
noninteractive zero-knowledge proof (NIZK) in the random oracle model, that allows the holder
of an RSA secret key to prove that the corresponding public key defines a permutation over all of
ZN , without leaking information about the corresponding secret key. Our NIZK can be used even
when the RSA exponent e is small, which is useful for applications that require fast RSA public key
operations. In addition to the NIZK algorithm and a concrete security proof, we present a detailed
specification of the prover and verifier algorithms, as well as production-quality implementation
and an analysis of its performance. Because our NIZK is for all values in ZN , it is compliant with
existing cryptographic specifications of RSA (e.g., RFC8017 [MKJR16]).

For typical parameter settings, our NIZK consists of 9 elements of ZN . Generating the NIZK
costs roughly 9 full-length RSA exponentiations modulo N . Meanwhile, each verifier pays the one-
time cost of verifying our NIZK, which is also roughly equal to 9 full-length exponentiations. When
compared to the folklore solution we described earlier, our solution (1) avoids the more expensive
one-time primality test and (2) allows the verifier to continue using a small value of e, resulting in
better performance for every public-key verification.

We view this result as of most immediate practical applicability (in fact, it has already been
deployed). We therefore present not only a high-level explanation of this protocol (Section 3.3),
but also its detailed specification (Appendix C) and implementation results (Section 5 and code at
[cod]).

1It has been observed that such an N could be detected by checking if N has small divisors. However, the risk of
being detected is not usually an adequate deterrent, unless implemented and deployed as part of a protocol. But if
such a check is deployed, then the adversary, knowing what check has been deployed, could set divisors of N to be
just slightly larger than the limits of the check, and thus still ensure that ZN −Z∗N is a nonnegligible fraction of ZN .

2

Suitability for Paillier and Other Properties of N We also present simple NIZK proofs for
several other properties of N , such as ensuring that N is square-free (Section 3.2), is suitable for
Paillier encryption (required in [Lin17] and [HMRT12]; see Section 3.2), is a product of exactly two
primes (Section 3.4), or is a Blum integer (i.e., product of two primes that are each 3 modulo 4; see
Section 3.5). Most of these problems have been addressed only via interactive protocols in prior
literature [AP18]. Noninteractive proofs have considerably broader applicability than interactive
ones, because the owner of the public key can simply generate a nonineractive proof once and
publish it once together with the public key, whereas in the interactive, the owner needs to be
online, handle potentially high query loads, and be subject to denial of service attacks.

Our proofs for square-freeness and suitability for Paillier are of similar efficiency to the per-
mutation proof, requiring only 8 elements in ZN for typical parameter settings and 8 full-length
modular exponentiations. Our proofs for products of two primes and Blum integers require the
proof of square-freeness and a test for prime powers (same as in [AP18]), plus one more component,
which is less efficient for the prover, but more efficient for the verifier. For 128-bit security, this
additional component requires about 1420 square root operations ZN by the prover (note, however,
that this is done one-time during key generation). The verifier, on the other hand, needs to perform
only Jacobi-symbol computations and modular squarings, which are much more efficient, making
the verifier cost comparable to the cost of just a few full-length modular exponentiation. This
additional component requires the publication of 1420 elements of ZN .

All of our protocols are presented first as two-message public-coin honest-verifier protocols. We
then convert them to noninteractive using the Fiat-Shamir heuristics, by obtaining the verifier’s
public-coin message through an application of the random oracle to the protocol input (see Sec-
tion 4). They all have perfect completeness, perfect honest-verifier zero-knowledge, and statistical
soundness, with the exception of the protocol for showing that N is a product of two primes, which
has computational honest-verifier zero-knowledge under the quadratic residuosity assumption.

1.2 Related Work

Auerbach and Poettering [AP18] present two-message interactive protocols in the random oracle
model for the same problems as we consider, with the exception of proving that (N, e) specifies a
permutation over ZN (they prove only that (N, e) specifies a permutation over Z∗N , which, would
require users to modify their RSA implementations to add a gcd computation to every public-
key operation). As already mentioned, noninteractive protocols have broader applicability than
interactive ones. It is much more appealing to be able to post, say an RSA public key along
with a NIZK proof of being well formed, as opposed to be expected to run an online, interactive
protocol with each verifier. Their protocols for proving that (N, e) specifies a permutation, N is
square-free, or is suitable for Paillier, are all considerably less efficient than ours, requiring 81-128
modular exponentiations for 128-bit security level. Their protocols for proving that N is a product
of exactly two primes or is a Blum integer are also less efficient for the verifier (because the first step
in those protocols is proving square-freeness); they are about 10 times more efficient for the prover
if we consider only one-time use, but, because they are interactive, they must be run repeatedly by
the prover, while in our noninteractive case, the prover needs to run them only once.

Kakvi, Kiltz, and May [KKM12] show how to verify that RSA is a permutation by providing
only the RSA public key (N, e) and no additional information, as long as e > N1/4. They also
show that when e is small, it is impossible, under reasonable complexity assumptions, to verify
that (N, e) is a permutation without any additional information [KKM12, Section 1]. Thus, their
approach cannot be used when e is small. We circumvent their impossibility by having the prover
additionally provide our NIZK (rather than just (N, e)) to the verifier.

3

Wong, Chan, and Zhu [WCZ03, Section 3.2] and Catalano, Pointcheval, and Pornin [CPP07,
Appendix D.2] present interactive protocols (using techniques similar to ours) that, like the proto-
cols of [AP18], also work only over Z∗N rather than the entire ZN .

The protocols given by Camenisch and Michels [CM99, Section 5.2] and Benhamouda et al.
[BFGN17] achieve much stronger goals. The former proves N = pq is a product of two safe primes
(i.e., p, q, (p−1)/2, and (q−1)/2 are all prime); the second can prove that any prespecified procedure
for generating the primes p and q was followed. These protocols can be used to prove that (N, e)
specifies a permutation by imposing mild additional conditions on e (and the prime generation
procedure for [BFGN17]). However, these stronger goals are not necessary for our purposes. Our
protocol is considerably simpler and more efficient, and does not restrict p and q in any way.

Our protocol for showing that (N, e) specifies a permutation over ZN builds on the protocol of
Bellare and Yung [BY96], who showed how to prove that any function is “close” to a permutation.
However, “close” is not good enough for our purposes, because the adversary may be able to
force the honest parties to use the few values in ZN at which the permutation property does not
hold. Thus, additional work is required for our setting. This additional work is accomplished with
the help of a simple sub-protocol from Gennaro, Micciancio, and Rabin [GMR98, Section 3.1] for
showing the square-freeness of N (a similar sub-protocol in the interactive setting was discovered
earlier by Boyar, Friedl, and Lund [BFL89, Section 2.2]). We demonstrate how to combine the
ideas of [BY96] and [GMR98] to prove that (N, e) specifies a permutation over ZN .

2 Preliminaries

Some number-theoretic preliminaries are presented in Appendix A.
Here, we first recall the standard notion of honest-verifier zero-knowledge (HVZK).

Definition 2.1. (Honest-Verifier Zero Knowledge (HVZK)) An interactive proof system between
a prover and verifier (P, V) for a NP language L is said to be honest-verifier zero knowledge if the
following properties hold:

1. (perfect) Completeness. For every x ∈ L and every NP-witness w for x,

Pr[〈P (x,w), V (x)〉 = 1] = 1.

2. (statistical) Soundness. For every x 6∈ L and every interactive algorithm P ∗

Pr[〈P ∗(x), V (x)〉 = 1] = negl(|x|)

3. HVZK. There exists a probabilistic polynomial-time simulator S such that for all x ∈ L and
all PPT distinguishers D we have:

viewD〈P (x,w),V (x)〉 ≈ viewDS(x).

We say (P, V) is public coin if all the messages sent by verifier V to prover P are random coin
tosses.

Promise problems We also recall the notion of a promise problem, which is a generalization
of the notion of a language. A promise problem consists of two disjoint sets: Lyes and Lno. In a
language, Lno = Lyes, but in a promise problem, there may be strings that are neither in Lyes nor
Lno, and we generally do not care what happens if such a string is input. Thus, in a ZK proof for a
promise problem, completeness and zero-knowledge need to hold for inputs in Lyes, while soundness
needs to hold for inputs in Lno.

4

3 HVZK Proofs for Properties of N and e

3.1 HVZK Proof for a Permutation over Z∗N
Bellare and Yung [BY96] showed how to certify that any function is close to a permutation. The
idea is to simply ask the prover to invert the permutation on random points. It is a standard fact
from number theory (Lemma A.8) that raising to eth power is either a permutation of Z∗N or very
far from one—in fact, it is either a permutation or an e′-to-1 function, where e′ is the smallest
prime divisor of e. Here, we adapt the protocol of [BY96] to show that the RSA function is not just
close to a permutation, but is actually a permutation over Z∗N : if we check that e′ is high enough,
then not many random points will be needed.

It is also a standard fact (recalled in Lemma A.2) that raising to the power e defines a permu-
tation over Z∗N if and only if e is relatively prime to φ(N). Thus, let

LpermZ∗N = {(N, e) |N, e > 0 and gcd(e, φ(N)) = 1} .

Let
Le′ = {(N, e) |N, e > 0 and no prime less than e′ divides e} .

(In typical RSA implementations, e is a fixed small prime, such as 3, 17, or 65537, and one would
use e′ = e.)

The following is an HVZK protocol for LpermZ∗N ∩ Le′ with perfect completeness, perfect zero-
knowledge, and statistical soundness error 2−κ. We emphasize that, while the protocol is similar
to that of [BY96], it is not identical. Specifically, the addition of Le′ and the verifier check in Step
4a allow us to guarantee that the RSA function is a permutation over Z∗N much more efficiently
than the protocol of [BY96].

Protocol PpermZ∗N

1. Both prover and verifier let m = dκ/ log2 e
′e.

2. The verifier chooses m random values ρi ∈ Z∗N and sends them to prover.

3. The prover sends back eth roots of ρi modulo N :

σi = (ρi)
e−1 mod φ(N) mod N

for i = 1 . . .m.

4. The verifier accepts that N ∈ LpermZ∗N ∩ Le′ if all of the following checks pass.

(a) Check that N, e, and σi for i = 1 . . .m are positive integers, and that e not divisible by
all the primes less than e′ (if e is a fixed prime as in typical RSA implementations, this
check simply involves checking that e = e′).

(b) Verify that ρi = (σi)
e mod N for i = 1 . . .m.

Theorem 3.1. PpermZ∗N is a 2-message public-coin protocol with perfect completeness, perfect
honest-verifier zero-knowledge, and statistical soundness error 2−κ for the language LpermZ∗N ∩ Le′.

Proof. It is a standard fact (see Lemma A.2) that raising to the power N is a permutation of Z∗N
whenever e ∈ LpermZ∗N , and the inverse of this permutation is raising to the power (e−1 mod φ(N)).
This fact gives perfect completeness and a perfect HVZK simulator who simply chooses σi and
computes ρi = (σi)

e mod N for i = 1 . . .m (recall that by definition, completeness and HVZK

5

apply only to (N, e) ∈ LpermZ∗N ∩ Le′). Statistical soundness with error 2−κ follows from the fact
that if (N, e) /∈ LpermZ∗N but (N, e) ∈ Le′ , then size the image of the map σ 7→ σe is at most |Z∗N |/e′

by Lemma A.8. Thus, the probability that a σi exists for every ρi is at most 1/(e′)m = 2−m log2 e
′ ≤

2−κ.

3.2 HVZK Proofs for Paillier and Square-Free N

The Paillier cryptosystem requires a modulus N that is relatively prime with φ(N). Thus, let

Lpailler-N = {N > 0 | gcd(N,φ(N)) = 1} .

We emphasize that, unlike [AP18], we do not verify the properties of the generator g in the Paillier
cryptosystem—but since the common choice is to use g = N + 1 per [DJ01], verifying that N ∈
Lpailler-N is sufficient for the common case.

Let
Lsquare-free = {N > 0 | there is no prime p such that p2 divides N} .

Note that to be in Lpailler-N , N has to be in Lsquare-free and also have no prime divisors p, q such
that p | q − 1 (by definition of φ(N), as recalled in Appendix A), so Lpailler-N ⊂ Lsquare-free (see
Lemma A.3).

Thus, letting

Lgap = {N ∈ Lsquare-free|N has two prime divisors p, q such that p divides q − 1},

we know that Lsquare-free − Lgap = Lpailler-N .
Our protocols for proving suitability for Paillier or square-freeness will depend on a parameter

α and the corresponding language

Lα = {N > 0 | no prime less than α divides N} .

We now describe the protocol Ppailler-N , an HVZK protocol for Lα ∩ Lpailler-N with perfect com-
pleteness, perfect zero-knowledge, and statistical soundness error 2−κ. This protocol builds on the
protocol from [GMR98, Section 3.1], but is not identical to it: specifically, the addition of Lα and
verifier’s Step 4a gives better performance. Setting α = 2 gives a protocol for Lpailler-N , but a higher
setting of α will improve efficiency (see Section 5 for a discussion of how to pick α).

The idea of the protocol is to ask the prover to take Nth roots of random points—they will
not exist for many points if N /∈ Lpailler-N , because raising to the power N will be far from a
permutation. The protocol is the same as the protocol LpermZ∗N described in Section 3.1, replacing
e with N and e′ with α.

Protocol Ppailler-N :

1. Both prover and verifier let m = dκ/ log2 αe.

2. The verifier chooses m random values ρi ∈ Z∗N and sends them to prover.

3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)
N−1 mod φ(N) mod N

for i = 1 . . .m.

4. The verifier accepts that N ∈ Lpailler-N ∩ Lα if all of the following checks pass.

6

(a) Check that N is a positive integer and is not divisible by all the primes less than α.

(b) Check that σi is a positive integer for i = 1 . . .m.

(c) Verify that ρi = (σi)
N mod N for i = 1 . . .m.

Theorem 3.2 (GMR98). Ppailler-N is a 2-message public-coin proof with perfect completeness,
perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ for the language Lα ∩
Lpailler-N .

Note that choosing elements in Z∗N in step 2 of the protocol requires a gcd computation by the
verifier (because the verifier cannot be sure that the difference between ZN and Z∗N is negligible).
To avoid this computation, the verifier can choose values in ZN instead. Then the verifier may
have a lower probability of rejecting inputs outside of Lα∩Lpailler-N , but is still guaranteed to reject
inputs outside of Lα ∩ Lsquare-free with probability 1 − 2−κ, as we show in Lemma A.6. Perfect
completeness and zero-knowledge still hold for Lα ∩ Lpailler-N , and thus for an honestly generated
RSA modulus. Let us call this modified protocol Psquare-free.
Protocol Psquare-free: Same as the protocol Ppailler-N described above, replacing Z∗N with ZN in
step 2 and N ∈ Lpailler-N ∩ Lα with N ∈ Lsquare-free ∩ Lα in step 4. Specifically,

1. Both prover and verifier let m = dκ/ log2 αe.

2. The verifier chooses m random values ρi ∈ ZN and sends them to prover.

3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)
N−1 mod φ(N) mod N

for i = 1 . . .m.

4. The verifier accepts that N ∈ Lsquare-free ∩ Lα if all of the following checks pass.

(a) Check that N is a positive integer and is not divisible by all the primes less than α.

(b) Check that σi is a positive integer for i = 1 . . .m.

(c) Verify that ρi = (σi)
N mod N for i = 1 . . .m.

Theorem 3.3. Psquare-free is a 2-message public-coin proof with perfect completeness, perfect honest-
verifier zero-knowledge, and statistical soundness error 2−κ for the promise problem (Lyes = Lα ∩
Lpailler-N ,Lno = Lα ∩ Lsquare-free).

Proof. It is a standard fact that raising to the power N is a permutation of ZN whenever N ∈
Lpailler-N , and the inverse of this permutation is raising to the power (N−1 mod φ(N)) (Lemma A.3
and Lemma A.4, setting f = N). This fact gives perfect completeness and a perfect HVZK
simulator who simply chooses σi and computes ρi = (σi)

N mod N for i = 1 . . .m (recall that by
definition, completeness and HVZK apply only to N ∈ Lyes). Statistical soundness with error 2−κ

follows from the fact that if p ≥ α is a prime such that p2|N , then the map σ 7→ σN is at least
α-to-1 over ZN (per Lemma A.6); thus, the probability that a σi exists for every ρi is at most
1/αm = 2−m log2 α ≤ 2−κ.

7

3.3 HVZK Proof for Permutation over Entire ZN
As explained in the introduction, ensuring that raising to the power e is a permutation over the
entire ZN is more desirable than ensuring only that it is a permutation over Z∗N . In this section, we
show that a careful combination of protocols Psquare-free and PpermZ∗N gives an efficient two-message
public-coin HVZK protocol for proving that an RSA public key defines a permutation over the
entire ZN .

Let LpermZ∗N and Le′ be as in Section 3.1, and Lα, Lsquare-free, Lpailler-N , and Lgap be as in Section
3.2, except defined not just on integers N , but on pairs (N, e) for an arbitrary e > 0.

Let LpermZN
= {(N, e) |N, e > 0 and raising to the power e is a permutation over ZN}.

Note that (
Lpailler-N ∩ LpermZ∗N

)
⊂

(
Lsquare-free ∩ LpermZ∗N

)
⊂ LpermZN

.

(the first ⊂ property follows from Lemma A.3; the second ⊂ property follows from Lemma A.4).

Note that the only pairs (N, e) in LpermZN
−

(
Lsquare-free ∩ LpermZ∗N

)
are those for which e = 1 and

N is not square-free (per Lemma A.5).
We want to design a protocol for LpermZN

. For efficiency reasons, we will focus instead on
LpermZN

∩ Lα ∩ Le′ , i.e., require N and e to not have divisors smaller than α and e′, respectively.
Moreover, just like in protocol Psquare-free of Section 3.2, we will consider slightly weaker complete-
ness: if N is square-free, but has two prime divisors p, q such that p | (q − 1) (i.e., falls into Lgap),
the verifier will be permitted to reject N . Thus, let

Lyes = Lpailler-N ∩ LpermZ∗N ∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

The gap between Lyes and Lno (i.e., the only pairs (N, e) not in Lyes∪Lno) is almost the same as
in Theorem 3.3: namely, Lgap∩Le′∩Lα, as well as some pairs (N, e) with e = 1. Naturally occurring
RSA moduli should never fall into this gap. Every (N, e) in the gap still defines a permutation over
the entire ZN , but the prover may be unable to show this fact.

We now present a protocol PpermZN
for the promise problem (Lyes,Lno). The protocol PpermZN

is not simply a combination of Psquare-free and PpermZ∗N : we save space by using the same ρi for both
eth roots and Nth roots. Because any value that has an (eN)th root also has an eth root and an
Nth root, we combine the two protocols simply by checking the ρi values have eNth roots.

The protocol PpermZN
depends on two parameters α and e′, which are both primes, at most

about 16 bits long. The verifier will reject any N that is divisible by a prime less than α and any
e that is divisible by a prime less than e′. Any setting of α and e′ is valid for security; varying
these parameters affects only efficiency. An optimal setting of these parameters is implementation-
dependent, since larger e′ and α will result in some additional work for the verifier, but will also
reduce work for the prover and verifier since m1 and m2 in equation (1) below become smaller.
When e is a fixed prime like 3, 17, or 216 + 1, as is standard for many RSA implementations, then
we set e′ equal to e. We further discuss parameter settings in Section 5.

The prover’s witness is the prime factorization of N . Recall that κ is a security parameter. The
protocol will achieve statistical soundness error 2−κ.

Protocol PpermZN
:

1. Both prover and verifier let

m1 = dκ/ log2 αe and m2 =

⌈
−κ/ log2

(
1

α
+

1

e′

(
1− 1

α

))⌉
. (1)

8

Notice that m2 ≥ m1 since e′ > 1.

2. The verifier chooses m2 random values ρi ∈ ZN and sends them to Prover.

3. The Prover sends back
σi = (ρi)

(eN)−1 mod φ(N) (mod N)

for i = 1 . . .m1 (for convenience, we call this a “weird RSA signature”) and

σi = (ρi)
e−1 mod φ(N) (mod N)

for i = m1 + 1 . . .m2 (which is just a regular RSA signature).

4. The verifier accepts that (N, e) defines a permutation over all of ZN if all of the following
checks pass.

(a) Check that N > 0 and N is not divisible by all the primes less than α.

(Equivalently, one can let P be the product of all primes less than α (also known as
α− 1 primorial) and verify that gcd(N,P) = 1.)

(b) Check that e > 0 and is e not divisible by all the primes less than e′. (In most im-
plementations of RSA, e is a fixed prime, in which case the verifier can just check that
e = e′.)

(c) Verify that ρi = (σi)
eN (mod N) for i = 1 . . .m1.

(d) Verify that ρi = (σi)
e (mod N) for i = m1 + 1 . . .m2.

Note that for many natural choices of parameters (e, κ, α), we have m1 = m2, and so step 4d
disappears.

Theorem 3.4. PpermZN
is a 2-message public-coin proof with perfect completeness, perfect honest-

verifier zero-knowledge, and statistical soundness error 2−κ for the promise problem

Lyes = Lpailler-N ∩ LpermZ∗N ∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

Proof. It is a standard fact (per Lemmas A.3 and A.4) that raising to a power f is a permutation
of ZN whenever N ∈ Lpailler-N and gcd(f, φ(N)) = 1, and that the inverse of this permutation is
raising to the power (f−1 mod φ(N)). This fact, when we set f = eN for i = 1 . . .m1 and f = N for
i = m1 + 1, . . . ,m2, gives perfect completeness. It also gives a perfect HVZK simulator who simply
chooses σi and computes ρi = (σi)

eN mod N for i = 1 . . .m1 and ρi = (σi)
e for i = m1 + 1, . . . ,m2

(recall that, by definition, the simulator needs to work only for (N, e) ∈ Lyes).
To show soundness, suppose (N, e) ∈ Lno. If x ∈ Lα ∪ Le′ , the verifier will reject in steps 4a or

4b, and soundness holds. Therefore, assume (N, e) ∈ Lα ∩ Le′ . This means (N, e) /∈ LpermZN
.

Suppose (N, e) /∈ Lsquare-free. Since the smallest prime divisor of N is at least α, by applying
Lemma A.6, we know at most 1/α fraction of ZN will have an Nth root. By choosing m1 elements
of ZN and verifying that they have Nth roots, we ensure that the chances that the prover passes
Step 4c with N that is not square-free are at most (1/α)m1 ≤ 2−κ.

Now suppose (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN
. Since N is square free, the smallest

prime divisor of N is at least α, and the smallest prime divisor of e is at least e′, we can apply
Lemma A.7 to conclude that at most 1/α + (1 − 1/α)/e′ fraction of ZN have an eth root. By

9

choosing m2 elements of ZN and verifying that they have eth roots, we ensure that the chances
that the prover passes Steps 4c and 4d are at most(

1

α
+

1

e′

(
1− 1

α

)′)m2

≤ 2−κ .

A possible optimization. Instead of choosing the ρi values from ZN , the prover could choose
ρi values from Z∗N (this requires m2 gcd computations), and therefore set a potentially lower m2 =
max (dκ/ log2 e

′e ,m1). The proofs of completeness and zero-knowledge proofs remain the same (be-
cause if (N, e) define a permutation over ZN , they also define a permutation when restricted to Z∗N).

The proof of soundness changes in the last paragraph. Observe that, since
(

Lsquare-free ∩ LpermZ∗N

)
⊂

LpermZN
, if (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN

, then (N, e) /∈ LpermZ∗N . Thus, per Lemma A.8,
the chances that the prover passes steps 4c and 4d are at most(

1

e′

)m2

≤ 2−κ .

For example, for κ = 128 and e = α = 65537, this optimization reduces the value of m2

from 9 to 8. This reduction in m2 is at the expense of gcd(ρi, N) computations, and so it may
or may not improve overall performance, depending on the implementation and the parameter
values. We emphasize, however, that the lower m2 value will not give security 2−κ without the gcd
computations on the part of the verifier, so implementers of this optimization should ensure the
verifier rejects if gcd(ρi, N) 6= 1 for some i.

3.4 HVZK Proof for a Product of Two Primes

In this section, we consider the language

Lppp = {N > 0 | N is odd and has exactly two distinct prime divisors} .

Note that the more interesting language is

Lpp = {N > 0 | N is odd and is a product of two distinct primes } =

(Lppp ∩ Lsquare-free) ⊃ (Lppp ∩ Lpailler-N) ,

because it rules out prime powers as factors of N .
We obtain a two-round public-coin HVZK proof for the promise problem Lyes = Lpp and Lno =

Lppp (note that only N not in Lyes∪Lno are those that have exactly two distinct odd prime divisors
and are not square-free). We can obtain an HVZK proof for Lpp (with a similar gap for the case
p|q − 1) by combing the protocol in this section with the protocol for and Lsquare-free, similar to
[AP18]. The combination can be space-saving, similar to Protocol PpermZN

in Section 3.3.
Let JN denote the subset of Z∗N with Jacobi symbol 1. Let QRN denote the subset of JN

that consists of quadratic residues in Z∗N . The following is an HVZK protocol for for the promise
problem (Lyes = Lpp, Lno = Lppp). Let κ be the statistical security parameter.

Protocol Pppp

1. Both the Prover and the Verifier let m = dκ · 32 · ln 2e.

10

2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.

3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗N such that σ2i mod N = ρi. Of the four
square roots, the Prover chooses one at random. For other ρi, the prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a prime power
(see [Ber98, BLP07] and references therein). If these checks pass, then the Verifier accepts
if the number of nonzero responses is at least 3m/8, and for every nonzero σi, it holds that
ρi = (σi)

2 mod N .

Note that our design choice to have the verifier pick values in JN rather than in all of Z∗N results
in improved efficiency by a factor of four as compared to the hash-then-solve protocol presented
in [AP18]. This is because when the verifier chooses elements in JN , at least 1/2 of them have
square roots for N ∈ Lpp, vs. 1/4 for N /∈ Lppp. In contrast, when the verifier chooses elements
in all of Z∗N , the fractions change to 1/4 and 1/8, respectively. But the number of repetitions m
required to distinguish 1/4 from 1/8 is four times greater than the number of repetitions required
to distinguish 1/2 from 1/4, for any fixed confidence level 2−κ (this follows from bounds on the tail
of the binomial distribution; see the proof of Theorem 3.5).

Theorem 3.5. Pppp is a 2-message public-coin protocol for the promise problem (Lyes = Lpp,
Lno = Lppp) with statistical completeness error 2−κ, computational honest-verifier zero-knowledge,
and statistical soundness error 2−κ.

Proof. In order to show completeness, we need to show that the honest prover will be able to carry
out Step 3, and the verifier’s checks in Step 4 will pass. Since the prover knows the factorization
of N = pq, it can efficiently check if ρi ∈ QRN by determining if it is a quadratic residue module
each prime divisor p and q of N .

Then, given that ρi ∈ QRN , it is easy for the prover to compute σi such that σ2i mod N = ρi.
To do so, the prover computes βi = ρi mod p and γi = ρi mod q. Then the prover finds solutions
±b to σ2i mod p = β, and ±c to σ2i mod q = γ, using any of the available algorithms for finding
square roots modulo primes. Finally, the prover uses the Chinese Remainder Theorem to obtain
four solutions (corresponding to pairs (b, c), (−b, c), (b,−c), (−b,−c)) to σ2i mod N = ρi. Thus, the
prover can indeed carry out Step 3.

Let us now discuss why the verifier’s checks in Step 4 will pass with probability close to 1. As
discussed above if ρi ∈ QRN the prover can always send back valid σi’s. So in order to achieve
completeness, we need to make sure that among the ρi’s sent from the Verifier to the Prover in
Step 2, at least 3m/8 of them are in QRN . Since N ∈ Lpp, |JN | = φ(N)/2 while |QRN | = φ(N)/4
(it is in this step that we use the fact that that N ∈ Lpp and not just in Lppp; because |JN | when
is N is a product of two prime powers can be more than twice |QRN | if one or both the powers is
even).

By applying the classic Hoeffding bound [Hoe63, Theorem 2] for m = dκ · 32 · ln 2e, we see that
Pr[the number of ρi’s ∈ QRN < 3m/8] < e−2m(1/2−3/8)2 = 2−2m/(64 ln 2) ≤ 2−κ. Thus we conclude
that our protocol has statistical completeness with error probability at most 2−κ.

To show soundness, suppose that N 6∈ Lppp , i.e., N is even, a prime, a prime power, or has at
least three prime divisors. If N is even, a prime, or a prime power, the verifier will reject. If N has
at least three prime divisors, then at most 1/4 of the elements of JN have square roots. But the
prover can cheat only if 3m/8 of the ρi values have square roots. Thus, probability of cheating is
Pr[the number of squares is ≥ 3m/8] ≤ e−2m(3/8−1/4)2 ≤ 2−κ by the Hoeffding bound.

Finally, we argue that our protocol is computational honest-verifier zero-knowledge. We first
recall the QR assumption [GM84].

11

Assumption 3.6 (QR assumption). For any N = pq, a randomly chosen ρ ∈ JN , and any PPT
algorithm A,

Pr[σ = QR(ρ) | N = pq, ρ← JN , A(ρ,N)→ σ ∈ {±1}] ≤ 1/2 + negl(κ).

The HVZK simulator (which, by definition, needs to work only when N ∈ Lpp) will pick random
values σi and square them getting ρi. For each number, it will flip a coin and, depending on the
coin’s output the simulator will either output (σi, ρi) or (0, ρ′i) for a random ρ′i ∈ JN . Because of
the QR assumption (the distributions of JN and QRN are computationally indistinguishable) the
view of the simulator is computationally indistinguishable from that of an honest verifier interacting
with a prover.

3.5 HVZK Proof for a Blum Integer

In this section we consider the language Lblum−powers = {N > 0 | N = paqb for primes p ≡ q ≡ 3
(mod 4)}. Note, similar to Section 3.4, that the more interesting language is the language of Blum
integers Lblum = Lsquare-free ∩ Lblum−powers.

In this section we obtain a two-round public-coin HVZK protocol for the promise problem
(Lyes = Lblum,Lno = Lblum−powers). We can obtain a protocol for Lblum (with a similar gap for the
case p | q − 1 as in Section 3.2) by combing the proofs for Lblum−powers and Lsquare-free. Remarks at
the beginning of Section 3.4 apply here, as well.

The protocol for Lblum−powers is very similar to the protocol for Lppp but instead of considering
square roots, we now consider 4th roots. Note that if N is a Blum integer then among the four
roots of ρi ∈ QRN , one and only one is a quadratic residue.

Protocol Pblum−powers
Same as protocol Pppp described in Section 3.4 but in step 3 the prover computes 4th roots

instead and in step 4 the verifier checks 4th roots.

1. Both the Prover and the Verifier let m = dκ · 32 · ln 2e.

2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.

3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗N such that σ4i mod N = ρi, choosing one
at random from among four possibilities. For other ρi, the prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a prime power
(see [Ber98, BLP07] and references therein). The Verifier accepts if the number of nonzero
responses is at least 3m/8, and for every nonzero σi, it holds that ρi = (σi)

4 mod N .

Theorem 3.7. Pblum−powers is a 2-message public-coin protocol with statistical completeness error
2−κ, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ, for the promise
problem (Lyes = Lblum,Lno = Lblum−powers).

Proof. Similar to the proof of Theorem 3.5, we get statistical completeness with error 2−κ. The
prover knowing the factorization of N can efficiently compute the 4th roots for N ∈ Lyes, and
completeness relies on receiving enough ρi’s ∈ QRN . Also we get the same statistical soundness
error 2−κ.

Finally, Pblum−powers achieves perfect honest-verifier zero-knowledge since −1 is always a Jacobi
symbol 1 non-square. Then we can construct a simulator that, after computing ρi by raising a
random σi to the fourth power, flips a coin and sends either (0,−ρi) or (σi, ρi).

12

4 Making our Protocols Noninteractive via Fiat-Shamir

We use the Fiat-Shamir paradigm [FS86] to convert each of the 2-message public-coin HVZK
interactive protocols presented above into a non-interactive zero-knowledge (NIZK) protocol. The
transformation is very simple, because the first message in every protocol we present always consists
of the verifier sending some challenges ρ1, . . . , ρm to the prover. The challenges are uniformly
distributed in some space with easy membership testing (such as ZN or Z∗N , for example).

Thus, to make our protocols noninteractive, Prover samples ρi by herself using the random
oracle. To make sure values ρi are in the correct space, such as ZN or Z∗N , the prover performs
rejection sampling for each ρi using a counter, trying multiple random-oracle outputs until obtaining
the first one that lands in the desired space. Thus, each ρi is obtained by computing the output
of the random oracle over the concatenation of (1) the protocol input — e.g., the RSA public key
(N, e); (2) a salt given as a system parameter; (3) the index i; and (4) the counter value. If the
result is in the correct space, the prover uses this ρi; if not, she increments the counter and tries
again.

Thus, the protocol input and the salt determine the set of ρi ∈ ZN . The verifier can therefore
compute ρi on his own, by following the same procedure as the prover, and subsequently perform
verification. Note that the verifier, just like the prover, will need to perform rejection sampling.

The noninteractive proof then is simply the message that the prover sends to the verifier in the
interactive protocol.

The security of this transformation is standard; we provide some formal details in Appendix B.

5 Specification, Implementation and Performance
for NIZK of Permutations over ZN

Specification. Here we provide a more precise specification the protocol of Section 3.3 made non-
interactive using the Fiat-Shamir paradigm as described in Section 4. The goal of this specification
is to make the protocol precise enough for implementation and compatibility. The full specification
is available in Appendix C. It assumes e is a fixed prime and thus sets e′ = e. It takes in α and
the salt as system parameters. The random oracle used to determinstically select the ρi values
is a “full-domain hash” [BR93] instantiated with the industry-standard MGF1 Mask Generation
Function as defined in [MKJR16, Sec. B.2.1]. We use the industry-standard I2OSP and OS2IP to
convert between octet strings and integers [MKJR16, Sec. 4.1] and the industry-standard RSASP
to perform an RSA secret key operations [MKJR16, Sec. 5.2.1], and RSAVP for RSA public-key
operations [MKJR16, Sec. 5.2.2].

Implementation. An open-source implementation of our specification in C#, based on the
bouncycastle cryptographic library [bou], is publicly available[cod]. We hope that our implemen-
tation will become a part of bouncycastle.

Integration with TumbleBit. Our implementation has already been integrated into the open-
source reference implementation of TumbleBit, which is currently being developed for production
use [Ntu, Str17]. TumbleBit [HAB+17] is a unidirectional Bitcoin payment hub that allows parties
to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the
Tumbler. The security of the TumbleBit protocol rests on the assumption that the Tumbler’s RSA
public key (N, e) defines a permutation over ZN . In the absence of this assumption, the Tumbler

13

can steal bitcoin from payers.2 Thus, in addition to publishing (N, e), a Tumbler publishes our
NIZK proof that (N, e) defines a permutation, which is verified, during a setup phase, by any payer
or payee who wants to participate in the protocol with this Tumbler. Integration with TumbleBit
was easy. No modification to the existing TumbleBit protocol or codebase were required; instead,
our NIZK was simply added to TumbleBit’s setup phase.

Parameters and performance for TumbleBit. When used with TumbleBit, our NIZK has
parameters κ = 128, the RSA key length is |N | = 2048, the public RSA exponent is e = e′ = 65537,
and the salt is the SHA256 hash of the Genesis block of the Bitcoin blockchain.

The performance of our NIZK largely depends on our choice of the parameter α. A shorter α
means that the verifier has to spend less time trying to divide N by primes less than α, but also
increases m1 and m2, the number of RSA values in the NIZK. The relationship between α and
m1,m2 is determined by equation (1). Specifically for the TumbleBit parameters, we show this
relationship in Figure 1. To evaluate the performance of our NIZK, we choose the smallest value
of α that corresponds a given pair of (m1,m2) values, and benchmark proving and verifying times
for our NIZK for the RSA key length |N | = 2048 bits in Table 1 on a single-core of an Intel Xeon
processor. We can see from the table that choosing α = 319567 (so that m1 = 7 and m2 = 9) gives
optimal performance, though performance for α = 65537 is roughly similar and the optimal choice
is likely implementation-dependent.

For the optimal choice of α, proving takes about 237 ms (a small fraction of the key generation
cost, which is 2022 ms) and verifying takes about 713 ms. For comparison, verification of our NIZK
is about 8 times faster than the folklore solution discussed in Section 1, which requires the verifier
to spend 5588 ms to perform the Rabin-Miller primality test on a 2048-bit RSA exponent, and also
slows down every public-key operation by a factor of about 60 because e is 2048 bits long (instead
of e = 65537, which is 17 bits long). We should note that even though our solution is much faster

2Specifically, in TumbleBit, the Tumbler provides the payee Bob with a value z called a “puzzle,” and a proof
that its solution will transfer some of Tumbler’s money to Bob. This solution is a value ε such that z = εe mod N .
The protocol crucially relies on uniqueness of ε, because the proof that the solution will unlock money applies to
only one of the solutions of z. When Alice wants to pay Bob, she learns the solution to the puzzle in exchange
for paying money to the Tumbler, and then gives that solution to Bob as payment. If RSA is not a permutation,
then a malicious Tumbler can provide the payee Bob with a puzzle z that has two valid solutions ε1 6= ε2, where
z = (ε1)e = (ε2)e mod N , and a proof that ε1 transfers money. Then, to steal money, the Tumbler gives payer Alice
the solution ε2 in exchange for her money, which does not permit Bob to obtain the Tumbler’s money and complete
the transaction.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

5

10

15

20

nu
m

be
r

of
 v

al
ue

s
se

nt
 (

m
1,

 m
2)

prime α

m

1
m

2

Figure 1: Values of m1 and m2 versus the choice of parameter α for our NIZK, when κ = 128 and
e = e′ = 65537.

14

Parameters Permutation Proof
α m1 m2 Prove Verify

41 24 24 632 2326
89 20 20 518 1925

191 17 17 443 1612
937 13 13 334 1216

1667 12 12 311 1127
3187 11 12 308 1042
3347 11 11 281 1025
7151 10 11 284 943
8009 10 10 256 948

19121 9 10 254 853
26981 9 9 233 854
65537 8 9 230 768

319567 7 9 237 713
2642257 6 9 234 956

50859013 5 9 230 6756

Table 1: Proving and verifying times for our C# implementation as observed on an Azure DS1 v2
virtual machine running Windows Server 2016 Datacenter (single-core 2.4 GHz Intel Xeon E5-2673
v3 Haswell processor, 3.5GiB RAM). Time is given in ms. Public exponent is e = e′ = 65537 and
security parameter is κ = 128.

than the folklore one, and adds only 12% to the prover’s normal RSA key generation cost, it is
still relatively expensive for the verifier: for comparison, the public key operation (encryption or
signature verification) with e = 65537 takes only about 1.4ms.

From Table 1 we also see that verifying is generally slower than proving (until α gets so big
that divisibility testing takes too long for the verifier). This follows because proving involves m1

modular exponentiations (using RSASP), which can be done separately modulo p and modulo q for
N = pq (with the exponent reduced modulo p−1 and q−1), and then combined using the Chinese
Remainder Theorem (CRT). Meanwhile, the verifier does not know p and q, and so cannot use
(CRT); moreover, the exponent used for modular exponentiations (using RSAVP) is slightly longer
than φ(n), but the verifier does not know φ(N) and so cannot reduce it. Thus, exponentiations
performed by the verifier are slower than those performed by the prover.

Acknowledgements

The authors thank Ethan Heilman, Alessandra Scafuro and Yehuda Lindell for useful discussions.
This research was supported, in part, by US NSF grants 1717067, 1350733, and 1422965.

References

[AP18] Benedikt Auerbach and Bertram Poettering. Hashing solutions instead of generating
problems: On the interactive certification of RSA moduli. In Michel Abdalla and Ri-
cardo Dahab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR International
Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil,

15

March 25-29, 2018, Proceedings, Part II, volume 10770 of Lecture Notes in Computer
Science, pages 403–430. Springer, 2018.

[Ber98] Daniel J. Bernstein. Detecting perfect powers in essentially linear time. Mathematics
of Computation, 67, July 1998.

[BFGN17] Fabrice Benhamouda, Houda Ferradi, Rémi Géraud, and David Naccache. Non-
interactive provably secure attestations for arbitrary RSA prime generation algo-
rithms. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, Com-
puter Security - ESORICS 2017 - 22nd European Symposium on Research in Com-
puter Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I, volume
10492 of Lecture Notes in Computer Science, pages 206–223. Springer, 2017. https:

//eprint.iacr.org/2017/640.

[BFL89] Joan Boyar, Katalin Friedl, and Carsten Lund. Practical zero-knowledge proofs: Giving
hints and using deficiencies. In Jean-Jacques Quisquater and Joos Vandewalle, editors,
Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory and Application
of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings,
volume 434 of Lecture Notes in Computer Science, pages 155–172. Springer, 1989.

[BLP07] Daniel J. Bernstein, Hendrik W. Lenstra, and Jonathan Pila. Detecting perfect powers
by factoring into coprimes. Mathematics of Computation, 76(257):385–388, January
2007.

[bou] bouncycastle c# api. https://www.bouncycastle.org/csharp/index.html.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptology, 9(3):149–166, 1996. https://

cseweb.ucsd.edu/~mihir/papers/cct.html.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In Jacques Stern, editor, Advances in Cryptol-
ogy - EUROCRYPT ’99, International Conference on the Theory and Application
of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer, 1999.
http://www.brics.dk/RS/98/29/BRICS-RS-98-29.pdf.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private infor-
mation retrieval with polylogarithmic communication. In Eurocrypt, volume 99, pages
402–414. Springer, 1999.

[cod] Tumblebit setup implementation. https://github.com/osagga/TumbleBitSetup.

[CPP07] Dario Catalano, David Pointcheval, and Thomas Pornin. Trapdoor hard-to-invert group
isomorphisms and their application to password-based authentication. J. Cryptology,
20(1):115–149, 2007. http://www.di.ens.fr/~pointche/Documents/Papers/2006_

joc.pdf.

16

https://eprint.iacr.org/2017/640
https://eprint.iacr.org/2017/640
https://www.bouncycastle.org/csharp/index.html
https://cseweb.ucsd.edu/~mihir/papers/cct.html
https://cseweb.ucsd.edu/~mihir/papers/cct.html
http://www.brics.dk/RS/98/29/BRICS-RS-98-29.pdf
https://github.com/osagga/TumbleBitSetup
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In Kwangjo Kim, editor, Public Key
Cryptography, 4th International Workshop on Practice and Theory in Public Key Cryp-
tography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proceedings, volume
1992 of Lecture Notes in Computer Science, pages 119–136. Springer, 2001.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the fiat-shamir transform. In Steven D. Galbraith and
Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, 13th International
Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings,
volume 7668 of Lecture Notes in Computer Science, pages 60–79. Springer, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR98] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive sta-
tistical zero-knowledge proof system for quasi-safe prime products. In Li Gong and
Michael K. Reiter, editors, CCS ’98, Proceedings of the 5th ACM Conference on Com-
puter and Communications Security, San Francisco, CA, USA, November 3-5, 1998.,
pages 67–72. ACM, 1998. http://eprint.iacr.org/1998/008.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon
Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. In
24th Annual Network and Distributed System Security Symposium, NDSS. The Internet
Society, 2017. https://eprint.iacr.org/2016/575.pdf.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA
key generation and threshold paillier in the two-party setting. In Orr Dunkelman,
editor, Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings,
volume 7178 of Lecture Notes in Computer Science, pages 313–331. Springer, 2012.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, March 1963.

[KKM12] Saqib A. Kakvi, Eike Kiltz, and Alexander May. Certifying RSA. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Security, Bei-
jing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Com-
puter Science, pages 404–414. Springer, 2012. http://www.cits.rub.de/imperia/md/
content/may/paper/main.pdf.

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 613–644. Springer,
2017.

17

http://eprint.iacr.org/1998/008
https://eprint.iacr.org/2016/575.pdf
http://www.cits.rub.de/imperia/md/content/may/paper/main.pdf
http://www.cits.rub.de/imperia/md/content/may/paper/main.pdf

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggre-
gate signatures from trapdoor permutations. In Eurocrypt, volume 3027, pages 74–90.
Springer, 2004.

[MKJR16] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. RFC 8017: PKCS #1: RSA
Cryptography Specifications Version 2.2. Internet Engineering Task Force (IETF), 2016.
https://tools.ietf.org/html/rfc8017.

[MPS00] Philip D. MacKenzie, Sarvar Patel, and Ram Swaminathan. Password-authenticated
key exchange based on RSA. In Tatsuaki Okamoto, editor, Advances in Cryptol-
ogy - ASIACRYPT 2000, 6th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings, volume 1976 of Lecture Notes in Computer Science, pages 599–613.
Springer, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

89.3089&rep=rep1&type=pdf.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, pages 120–130. IEEE Computer Society, 1999.

[Ntu] Tumblebit implementation in .net core. https://github.com/NTumbleBit/

NTumbleBit/.

[Sho09] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, second edition, 2009. http://www.shoup.net/ntb/ntb-v2.

pdf.

[Str17] Stratis Blockchain. Bitcoin privacy is a breeze: Tumblebit success-
fully integrated into breeze. https://stratisplatform.com/2017/08/10/

bitcoin-privacy-tumblebit-integrated-into-breeze/, August 2017.

[WCZ03] Duncan S. Wong, Agnes Hui Chan, and Feng Zhu. More efficient password authen-
ticated key exchange based on RSA. In Thomas Johansson and Subhamoy Maitra,
editors, Progress in Cryptology - INDOCRYPT 2003, 4th International Conference
on Cryptology in India, New Delhi, India, December 8-10, 2003, Proceedings, vol-
ume 2904 of Lecture Notes in Computer Science, pages 375–387. Springer, 2003.
http://www.ccs.neu.edu/home/ahchan/wsl/papers/pake_indocrypt03.pdf.

A Number-Theoretic Lemmas

We present number-theoretic lemmas that are useful for proving security of our protocols. Some of
them are standard and are presented here only to make the presentation self-contained.

Let ZN = {0, 1, ..., N−1} for any positive integer N and Z∗N be the multiplicative group modulo
N, i.e., the set of values in ZN that are relatively prime to N , or else {x ∈ ZN | gcd(x,N) = 1}. We
use notation p|N to denote that “p divides N”.

Euler’s phi or totient function (see, e.g., [Sho09, Section 2.6] for the relevant background) is
defined for all positive integers N as :

φ(N) = |Z∗N |.

18

https://tools.ietf.org/html/rfc8017
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.3089&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.3089&rep=rep1&type=pdf
https://github.com/NTumbleBit/NTumbleBit/
https://github.com/NTumbleBit/NTumbleBit/
http://www.shoup.net/ntb/ntb-v2.pdf
http://www.shoup.net/ntb/ntb-v2.pdf
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
http://www.ccs.neu.edu/home/ahchan/wsl/papers/pake_indocrypt03.pdf

If N = pq where p, q are two distinct primes it holds that φ(N) = (p− 1)(q− 1). More generally, if
the prime factorization of N is N = pα1

1 ×· · ·×p
αk
k , then φ(N) = (pα1−1

1 ×· · ·×pαk−1
k)× ((p1−1)×

· · · × (pk − 1)), with φ(1) = 1 [Sho09, Theorem 2.11]. The following theorem is standard [Sho09,
Theorem 2.13]:

Lemma A.1 (Euler’s theorem). Let N be a positive integer and a ∈ Z∗N . Then aφ(N) mod N = 1.

Given positive integers N and e, consider the map x 7→ xe mod N . We will first consider this
map as restricted to Z∗N . The following lemma is standard.

Lemma A.2. The map x 7→ xe mod N is a permutation of Z∗N if and only if gcd(e, φ(N)) = 1. If
the map is a permutation of Z∗N , then its inverse is the map x 7→ xd mod N for d = e−1 mod φ(N)
(which exists by [Sho09, Theorem 2.5] because gcd(e, φ(N)) = 1).

Proof. Suppose gcd(e, φ(N)) = 1. Then let d = e−1 mod φ(N). Thus, de = kφ(N) + 1 for some
integer k. For every x ∈ Z∗N , (xe)d mod N = xed mod N = (xφ(N))k · x mod N = 1k · x = x, where
the second-to-last equality follows from Lemma A.1.

Now suppose gcd(e, φ(N)) = g 6= 1. Let p be a prime divisor of g. Then p |φ(N), and
therefore Z∗N contains an element x 6= 1 such that xp mod N = 1 [Sho09, Theorem 6.42]. Therefore,
xe mod N = (xp)e/p mod N = 1e/p = 1, and thus the map is not a permutation.

A number N is square free if it can be written as N = p1p2 . . . pk for distinct prime numbers
pi. (N is not square free if it is divisible by p2, where p is some prime.)

Lemma A.3. For a positive integer N , if gcd(N,φ(N)) = 1, then N is square-free.

Proof. Indeed, suppose p2 |N for some prime p. Then p |φ(N), so gcd(N,φ(N)) ≥ p > 1. .

We now extend one direction of Lemma A.2 to all of ZN for the case of square-free N .

Lemma A.4. If for some positive integers N and f , N is square-free and gcd(f, φ(N)) = 1,
then the map x 7→ xf mod N is a permutation on ZN . Its inverse is computed as follows: for
g = f−1 mod φ(N) (which exists by [Sho09, Theorem 2.5]) and for all x ∈ ZN , xgf mod N = x.

Proof. Let N = p1p2 . . . pk for distinct prime numbers pi. By the Chinese Remainder Theorem
(CRT) [Sho09, Theorem 2.8], the ring ZN is isomorphic to the product of rings Zp1 × · · · × Zpk . It
therefore suffices to show that xef mod pi = x for each i. Indeed, fg = tφ(N)+1 for some integer t,
and therefore xfg = (xpi−1)s ·x for some integer s, and the result follows by Fermat’s little theorem
[Sho09, Theorem 2.14] when x mod pi 6= 0, and trivially when x mod pi = 0.

To extend the other direction of Lemma A.2 to all of ZN is a little more complicated.

Lemma A.5. If for some positive integers N and f , the map x 7→ xf mod N is a permutation on
ZN , then x 7→ xf mod N is a permutation on Z∗N (and thus gcd(f,N) = 1 by Lemma A.2) and
either:

• N is square-free, or

• f = 1

Proof. The first part of the lemma follows from the fact that when raised to the power f modulo
N , elements of Z∗N stay within Z∗N (because if gcd(x,N) = 1, then gcd(xf mod N,N) = 1). The
second part of the lemma is proven as follows. Suppose N is not square-free and f > 1. Then let
p2 |N for some prime p. The set {x ∈ ZN : x is divisible by p} contains N/p elements. The image
of this set is contained in {x ∈ ZN : x is divisible by p2}, which contains only N/p2 elements.
Thus, the map is not injective.

19

The following lemma shows that one can validate if an integer N is square-free by checking if
random values in ZN have Nth roots. This lemma generalizes the result of Gennaro, Micciancio,
and Rabin [GMR98, Section 3.1], which worked over Z∗N and thus required a gcd computation every
time a random value was selected.

Lemma A.6. Let N be a positive integer and p be a prime such that p2 divides N (i.e., N is not
square free). Then, the fraction of elements of Z∗N that have an N th root modulo N is at most 1/p,
and the fraction of elements of ZN that have an N th root modulo N is also at most 1/p.

Proof. Suppose x has an Nth root modulo N . Then there is a value r such that rN ≡ x (mod N).
Hence, N divides rN − x, which means p2 divides rN − x (since p2 divides N), and therefore r
is the Nth root of x modulo p2. Thus, in order to have an Nth root modulo N , x must have an
Nth root modulo p2. Since a uniformly random element x of ZN is also uniform modulo p2, and a
uniformly random element x of Z∗N is also uniform in Z∗p2 when reduced modulo p2, it suffices to
consider what fractions of Z∗p2 and of Zp2 have Nth roots.

By Lemma A.8 below, the number of elements of Z∗p2 that have Nth roots is at most φ(p2)/e′,

where e′ is the largest prime divisor of gcd(N,φ(p2)) = gcd(N, p(p−1)). Since p|N , we have e′ = p.
Thus, the number of elements of Z∗p2 that have Nth roots is at most φ(p2)/p = p− 1. This shows
the first half of the conclusion.

If x ∈ Zp2−Z∗p2 , then p|x. If x has an Nth root r modulo p2, then p2|(rN−x), hence p|(rN−x),

hence p|rN (because p|x and p|(rN − x)), hence p|r (because p is prime), hence p2|r2, hence p2|rN
(because N > 1), and hence p2|x (because p2|(rN − x) and p2|rN). We therefore have that x ∈ Zp2
and p2|x, which means that x = 0.

Thus, the total number of elements of Zp2 that have an Nth root is at most p−1 elements from
Z∗p2 and one element from Zp2 −Z∗p2 (namely, the element x = 0), for a total of at most p elements

from Zp2 . Thus, at most a p/|Zp2 | = 1/p fraction of elements of Zp2 have Nth roots. It follows
that at most a 1/p fraction of elements of ZN has Nth roots.

The following lemma shows that if we know that N is square free (which we can test using
Lemma A.6), then we can check whether raising to the power e is a permutation of ZN , by checking
if random values in ZN have eth roots.

Lemma A.7. Suppose N > 0 is a square-free integer so that N = p1p2 . . . pk for distinct prime
numbers pi, and e > 0 is an integer. If raising to the power e modulo N is not a permutation over
ZN , then the fraction of elements of ZN that have a root of degree e is at most

1

p
+

1

e′

(
1− 1

p

)
,

where e′ is the smallest prime divisor of e and p is the smallest prime divisor of N (these are
well-defined, because if N = 1 or e = 1, then raising to the eth power is a permutation over ZN).

Proof. By Chinese Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring ZN is isomorphic
to the product of rings Zp1 × · · · × Zpk . Note that if raising to the power e modulo N is not a
permutation over ZN , then there exist x 6≡ y (mod N) such that xe ≡ ye (mod N). Let i be
such that x 6≡ y (mod pi) (it must exist by CRT); then raising to the power e modulo pi is not a
permutation of Zpi , because xe ≡ ye (mod pi) (by CRT).

Since a uniformly random element x of ZN is uniform modulo pi, it suffices to consider what
fraction of Zpi has eth roots. By Lemma A.8 below, the number of elements of Z∗pi that have eth

20

roots is at most φ(Z∗pi)/e
′ = (pi − 1)/e′. The only element in Zpi − Z∗pi is the element 0. So, in

total, at most (pi − 1)/e′ + 1 elements of Zpi have eth roots. Since pi ≥ p,

(pi − 1)/e′ + 1

pi
=

1

e′
+

1

pi

(
1− 1

e′

)
≤ 1

e′
+

1

p

(
1− 1

e′

)
=

1

p
+

1

e′

(
1− 1

p

)
.

The proofs of two lemmas above relied on the lemma below.

Lemma A.8. For any positive integers N and e, if raising to the power e modulo N is not a
permutation over Z∗N , then gcd(e, φ(N)) > 1 and the number of elements of Z∗N that have a root of
degree e is at most φ(N)/e′, where e′ is the largest prime divisor of gcd(e, φ(N)).

Proof. Suppose there exist x and y in Z∗N such that xe ≡ ye (mod N) but x 6≡ y (mod N). Then
x/y 6≡ 1 (mod N) but (x/y)e ≡ 1 (mod N). Therefore, the multiplicative order of (x/y) is greater
than 1 and divides e [Sho09, Theorem 2.12] and φ(N) [Sho09, Theorem 2.13], which implies that
gcd(e, φ(N)) > 1. Let e′ be the largest prime divisor of gcd(e, φ(N)).

Because e′ is a prime that divides φ(N), Z∗N contains an element z of order e′ [Sho09, Theorem
6.42]. Therefore, the homomorphism that takes each element of Z∗N to the power e has kernel of
size at least e′ (because this kernel contains distinct values z, z2, . . . , ze

′
which are all eth roots

of 1 because e′ divides e). The image of this homomorphism contains exactly the elements that
have roots of degree e, and the size of this image is equal to φ(N) divided by the size of the kernel
[Sho09, Theorem 6.23], i.e., at most φ(N)/e′.

B Background on the Fiat-Shamir transform

Any efficient, interactive constant-round, public-coin, honest-verifier zero knowledge (HVZK) proof
system can be converted into a noninteractive ZK argument3 (NIZK) through the so called Fiat-
Shamir (FS) transformation [FS86]. Applying FS allows us to replace the verifier V by instead
calling a hash function on input the current transcript. The security of the resulting scheme holds
in the random oracle [BR93] (RO), where a hash function H is evaluated through calls to an oracle
that acts as a random function. The main idea in the security proof is that the simulator for HVZK
can “program” the RO (i.e., the simulator decides the answer to each specific query). This allows
the simulator to convert the entire transcript of a public-coin HVZK proof into a single message
that is indistinguishable from the message computed by an honest NIZK prover. We first recall the
definition of NIZKs in the RO and then state the Fiat-Shamir transformation theorem (definitions
slightly modified from [FKMV12]).

Let S be a simulator that operates in two modes: (hi, st) ← S(1, st, qi) which on input a
random oracle query qi it responds with hi (usually by lazy sampling), and (π, st) ← S(2, st, x)
which simulates simulates the actual proof. (Note that calls to S(1, · · ·) and S(2, · · ·) share the
common state st that is updated after each operation.)

Definition B.1 (NIZK). Let (S1,S2) be oracles such that S1(qi) returns the first output of (hi, st)←
S(1, st, qi) and S2(x,w) returns the first output of (π, st)← S(2, st, x) if (x,w) ∈ RL.

A protocol 〈PH ,VH〉 is said to be a NIZK proof for language L in the random oracle model, if
there exists a PPT simulator S such that for all PPT distinguishers D we have

viewDH(·),PH(·,·) ≈ viewDS1(·),SH2 (·,·).
3As opposed to a proof system where soundness needs to hold unconditionally, in an argument system it is sufficient

that soundness holds with respect to a computationally bounded adversary P∗.

21

We now state and prove the following theorem for the Fiat-Shamir transformation [FKMV12]:

Theorem B.2 (Fiat-Shamir NIZK). Let κ be a security parameter. Consider a non-trivial constant
round, public-coin, honest-verifier zero-knowledge (HVZK) interactive proof system 〈P,V〉 for a
language L. Let H() be a function with range equal to the space of the verifier’s coins. In the
random oracle model the proof system 〈PH ,VH〉, derived from 〈P,V〉 by applying the Fiat-Shamir
transform, is a noninteractive ZK argument.

Proof. (sketch) All we need to show is that there exists a simulator S as required in Definition B.1.
This can be done by invoking the HVZK simulator associated with the underlying interactive proof
system.

We design S to work as follows:

• To answer to a query q to S1, S(1, st, q) lazily samples a lookup table kept in state st. It checks
whether an answer for q was already defined. If this is the case, it returns the previously
assigned value; otherwise it returns a fresh random value h and stores the pair (q, h) in the
table.

• To answer to a query x to S2, S(2, st, x) calls the HVZK simulator of 〈P,V〉 on input x to
obtain a proof π. Then, it updates the look up table by storing x, π. If the look up table
happens to be already defined on this input, S returns failure and aborts.

Given that the protocol is non-trivial, the probability of failure in each of the queries to S2 is
negligible.

C Detailed Specification for the NIZK of Permutations over Zn
The following specification is for the NIZK of Permutations over Zn, as described in Section 5. This
specification assumes that the RSA exponent e is prime.

C.1 System Parameters

The system parameters are the RSA modulus length len, the security parameter κ (where by
default κ = 128), a small prime α (about 16 bits long or less), and a publicly-known octet string
salt.

C.2 Proving

System parameters:

1. salt (an octet string),

2. α (a prime number)

3. κ (the security parameter, use 128 by default)

4. e, the fixed prime RSA exponent

5. len, the RSA key length

22

Auxiliary Function: getRho, defined in Section C.4.

Input: Distinct equal-length primes p and q greater than α such that the RSA modulus is N = pq
is of length len, and e does not divide (p− 1)(q − 1).

Output: (N, e), {σ1, ..., σm2}.

Algorithm:

1. Set m1 and m2 as in equation 1, Section 3.3, with e′ = e.

2. Set N = pq.

3. Obtain the RSA secret key K as specified by [MKJR16, Sec. 3.2]:

K = (p, q, dNP , dNQ , qInv)

4. Compute the “weird RSA” secret key corresponding to public key (N, eN) (with exponent
eN and modulus N) in the [MKJR16, Sec. 3.2] as

K ′ = (p, q, dNP , dNQ , qInv)

where p, q, qInv are the same as in the normal RSA secret key K and

dNP = (eN)−1 mod (p− 1) dNP = (eN)−1 mod (q − 1) (2)

5. For integer i = 1 . . .m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, let
σi = RSASP1(K ′, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1]. In other words,
σ is the RSA decryption of ρi using the “weird RSA” secret key K ′.

(It follows that σi is (eN)th root of ρi.)

(c) Else let
σi = RSASP1(K, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1]. In other words,
σ is the RSA decryption of ρi using the regular RSA secret key K.

(It follows that σi is eth root of ρi.)

6. Output (N, e), {σ1, ..., σm2}.

23

C.3 Verifying.

System parameters:

1. salt (an octet string),

2. α (a prime number)

3. κ (the security parameter, use 128 by default)

4. e, the fixed prime RSA exponent

5. len, the RSA key length

Auxiliary Function: getRho, defined in Section C.4.

Input: RSA public key (N, e) and {σ1, ..., σm2}.

Output: VALID or INVALID

Algorithm:

1. Check that N is an integer and N ≥ 2len−1 and N < 2len. If not, output INVALID and
stop.

2. Check that e is prime. If not, output INVALID and stop.

3. Compute m1 and m2 per equation (1), Section 3.3, with e′ = e.

4. Check that there are exactly m2 values {σ1, ..., σm2} in the input. If not, output INVALID
and stop.

5. Generate the vector Primes(α−1), which includes all primes up to and including α−1. (This
can be efficiently implemented using the Sieve of Eratosthenes when α is small.)

For each p ∈ Primes(α− 1):

• Check that N is not divisible by p. If not, output INVALID and stop.

(Alternatively, let primorial be the product of all values in Primes(α−1). primorial should
be computed once and should be a system parameter. Check that gcd(primorial, N) = 1.)

6. For integer i = 1 . . .m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, check that
ρi = RSAVP1((N, eN), σi)

where RSAVP1 is the RSA verification primitive of [MKJR16, Sec. 5.2.2]. In other
words, check that ρi is the RSA encryption of σi using the “weird RSA” public key
(N, eN). If not, output INVALID and stop.

(Thus, check that ρi = σeNi mod N).

24

(c) Else check that
ρi = RSAVP1(PK , σi)

In other words, check that the ρi is the RSA encryption of σi using the RSA public key
(N, e). If not, output INVALID and stop.

(Thus, check that ρi = σei mod N).

7. Output VALID.

C.4 Auxiliary function: getRho

This function is for rejection sampling of a pseudorandom element ρi ∈ ZN . It is “deterministic,”
always producing the same output for a given input.

Input:

1. RSA public key (N, e).

2. salt (an octet string)

3. Index integer i.

4. Length of RSA modulus len

5. Value m2, with i ≤ m2.

Output: ρi

Algorithm:

1. Let
|m2| =

⌈
1
8(log2(m2 + 1))

⌉
be the length of m2 in octets. (Note: This is an octet length, not a bit length!)

2. Let j = 1.

3. While true:

(a) Let PK be the ASN.1 octet string encoding of the RSA public key (N, e) as specified in
[MKJR16, Appendix A].

(b) Let EI = I2OSP(i, |m2|) be the |m2|-octet long string encoding of the integer i. (The
I2OSP primitive is specified in [MKJR16, Sec. 4.2].)

(c) Let EJ = I2OSP(j, |j|) be the |j|-octet long string encoding of the integer j, where
|j| = d18 log2(j + 1)e.

(d) Let s = PK ||salt||EI||EJ be the concatenation of these octet strings.

(e) Let ER = MGF1-SHA256(s, len) where H1 is the MGF1 Mask Generation Function
based on the SHA-256 hash function as defined in [MKJR16, Sec. B.2.1], outputting
values that are len bits long.

(f) Let ρi = OS2IP(ER) be an integer.

(That is, convert ER to an len bit integer ρi using the OS2IP primitive specified in
[MKJR16, Sec. 4.1].)

25

(g) If ρi ≥ N , then let j = j + 1 and continue; Else, break.

(Note: This step tests if ρi ∈ ZN .)

4. Output integer ρi.

26

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	HVZK Proofs for Properties of N and e
	HVZK Proof for a Permutation over ZN*
	HVZK Proofs for Paillier and Square-Free N
	HVZK Proof for Permutation over Entire ZN
	HVZK Proof for a Product of Two Primes
	HVZK Proof for a Blum Integer

	Making our Protocols Noninteractive via Fiat-Shamir
	Specification, Implementation and Performancefor NIZK of Permutations over ZN
	Number-Theoretic Lemmas
	Background on the Fiat-Shamir transform
	Detailed Specification for the NIZK of Permutations over Zn
	System Parameters
	Proving
	Verifying.
	Auxiliary function: getRho

