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Abstract

Algebraic Manipulation Detection (AMD) codes [CDF+08] are keyless message
authentication codes that protect messages against additive tampering by the
adversary assuming that the adversary cannot “see" the codeword. For cer-
tain applications, it is unreasonable to assume that the adversary computes the
added offset without any knowledge of the codeword c. Recently, Ahmadi and
Safavi-Naini [AS13], and then Lin, Safavi-Naini, and Wang [LSW16] gave a con-
struction of leakage-resilient AMD codes where the adversary has some partial
information about the codeword before choosing added offset, and the scheme
is secure even conditioned on this partial information.

In this paper we show the bounds on the leakage rate ρ and the code rate κ
for leakage-resilient AMD codes. In particular we prove that 2ρ+κ < 1 and for
the weak case (security is averaged over a uniformly random message) ρ+κ < 1.
These bounds hold even if adversary is polynomial-time bounded, as long as we
allow leakage function to be arbitrary.

We present the constructions of AMD codes that (asymptotically) fulfill
above bounds for almost full range of parameters ρ and κ. This shows that
above bounds and constructions are in-fact optimal.

In the last section we show that if a leakage function is computationally
bounded (we use Ideal Cipher Model) then it is possible to break these bounds.
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1. Introduction

Algebraic Manipulation Detection (AMD) codes [CDF+08] are keyless mes-
sage authentication codes that protect messages against additive tampering by
the adversary assuming that the adversary cannot “see" the codeword. In AMD
codes, a message m ∈ {0, 1}k is encoded to a codeword C in {0, 1}n, and the
codeword is stored such that the adversary cannot get any information about
the codeword. The adversary is assumed to be able to add an arbitrary element
A to C such that C + A could potentially decode to a message m′ 6= m. In a
δ-secure AMD code, such a manipulation succeeds with probability δ, and with
probability 1 − δ, the decoder on input c + A, either outputs m or a special
symbol ⊥ indicating that the tampering (by the adversary) has been detected.
Another notion that has been considered in [CDF+08] is that of weakly secure
AMD codes (also called weak AMD codes), where the security guarantee is only
for a uniformly random message over the message space {0, 1}k, and the coding
scheme is deterministic.

As mentioned in [CDF+08], AMD codes find useful applications in linear
secret sharing schemes (e.g. Shamir’s secret sharing [Sha79]) and Fuzzy Extrac-
tors [DORS06]. In particular, AMD codes can be used to turn any linear secret
sharing scheme into a so called robust secret sharing scheme [TW89], which en-
sures that no unqualified subset of players can modify their shares and cause
the reconstruction of a string s′ which is different from the secret s. Similarly,
AMD codes can help turn fuzzy extractors into robust fuzzy extractors that
were first considered by Boyen et al. [Boy04, BDK+05]. We direct the reader
to [CDF+08] for a more detailed discussion of these applications.

For certain applications, it is unreasonable to assume that the adversary
computes the offset A without any knowledge of the codeword c. Recently, Ah-
madi and Safavi-Naini [AS13], and then Lin, Safavi-Naini, and Wang [LSW16]
gave a construction of so called ρ-Linear Leakage-Resilient AMD (ρ-LLR-AMD)
codes where the adversary has some partial information about the codeword c
before choosing A, and the scheme is secure even conditioned on this partial
information. In [AS13], the authors consider the notion of a coding scheme
from m ∈ {0, 1}k to c ∈ {0, 1}n where the encoding algorithm uses randomness
R ∈ {0, 1}σ, and the adversary computes A given partial information Z such
that the entropy of R conditioned on Z is at least (1 − ρ)σ. A similar notion
of weak ρ-LLR-AMD codes was defined and constructed where the security is
for a uniformly random message M , and the entropy of M conditioned on Z is
assumed to be at least (1− ρ)k.

In the subsequent work, Lin, Safavi-Naini, and Wang [LSW16] considered a
stronger notion of ρ-AMD codes, where Z carries information about the code-
word, and the entropy of the codeword C conditioned on Z is at least (1− ρ)n.
Similar to the original AMD codes defined in [CDF+08], the authors defined
weak and strong ρ-AMD codes as deterministic and randomized codes that
guarantee security for a uniformly distributed message and any message, re-
spectively. Since ρ-AMD codes are the main topic of our paper, we briefly
restate the main application of ρ-AMD codes as discussed in [LSW16].
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Robust ramp secret sharing scheme.. A (t, r)-ramp secret sharing scheme [BM84,
IY06] is a secret sharing scheme such that any t or fewer shares reveal nothing
about the secret s, and any r or more shares are enough to reconstruct the
secret. If the number of shares a is between r and t, then an a−t

r−t fraction of
the secret is leaked. By encoding a secret with a ρ-AMD code with error δ, and
then using a (t, r)-ramp secret sharing scheme, we can ensure that as long as
the number of shares are at most t + bρ(r − t)c, the probability of being able
to reconstruct the secret is upper bounded by δ. Notice that if we assume that
the secret is chosen uniformly at random, then even a weak ρ-AMD code will
be sufficient for this application.

For this application, or for that matter any other application of ρ-AMD
codes, we want the leakage fraction ρ to be as large as possible and for the
efficiency of the scheme, we additionally want the rate of the codeword κ := k

n
also to be as large as possible. In [LSW16], the authors give a construction of
strong ρ-AMD codes with error δ, where κ = d

d+2 , and ρ = 1
d+2 − ε, where

ε is a small constant that depends on δ, and d is a positive integer. In order
to maximise the leakage, we can set d = 1, which will imply that ρ ≈ 1

3 , and
the rate of the code is 1

3 . Also, it was shown in [LSW16] that for any strong
ρ-AMD code with any error δ, we must have that κ + ρ < 1. This leads us to
the following question.

Question 1. Does there exist a strong ρ-AMD code with leakage rate ρ ≥ 1
3?

Can we obtain a better tradeoff between κ and ρ?

In this paper, we answer both these questions in the affirmative. In Section 4,
we generalise the construction from [LSW16] to obtain a construction of a whole
family of ρ-AMD codes for a wider range of parameters. More precisely (see
Corollary 14 for details), we have constructions that are secure as long as 2ρ+κ <
1. Moreover, we show in Section 5 that there exists no construction of strong
ρ-AMD codes that is secure if 2ρ + κ ≥ 1. This means that we covered the
whole space of possible values of ρ and κ. (Surprisingly, in Section 6 we prove
that if we work in Ideal Cipher Model we can go even further: we can break
proven barrier and achieve ρ arbitrary close to 1.)

Similarly, as above, for weak ρ-AMD codes with error δ, Lin et al. gave
a construction with κ = d

d+1 , and ρ = 1
d+1 − ε, where ε is a small constant

that depends on δ, and d is a positive integer. Setting d = 1, we get ρ ≈ 1
2 ,

and κ = 1
2 . They, however, failed to obtain any nontrivial condition under

which there exist weak ρ-AMD codes. We can again ask a question similar to
Question 1 for weak ρ-AMD codes.

Question 2. Does there exist a weak ρ-AMD code with leakage rate ρ ≥ 1
2?

Can we obtain some nontrivial tradeoff between κ and ρ?

We answer the first question in the negative and the second in the affirmative
by showing in Section 5 that for any there exists no weak ρ-AMD code with
ρ+ κ ≥ 1, or ρ ≥ κ. In other words, for any secure weak ρ-AMD code, we must
have ρ+κ < 1, and ρ < κ. We also include a construction achieving parameters
similar to [LSW16] in Section 4.
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We would again like to remark that all our constructions and proofs in
Section 4 closely resemble those in [CDF+08, LSW16]. Our main contribution
is to show that these constructions are optimal and that we can cover the whole
space of feasible parameters.

2. Preliminaries

For an integerm ∈ N, we denote the set of integers {1, . . . ,m} by [m]. Unless
otherwise stated, F = Fq denotes a finite field of size q.

Themin-entropy of a random variableX is defined asH∞(X)
def
= − log(maxx Pr[X =

x]). We also define average (aka conditional) min-entropy of a random variable
X conditioned on another random variable Z as

H̃∞(X|Z) def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

where Ez←Z denotes the expected value over z ← Z.
We will need the following result.

Lemma 3. Let 0 < p < 1, and let E1, . . . , Et be pairwise independent events
such that Pr(Ei) = p for all i ∈ [t]. Then

Pr(∪ti=1Ei) ≥ t · p−
t2 · p2

2
.

Proof. Using Bonferroni inequality [Bon36], we have that

Pr(∪ti=1Ei) ≥
t∑
i=1

Pr(Ei)−
∑

i,j∈[t],i6=j

Pr(Ei ∩ Ej)

= t · p− t(t− 1)

2
p2

> t · p− t2 · p2

2
.

3. Definitions

We first define a general coding scheme.

Definition 4. A coding scheme is given by an encoding function Enc : Fk×Fσ 7→
Fn from k-length messages to n-length codewords1, and a decoding function

1The encoding function takes randomness of length σ that we make explicit in the definition
for convenience.
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Dec : Fn 7→ Fk ∪ {⊥} such that, for each m ∈ Fk, r ∈ Fσ, we have that
Pr(Dec(Enc(m, r)) = m) = 1.

Additionally, the coding scheme is called regular if Enc is a one-to-one func-
tion.

We now define AMD codes.

Definition 5. Let Enc : Fk × Fσ 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} be a coding
scheme. We say that (Enc, Dec) is a strong (ρ, δ)-AMD code if for any m ∈ Fk,
R uniform in Fσ,

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}] ≤ δ ,

where Z ∈ Z is a leakage variable such that H∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R))−
ρ · (n log q), and A : Z 7→ Fn is an arbitrary function chosen by the adversary.

If the adversary is only allowed time polynomial in n to compute A(Z), then
the underlying scheme is said to be a computationally secure strong (ρ, δ)-AMD
code.

If the security guarantee is only for a uniform message distribution, then we
call such an AMD code a weak AMD code. More formally,

Definition 6. Let Enc : Fk 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} be a coding scheme.2
We say that (Enc, Dec) is a weak (ρ, δ)-AMD code if for M uniform in Fk, we
have that

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}] ≤ δ ,

where Z ∈ Z is a leakage variable such that H∞(Enc(M)|Z) ≥ H∞(Enc(M))−
ρn log q, and A : Z 7→ Fn is an arbitrary function chosen by the adversary.

If the adversary is only allowed time polynomial in n to compute A(Z), then
the underlying scheme is said to be a computationally secure weak (ρ, δ)-AMD
code.

4. Constructing Leakage-resilient AMD codes

In the following, we show that given AMD codes with no leakage, we can
construct leakage-resilient AMD codes.

Lemma 7. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc :
Fk × Fσ 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} that is a strong (0, δ)-AMD code is also a
strong (ρ, qρnδ)-AMD code.

Proof. Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform R in
Fσ, and any m ∈ Fk, α ∈ Fn,

Pr(Dec(Enc(m,R) + α) /∈ {m,⊥}) ≤ δ .

2Weak AMD codes assume that the encoding scheme is deterministic.
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Define BAD(m,α) to be the set of all c in the support of Enc(m,R) such that
Dec(c+ α) /∈ {m,⊥}. From the equation above, we have that

|BAD(m,α)| ≤ δ · qσ . (8)

Now, consider a leakage variable Z such thatH∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R))−
ρn log q. Since (Enc,Dec) is a regular coding scheme, we have thatH∞(Enc(m,R)) =
H∞(R) = σ log q, and hence H∞(Enc(m,R)|Z) ≥ (σ − ρn) log q. Thus, using
the definition of conditional min-entropy, we have that∑

z∈Z
Pr(Z = z) ·max

c∈Fn
Pr(Enc(m,R) = c | Z = z) ≤ 1

qσ−ρn
. (9)

We now bound the probability of incorrect decoding when the adversary com-
putes the offset given Z.

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}]

=
∑
z∈Z

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥} | Z = z] · Pr[Z = z]

=
∑
z∈Z

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥} | Z = z] · Pr[Z = z]

=
∑
z∈Z

Pr[Enc(m,R) ∈ BAD(m,A(Z)) | Z = z] · Pr[Z = z]

≤
∑
z∈Z
|BAD(m,A(Z)|max

c∈Fn
Pr(Enc(m,R) = c | Z = z) · Pr(Z = z)

≤ δ · qσ · 1

qσ−ρn

= δ · qρn ,

where the last inequality uses the inequalities (8) and (9).

Similar to the above, we can construct weak AMD codes with leakage from
a weak AMD code without leakage. The proof of the following lemma is similar
to that of Lemma 7, but we include it here for completeness.

Lemma 10. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc :
Fk 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} that is a weak (0, δ)-AMD code is also a weak
(ρ, qρnδ)-AMD code.

Proof. Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform M in
Fk, and any α ∈ Fn,

Pr(Dec(Enc(M) + α) /∈ {M,⊥}) ≤ δ .

Define BAD(α) to be the set of all c in the support of Enc(M) such that Dec(c+
α) /∈ {M,⊥}. From the equation above, we have that

|BAD(α)| ≤ δ · qk . (11)
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Now, consider a leakage variable Z such that H∞(Enc(M)|Z) ≥ H∞(Enc(M))−
ρn log q. Since (Enc,Dec) is a regular coding scheme, we have thatH∞(Enc(M)) =
H∞(M) = k log q, and hence H∞(Enc(M)|Z) ≥ (k − ρn) log q. Thus, using the
definition of conditional min-entropy, we have that∑

z∈Z
Pr(Z = z) ·max

c∈Fn
Pr(Enc(M) = c | Z = z) ≤ 1

qk−ρn
. (12)

We now bound the probability of incorrect decoding when the adversary com-
putes the offset given Z.

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}]

=
∑
z∈Z

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥} | Z = z] · Pr[Z = z]

=
∑
z∈Z

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥} | Z = z] · Pr[Z = z]

=
∑
z∈Z

Pr[Enc(M) ∈ BAD(A(Z)) | Z = z] · Pr[Z = z]

≤
∑
z∈Z
|BAD(A(Z)|max

c∈Fn
Pr(Enc(M) = c | Z = z) · Pr(Z = z)

≤ δ · qk · 1

qk−ρn

= δ · qρn ,

where the last inequality uses the inequalities (11) and (12).

We now give a construction of an efficient coding scheme without any leakage.

Theorem 13. For any positive integers k < q − 2, σ, there exists an efficient
regular coding scheme Enc : Fk × Fσ 7→ Fk+2σ, Dec : Fk+2σ 7→ Fk ∪ {⊥} that is
a strong (0,

(
k+1
q

)σ
)-AMD code.

Proof. Let f : Fk × F 7→ F be defined as

∀m ∈ Fk, a ∈ F, f(m, a) := ak+2 +

k∑
i=1

mia
i ,

where m = (m1, . . . ,mk) such that mi ∈ F for i ∈ [k]. Then consider the coding
scheme is defined as

∀m ∈ Fk, x ∈ Fσ, Enc(m,x) := (m,x, f(m,x1), . . . , f(m,xσ)) ,

The decoding function Dec on input m′ ∈ Fk, x′ ∈ Fσ, y1, . . . , yσ ∈ F checks
whether yi = f(m′, x′i) for i ∈ [σ]. If there exists an i such that yi 6= f(m′, x′i),
then Dec(m′, x′, y1, . . . , yσ) = ⊥, else Dec(m′, x′, y1, . . . , yσ) = m′.

7



Clearly the coding scheme is regular. We now proceed to show that the
scheme is secure.

For any m ∈ Fk, α ∈ Fk, β ∈ Fσ, γ ∈ Fσ, and a uniform X ∈ Fσ we need to
bound

Pr(Dec(Enc(m,X) + (α, β, γ)) /∈ {m,⊥}) .
Notice that if α = 0, then the above probability is 0, since by definition, for
any m,β, γ, Dec(Enc(m,X) + (α, β, γ)) is either m or ⊥. Also, if α 6= 0, then
Dec(Enc(m,X) + (α, β, γ)) is either m + α 6= m, or ⊥. Thus, it is sufficient to
bound

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)
for any m ∈ Fk, α ∈ Fk \ {0}, β ∈ Fσ, γ ∈ Fσ, and a uniform X ∈ Fσ. Using
the independence of X1, . . . , Xσ, we have that

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)

=

σ∏
j=1

Pr

(
Xk+2
j +

k∑
i=1

miX
i
j + γj = (Xj + βj)

k+2 +

k∑
i=1

(mi + αi)(Xj + βj)
i

)

=

σ∏
j=1

Pr

(
Xk+2
j +

k∑
i=1

miX
i
j + γj − (Xj + βj)

k+2 −
k∑
i=1

(mi + αi)(Xj + βj)
i = 0

)

≤
(
k + 1

q

)σ
,

since

P (Xj) = Xk+2
j +

k∑
i=1

miX
i
j + γj − (Xj + βj)

k+2 −
k∑
i=1

(mi + αi)(Xj + βj)
i

is a non-zero polynomial in Xj of degree at most k+1. To see that the polyno-
mial is non-zero, note that if βj 6= 0, then the co-efficient of Xk+2

j in P (Xj) is
zero, and that of Xk+1

j is (k + 2)βj 6= 0. On the other hand, if βj = 0, then let
t be the largest index such that αt 6= 0. Note that one such index exists since
α 6= 0. Then, the coefficients of Xk+2

j , . . . , Xt+1
j in P (Xj) are 0, and that of Xt

is −αt 6= 0.
The desired result follows.

The following corollary immediately follows from Lemma 7 and Theorem 13.

Corollary 14. For any positive integers k < q − 2, σ, and 0 < ρ < 1
2 , there

exists an efficient regular coding scheme Enc : Fk×Fσ 7→ Fk+2σ, Dec : Fk+2σ 7→
Fk ∪ {⊥} that is a strong (ρ, qρ(k+2σ)−σ(k + 1)σ)-AMD code.

We remark that assuming q � k, as long as ρ < σ
k+2σ , or in other words,

2ρ+ κ < 1, the above construction is secure.
Now we will construct weak AMD codes without any leakage. Notice that

a construction with similar parameters was already shown in [LSW16]. We
include the construction here for completeness. In Section 5, we show that the
parameters obtained in this construction are optimal.
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Theorem 15. Let k be a positive integer, and let the characteristic of F be
greater than 2. Then there exists an efficient regular coding scheme Enc : Fk 7→
Fk+1, Dec : Fk+1 7→ Fk ∪ {⊥} that is a weak (0, 1q )-AMD code.

Proof. Let g : Fk 7→ F be defined as

∀m ∈ Fk, g(m) :=

k∑
j=1

m2
j .

where m = (m1, . . . ,mk) such that mj ∈ F for j ∈ [k]. Then consider the
coding scheme is defined as

∀m ∈ Fk, Enc(m) := (m, g(m)) ,

The decoding function Dec on input m′ ∈ Fk, y ∈ F checks whether y = g(m′).
If y 6= gi(m

′), then Dec(m′, y) = ⊥, else Dec(m′, y) = m′.
For any α ∈ Fk, β ∈ F, and a uniform M ∈ Fk we need to bound

Pr(Dec(Enc(M) + (α, β)) /∈ {M,⊥}) .

Notice that if α = 0, then the above probability is 0, since by definition, for any
β, Dec(Enc(M) + (α, β)) is either M or ⊥. Also, if α 6= 0, then Dec(Enc(M) +
(α, β)) is either M + α 6=M , or ⊥. Thus, it is sufficient to bound

p = Pr(Dec(Enc(M) + (α, β)) 6= ⊥)

for any α ∈ Fk \ {0}, β ∈ F, and a uniform M ∈ Fk. Without loss of generality,
let αi 6= 0. Then,

p = Pr

 k∑
j=1

(
(Mj + αj)

2 −M2
j

)
= β


= Pr

 k∑
j=1

(
2αjMj + α2

j

)
= β


= Pr(2αiMi = A) ,

where A depends onM1, . . . ,Mi−1,Mi+1, . . . ,Mk, α1, . . . , αk, β, and is indepen-
dent ofMi. Thus, using the independence ofMi fromM1, . . . ,Mi−1,Mi+1, . . . ,Mk,
we see that p = 1

q .

The following corollary immediately follows from Lemma 10 and Theorem 15.

Corollary 16. For any positive integers k, and 0 < ρ < 1
k+1 , there exists an

efficient regular coding scheme Enc : Fk 7→ Fk+1, Dec : Fk+1 7→ Fk ∪ {⊥} that is
a weak (ρ, qρ(k+1)−1)-AMD code.

Thus, as long as ρ < 1
k+1 , or in other words, ρ+κ < 1, and ρ < κ, the above

construction is secure.
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5. Optimal Bounds on Leakage and Code Rate

In this section we show that the constructions in Section 4 are asymptotically
optimal. In fact, even if we allow that adversary is polynomial-time bounded
(as long as the leakage is arbitrary), there still does not exist a construction of
leakage resilient AMD codes that allow a better tradeoff between the rate of the
code and the allowed leakage.

The following corollary is immediate from Lemma 3.

Corollary 17. Let FN be a finite field, and let A,B be uniform and independent
in FN . Let y1, . . . , yt be some fixed distinct elements of FN . Also, let S be a
subset of FN . Then the probability that there exists i ∈ [t] such that Ayi+B ∈ S
is at least

t · |S|
N
− t2 · |S|2

2N2
.

Proof. For all i ∈ [t], let Ei be the event that Ayi+B ∈ S. It is easy to see that
E1, . . . , Et are pairwise independent. To see this, note that for any a, b ∈ FN ,
and any i, j ∈ [t] such that i 6= j, we have that

Pr(Ayi +B = a,Ayj +B = b) = Pr

(
A =

b− a
yj − yi

)
Pr

(
B =

byi − ayj
yi − yj

)
=

1

N2

= Pr(Ayi +B = a) · Pr(Ayj +B = b) .

The result then follows from Lemma 3.

We are now ready to prove the optimality of our leakage-resilient AMD codes.

Theorem 18. For any ρ ∈ (0, 1), there does not exist a computationally secure
strong (ρ, 3

16 )-AMD code Enc : {0, 1}k × {0, 1}σ 7→ {0, 1}n, Dec : {0, 1}n 7→
{0, 1}k ∪ {⊥} with 2ρ+ k

n ≥ 1.

Proof. Let R be uniform in {0, 1}σ. Also, let t = 2(n−k)/2. We divide the proof
in two cases.

CASE 1: There exists a message m such that the support of Enc(m,R) has
cardinality at most t. Let C(m) be the support of Enc(m,R). We define
the set of good codewords G ⊆ C(m) such that

G := {c ∈ C(m) : Pr(Enc(m,R) = c) ≥ 1

2t
.

The probability that Enc(m,R) /∈ G is less than 1
2t · t = 1

2 . Thus, the
probability that C = Enc(m,R) ∈ G is greater than 1

2 .

Now, we interpret the domain of the randomness of the Enc function,
i.e., {0, 1}σ as a finite field of size 2σ, and let A,B be uniformly random
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variables in {0, 1}σ chosen by the adversary. Also, let y1, . . . , yt be fixed
and distinct elements of {0, 1}σ.
We define the random variable Z to be the index i ∈ [t] such that Enc(m,Ayi+
B) = Enc(m,R). If no such i exists, then Z is chosen to be an arbitrary in-
dex in [t]. Furthermore, we fix a codeword c∗ such that Dec(c∗) /∈ {m,⊥}.
Then the function A(Z) chosen by the adversary is defined as

A(Z) = −Enc(m,AyZ +B) + c∗ .

Notice that Dec(Enc(m,R) +A(Z)) = Dec(c∗) if Enc(m,R) ∈ G and there
exists an i ∈ [t] such that Enc(m,Ayi + B) = Enc(m,R). Conditioned
on the event that Enc(m,R) ∈ G (which happens with probability greater
than 1/2), the number of r ∈ {0, 1}σ such that Enc(m, r) = Enc(m,R) is
at least 2σ

2t . Thus, using Corollary 17, the probability that there exists an
∈ [t] such that Enc(m,Ayi +B) = Enc(m,R) is at least

t

2t
− t2

2 · 4t2
= 3/8 .

Thus, Dec(Enc(m,R) + A(Z)) = Dec(c∗) /∈ {m,⊥} with probability 3/16.

CASE 2: For every message m′, the support of Enc(m′, R) has cardinality
greater than t. We fix a message m ∈ {0, 1}k, and the codeword C =
Enc(m,R).

Now, we interpret the code space, i.e., {0, 1}n as a finite field of size 2n, and
let A,B be uniformly random variables in {0, 1}n chosen by the adversary.
Also, let y1, . . . , yt be fixed and distinct elements of {0, 1}n. We define the
random variable Z to be the index i ∈ [t] such that Dec(C + Ayi + B) /∈
{m,⊥}. If no such i exists, then Z is chosen to be an arbitrary index in
[t]. The function A(Z) chosen by the adversary is defined as AyZ +B.

We now compute the probability that Dec(C + A(Z)) /∈ {m,⊥}. The
number of strings x ∈ {0, 1}n such that Dec(C + x) /∈ {m,⊥} is greater
than (2k − 1)t since by assumption, for every message m′, the support of
Enc(m′, R) has cardinality greater than t. Thus, using Corollary 17, the
probability that there exists an index i ∈ [t] such that Dec(C+Ayi+B) /∈
{m,⊥} is at least

t2(2k − 1)

2n
− t4(2k − 1)2

2 · 22n
=

1

2
− 1

22k+1
≥ 3

8
,

for k ≥ 1.

Next, we show that there is no leakage-resilient (even computationally se-
cure) weak AMD code from k-bit messages to n-bit codewords with leakage rate
ρ such that ρ+ k

n ≥ 1.
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Theorem 19. For any ρ ∈ (0, 1), there does not exist a computationally secure
weak (ρ, 38 )-AMD code Enc : {0, 1}k 7→ {0, 1}n, Dec : {0, 1}n 7→ {0, 1}k ∪ {⊥}
with ρ+ k

n ≥ 1 or ρ ≥ k
n .

Proof. Let M be chosen uniformly at random in {0, 1}k, and let C = Enc(M)
be fixed. If ρ ≥ k

n , then let Z be Dec(C), and let A(Z) be −Enc(Z) + Enc(m′)
for some m′ ∈ {0, 1}k \{M}. Then, it is easy to see that Dec(C+A(Z)) = m′ /∈
{M,⊥} with probability 1. This shows that ρ < k

n .
Let t = 2n−k. We interpret the code space, i.e., {0, 1}n as a finite field

of size 2n, and let A,B be uniformly random variables in {0, 1}n chosen by
the adversary. Also, let y1, . . . , yt be fixed and distinct elements of {0, 1}n. We
define the random variable Z to be the index i ∈ [t] such that Dec(C+Ayi+B) /∈
{M,⊥}. If no such i exists, then Z is chosen to be an arbitrary index in [t].
The function A(Z) chosen by the adversary is defined as AyZ +B.

We now compute the probability that Dec(C+A(Z)) /∈ {M,⊥}. The number
of strings x ∈ {0, 1}n such that Dec(C+x) /∈ {m,⊥} is 2k−1, one corresponding
to each message in {0, 1}k \{M}. Thus, using Corollary 17, the probability that
there exists an index i ∈ [t] such that Dec(C +Ayi +B) /∈ {M,⊥} is at least

t(2k − 1)

2n
− t2(2k − 1)2

2 · 22n
=

1

2
− 1

22k+1
≥ 3

8
,

for k ≥ 1.

6. Breaking the ρ < 1
2
barrier for AMD codes in the Ideal Cipher

Model

In Section 5 we state an inequality 2ρ+ k
n ≥ 1 that must hold for all strong

(ρ, 3/16)-AMD codes as introduced in Definition 5. The definition assumes
that the leakage variable Z is arbitrary with the only constraint being that the
entropy of the codeword conditioned on the knowledge of Z is 1− ρ fraction of
the original entropy. However, as we will see in this section, our result does not
necessarily hold if we impose further conditions on the leakage variable Z.

We will work in the Ideal Cipher Model (abbr. ICM), which is equivalent
to the Random Oracle Model, see [CHK+16]). As a reminder: ICM is a model
with a public oracle (accessible fully to all parties) that gives access to a family
{fi}i∈I of random (and independent) permutations. Any party may ask for
fi(u) and for f−1i (u) for any chosen i and u. For our application we can even
simplify the model and assume that we have only one random permutation f
with access to both forward and inverse queries to the oracle for f .

We will consider the following simple encoding: Encbr(m, r) = (m, f(m, r)),
where m ∈ Fk, f : Fk × Fσ 7→ F2k+σ is the oracle permutation from ICM
described above and r ∈ Fσ is some (potentially huge in comparison to m)
randomness. Obviously the function Encbr is efficient and also there exists
efficient decoding function that may efficiently (using f−1 oracle) check if the
codeword is correct.
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Now we are ready for introducing the theorem about an interesting prop-
erty of Encbr. Please note that this time we assume something about Z from
Definiton 5. More specifically: We assume that Z is computed by some Turing
Machine (called leakage oracle) that is bounded by the number of queries to the
ICM oracle.

Theorem 20. The above Encbr is a strong (ρ, q−k + t/qσ−ρn))-AMD code in
the Ideal Cipher Model if the number of queries to ICM oracle (made together
by both the adversary and the leakage oracle) is bounded by t.

Proof. Let us assume that the adversary knows original m and let us denote
by m′ the new value of the message in the modified codeword. Also let us
denote x = f(m, r). Now the goal of the adversary is to construct e such that
f−1(x+ e) = (m′, r′) for some r′.

During the execution, the adversary and the leakage oracle learned at most
t values y1, . . . , yt such that f−1(yj) = (m′, r′) for some r′. This means that
if (x + e) is not equal to any of such yj for j ∈ [t], then the result is simply
uniform at random so the probability of success is exactly q−k.

So, the only hope to make the probability of winning greater is to pick e such
that x+ e = yj for some 1 ≤ j ≤ t. However since H∞(x|Z) ≥ σ log q− ρn log q
then this happens with probability less or equal to t

2σ log q−ρn log q = t
qσ−ρn .

These two facts about two cases above together imply the statement.

Thus, this construction gives an AMD code in the Ideal Cipher Model with
ρ ≈ σ

2k+σ , and κ = k
2k+σ . In this case, we can achieve leakage arbitrarily close

to 1 by having k � σ.
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