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Abstract. In this work, we introduce the locality hierarchy for multiparty (multi-round) interaction,
and for the first time a complete definition of multi-round multiparty no-signalling distributions and
strategies. Within this framework, we define the locality of a protocol which involves the provers,
verifiers, simulators and distinguishers. We show that the existing protocol [1] for NEXP and a new
zero-knowledge variant are sound in a local sense, and are zero-knowledge in a sense that is even stronger
than usually understood. Finally, we present similar constructions for entangled and no-signalling prover
sets for NEXP and EXP based on [2] and [3] using new multi-prover commitment schemes.

1 Introduction

The idea behind multi-prover interactive proofs (MIPs) should have been simple: a weak verifier interrogates
powerful but isolated provers in order to ascertain something outside of its computational powers. The
“multi-prover” part of the idea is that the verifier may check the consistency of a prover’s answers against
another prover, thereby overcoming a fundamental limitation of the verifier’s computational weakness in the
single-prover model.

The simplicity is lost when we think clearly on what it means for the provers to be “isolated”. This is
because we would like to prove statements of the form, “If the provers have cheated, then they had talked.”
This is the basis for soundness in protocols such as [4], [1] and [5]. However, it has been subsequently
discovered that the provers can cheat while technically not talking to each other; that is, the act of breaking
some of these protocols does not reduce to signalling. This problem is compounded by the fact that the
verifier may, by design or not, perform a no-signalling task for the provers; worse yet, it may even directly
courier messages between them. Therefore, not only can we not ignore the locality of the provers, we also
cannot ignore that of the verifier. Analyses of existing multi-prover protocols do not account for any of these
problems.

Furthermore, in the time since [4], there have been several works which attempted to augment the multi-
prover model by giving the provers non-locality. For instance, [2] looked at entangled provers, while [3]
showed that provers with arbitrary no-signalling powers can be relied on to recognize languages up to EXP.
These claims, in addition to those made in [4], [1] and [5] must now be interpreted carefully, as they never
stated explicitly the locality of both the provers and the verifiers.

1.1 Our Contribution

In this paper, we define the notion of “locality hierarchy” in an information-theoretical sense, and also the
local, entangled and no-signalling classes within that hierarchy. The definition for “no-signalling” is a direct
generalization of single-round no-signalling distributions; in effect, we now have a working definition of multi-
round, multiparty non-local distributions. We define the notion of “zero-knowledge locality” for MIPs, and
in doing so we generalize the notion of a simulator in the context of non-local interaction. We combine these

two ideas to give a proof that NEXP = ZK 6←
6→
MIPY, a local ZKMIP for NEXP which can be simulated

if the simulators are given at least no-signalling powers. This is actually the very first complete proof of
NEXP = ZKMIP that explicitly considers the role of the Verifier as an extension of the Prover’s locality.
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2 Preliminaries

The theory of multi-prover interactive proofs (MIPs) originated from the work of Ben-Or, Goldwasser,
Kilian and Wigderson [4]. We denote the class of languages with such interactive proofs by MIP (and its
zero-knowledge counterpart ZKMIP). In that paper and subsequent work of Babai, Fortnow and Lund [1],
it was claimed that ZKMIP = MIP = NEXP.

The proof of security in [4] and many subsequent MIPs reduces the breaking of soundness to signalling.
However, in the last decade, two major problems with MIPs/ZKMIPs have emerged. The first is that the
provers do not actually need to signal in order to break some MIPs, as demonstrated in the work of Cleve,
Høyer, Toner and Watrous [6]; they can perform no-signalling tasks which do not allow communication (for
example, using shared entanglement). That is, there is a fundamental and yet subtle difference between what
is local and what is no-signalling. The second by Crépeau, Salvail, Simard and Tapp [7] is that while the
provers are unable to signal between themselves, the verifier could inadvertently perform a non-local task for
them; in the extreme case, the verifier may plainly signal for the provers. This can happen while the provers
are perfectly isolated and local.

The ZKMIPs as found in [4] and [8] require provers to authenticate a question before the verifier can ask
that question to another prover. The provers must also show that the authentication is not an attempt at
signalling. This means that a relativistic guarantee of no-signalling (no faster-than-light communication) is
insufficient to securely implement these protocols. This is another indication that existing ZKMIPs contain
a certain ambiguity about their locality.

For an explicit example of how such ambiguity regarding locality can lead to catastrophic protocol failure,
see [9].

The role that the verifier must play in these MIPs was studied in [7]. It was defined and shown that a
verifier must be isolating, so that it will never (inadvertently or not) perform a non-local task (no-signalling
or signalling). We have shown in [9] that many existing MIPs do not satisfy isolation, even in a weak sense.

More recently, the model of multi-prover interactive proofs was extended to allow entangled provers
and the class of languages accepted under this new setting is called MIP? [10]. It was recently shown
that NEXP ⊆ MIP? [2] but we do not know whether equality holds. Similarly, the model of multi-prover
interactive proofs was extended to allow no-signalling provers and the class of languages accepted under this
new setting is called MIPns [10]. We now know that MIPns = EXP [3]. We use some of these results to
illustrate our explanation.

2.1 Terminology, Definitions and Previous Work

The terminology we are about to define originates mostly from physics. The acclaimed work from John
Bell [11] in the 1960s can be summarized as “It seems that quantum entanglement allows for non-local yet
no-signalling distributions”. However, it turns out that quantum physics does not allow all such no-signalling
distributions. For instance, the CHSH game [12] cannot be achieved perfectly from entanglement alone. The
best possible strategy using entanglement can win the game cos(π/8)2 ≈ 85% of the time, whereas any local
strategy can only succeed up to 75% of the time [6]. It is also known that any strategy winning the CHSH
game 91% of the time or more can be turned into another strategy winning essentially 100% of the time [13].
In this case, we can see the correspondence between game-winning probabilities and locality clearly: ≤ 75%,
≈ 85%, and ≥ 91%.

The terms “communicating” and “signalling” are used interchangeably throughout this work and should
have the obvious meaning of information transfer between two or several parties. Signalling provers is essen-
tially the same as a single prover because we put no restriction whatsoever on their communication (potential
interesting sub-cases arise when we restrict the amount of communication they can actually use, or allow
only one of them to signal; we do not address them here). In the context of multiple parties, we consider
signalling from subsets of participants to subsets of participants to be, in fact, signalling, even if it does not
occur between individual participants.

As soon as we prohibit communication, we need to define what “no-signalling” actually means. The
initial intuition [11, 4] was that “non-signalling” = “locality”, meaning that the provers are allowed to share
arbitrary amount of randomness before being restricted to computations involving only this local randomness.
However, it was later understood that certain classes of probability distributions cannot be shared in such a
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local fashion, such as those which arise from entanglement. The term no-signalling was later coined to define
“everything but signalling”. Of course this includes locality, but also strictly more. Typical examples are the
CHSH Game (on inputs a, b output uniform x, y s. t. x ⊕ y = a × b) and the Magic Square Game [6]. No-
signalling distributions were studied by Khalfin and Tsirelson [14], and Rastall [15]. Popescu and Rohrlich
discussed them in the context of non-local games in [16]. MIPs which are secure against no-signalling provers
can be found in [17–23] but almost entirely in the single-round model (except for Fehr and Fillinger [24]).

We now define a few interesting sub-cases‡ and consider MIPs and ZKMIPs in these scenarios.

2.2 Local

Definition (LOCAL (Y)): Let M1, ...,Mk be k Turing machines. All machines have a read-only input tape,
a work tape and a random tape. In addition, M1, ...,Mk share an infinite read-only random tape. Every
Mi has one write-only communication tape on which it writes messages for another machine Wi. Every
Mi has one read-only communication tape on which it reads messages from another machine Wi. We call
(M1, ...,Mk) a local k-party interactive TM.

Fig. 2.2.1. locality hierarchy.

Definition (MIPY): Let (P1, ..., Pk) be a local k-party interactive TM which is computationally unbounded
and (V1, ..., Vk) be another local k-party interactive TM which is probabilistic polynomial time bounded. Each
Pi can only exchange messages with the corresponding Vi and vice versa. A special party V0 has read-only
access to the k work tapes of V1, ..., Vk as well as a read-only input tape, a work tape and a random tape.
V0 has two special terminal states accept and reject. The outcome of a computation involving V0 is defined
as its final state.

We call (P1, ..., Pk, V0, V1, ..., Vk) a local k-prover interactive protocol. A local multi-prover interactive
proof for a language L is a local k-prover interactive protocol (P1, ..., Pk, V0, V1, ..., Vk) satisfying the follow-
ing extra conditions:

(Completeness) ∀x ∈ L,Pr[(P1, ..., Pk, V0, V1, ..., Vk)(x) = accept] > 2
3 ,

(Soundness) ∀Y(P ′1, ..., P
′
k),∀x 6∈ L,Pr[(P ′1, ..., P

′
k, V0, V1, ..., Vk)(x) = accept] < 1

3 .

‡ It may seem that the only models which make sense are “local” and “entangled” because they are motivated by
physical models of reality. Nevertheless, the no-signalling model turns out to be useful under certain circumstances
as explained in [3] section 1.2. Moreover, soundness in relativistic cryptography should be proven in the no-signalling
multi-prover model if no-signalling is the sole assumption we want to make.
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Fig. 2.2.2. Interrogation phase (top) followed by decision phase (bottom).

The requirement that (V1, ..., Vk) be local implies that (P1, ..., Pk) cannot go beyond its own locality
via V . Each pair of parties 〈Pi, Vi〉 is as local as Pi by itself (see Fig. 2.2.2). The reader may choose that
restricting (V1, ..., Vk) to be local is just a proof technique to simplify soundness arguments, but we believe
that this restriction should be a fundamental part of the definition of multi-prover interaction. Without it,
the provers are not necessarily local. Fortunately, most MIPs found in the literature are actually local MIPs:
it is simply a matter of “splitting” the honest verifier V as local verifiers (V0, V1, ..., Vk) (most of the time
simply (V0, V1, V2)). The only non-local part is actually V0, but it cannot influence the other verifiers since
it only reads and cannot communicate.

2.3 Entangled

Definition (Entangled (|↑↓〉)): Let M1, ...,Mk be k Turing machines. All machines have a read-only input
tape, a work tape and a random tape. In addition, Mi may access a special read-only quantum tape where
(entangled) quits are stored with the following properties: each Mi controls the location of its read-head on
its own tape and in any location, Mi may measure the qubit to which its head is pointing in one of a small
number of possible basis. As a result of this measurement the observed classical bit is stored in the same
location and may be read classically from this point on. An initial quantum entangled state |Ψ〉 is arbitrarily
split to the quantum tapes of M1, ...,Mk

? ? ?. Every Mi has one write-only communication tape on which it
writes messages for another machine Wi. Every Mi has one read-only communication tape on which it reads
messages from another machine Wi. We call (M1, ...,Mk) a local k-party interactive TM.

Definition (MIP|↑↓〉): Let (P1, ..., Pk) be an Entangled k-party interactive TM which is computationally
unbounded and (V1, ..., Vk) be another Entangled k-party interactive TM which is probabilistic polynomial
time bounded. Each Pi can only exchange messages with the corresponding Vi and vice versa. A special
party V0 has read-only access to the k work tapes of V1, ..., Vk as well as a read-only input tape, a work tape
and a random tape. V0 has two special terminal states accept and reject. The outcome of a computation
involving V0 is defined as its final state.

We call (P1, ..., Pk, V0, V1, ..., Vk) an Entangled k-prover interactive protocol. An Entangled multi-prover
interactive proof for a language L is an Entangled k-prover interactive protocol (P1, ..., Pk, V0, V1, ..., Vk) sat-
isfying the following extra conditions:

? ? ? according to a certain literature such a model is equivalent to the circuit model of quantum computers. We leave
out all further details.
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P1 V1 V2 P2

Fig. 2.3.1. Interrogation phase.

(Completeness)∀x ∈ L,∃ |ΨP 〉 , |ΨV 〉 , Pr(P1, ..., Pk, |ΨP 〉 , V0, V1, ..., Vk, |ΨV 〉)(x) = accept > 2
3 ,

(Soundness)∀|↑↓〉(P ′1, ..., P ′k),∀ |ΨP 〉 ,∀x 6∈ L,∃ |ΨV 〉 ,
Pr(P ′1, ..., P

′
k, |ΨP 〉 , V0, V1, ..., Vk, |ΨV 〉)(x) = accept < 1

3 .

2.4 No-Signalling Multi-Party Multi-Round Distributions

In order to study MIPs in the no-signalling setting we must first agree on a definition of no-signalling multi-
party multi-round distributions. Let P1, ..., Pk be k parties, let xij be the (IID) input of party i ≤ n in round

j ≤ k, and yij be the related output. Let P = [n] = {1, ..., n} be the parties’ indices and R = [k] = {1, ..., k}
be the rounds’ indices.

Definition A multiparty multi-round distribution PrY |X
(
yPR

∣∣xPR )
is no-signalling if it satisfies the causal

structure of a multi-round protocol and if every possible multiparty one-round sub-distribution is itself no-
signalling according to the generally agreed definition. More technically, PrY |X

(
yPR

∣∣xPR )
must satisfy the

following three sets of conditions:

Causality Conditions (C): Answers from party i ∈ I cannot depend on questions he does not know yet.

(C) ∀I ⊆ P,∀j1, ..., jn ≤ k,∀xPR, x̂PR, s.t. xI[jI ] = x̂I[jI ], x
I
R = x̂IR, PrY |X

(
yIjI

∣∣xPR )
= PrY |X

(
yIjI

∣∣x̂PR )
Note: causality does not forbid answers to depend on questions of other people; (NS) and (CNS) will

prevent that.

NS Conditions (NS): If all the questions to party i ∈ I were given together the resulting multiparty
one-round distribution would be no-signalling.

(NS) ∀I ⊆ P,∀xPR, x̂PR, s.t. xIR = x̂IR, PrY |X
(
yIR

∣∣xPR )
= PrY |X

(
yIR

∣∣x̂PR )
Causal NS Conditions (CNS): If each party i ∈ I is about to answer Y iji to query xiji then Y iji should not

depend on any other xi
′

ji′
. In other words, given xi[ji], y

i
[ji−1], party i replies Y iji independent from any xi

′

ji′
.

Alternatively, just saying PrY |X

(
y1j1 ...y

n
jn

∣∣∣x1[j1]...xn[jn], y1[j1−1]...yn[jn−1]) is no-signalling.

(CNS) ∀I ⊆ P,∀j1, ..., jn ≤ k, ∀xP[jP ], y
P
[jP−1], x̂

I
jI
,

PrY |X

(
yIjI

∣∣∣xIjI , xIjI , xP[jP−1], yP[jP−1]) = PrY |X

(
yIjI

∣∣∣xIjI , x̂IjI , xP[jP−1], yP[jP−1])
5



2.5 No-Signalling Multi-Party Multi-Round Boxes

A no-signalling multiparty multi-round box is a 2k + 2-tape Turing machine, implementing a no-signalling
multiparty multi-round distribution. The TM has access to k read-only communication tapes, k write-only
communication tapes, one read/write work tape, and a read-only random tape. Each pair of read/write tapes
is used to communicate with a specific Turing machine that provides the consecutive inputs and receives
the consecutive outputs of a party’s no-signalling multi-round Distribution. No-signalling boxes respond
immediately when queried by a party because their output distribution is independent from all other inputs.

To check that a 2k+ 2-tape Turing machine implements a no-signalling multiparty multi-round distribu-
tion the conditions from the previous subsection can be verified one by one. At this point we do not know
of an efficient algorithm to check this property, and leave it as an open problem finding one.

2.6 No-Signalling Multi-Prover Interactive Proofs

Definition (NOSIG ( 6←6→)): Let M1, ...,Mk be k Turing machines. All machines have a read-only input tape, a
work tape and a random tape. In addition, M1, ...,Mk share a (read/write) no-signalling box where an input
may be written and a corresponding output be read. Every Mi has one write-only communication tape on
which it writes messages for another machine Wi. Every Mi has one read-only communication tape on which
it reads messages from another machine Wi. We call (M1, ...,Mk) a no-signalling k-party interactive TM.

Definition (MIP 6←
6→

): Let (P1, ..., Pk) be a no-signalling k-party interactive TM which is computationally
unbounded and (V1, ..., Vk) be a no-signalling k-party interactive Turing machine which is probabilistic
polynomial time bounded. Each Pi can only exchange messages with the corresponding Vi and vice versa.
A special party V0 has read-only access to the k work tapes of V1, ..., Vk as well as a read-only input tape,
a work tape and a random tape. V0 has two special terminal states accept and reject. The outcome of a
computation involving V0 is defined as its final state.

6←
6→

6←
6→

P1 V1 V2 P2

Fig. 2.6.1. Interrogation phase.

We call (P1, ..., Pk, V0, V1, ..., Vk) a no-signalling k-prover interactive protocol. A no-signalling multi-prover
interactive proof for a language L is a no-signalling k-prover interactive protocol (P1, ..., Pk, V0, V1, ..., Vk)
satisfying the completeness and NoSIG-soundness conditions:

(Soundness) ∀ 6←6→(P ′1, ..., P
′
k),∀x 6∈ L,Pr[(P ′1, ..., P

′
k, V0, V1, ..., Vk)(x) = accept] < 1

3 .

The requirement that (V1, ..., Vk) be No-Signalling implies that (P1, ..., Pk) cannot go beyond its own
locality via powers provided (willingly or inadvertently) by V . Each pair of parties 〈Pi, Vi〉 is as no-signalling
as Pi by itself (see Fig. 2.6.1). As noted before, most MIPs found in the literature are actually local-verifier
MIPs (see Fig. 2.6.2).

The other elements of the locality hierarchy |↑R↓〉(Entanglement with real coefficients only), 6←→, ←→ and

corresponding complexity classes MIP|↑R↓〉, MIP6←
→

, and MIP←
→

are defined analogously but are left out of
this extended abstract (but fairly unsurprisingly we get MIP←

→
=IP).
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6←
6→

P1 V1 V2 P2

Fig. 2.6.2. Interrogation phase.

2.7 Locality-Explicit Form

The above definitions do not account for every possible multi-prover interaction setup – they are not meant
to. Let us define that a MIP is in locality-explicit form if it satisfies the above definitions. By writing a protocol
in this form, the signalling powers of every party is explicitly apparent. Thus, we can prove completeness
and soundness without having to worry about changes in the parties’ localities; one simply needs to rewrite
a particular MIP in the appropriate locality-explicit form. If this turns out to be impossible, then we cannot
assess the soundness of the resulting protocol, in general. In the case of zero-knowledge MIPs, we need
to consider arbitrary (possibly signalling) verifiers, thus we do not limit ourselves to protocols in locality-
explicit form. In section 4, we will discuss how it makes sense to have multiple simulators which have their
corresponding localities.

2.8 Special Relativity

The work of BCMS [25] and later Kent [26] introduced the idea that locality (or no-signalling) can be
enforced by separating the parties involved with sufficient distance. A number of papers along these lines
have later explored the power of local and entangled provers in such a scenario and bit commitment was
proven possible under these combined assumptions. Similarly, relativistic MIPs with entangled provers have
recently been proven secure for languages in NP [27]. The relativistic model is analogous to our definition of
MIPs in the sense that the verifier of these proofs must be broken down as separate entities, one verifier per
prover, so that each prover can be interrogated locally by its corresponding verifier. At the end of the whole
proof, the verifiers get together and then decide whether to accept or reject the membership of a certain
string. The locality of the provers and verifiers must be equal.

In actuality, the only guarantee we need from special relativity is that no information travels faster-than-
light. The correct cryptographic model we should be using is the no-signalling one. We present in section 5
a protocol for EXP which is zero-knowledge under the no faster-than-light assumption.

We reiterate here that any zero-knowledge MIP which requires the verifier to courier an authenticated
question from prover to prover cannot be implemented under the special relativity assumption, for obvious
reasons.

3 ZKMIPY = NEXP

Let us put what we have constructed above together into something tangible. We will describe here a MIP
with the following properties (in addition to completeness and soundness):

– Local, as defined in the previous section.
– Zero-knowledge, in the stronger sense discussed in the next section.

The NEXP-complete protocol from [1] is local in the sense that the interaction with P2 involves only a
single question, sampled from the pool of questions the verifier has asked P1. This can be “localized” by a
pair of verifiers by asking them to share a random tape before the protocol begins. The phases which involves
only P1 can be made zero-knowledge by executing it in committed form, as in the single-prover case. The
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phase in which the verifier interacts with P2 can also be executed in committed form if only the phases were
independent from each other. The problem is that during this P2 phase, the verifier must ask a question that
it has asked P1 in order to assure zero-knowledge.

This is addressed in [4] and [8] by asking the first prover to compute the verifier’s question in committed
form, add a message authentication tag using a secret key that the provers shared and finally ask the verifier
to courier the message to P2, who then checks whether the authentication is valid before executing its part
of the protocol. This solution is problematic because it cannot be done by local verifiers. In a word, this
protocol is not local.

We present a zero-knowledge MIP protocol which addresses this problem. Our solution essentially asks
the provers to encrypt an answer with a key that is based on the verifier’s question. Therefore, if the same
question is asked to both provers, the verifiers receive the same answers; if two different questions are asked,
then the verifiers receive two answers which, from their points of view, are independently and uniformly
random. This way, there is no need for a prover to authenticate questions, nor is there need for questions to
be couriered between provers.

We describe the protocol below, and prove its completeness, soundness, zero-knowledge and “localness”.
The notation of Construction 32 borrows entirely from the original protocol of [1]. We refer the reader to
their paper to make sense of the protocol description. The CHSH bit commitment (Construction 31) is
secure in the local setting as previously proved in [28]. We refer the reader to their paper to make sense of
the protocol description.

3.1 Protocol

Construction 31 A statistically binding, perfectly concealing BC protocol. (Entangled Secure)

All parties agree on a security parameter 1k.
P1 and P2 partition their private random tape into two k-bit strings w1, w2.

Pre-computation phase:

– V0 samples two k-bit strings z1, z2 independently and uniformly, and provides them to V1, V2.
– V1 sends z1 to P1 and V2 sends z2 to P2.

Commit phase:

– P1 commits b to V1 as b = (b× z1)⊕ w1, where b× z1 is a multiplication in F2n .
– P2 sends V2: d = (w1 × z2)⊕ w2.

Unveil phase:

– P1 sends w1, w2 to V1.

– V1 computes b = 1 if b ⊕ w1 = z1, or b = 0 if b = w1.

– V0 rejects if b ⊕w1 is anything but z1 or 0, or if d⊕w2 6= z1× z2 and accepts b otherwise.
ut
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Construction 32 Zero-Knowledge Protocol for MIPY

Let x, an instance of oracle-3-SAT, be the common input, let |x| = k, and let Λ be the verifier’s
program in the BFL protocol.

1. (pre-computation)

(a) V0 samples two k-bit strings z1, z2 independently and uniformly, and provides them to
V1, V2.

(b) V0 selects k random K-bit strings r1, ..., rk and evaluates the circuit of Λ on input ri,
resulting in questions Q1, ..., Qk, and provides them to V1, V2

(c) V0 randomly chooses 1 ≤ i ≤ k+3, the index of an oracle query that will be made to both
P1 and P2. V0 provides i to V1, V2.

(d) V1 sends z1 to P1 and V2 sends z2 to P2.
(e) P1 (via P2) commits γ to V1 (via V2).

2. (multilinearity test) Let k be the number of oracle queries in this phase.
For 1 ≤ i ≤ k:

(a) V1 sends Qi to P1, the question that would be asked by Λ with coins ri.

(b) P1 commits his answer as A(Qi) .

(c) After committing all of his answers, P1 and V1 evaluate a circuit description of Λ in

committed form with inputs A(Q1) , . . . , A(Qk) . P1 unveils the circuit’s output. If it

rejects, V1 rejects.

3. (sumcheck with oracle):

– Let g(z,Qk+1, Qk+2, Qk+3, A(Qk+1), A(Qk+2), A(Qk+3))
be the arithmetization obtained by section 3.2 of [1], let z be a string of length r and
Qk+1, Qk+2, Qk+3 be strings of length s, as appropriate. V1 and P1 execute the protocol
of section 3.3 of [1] in committed form, using coins selected by P1 whenever randomness
is required. At the end of this phase, P1 shows that the committed final value is equal to

g
(
z,Qk+1, Qk+2, Qk+3, A(Qk+1) , A(Qk+2) , A(Qk+3)

)
,

an evaluation in committed form of g using the committed random bits that were used
during the protocol’s loop. If this fails, V1 rejects.

4. (non-adaptiveness test):

(a) V1 sends i to P1 who responds with Ω1 = A(Qi)⊕Hγ(Qi), and proves to V1

that Ω1 = A(Qi) ⊕H γ (Qi) was computed correctly.

(b) V2 sends Qi to P2.
(c) P2 responds to V2 with Ω2 = A(Qi)⊕Hγ(Qi).
(d) V0 accepts if and only if all of the following conditions are met:

– Ω1 = Ω2

– All commitments which have been opened are valid.
– V1 did not reject in the two previous cases

3.2 Proof Sketches of Security

Localness

We have defined “locality classes” and “locality” in section 2 to mean the different classes of no-signalling
correlations and interactions. Therefore, we will use the word “localness” to denote that a protocol has the
property of being local.

In both the commitment protocol (construction 31) and the ZKMIP protocol (construction 32), the
provers do not interact with each other, making them trivially local as per definition 2.2; V0 does not
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interact with the remaining verifiers once the protocol begins; V1 and V2 do not interact with the provers
once the protocol ends; therefore, since neither the provers nor the verifiers share any additional resources,
the verifiers are local.

Completeness

Completeness follows from the completeness of the underlying protocol [1], and the fact that the com-
mitment protocol (construction 31) is well-defined for honest provers (who will never send a commitment
that they cannot open).

Soundness

The scaffolding for our soundness proof will be the following. Suppose that there is a trusted third party
handling commitments that are perfectly binding, and that this third party sends the receiver a unique
identifying receipt for every commitment. If we were to use this commitment to execute a protocol in
committed form (as we do in construction 32), then to each committed transcript of an execution there
would be a unique real transcript (of the BFL protocol in our case). In this case, a committed transcript
shows that it ends in accept if and only if the associated real transcript, which one would obtain by running
the base protocol, also ends in accept. Thus, if the base protocol has a soundness error of, say, 1/3, then so
does this committed version.

We can remove the scaffolding by replacing the trusted third-party with construction 31. This does not
change the argument, except with exponentially small change to the soundness error. To begin with, local
probabilistic provers are equivalent to local deterministic provers. This is because the success probability α
of randomized provers is an average over the randomized provers’ random tapes. Each instance of a random
tape represents a deterministic strategy. Therefore there is a deterministic strategy which succeeds with
probability at least α. Therefore, we only need to consider local deterministic provers.

Let us analyze our commitment protocol. Since P1 is deterministic, we may unambiguously consider what
happens if we were to “rewind” it. Suppose that at some point P1 opens a particular commitment c to 0, and
that by rewinding P1 and have V1 make different choices, P1 then opens the same commitment c to 1 (an
attempt to break binding). Because of localness, P1’s behaviour is independent of what P2 receives (namely
z2). Therefore, there is only one such z2 which V0 will ultimately accept as a valid opening of c in both ways
(recall that our commitment is statistically binding).

In the worst case, for every commitment there exists a sequence of interaction between V1 and P1 such
that P1 will attempt to break the binding of that commitment. Each such commitment-breaking corresponds
to at most one string z2 that will actually work.

Let us denote the set of such binding-breaking strings by B. If z2 /∈ B, then the provers will not break
binding, and the soundness error is reduced to that of the underlying protocol (at most 1/3). On the other
hand, since |B| < poly(k), the probability that z2 ∈ B is at most poly(k)/2k.

Therefore, the soundness error of our protocol is at most

Pr[z2 /∈ B and underlying protocol accepts] + Pr[z2 ∈ B] ≤ 1

3
+O

(
1

2k

)
.

Zero-Knowledge

Our use of the multi-verifier setup as a guarantee of localness leads us to an unforeseen problem. The
participants of our protocol are two pairs of prover-verifiers and a “decision” verifier. In attempting to prove
zero-knowledge in this new picture of MIPs, we must decide on the purpose of the simulator.

However, a single simulator makes zero-knowledge trivial. One might think that, since a zero-knowledge
protocol must deal with arbitrarily malicious verifiers, we should give the simulator as much power as possible
in order to “simulate” the said behavior. But that would be going the wrong way: Instead, the question should
be, “How little extra power does the simulator need in order to do its job?”

10



We begin with the simple observation that if the provers can signal, then they can break the commitment
of construction 31. This is the basis of our simulation strategy, because if the provers can break the binding
condition of commitments, then committed circuit evaluations become meaningless; put another way, if the
simulator knows everything that both verifiers tell their respective provers, then it can make the outcome of
any committed circuit to be whatever it wants. In particular, since our protocol is perfectly complete, it will
simply simulate the protocol as being “accepted” by V0, regardless of whether x ∈ L or x /∈ L. We leave the
details to the reader.

Now consider a modified simulation setup. Suppose that instead of a single simulator, we have two
simulators S1 and S2, interacting with V1 and V2 respectively. If the simulators can signal, it is plain that
the above argument applies and that they can simulate anything, given that they can break commitment.
However, the simulators do not need to signal in order to break the commitment. This is a well-known result
[7] regarding non-local games: CHSH boxes can break our commitment scheme without giving the parties
the ability to signal. Therefore, our simulation strategy of “breaking the commitment” can work with a pair
of simulators augmented with a polynomial number of these CHSH boxes.

We would like to define a new property (or attribute) concerning ZKMIPs. We define the zero-knowledge
locality of a ZKMIP to be the lowest locality hierarchy class in which there exists simulators for that ZKMIP.
If the exact locality is not known, then we can say that it is upper-bounded some best-known locality class.

The zero-knowledge locality of construction 32 is upper-bounded by the no-signalling locality class. If we
were to define more fine-grained locality classes, then we would say it is exactly the locality of local provers
augmented by the CHSH task; however, we will stay with the few broad classes we have defined previously
for now. Whether it is possible to simulate construction 32 with local simulators is an open question. We
explore this new notion of zero-knowledge in the next section.

4 A New, Stronger Flavour of Zero-Knowledge

Traditionally zero-knowledge is defined as a property of the honest provers for all (polynomial-time) verifiers

∀polyV ′∃polyS ∀x∈L ∀w VIEWV ′ [P1, ..., Pk, V
′](w, x) = S(w, x).

However, in the present context, the fact that the simulation of V ′’s view via a single centralized simulator S,
achieving zero-knowledge is rather easy because such an S can cheat the binding property of the commitments
at will. The intuition behind the original definition is that the verifier is unable to convince a third party
(a Judge J0) because the VIEW he reports (see Figure 4.0.1) could have been equally created with the
same distribution by a simulator. Nevertheless, a stronger flavour of zero-knowledge is achievable if the
simulator is not invoking its full signalling power whenever the verifier does not use such power. We define

J0V0

w

Fig. 4.0.1. (Interac/Simula)tion-Distinction phase.

H-zero-knowledge (ZKH) for the locality hierarchy member H ⊆ SIG by the extra requirement that for all
locality level H ′ with H ⊆ H ′ we have V ′ ∈ H ′ → S ∈ H ′ as well. In words, it means that for all locality
levels starting with H, the simulators do not need more signalling power than the verifiers V ′. The ultimate
(strongest) notion of “local ZK” being ZKY because at all levels V ′ is simulated by a simulator with no
extra signalling power, whereas at the opposite end of the spectrum ZK←

→
is what is generally considered

zero-knowledge with a single simulator or a group of signalling simulators.
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This stronger notion of zero-knowledge is particularly interesting in the relativistic bit-commitment sce-
nario where a pair of judges may provide separate auxiliary-inputs to spatially separated verifiers pretending
to be speaking to powerful provers. If the verifiers can report their conversation fast enough to the judges,
they must be able to do so without invoking signalling because of the distance separating them. If a pair of
simulators can produce the same distribution of views in the same context, we obtain a stronger flavour of
zero-knowledge (See Fig. 4.0.2).

The results of this paper, depending on the specific bit commitment used, may be achieved under a
stronger flavour of zero-knowledge if a member of the locality class H is enough to break the binding

property of the commitments. For instance, the result of section 3.1 is really ZK6←
6→
MIPY = NEXP, whereas

the same protocol using the bit commitment of construction 51 proves only ZK←
→

MIPY = NEXP. Using the
bit commitment scheme based on the magic square game of [9] we can also obtain ZK|↑↓〉MIPY = NEXP.

Y

V1 V2J1 J2

w1 w2

J1 J2 J0

w1, w2

Fig. 4.0.2. Interrogation/Simulation phase (top) followed by decision phase (bottom).

Some interesting questions resulting from this definition is whether any higher class such as ZKYMIPY or

ZK 6←
6→
MIP 6←

6→
contains more than the natural examples such as GRAPH ISOMORPHISM or CODE EQUIV-

ALENCE already found in the most natural class ZK←
→

MIP←
→

= ZKIP.

5 Protocols for NEXP ⊆ ZKMIP|↑↓〉 & ZKMIP 6←
6→
= EXP.

We believe the tools we have developed in this paper, together with a few extra constructions allow us
to extend our results of Section 3.1 to the entangled and no-signalling scenarios: our solutions involve the

MIP|↑↓〉 protocol for NEXP of [2], the MIP 6←
6→

protocol for EXP of [3], a new three-prover commitment scheme
resistant to no-signalling attacks inspired from that of [24], and constructions similar to protocol 32.

5.1 Proposed Protocols

The two protocols have essentially the same structure as construction 32 above: one prover runs the protocol
of [2] or [3] by himself acting as all the provers, proving in zero-knowledge that all the answers are computed
correctly; the verifier can get the other provers to corroborate what the main prover answers for them.
This uses a bit-commitment scheme from the main prover to the verifier that is secure against entangled
or no-signalling provers. The CHSH bit commitment (construction 31) used in the local scenario is also
secure in the entangled setting as previously proved in [28]. In the no-signalling case the following new bit-
commitment protocol (based on the extended CHSH 3-player game as in [24]) is used instead (see next page).
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The other differences between the local construction and the entangled/no-signalling cases is the number
of provers: four provers in the protocols of Ito-Vidick [2], and polynomially many provers in the protocol
of Kalai-Raz-Rothblum [3]. To obtain zero-knowledgeness of the resulting protocols (via the one-time-pad
encryption of the oracle queries), the hash function used in the entangled version of the protocol must be
strongly-universal-5 and strongly-universal-poly in the no-signalling version. But these are minor changes.
These constructions automatically inherit localness, completeness and zero-knowledgeness of the local pro-
tocol. However proving their soundness remains a major challenge that we leave as open questions.

Construction 51 A statistically binding, perfectly concealing BC protocol (no-signalling secure)

All parties agree on a security parameter 1k.
P1, P2 and P3 partition their private random tape into five k-bit strings b2, b3, w1, w2, w3.

Pre-computation phase:

– V0 samples three k-bit strings z1, z2, z3 independently and uniformly, and provides them to
V1, V2, V3.

Commit phase:

– V1 sends z1 to P1, V2 sends z2 to P2 and V3 sends z3 to P3.

– P1 commits b to V1 as b = (b⊕ b2 ⊕ b3)× z1 ⊕ w1.
– P2 sends V2: d2 = b2 × z2 ⊕ w2.
– P3 sends V3: d3 = b3 × z3 ⊕ w3.

Unveil phase:

– P1 sends w1
2, w

1
3 to V1, P2 sends w2

1, w
2
3 to V2, P3 sends w3

1, w
3
2 to V3, where wji = wi for j 6= i.

– V0 rejects if w2
1 6= w3

1 or w1
2 6= w3

2 or w1
3 6= w2

3,

but accepts b =
(

b ⊕ w1

)
× z−11 ⊕ (d2 ⊕ w2)× z−12 ⊕ (d3 ⊕ w3)× z−13 ∈ {0, 1} otherwise.

ut

6 Discussion and Open Questions

Considering the many issues described in the previous sections, we believe that there is a need to rethink
MIPs/ZKIPs with respect to locality, particularly this new notion of a protocol’s zero-knowledge locality.
Non-local interaction in general is still poorly understood, and a good direction of research would be to find
an operational description of non-locality (in the same sense as the postulates of quantum mechanics), as
opposed to the information-theoretical description which we have here.
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