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Abstract. Since the seminal work of Boneh et al., the threat of fault attacks has
been widely known and new techniques for fault attacks and countermeasures have
been studied extensively. The vast majority of the literature on fault attacks focuses
on the ability of fault attacks to change an intermediate value to a faulty one, such
as differential fault analysis (DFA), collision fault analysis, statistical fault attack
(SFA), fault sensitivity analysis, or differential fault intensity analysis. The other
aspect of faults—that faults can be induced and do not change a value—has been far
less researched. In case of symmetric ciphers, this area is covered by ineffective fault
attacks (IFA). However, IFA relies on the ability of an attacker to induce reproducible
deterministic faults like stuck-at faults for a smaller intermediate structure (e.g., one
bit or byte), which is often considered to be impracticable.
As a consequence, most countermeasures against fault attacks focus on the ability
of faults to change intermediate values and usually try to detect such a change
(detection-based), or to destroy the exploitable information if a fault happens (infective
countermeasures). Such countermeasures implicitly assume that the release of “fault-
free” ciphertexts in the presence of a fault-inducing attacker does not reveal any
exploitable information. In this work, we challenge this assumption and show attacks
that exploit the fact that intermediate values leading to such “fault-free” ciphertexts
show a non-uniform distribution, while they should be uniformly distributed. The
presented attacks are entirely practical and are demonstrated to work for software
implementations of AES and for a hardware co-processor. These practical attacks
rely on faults induced by means of clock glitches and hence, are achieved using
only low-cost equipment. We target two countermeasures as example, simple time
redundancy with comparison and an infective countermeasure presented at CHES
2014. However, our attacks can be applied to a wider range of countermeasures and
are not restricted to these two countermeasures.
Keywords: fault attack · infective countermeasure · fault detection · countermeasure
· statistical ineffective fault attack

1 Introduction
Shortly after the seminal work of Boneh et al. [9] showed fault attacks on RSA, it became
clear that also symmetric schemes are susceptible to this type of active implementation
attacks. Starting with the differential fault analysis (DFA) of DES by Biham and Shamir [6],
a rich field of research emerged that focuses on techniques to recover the secret key from
faulty ciphertexts. Meanwhile, there exists a wide range of publications on how to apply
DFA attacks to different cryptographic algorithms and in particular to AES [2]. In addition,
novel attack techniques have been introduced such as fault sensitivity analysis (FSA) [20],
differential fault intensity analysis (DFIA) [16] and statistical fault attacks (SFA) [15].
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In order to prevent an attacker from learning the secret key from faulty outputs,
extensive research on countermeasures has been conducted. There are essentially two
categories of countermeasures. The first category covers sensor-based countermeasures
that aim at detecting the physical process of the fault induction. For example, protected
implementations may include light, voltage and temperature sensors in order to detect fault
inductions by lasers [26], voltage glitches [4], or temperature variations [19]. Countermea-
sures of this kind have a long tradition in smart card industry. However, as there are more
and more ways to induce faults, the focus is more and more on countermeasures that aim
at managing the effect of a fault induction. This is the second category of countermeasures
and also the main focus of the academic research.

The effect of a fault induction on a cryptographic algorithm can be modelled as the
change of an intermediate variable x to a faulty intermediate variable x′. Such a change of
a value can occur due to a direct modification of the variable x, but also due to instruction
skips or addressing errors. Independent of the exact effect that leads from x to x′, there
are two approaches on how to prevent that this change is exploited by an attacker. The
first approach is to detect the difference ∆ = x− x′ by adding redundancy to a design and
to suppress an output in case ∆ 6= 0. Corresponding redundancy techniques range from
simple temporal or spacial duplications to error detection codes. The second approach
for managing ∆ 6= 0 are infection-based countermeasures. In this case, a cipher output
is always provided, but the goal is to change the ciphertext in a way that the ciphertext
becomes useless for an attacker.

While most attack techniques and countermeasures focus on exploiting or preventing
information leakage in case ∆ 6= 0, the question of whether an attacker can also learn
information from ineffective faults has not been explored in depth so far. A fault induction
is ineffective in case the fault induction is performed (e.g., a voltage glitch is performed),
but it holds that ∆ = 0 and the cipher output is consequently not changed due to the
fault induction. Information leakage on the secret key can occur in this case if there is a
dependency between the fault induction being ineffective and the data that is processed in
the device.

Exploiting ineffective fault inductions typically implies that a larger number of fault
inductions needs to be performed than in case of classical fault attacks that exploit ∆ 6= 0.
While in case of classical fault attacks a few selected fault inductions are usually sufficient
to determine the key, the exploitation of ineffective faults requires that fault inductions
are performed on many different data inputs in order to find ineffective fault inductions.

The first and, to the best of our knowledge, the only attacks that exploit ineffective
inductions are ineffective fault attacks (IFA) by Clavier [10]. For IFA, it is assumed that
an attacker can reliably force an intermediate value x to a known value (e.g., 0) by a
fault induction. Then, the basic idea is to feed random input data into a device and to
perform the fault inductions until an ineffective induction is observed. In this case, the
intermediate x is known and the secret key can be determined. The big drawback of this
attack is that it requires a precise fault induction for a large number of encryptions, which
is very difficult to achieve in practice.

Our contribution. In this work, we generalize IFA attacks and introduce statistical
ineffective fault attacks (SIFA). As we will argue and show with practical evaluations,
SIFA is applicable whenever either SFA or IFA is applicable, but also in a broader range
of scenarios beyond that, in particular in the presence of countermeasures. Our attack
does not rely on a specific fault model. We simply require that there is some dependency
between the observation of an ineffective fault induction and the faulted intermediate
value x, though the attacker does not need to know any further details of this dependency.
Concretely, this means that the probability for changing an intermediate value x due to a
fault induction is not the same for all values x. This bias of the probabilities for ineffective
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fault inductions is the sole requirement on the fault induction.
Like IFA, SIFA can be applied in settings where it is possible to perform many fault

inductions on encryptions with different data inputs and to observe whether the fault
induction was ineffective. While IFA typically requires strong fault models like stuck-at
faults, the requirements for SIFA on the fault induction are minimal and corresponding
faults can be induced easily in practice with a high frequency and without the need for
sophisticated laboratory equipment.

To show this, we attack protected implementations that feature countermeasures against
fault attacks like DFA and SFA. In particular, we target both a detection-based and an
infective countermeasure. In fact, countermeasures that are based on managing a fault
effect ∆ 6= 0 are ideal targets for SIFA. These countermeasures allow the attacker to
collect observations where the fault induction was ineffective. Our empirical study shows
that these countermeasures can be easily bypassed in practice and that it is necessary
to combine them with additional countermeasures in order to provide protection against
SIFA attacks.

Our concrete attack results are as follows. First, we target a detection-based coun-
termeasure for AES that uses simple time redundancy with subsequent comparison. In
order to show the robustness of our attack this evaluation is performed on 3 different AES
implementations, attacking 8-bit and 32-bit-bitsliced software implementations as well as a
hardware co-processor. The fault is induced by using a simple clock glitch. In all cases, the
number of needed faulty encryptions is comparably low. SFA is not applicable here since
no exploitable faulty output is released. Although IFA is not prevented by simple time
redundancy with subsequent comparison, it still relies on precise stuck-at faults in certain
bytes, which are hard to achieve in practice, especially in the case of the 32-bit-bitsliced
and the hardware co-processor implementations. In contrast, SIFA can exploit any case
where ineffective faults lead to a biased distribution, even without knowledge about the
distribution of these values.

We then target the infective countermeasure proposed at CHES 2014 by Tupsamudre
et al. [27], where neither SFA nor IFA are applicable. Here, we extend the software AES
implementation from the AVRCryptoLib [1] and evaluate our attack for multiple security
parameterisations. Again, simple clock glitches are used to induce the required faults,
resulting in attacks that are rather easy to execute in practice and do not require any
expensive laboratory equipment.

Related work. SIFA extends and connects several other ideas that have previously been
published in the literature. One key-point of the presented attack is the fact that it
exclusively exploits cases where a fault does not change the result of the computation.
Therefore, our attack shares a common reference point with safe-error attacks [28] and
IFA [10]. In a safe-error attack, the value of an intermediate variable is changed (fault
effect ∆ 6= 0) and the knowledge whether the faulted value is used or not is exploited.
Typically, safe-error attacks are used to attack asymmetric schemes. In contrast, ineffective
fault attacks [10] exploit specific cases where ∆ = 0 and the fault shows no effect. More
concretely, IFA relies on strong and known fault models, like precise stuck-at-0 faults, in
order to probe values of intermediate variables.

We extend this idea from stuck-at faults as already used by Biham and Shamir [6] to
the case that ineffective faults lead to a non-uniform distribution of intermediate values.
As a result, we do not probe specific values; rather, we probe distributions. Hence, we
are naturally able to deal with noise (e.g., no faults induced, or faults induced at a wrong
position), which allows us to demonstrate the attack in practice. The methods that we
use to exploit non-uniform distributions are related to those in statistical fault attacks
(SFA) [15].
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Outline. First, we give a short overview and summary of statistical fault attacks and
both reviewed countermeasures in section 2. Then, we state the idea and show the working
principle of the attack in section 3. Section 4 contains the results of our practical attack
and at last, we conclude the paper in section 5.

2 Background
In this section, we first give a brief introduction to countermeasures against fault attacks
and review the two countermeasures we put our focus on more closely. Then we discuss
two fault attacks which are related to our attack: ineffective fault attacks and statistical
fault attacks.

2.1 Countermeasures
To protect against fault attacks, countermeasures aim to detect or prevent faults either
on the physical layer (e.g., light sensors or supply voltage detectors) or on an algorithmic
level. In this work, we solely focus on the second category. The strategy of detection-based
countermeasures is to detect that a fault changes an intermediate value, e.g., by performing
redundant operations. If a fault is detected, the computation is aborted and no ciphertext
is returned. In contrast, infection-based countermeasures always return a ciphertext, but
attempt to process the ciphertext in such a way that the output becomes useless for
an attacker in case of faults during the computation. In the following we review the
detection-based and the infection-based countermeasure that we target in our practical
evaluation.

2.1.1 Detection-based Countermeasure

In this work, we consider detection-based countermeasures that detect faults by means of
redundant operations. An overview of various techniques that achieve detection of faults
with the help of redundant operations is given by Bar-El et al. [4]. We focus on simple
time redundancy with comparison, although the attack is applicable to a wide range of
detection-based countermeasures. The idea of this countermeasure (Algorithm 1) is to
encrypt each plaintext block twice. Then, the resulting ciphertexts are compared. Only if
they match, the ciphertext is released.

Algorithm 1 Simple time redundancy with comparison
Input: key K, plaintext P
Output: ciphertext C = EK(P ), or ⊥

1: C1 ← EK(P )
2: C2 ← EK(P )
3: if C1 6= C2 return ⊥
4: return C1

Detection-based countermeasures would also allow to include mechanisms that disable
a device upon a certain amount of fault inductions. While this approach sounds very
appealing at first glance, it is very hard to realize in practice. On the one hand, there
is the risk of false positives that might lead to the disabling of a device in regular use
cases (e.g., due to supply problems when being powered by an electromagnetic field). On
the other hand, there is the need to count faults in such a way that it cannot be easily
bypassed by an attacker. For example, a simple increasing of a counter in non-volatile
memory can be detected easily by an attacker in the power trace and due to the timing
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behavior. Hence, an attacker can detect whether a fault induction was effective or not and
can remove the power supply during the programming of the memory in order to prevent
the increasing of the counter. No sophisticated equipment is needed in this case. For
more secure counting mechanisms, dedicated hardware support is required, which is not
available in most devices (e.g., IoT devices) that are exposed to fault attacks. However, in
applications that allow realizing fault counting in a secure and reliable manner without
the risk of too many false positives, it is an effective countermeasures against classic fault
attacks as well as IFA.

2.1.2 Infective Countermeasure

In contrast to detection-based countermeasures that aim to detect a fault and then do not
release a ciphertext, infective countermeasures always provide a cipher output, but change
the ciphertext in a way that the ciphertext becomes useless for an attacker. As an example
for infection-based countermeasures, we consider the infective countermeasure presented
by Tupsamudre et al. at CHES 2014 [27] as an extension of an infective countermeasure
presented by Gierlichs et al. [17]. This countermeasure has been proven to be secure
against differential fault analysis by Patranabis et al. [22] under the assumption that the
sequence of executed instructions is neither skipped, nor altered. Thus, the only attacks
on this countermeasure so far are attacks that either skip or alter instructions [5]. The
approach is summarized in Algorithm 2.

Algorithm 2 CHES 2014 infective countermeasure (algorithm taken from [27])
Input: P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES-128
Output: C = EK(P ), or infected state

1: State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2: i← 1, q ← 1
3: rstr← {0, 1}t // #1(rstr) = 2n, #0(rstr) = t− 2n
4: while q ≤ t do
5: λ← rstr[q] // λ = 0 implies a dummy round
6: κ← (i ∧ λ)⊕ 2(¬λ)
7: ζ ← λ · di/2e // ζ is actual round counter, 0 for dummy
8: Rκ ← RoundFunction(Rκ, kζ)
9: γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕R1) // check if i is even

10: δ ← (¬λ) · BLFN(R2 ⊕ β)
11: R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12: i← i+ λ
13: q ← q + 1
14: return R0

We will now give the basic intention behind Algorithm 2. For a more detailed description
we refer to the original work of Tupsamudre et al. [27]. Algorithm 2 works on three different
states R0, R1 and R2. State R0 is initialized with the plaintext P and is the state on
which the primary AES computation is performed. State R1 is also initialized with P and
serves as working state for the redundant AES computation. In the fault-free case, both
states R0 and R1 should contain the ciphertext at the end of the computation. The state
R2 is initialized with a random 128-bit value β and serves as working state for the dummy
round calculations. The key k0 is chosen such that RoundFunction(β, k0) = β.

Before the computation starts, a random string rstr of length t is initialized randomly
so that it contains 22 bits “1” and t− 22 bits “0”. The algorithm iterates over rstr and
executes for every “1” an AES round on R0, or a redundant round on R1 (22 rounds for 2
times 10 rounds AES plus 2 times the whitening key addition) in an alternating sequence,
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i.e., if a round on R0 has been calculated, the next “1” executes a redundant round on R1
so that after this calculation, the content of R0 and R1 should be the same in a fault-free
case. For every “0”, a dummy round is computed to update R2. The security level with
respect to the number of dummy rounds that are executed depends on the size of t and
can be chosen by the developer.

After every executed AES round, the algorithm checks if any of the values in registers
R0, R1, or R2 has been modified (R0 6= R1 or R2 6= β). If this is the case, state R0 is,
from this point on, always overwritten with the content of R2, which is then returned as
ciphertext. Since the value stored in R2 is random and has never been mixed with, nor
depends in any other way on the value of the secret key, learning this value should be
useless for the attacker.

2.2 Statistical Fault Attacks
Statistical fault attacks (SFA) were introduced by Fuhr et al. [15] as a method to recover
the secret key of AES if an attacker is able to change an intermediate variable to a biased
(i.e., not uniformly distributed) value by inducing a fault. They considered three different
fault models on byte level:

1. Stuck-at-0

2. Stuck-at-0 with probability 0.5, or logical AND with random uniform value with
probability 0.5

3. Logical AND with random uniform value

Fuhr et al. [15] evaluated various key recovery strategies dependent on the round where
the fault is induced. For instance, they showed that if the fault is induced in one byte
right before the last MixColumns application, 6 faulty ciphertexts in case of fault model 1,
14 faulty ciphertexts in case of fault model 2, and 80 faulty ciphertexts in case of fault
model 3 are needed to recover 4 bytes of the secret key. These attacks require to partially
decrypt every ciphertext back to the faulted byte for each key candidate and measure the
squared euclidean imbalance (SEI) of this byte. The key candidate that gives the highest
SEI is most likely the correct one.

Since SFAs make use of the ability of faults to change an intermediate value (to a
biased value), they can be prevented by both countermeasures discussed in subsection 2.1.
To bypass both types of countermeasures, an attacker could try to induce identical faults
in both redundant computations and thus evade detection. With strongly biased faults,
this may be easier to achieve than for random faults, as has been demonstrated for a
detection-based countermeasure [23]. However, the attacker’s task gets more and more
complicated with increasing redundancy of the countermeasure.

2.3 Ineffective Fault Attacks
The idea of ineffective fault attacks (IFA) by Clavier [10] is that certain faults can be used
to probe intermediate values of a cryptographic algorithm. This technique can be used to
circumvent countermeasures like simple time redundancy with comparison. Consider an
attacker who induces a stuck-at-0 fault in one byte during one execution of AES, while
leaving the other one correct. If the attacker nevertheless receives an output (ciphertext),
the faulted value must already have been 0 before the fault. If this stuck-at-0 fault is
induced in one byte of the last AES round before the last key addition, we can immediately
recover one byte of the last round key: All an attacker has to do is to guess one byte of
the key, decrypt the corresponding byte of the correct ciphertext back to the intermediate
byte that has been faulted, and check if the resulting byte value is 0. If it is 0, the guessed
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key byte is the right one. This approach is applicable just as easily for more than two
redundant computations, since only one computation needs to be faulted.

However, the assumption that an attacker is able to deterministically change the value
of an intermediate variable to 0 requires a very strong and powerful attacker. In practice,
an attacker is usually less powerful and has to consider, for instance, false positives in case
of failed fault inductions that do not show any effect. For simple time redundancy with
comparison, one solution for this specific problem would be to repeat the fault induction
several times for encryptions of the same plaintext to get results which are more or less
noise-free, as suggested by Clavier and Wurcker [11]. Using this strategy directly also
causes troubles in the case of the CHES 2014 infective countermeasure [27]. Although the
fault might be induced always at the same byte at the same time, an attacker does not
know if the affected byte belongs to a dummy round or not.

In the following, we demonstrate that not only stuck-at faults can be exploited in IFA
and introduce statistical ineffective fault attacks. On a high level, these attacks can be
seen as an intersection of the principles exploited in the case of IFA [10] and SFA [15]. In
section 3, we explain the necessary conditions for our attack to work and demonstrate
in section 4 that they are usually fulfilled when attacking real devices with algorithmic
countermeasures. In particular, the attacker does not need to assume any specific fault
model and can successfully recover the key even with very “noisy” faults with unpredictable,
unreliable effects.

3 Statistical Ineffective Fault Attack
In this section, we discuss the ideas behind the extension from ineffective fault attacks [10]
(IFA) to statistical ineffective fault attacks (SIFA). First, we will review the effects of faults
with the help of fault distribution tables to identify the necessary conditions for SIFA to
work in subsection 3.1. Then we introduce the working principle of SIFA in subsection 3.2.
Finally, we develop some theoretical background of our attacks in subsection 3.3.

3.1 The Effects of Faults
The effects caused by faults during the execution of cryptographic primitives are manifold
and depend on the method used to induce the fault (e.g., laser, clock glitches), the
architecture and manufacturing technology of the attacked device, and various other
parameters (e.g., targeting a register or arithmetic instruction). However, all faults have in
common that they change the value of a b-bit intermediate variable from a value x, which
it would have for the correct execution, to a value x′ in the presence of a fault. Observing
the probability of transitions from a certain value x→ x′ gives us a fault distribution table
(see subsection 3.3 for the exact definition).

With the help of such a fault distribution table, we are able to characterize the effects of
a wide range of faults that can happen in practice. For example, this allows us to capture
faults where the value of x′ is independent of the value x, like stuck-at faults, random
faults, and biased faults, but also more complex relations where x′ depends in some sense
on x, for instance by faulting the instruction that computes x. In Table 1, we show various
examples of fault distribution tables for different faults on a 2-bit intermediate variable.

Most fault countermeasures that work on an algorithmic level can only conceal cases
where x 6= x′, because a fault that results in x = x′ is indistinguishable from a normal
working condition. As a consequence, an attacker has access to ciphertexts where the
attacked (faulted) intermediate variable follows a distribution determined by the diagonal
(red values) in Table 1. The attacks presented in the following sections show that a
non-uniform distribution in this diagonal can be exploited to recover the key. Therefore,
for an implementation protected by such a fault countermeasure to be resistant against
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Table 1: Fault distribution tables for several 2-bit fault models.

(a) Stuck-at-0

x′

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

(b) Random-And

x′

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

(c) Bit-flip

x′

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

(d) Random fault

x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 1
4

1
4

1
4

1
4

10 1
4

1
4

1
4

1
4

11 1
4

1
4

1
4

1
4

our attack, one of the two following conditions has to be fulfilled: Either the probability
that an ineffective fault happens is negligible (as in Table 1c), or the distribution in the
diagonal of the fault distribution table is uniform (as in Table 1d).

While in theory, the bit-flip and random fault models of Table 1c and Table 1d are not
susceptible to SIFA, our practical experiments in section 4 indicate that countermeasures
cannot rely on the hope that only such “perfect” fault models occur in practice. For
instance, consider the case where a bit-flip occurs probabilistically with the tendency to
flip more often from 1 to 0 than from 0 to 1, as illustrated in Table 2. The resulting
distribution has a biased diagonal.

Table 2: Bit-flip from 1 to 0 with 75 % and from 0 to 1 with 50 %.
x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 3
8

1
8

3
8

1
8

10 3
8

3
8

1
8

1
8

11 9
16

3
16

3
16

1
16

In the following section, we will explain how such distributions can be exploited. Since
the fault distribution tables are typically not known by an attacker (unless the attacker is
able to profile the device), our attack works without any knowledge of the fault distribution
table. This is demonstrated by the practical attacks of section 4, which we perform without
any knowledge of the underlying fault model and fault distribution table.
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3.2 Working Principle
We now consider a protected AES implementation as an example to show the working
principle of SIFA. The attack can be split into 3 phases. The first phase is the actual
fault attack and collection of suitable ciphertexts. In the second phase, parts of the last
round key are guessed and the distribution of an intermediate state is evaluated. In the
last phase of the attack, the partial key-guesses are ranked according a metric (e.g., the
Squared Euclidean Imbalance (SEI)) and the correct key is identified.

Collecting ciphertexts. Assume that we target one byte before the last application of
MixColumns. We request the ciphertexts for a number of plaintexts and fault each
encryption. If the implementation is protected with a detection-based countermeasure,
we only obtain those ciphertexts where the fault was ineffective; in case of an infective
countermeasure, we need to filter for ineffective faults ourselves by comparing the obtained
ciphertexts with a second, unfaulted encryption (or decryption).

Key guessing. Following the fault model of subsection 3.1, we obtain a set of filtered
ciphertexts whose intermediate value in one byte before the last MixColumns is non-
uniformly distributed according to the diagonal of the fault distribution table. This
information can be exploited to recover 32 bits of the last round key with a key-guessing
strategy similar to the approach of SFA [15]: The attacker guesses 4 bytes of the last round
key K10 and partially decrypts the last operations for each correct ciphertext to obtain a
partial state S9:

S9 = MC−1 ◦ SB−1 ◦ SR−1(C ⊕K10). (1)

Then, the attacker can evaluate the distribution of the byte in (1) where the fault has been
induced, for example by computing the Squared Euclidean Imbalance (SEI) of the byte
for each key candidate. In case of evaluating the SEI, no information of the penultimate
round key has to be guessed, because the constant key addition changes only the values of
the byte, but has no influence on the non-uniformity of the distribution.

Determining the correct key. In the previous phase, for each key candidate, the SEI
of the targeted byte has been calculated. We assume that the right key leads to the
distribution with the highest SEI if a sufficient number of ciphertexts is evaluated. A
closer insight in the number of needed ciphertexts is given in subsection 3.3.

We want to point out that this attack allows to exploit any ineffective fault that causes
a non-uniform distribution of an intermediate value, even if the distribution is not known
by an attacker (as demonstrated in section 4). In addition, SIFA is robust against noise
introduced by failed fault induction attempts, or a fault induction in dummy rounds in the
case of the infective countermeasure. In the next section, we provide a statistical model
for our attacks and justify the use of the SEI.

3.3 Statistical Model
In this section, we provide a more detailed statistical model of the attack. Our aim is
to investigate the effect of various parameters, such as the fault distribution and the
configuration of the countermeasure, on the necessary number of faulted ciphertexts to
perform the attack with a certain success probability. We compare two scenarios: The
practical scenario where the fault distribution is unknown to the attacker (CHI/SEI statis-
tic), but also the theoretical scenario where the attacker happens to know the distribution
(LLR statistic). The emphasis of our analysis is on the hardest case: An unknown fault
distribution, close to uniform, with additional noise induced by countermeasures.
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We consider the b-bit intermediate variable which contains the result of the operation
targeted by the fault, and consider its distribution during the attack in more detail. From
the attacker’s point of view, the value of this variable on a particular input (in absence
of faults) is a random variable X which depends on the input and key. Additionally,
the random variable X ′ denotes the value of this variable on the same input, but where
the attacker additionally attempted to fault the operation. We also refer to X and X ′
as “before” and “after” the fault, although this is not strictly accurate. Both X and X ′
take values x ∈ X = {0, . . . , 2b − 1}. The action of the fault can be characterized by the
transition probabilities

px(x′) := P[X ′ = x′|X = x].
In practice, this fault distribution table FDT = (px(x′))x,x′ is usually not known, or can
only be roughly estimated. To perform the proposed attack, the attacker does not need
to know the FDT. However, the success and efficiency of the attack depends on some of
the table’s properties. In the following, we will analyze the attack complexity and its
dependency on the two relevant metrics: The fault’s ineffectivity rate π=, and the capacity
C(p) of the target distribution p.

3.3.1 Direct sampling: Detection countermeasure

We first consider attacks on detection-based countermeasures. We can only take advantage
of samples where X = X ′, i.e., the fault is ineffective. We assume that X is uniformly
distributed, that is, P[X = x] = 2−b. Then, the probabilities π= of an ineffective fault
(ineffectivity rate) and π 6= of an effective fault are

π= = P[X ′ = X] =
∑
x′∈X

px′(x′)
2b , π6= = 1− π=.

We target the conditional distribution p=(x′) of X ′ in case of ineffective faults, i.e., the
diagonal of the fault distribution table (see subsection 3.1):

p=(x′) := P[X ′ = x′|X ′ = X] = px′(x′)
2b · π=

.

The attacker neither knows this distribution, nor can she directly observe X ′. However,
based on the observed cipher output and a key hypothesis for the κ-bit last-round key
material as in subsection 3.2, she obtains a hypothesis X̂ ′ for the value of X ′, and can
analyze the distribution p̂ of X̂ ′ for a fixed key guess across multiple samples. For an
incorrect key guess, we assume a distribution very close to uniform1. For the correct key
guess, we sample the unknown distribution p(x′) = p=(x′). If p=(x′) differs significantly
from uniform, we can distinguish these two cases, and identify the samples from p=(x′)
produced by the correct key k0 among the collection of samples from the nearly uniform
distributions θi(x′) ≈ θ(x′) = 2−b produced by the wrong keys ki, 1 ≤ i < 2κ.

To identify the correct key k0 and its distribution p = p=, we associate a score statistic
S(p̂) with each key candidate and the corresponding distribution p̂, and rank the key
candidates according to this statistic. This approach is closely related to statistical
cryptanalysis, such as differential and linear cryptanalysis, and has been theoretically
analyzed in those contexts. Under the assumption that S(p̂) is independently normally
distributed for samples from either p or θ,

S(p̂) ∼
{
N (µR, σ

2
R) if p̂ was produced by p ,

N (µW, σ
2
W) if p̂ was produced by θ ,

(2)

1In practice, this is not necessarily the case, in particular for partially correct key guesses. For example,
for a byte-stuck-at fault and a key guess that is only incorrect in one byte, the capacity is expected to
drop from 255 to about 1, instead of 0.
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Selçuk [25] analyzed the success probability of ranking the correct key k0 among the top
2κ−a of 2κ key candidates based on N samples, where a is the advantage. Then, the
difference ∆a between the score of k0 and the score of the wrong key with rank 2κ−a
(quantile α = 1− 2−a) is normally distributed with parameters

∆a ∼ N (µ∆, σ
2
∆),

µ∆ = µR − µW − σW Φ−1
0,1(α) ,

σ2
∆ ≈ σ2

R for sufficiently large 2κ [8],

and thus the success probability depending on N and a can be estimated as [25]

P[∆a > 0] ≈ Φ0,1

(
µR − µW − σW Φ−1

0,1(α)
σR

)
. (3)

To obtain useful complexity estimates from (3), we need a suitably distributed statistic
S(p̂) and its parameters according to (2). We first consider the (unusual) case2 that we
know the real distribution p = p=. Then, the Neyman-Pearson lemma [12,21] states that
the optimal statistic S is the log-likelihood ratio

S(p̂) = LLR(p̂) = LLR(p̂, p, θ) := N
∑
x∈X

p̂(x) log2
p(x)
θ(x) .

For large N , LLR(p̂) tends towards a normal distribution as required in (2) [3, 12]. The
success probability in (3) then depends on the Kullback-Leibler divergence D(p‖θ):

D(p‖θ) :=
∑
x∈X
p(x) 6=0

p(x) log2
p(x)
θ(x) , D∆(p‖θ) :=

∑
x∈X
p(x)6=0

p(x)
[
log2

p(x)
θ(x)

]2
−D(p‖θ)2 .

If p is very close to uniform θ, these can be approximated using the capacity C(p, θ) [7]:

C(p, θ) :=
∑
x∈X

(p(x)− θ(x))2

θ(x) ≈ 2D(p‖θ) ≈ D∆(p‖θ) (only if p is close to θ.)

The resulting estimate for the necessary number of samples NLLR to achieve a success
probability P = P[∆a > 0] can be derived as [3, 8]:

NLLR ≈

[
Φ−1

0,1(P )
√
D∆(p‖θ) + Φ−1

0,1(α)
√
D∆(θ‖p)

D(p‖θ) +D(θ‖p)

]2

≈
2[Φ−1

0,1(P ) + Φ−1
0,1(α)]2

C(p, θ) .

When applied to the AES fault analysis scenario, knowing p = p= means both knowing the
exact fault distribution of the ineffective faults and guessing the corresponding 8 key bits
in the penultimate round, with a correspondingly increased advantage a. In the context
of differential cryptanalysis, it has been demonstrated [8] that even small errors in the
estimate of p can significantly increase the necessary number of samples. Since such exact
models of p= are usually not available for practical fault attacks, we can consider less
optimal, but more robust statistics.

The classical test statistic for an unknown distribution p is Pearson’s χ2:

S(p̂) = CHI(p̂) := χ2(p̂, θ) = N
∑
x∈X

(p̂(x)− θ(x))2

θ(x) ,

2Note that in this case, we could also target the last round with lower a and N , but more repetitions
to obtain the full key.
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or, for uniform θ, the closely related Squared Euclidean Imbalance (SEI):

S(p̂) = SEI(p̂) :=
∑
x∈X

(p̂(x)− θ(x))2 = (N · 2b)−1 · CHI(p̂) .

The statistic CHI(p̂) is distributed according to the (noncentral) chi-squared distribution
with k = |X |−1 = 2b−1 degrees of freedom and noncentrality parameter λR = N C(p, θ) or
λW = 0. For large k andN , this tends towards a normal distribution with parameters [14,18]

CHI(p̂) ∼
{
N (µR = k +NC(p, θ), σ2

R = 2 [k + 2NC(p, θ)]) ,
N (µW = k, σ2

W = 2k) .

Based on these parameters, we can solve the quadratic equation in (3) to estimate the
necessary number of samples as [8]

NCHI ≈
s+
√
s2 − t

C(p, θ)
(
s =
√

2kΦ−1
0,1(α) + 2Φ−2

0,1(P ), t = 2k(Φ−2
0,1(α)− Φ−2

0,1(P ))
)

=
√

2kΦ−1
0,1(α)

C(p, θ) (for success probability P = 0.5.)

Summarizing, both statistics lead to an estimated number of samples that is proportional to
1/C(p, θ), where the constant depends on the desired success probability P and advantage
a (or quantile α = 1− 2−a). However, these estimates are only useful if the resulting N is
reasonably large, that is, if p is not extremely different from θ.

3.3.2 Noisy sampling: Infective countermeasure

So far, we assumed that for the correct key guess, the attacker makes the correct hypothesis
X̂ ′ = X ′, and thus directly samples the distribution p=(x′). We will now show that the
same approach also generalizes naturally to cases where the attacker only obtains noisy
measurements.

As an example, consider the infective countermeasure with r dummy rounds. The
attacker targets round R− t of the R = r+ 11 + 11 executed AES rounds, indexed 1, . . . , R.
To identify runs with ineffective faults, she has to compare the faulted ciphertexts C ′
with previously obtained correct ciphertexts C for the same plaintexts P , and keeps only
the samples where C = C ′. Assuming the same fault model as before, she will keep a
fraction of about π= samples. However, she does not know whether the ineffective fault
really occurred in the penultimate AES round of the main (or, equivalently, redundant)
encryption of P , or elsewhere: in a dummy round or the wrong AES round. The probability
σ that the faulted round R− t was a relevant round depends on the attack setup. Figure 1
illustrates the practically observed probability (σ = σ∗, see subsubsection 4.1.3), as well as
the expected probability if the attacker can equivalently target both main and redundant
rounds in the practical attack setup (σ = σ+) or if she has to choose the target in advance
(σ = σmax), where

σ =
{
σ+ = σ2 + σ3,

σmax = max{σ2, σ3},
σs =

(
t
s

)
·
(
R−t−1
22−s−1

)(
R
22
) .

This probability is assumed to be independent of whether the fault was ineffective or not.
Depending on whether round t was indeed relevant, the hypothesis X̂ ′ for the correct key
now samples one of two distributions: If t was relevant, X̂ ′ = X ′ and we sample p=(x′);
else, we sample a distribution close to uniform. Thus, we sample a noisy variable X ′′ with
distribution p≈(x′′), where

p≈(x′′) = σ p=(x′′) + (1− σ) 2−b = σ (p=(x′′)− 2−b) + 2−b.
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Figure 1: Probability σ of successful sampling for r ∈ {11, 22, 66} dummy rounds.

The capacity of this distribution is

C(p≈) =
∑
x∈X

(p≈(x)− 2−b)2

2−b =
∑
x∈X

(
σ (p=(x′′)− 2−b)

)2
2−b = σ2 C(p=).

Thus, the expected data complexity for noisy sampling is σ−2 times higher compared to
direct sampling.

In summary, the expected number of faults the attacker has to induce to collect enough
samples is inverse proportional to π= · σ2 · C(p=), where the constant depends on the
desired success probability P and advantage a.

3.4 Examples and Simulations
To illustrate the statistical model in more detail, we consider a simulation of the attack
with a random-and fault, i.e., each set bit of the target byte is flipped from 1 to 0 with
probability 1

2 . The ineffectivity rate of this fault is π= = (3/4)8 ≈ 10 %. We attack an
AES implementation protected with the infective countermeasure (subsection 2.1) with
r = 22 dummy rounds and target round R − t = 44 − 4 = 40, obtaining a signal of
σ = 1111

3526 ≈ 0.315 among the ineffectively faulted samples. The expected target distribution
p(x) for the correct key is illustrated together with the uniform distribution θ in Figure 2
and depends on the Hamming weight hw(x):

p(x) = σ · 28−hw(x)/38 + (1− σ) · 2−8.

To compare the practically necessary number of samples N (with or without knowledge of
p(x)) with the predictions of subsection 3.3, we evaluate the statistics LLR(p̂) and CHI(p̂)
for the correct last-round key and for 224 wrong key candidates (out of 232; we set one
byte to the correct value).

0 20 40 60 80 100 120 140 160 180 200 220 2400.0000

0.0050

0.0100

0.0150
p(x)
θ(x)

Figure 2: Distributions p and θ for random-and fault and infective countermeasure.
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For the LLR(p̂) statistic, we need to know the exact target distribution after addition
of the penultimate round key, so we need to guess a byte K ′ of the penultimate round key
in addition to the 24-bit key guess K. For simplicity, we evaluate each candidate K based
on the statistic

S(p̂) = max
K′

LLR(p̂, pK′ , θ) = max
K′

N
∑
x∈X

p̂(x) · log2
p(x⊕K ′)
θ(x) .

To reflect this in the model and evaluate the probability that the correct 24-bit K is ranked
highest, we set the advantage to a = κ+ 8 = 32, so α = 1− 2−32. Based on the model of
subsection 3.3, we expect the statistics LLRR of the right key, LLRW of any wrong key,
and LLR∗W of the best wrong key to be normally distributed with the following parameters:

µR = ND(p‖θ) ≈ 0.075N σ2
R = ND∆(p‖θ) ≈ 0.252N

µW = −ND(θ‖p) ≈ −0.064N σ2
W = ND∆(θ‖p) ≈ 0.157N

µ∗W = µW + Φ−1
0,1(α)σW ≈ −0.064N + 2.469

√
N σ2∗

W � σ2
W .

For the CHI statistic, we use a = κ = 24 and expect the statistics CHIR, CHIW, and
CHI∗W to be normally distributed with the following parameters:

µR = k +N C(p, θ) ≈ 255 + 0.131N σ2
R = 2k + 4N C(p, θ) ≈ 510 + 0.525N

µW = k = 255 σ2
W = 2k = 510

µ∗W = µW + Φ−1
0,1(α)σW ≈ 375 σ2∗

W � σ2
W .

Figure 3 compares the resulting model (dashed: µR, µ
∗
W) with the statistics obtained in the

practical key-recovery attack (solid: S(p̂R), S(p̂∗W)). The predicted necessary number of
samples N for success probability P = 0.8 and with advantage a = 24 (for CHI) or a = 32
(for LLR) is marked as NCHI and NLLR, respectively. This estimate quite accurately
matches the practically necessary N . It is worth noting that for both statistics, the best
wrong key candidate scores slightly better than predicted with µW. This can be partly
explained with the not-entirely-uniform distribution of the target value for partially correct
key guesses, as discussed in subsection 3.3. In case of CHI(p̂), both the right and wrong
keys scored slightly higher than expected.

500 1000
21
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27

NLLR

LLR∗W µ∗W LLRR µR

(a) LLR(p̂) statistic

500 1000

28

29

NCHI

CHI∗W µ∗W CHIR µR

(b) CHI(p̂) statistic

Figure 3: Simulation results for infection countermeasure and random-and fault.

We repeated simulations for other fault models (bit-stuck-at-0, byte-stuck-at-0) and
for both countermeasures (detection, infective). The model matches the practical results
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similarly well when the capacity C(p, θ) is not too large and thus N is not too small to
justify the normal approximation. In particular, for the byte-stuck-at-0 fault, C(p, θ)� 1,
and the model predicts fewer than the practically necessary N ≈ 4 (σ = 1, detection) or
N ≈ 15 (σ = 0.315, infective) samples.

In summary, having insight in the concrete effect of a fault allows to model the scores
of the correct and best wrong key and accurately predict the necessary number of samples
for a successful attack. In such a case, the LLR outperforms the CHI (or SEI) statistic in
terms of required samples. However, for LLR, even small errors in the estimate of p can
significantly increase the necessary number of samples [8]. Hence, in practice, the CHI (or
SEI) statistic is preferable, since the attacker can reliably and efficiently recover the key in
the presence of countermeasures without any knowledge of p as demonstrated in section 4.

4 Practical Evaluation
For the practical evaluation of SIFA we have performed experiments targeting two types of
fault countermeasures, implemented on various microcontrollers. The evaluated counter-
measures are a detection-based and an infective countermeasure as described in Section 2.1.
The target microcontrollers are listed in Table 3.

Table 3: Target microcontrollers of our attack evaluation

Name ALU Size Core CPU Freq.
ATXmega 256A3 8-bit Atmel AVR 12 MHz
ATXmega 128D4 8-bit Atmel AVR 7 MHz
STM32F3 32-bit ARM Cortex-M4 7 MHz

In order to induce the faults we have used clock glitches. To be more precise, we xor
an additional fast clock edge on the original clock signal to violate the critical path. By
additionally varying width and offset of the induced clock edge, it is possible to influence
the fault induction success rate and its impact on the faulted instruction. We have used
an FPGA for generating both the original clock signal and the clock glitch for the device
under test. For sake of simplicity, we determined our attack parameters with the help of
an unprotected implementation in the case of the detection based countermeasure. In case
that an unprotected implementation is not accessible to an attacker, determining the fault
parameters is much more time consuming, but still feasible. We want to point out that the
demonstrated attacks do not require a profiling of the actual distribution of the induced
fault. In fact, the key recovery attacks have been performed without knowledge about the
distribution of the targeted byte.

All experiments are performed in a fully automated attack setup. By using this setup,
we are able to perform about 3 faulty encryptions per second, or 10 800 per hour. Depending
on the concrete attack scenario, 1 000 to about 130 000 faulted encryptions are needed to
reliably recover 4 bytes of the AES key. Hence, the time required to collect enough correct
ciphertexts for key recovery is somewhere between 1 minute and 12 hours.

4.1 Attacks on Detection-based Countermeasure
At first we targeted a detection-based countermeasure that uses simple time redundancy
with subsequent comparison (Algorithm 1). Here, the encryption is executed twice and
only if the results of both encryptions are identical, the ciphertext is returned. Note
that our attack is just as effective in case more than two redundant executions are
performed. We evaluated our attack both for pure software AES implementation and AES
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co-processor implementations. The attack against software AES was evaluated using an
8-bit register-based AES implementation on the ATXmega 256A3, and a 32-bit-bitsliced
AES implementation on the STM32F3. The attack evaluation against the hardware
co-processor AES implementation was performed on the ATXmega 256A3.

4.1.1 8-bit Software AES on ATXmega 256A3

We used the ASM version of the AES-128 block cipher implementation from the AVRCryp-
toLib [1] as a basis for our protected AES implementation. Our attacks target the output
of the S-box calculation of the 9th AES round. After experimenting with different fault
parameterisations we have determined that inducing a clock glitch at 2 044 clock cycles
after the start of the encryption has the desired effect. We only induce a fault in one of
the two AES encryptions and for approximately 34% of the encryptions ciphertexts were
received, indicating an ineffective fault. In total we performed 1 000 encryptions, hence we
received about 340 ciphertexts. The results presented in Figure 4 show that already after
evaluating 230 correct ciphertexts, the SEI of the attacked byte is highest for the correct
key candidate.

40 60 80 100 120 140 160 180 200 220 240 260
2−7

2−6

2−5

2−4

number of correct encryptions

SE
I

correct key
wrong keys

Figure 4: Attacks on software AES, ATXmega 256A3, detection countermeasure. SEI of
the correct key (SEIR) vs. best SEI for a wrong key (SEI∗W) for N correct encryptions.

4.1.2 32-bit-bitsliced Software AES on STM32F3

In order to evaluate our attack for bitsliced AES implementations, we have used the
constant-time bitsliced implementation by Schwabe et al. [24]. The attack setup itself is
similar to the one in the previous section. During the attack, we inserted a clock glitch
2 463 cycles after the start of the encryption. In total we have performed 130 000 faulted
AES encryptions and received about 26 000 correct ciphertexts. Hence, the fault probability
is about 80% in this setting. About 22 000 correct ciphertexts were sufficient to reliably
recover 4 bytes of the AES key, as seen in Figure 5.

4.1.3 Hardware Co-Processor AES on ATXmega 256A3

For the fault attacks targeting the integrated AES co-processor on the ATXmega 256A3
microcontroller, we have used a clock glitch that is inserted 304 clock cycles after the
start of the encryption. We induce a fault in one of the two AES encryptions, for
approximately 69% of the encryptions ciphertexts were received. For these encryptions,
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Figure 5: Attacks on bitsliced SW AES, STM32F3, detection countermeasure. SEI of the
correct key (SEIR) vs. best SEI for a wrong key (SEI∗W) for N correct encryptions.

the fault was ineffective. Similar to the evaluations of the software implementation, we
performed 1 000 encryptions. In approximately 690 cases we received a ciphertext due to
the fault probability of 31% for this setting. The results presented in Figure 6 show that
approximately 550 ciphertexts are sufficient for recovering 4 bytes of the AES key.
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Figure 6: Attacks on HW AES co-processor, ATXmega 256A3, detection countermeasure.
SEI of the correct key (SEIR) vs. best SEI of a wrong key (SEI∗W) for N correct encryptions.

4.2 Attacks on Infective Countermeasure
We then evaluated our attack on the infective countermeasure by Tupsamudre et al. [27]
from CHES 2014 (Algorithm 2). Since the hardware co-processor of the ATXmega 256A3
only computes one complete call of AES, we limit this attack evaluation to purely software-
based implementations.

First, we extended the C version of the AES-128 block cipher implementation from
the AVRCryptoLib [1] according to Algorithm 2. The implementation of the AES round
functions itself was not modified. The infective countermeasure requires 3 initial states
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R0, R1, and R2, two of which are set to the original plaintext, R2 is random. During
encryption, 10 AES rounds are calculated for R0 and R1 in an alternating sequence.
Additionally, t “dummy” rounds are calculated for R2 at randomly chosen points in time
that are determined by rstr. Whenever a fault modifies a state during an AES round,
the countermeasure amplifies the impact of the induced error up to a point where an
exploitation of the faulty ciphertexts becomes infeasible. Thus, traditional differential
fault attacks are not expected to work here. Still, by using the techniques introduced in
Section 3.2, we show that such a countermeasure can be attacked by exploiting correct
ciphertexts that are the result of biased but ineffective fault inductions.

Since the authors of the attacked countermeasure [27] did not give any recommendations
for t, we have evaluated our attack for t = 11, t = 22, and t = 66, leading to AES encryptions
that require 33, 44, and 88 AES round function calls respectively. The resulting clock
count per protected encryption is then about 110 000, 140 000, and 280 000.

The existence of dummy rounds makes the fault induction process less reliable. While
we are able to induce faults in the detection-based scenario using constant trigger offsets
with high success rates, the same cannot be said about the infective countermeasure
scenario. Here, randomly occurring dummy rounds reduce the probability of hitting a
penultimate AES round significantly.

We started with a simulation of multiple encryption runs in order to determine the
round that performs the actual penultimate AES round with highest probability. Clearly,
the best round for the attack depends on t. According to the simulation results in Table 4
we can expect the maximum possible fault induction success rate when targeting the 31st,
41st, and 83rd round. Once we know the best round for the attack, we can use a similar
fault parameterisation as in the other experiments with the ATXmega 128D4. In contrast
to the detection-based scenario, we cannot detect ineffective faults by observing just one
encryption when infection is used. Hence, we always perform one encryption twice, once
with fault induction, once without.

Table 4: Fault scenarios for attacking infective AES

Dummy Total AES Target Fault Offset Maximum Possible
Rounds (t) Rounds Round (clks) Fault Induction Success

11 33 31 103 160 44%
22 44 41 129 440 25%
66 88 83 263 560 11%

The results of our attack evaluation are shown in Figure 7. Even though the low fault
induction success rate results in a high number of correct ciphertexts, only very few of
them will show a non-uniform distribution in the attacked byte. Thus the number of
ciphertexts needed to distinguish a correct key candidate is significantly higher compared
to the detection-based scenario. In the worst case, i.e., t = 88, we had to perform about
130 000 faulty AES encryptions, which lead to about 120 000 correct ciphertexts. For a
reliable recovery of 4 AES key bytes, about 110 000 such correct ciphertexts were necessary.

5 Conclusion
In this work, we provide an extensive insight on ineffective faults, where faults are being
induced, but not showing an effect. The introduced statistical ineffective fault attacks
(SIFA) can be seen as an intersection of the principles exploited by ineffective fault attacks
(IFA) [10] and by statistical fault attacks (SFA) [15]. While previous work on IFA relies on
strong models like stuck-at faults, we were able to relax these conditions up to a point were



Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian Mendel
and Robert Primas 19

we only require that intermediate values follow an unknown but non-uniform distribution.
Hence, no special fault profiling of a targeted device is necessary.

SIFA inherits the ability from IFA that it only exploits the output of valid computations,
which makes the attack independent of the degree of redundancy used in a countermeasure.
As a consequence, it is not harder to attack a detection-based countermeasure performing
16 redundant operations compared to a countermeasure just performing 2. On the other
hand, like SFA, SIFA works with minimal assumptions on the effect of the faults. Thus,
similar as it has been shown for SFA (e.g., in [13]), we are able to demonstrate the feasibility
of SIFA on various platforms in practice. However, in contrast to SFA, the practical attacks
with SIFA are possible even in the presence of countermeasures against fault attacks.

We demonstrate the improvements of our work over IFA, amongst others by showing the
applicability of SIFA on detection-based countermeasures utilizing 32-bit-bitsliced software
AES implementations, or hardware co-processor AES implementations. In both cases the
induction of precise stuck-at faults in certain bytes, as required by IFA, is considerably
harder and was not possible in our fault setup.

Ultimately, we show that SIFA has new applications where neither SFA nor IFA are
applicable, by demonstrating our attack on AES with the infective countermeasure that
was presented at CHES 2014 [27]. Here, SFA does not work since the induced errors are
amplified up to a point where the faulty output is unexploitable. Also IFA is not possible
in this case, because even if precise faults were feasible, IFA cannot deal with the large
amount of noise resulting from a low fault induction success rate that is caused by the
presence of dummy rounds at random points in time. In addition, our experiments indicate
that the number of dummy rounds t = 22 seems to be a good choice. As shown in Figure 7,
t = 22 is significantly stronger than t = 11, while t = 66 does not improve a lot compared
to t = 22. Also in terms of performance, t = 22 requires only 11 more AES rounds than
t = 11 while t = 66 with 88 AES rounds in total appears to be an unreasonable additional
cost, given the limited security gain.
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(a) Software AES, ATXmega 128D4, t = 33
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(b) Software AES, ATXmega 128D4, t = 44
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Figure 7: Attacks on software AES, ATXmega 128D4, infective countermeasure. SEI of
the correct key (SEIR) vs. best SEI of a wrong key (SEI∗W) for N correct encryptions.
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