
Template-based Fault Injection Analysis
of Block Ciphers

Ashrujit Ghoshal∗, Sikhar Patranabis†, Debdeep Mukhopadhyay‡
Indian Institute of Technology Kharagpur, India

Email: ∗ashrujitg@iitkgp.ac.in, †sikhar.patranabis@iitkgp.ac.in, ‡debdeep@cse.iitkgp.ernet.in

Abstract—We present the first template-based fault injection
analysis of FPGA-based block cipher implementations. While
template attacks have been a popular form of side-channel
analysis in the cryptographic literature, the use of templates
in the context of fault attacks has not yet been explored to
the best of our knowledge. Our approach involves two phases.
The first phase is a profiling phase where we build templates of
the fault behavior of a cryptographic device for different secret
key segments under different fault injection intensities. This is
followed by a matching phase where we match the observed
fault behavior of an identical but black-box device with the pre-
built templates to retrieve the secret key. We present a generic
treatment of our template-based fault attack approach for SPN
block ciphers, and illustrate the same with case studies on a
Xilinx Spartan-6 FPGA-based implementation of AES-128.
Keywords — Template Attacks, Fault Injection, Fault Intensity

I. INTRODUCTION

The advent of implementation-level attacks has challenged
the security of a number of mathematically robust cryp-
tosystems, including symmetric-key cryptographic primitives
such as block ciphers and stream ciphers, as well as public-
key encryption schemes. Implementation attacks come in two
major flavors - side-channel analysis (SCA) and fault injection
analysis (FIA). SCA techniques typically monitor the leakage
of a cryptographic implementation from various channels, such
as timing/power/EM radiations, and attempt to infer the secret-
key from these leakages [1], [2]. FIA techniques, on the other
hand, actively perturb the correct execution of a cryptographic
implementation via voltage/clock glitches [3], [4], [5], EM
pulses [6] or precise laser beams [7], [8]. With the growing
number of physically accessible embedded devices processing
sensitive data in today’s world, implementation level attacks
assume significance. In particular, a thorough exploration of
the best possible attacks on any cryptographic implementation
is the need of the hour.

A. Fault Models for Fault Injection Analysis

Nearly all FIA techniques in the existing literature assume a
given fault model (such as random faults [6] and/or stuck-
at-faults [9]) in a given location of the cipher state. Some
of these techniques, such as differential fault analysis (DFA)
[10], [11], [12] and differential fault intensity analysis (DFIA)
[13], [14] are found to be more efficient in the presence
of highly localized faults, such as single bit flips, or faults
restricted to a given byte of the cipher state. While DFA attacks
are possible using multiple byte faults, e.g. diagonal faults
[15], the fault pattern impacts the complexity of key-recovery.

In particular, with respect to AES-128, faults restricted to a
single diagonal allow more efficient key-recovery as compared
to faults spread across multiple diagonals. Similarly, DFIA
typically exploits the bias of fault distribution at various fault
intensities, under the assumption that the fault is restricted to
a single byte/nibble of the cipher state [14]. Other techniques
such as fault sensitivity analysis (FSA) [16], [17] require the
knowledge of the critical fault intensity at which the onset
of faulty behavior is observed. This critical value is then
correlated with the secret-key dependent cipher state value.
Finally, FIA techniques such as safe-error analysis (SEA) [18]
and differential behavioral analysis (DBA) [9] require highly
restrictive fault models such as stuck-at faults, where a specific
target bit of the cipher state is set to either 0 or 1. In recent
literature, microcontroller-based implementation of crypto-
graphic algorithms have been subjected to instruction-skip
attacks [19], [20], where the adversary uses precise injection
techniques to transform the opcode for specific instructions
into that for NOP (no-operation).
Similarity between FIA and SCA. The above discussion
clearly reveals that existing FIA techniques are inherently
dependent on the ability of an adversary to replicate a specific
fault model on an actual target device. Fault precision and
fault localization contribute to the efficiency of the attack,
while the occurrence of random faults outside the target model
generate noisy ciphertexts, thereby degrading the attack effi-
ciency. Observe that this is conceptually similar to the effect
of noise on the efficiency of traditional SCA techniques such
as simple power analysis (SPA) and differential power analysis
(DPA). In particular, the success rate for these techniques is
directly proportional to the signal-to-noise ratio (SNR) of an
implementation.
Our Motivation. In this paper, we aim to devise a general-
ized FIA strategy that overcomes the dependency of existing
techniques on specific fault models. Rather than analyzing the
behavior of the target implementation under a given set of
faults, our approach would learn the behavior of the device-
under-test (DUT) under an unrestricted set of fault injection
parameters, irrespective of the fault nature. Such an attack
strategy would allow a larger exploitable fault space, making it
more powerful than all reported FIA techniques. As discussed
next, an equivalent of the same approach in the context of
SCA is well-studied in the literature.

1



Fig. 1: Template-based Fault Injection Analysis: An Overview

B. Template Attacks: Maximizing the Power of SCA
Template attacks (TA) were proposed in [21] as the strongest
form of SCA in an information-theoretic setting. Unlike other
popular SCA techniques such as DPA, TA does not view
the noise inherent to any cryptographic implementation as a
hindrance to the success rate of the attack. Rather, it models
precisely the noise pattern of the target device, and extracts
the maximum possible information from any available leakage
sample. This makes TA a threat to implementations otherwise
secure based on the assumption that an adversary has access
to only a limited number of side-channel samples. On the flip
side, TA assumes that the adversary has full programming
capability on a cryptographic device identical to the target
black-box device.

C. Our Contribution: Templates for Fault Injection Analysis
The existing literature on TA is limited principally to SCA,
exploiting passive leakages from a target cryptographic device
for key recovery. In this paper, we aim to extend the scope of
TA to active FIA attacks. Figure 1 summarizes our template-
based FIA technique. Our approach is broadly divided into
two main phases:
• The first phase of the attack is a profiling phase, where

the adversary is assumed to have programming access to
a device identical to the black-box target device. The ad-
versary uses this phase to characterize the fault behavior
of the device under varying fault injection intensities. We
refer to such characterizations as the fault template for
the device. We choose the statistical distribution of faulty
ciphertext values under different fault injection intensities
as the basis of our characterization. The templates are typ-
ically built on small-segments of the overall secret-key,

which makes a divide-and-conquer key recovery strategy
practically achievable. Note that the matching phase does
not require the correct ciphertext value corresponding to
a given encryption operation.

• The second phase of the attack is the matching phase,
where the adversary obtains the fault behavior of
the target black-box device (with an embedded non-
programmable secret-key K) under a set of fault injection
intensities, and matches them with the templates obtained
in the profiling phase to try and recover K. The idea is
to use a maximum likelihood estimator-like distinguisher
to identify the key hypothesis for which the template
exhibits the maximum similarity with the experimentally
obtained fault behavior of the target device.

D. Comparison with Existing FIA Techniques

In this section, we briefly recall existing FIA techniques, and
explain their differences with our proposed template-based
FIA approach. As already mentioned, our technique has two
phases, and assumes that the adversary has programmable
access to a device identical to the device under test. At the
same time, it allows modeling the behavior of the device
independent of specific fault models, as is done in most
state-of-the-art FIA techniques. We explicitly enumerate these
differences below.

Differential Fault Analysis (DFA): In DFA [22], [10],
[23], [11], the adversary injects a fault under a specific fault
model in target location of the cipher state, and analyzes
the fault propagation characteristics using the knowledge of
the fault-free and faulty ciphertexts. Our template-based FIA
does not trace the propagation of the fault; rather it simply

2



creates a template of the faulty ciphertext distribution under
different fault injection intensities. This makes our approach
independent of any specific fault model.

Differential Fault Intensity Analysis (DFIA): DFIA [14],
[24] exploits the underlying bias of any practically achieved
fault distribution on the target device, once again under a
chosen fault model. It is similar in principle to DPA in
the sense that it chooses the most likely secret-key value
based upon a statistical analysis of the faulty intermediate
state of the block cipher, derived from the faulty ciphertext
values only. Our template-based FIA can be viewed as
a generalization of DFIA with less stringent fault model
requirements. Similar to DFIA, our approach also does not
require the correct ciphertext values. However, our approach
does not statistically analyze the faulty intermediate state
based upon several key hypotheses. Rather, it pre-constructs
separate templates of the faulty ciphertext distribution for each
possible key value, and matches them with the experimentally
obtained faulty ciphertext distribution from the black-box
target device. Rather than focusing on specific fault models,
the templates are built for varying fault injection intensities.

Fault Sensitivity Analysis (FSA): FSA [16], [17] exploits
the knowledge of the critical fault intensity under which a
device under test starts exhibiting faulty output behavior. The
critical intensity is typically data-dependent, which allows
secret-key recovery. FSA does not use the values of either the
correct or the faulty ciphertexts. However, it requires a precise
modeling of the onset of faults on the target device. Our
methodology, on the other hand, uses the faulty ciphertext
values, and is free of such precise critical fault intensity
modeling requirements.

Safe Error Analysis (SEA): In SEA [18], [9], the adversary
injects a fault into a precise location of the cipher state,
and observes the corresponding effect on the cipher behavior.
A popular fault model used in such attacks is the stuck-
at fault model. The adversary injects a fault to set/reset a
bit of the cipher state, and infers from the nature of the
output if the corresponding bit was flipped as a result of
the fault injection. Quite clearly, this fault model is highly
restrictive. Our approach, on the other hand, allows random
fault injections under varying fault intensities, which makes
easier to reproduce in practice on real-world target devices.

II. TEMPLATE-BASED FIA: DETAILED APPROACH

In this section, we present the details of our proposed template-
based FIA. Given a target device containing a block cipher
implementation, let F be the space of all possible fault
intensities under which an adversary can inject a fault on this
device. Now, assume that a random fault is injected in a given-
segment Sk of the cipher state under a fault intensity Fj ∈ F .
Also assume that this state segment has value Pi′ ∈ P , and
subsequently combines with a key segment Ki ∈ K, where P
and K are the space of all possible intermediate state values

and key segment values respectively, resulting in a faulty
ciphertext segment Ci,i′,j,k. The granularity of fault intensity
values depends on the injection equipment used - precise
injection techniques such as laser pulses are expected to offer
higher granularity levels than simpler injection techniques such
as clock/voltage glitches. Note that we do not restrict the
nature of the faults resulting from such injections to any
specific model, such as single bit/single byte/stuck-at faults.
With these assumptions in place, we now describe the two
phases - the template building phase and the template matching
phase - of our approach.

A. Template Building Phase

In this phase, the adversary has programmable access to a
device identical to the device under test. By programmable
access, we mean the following:
• The adversary can feed a plaintext P and master secret-

key K of his choice to the device.
• Upon fault injection under a fault intensity Fj ∈ F , the

adversary can detect the target location Sk in the cipher
state where the fault is induced

• The adversary has the knowledge of the corresponding
key segment Ki ∈ K and the intermediate state segment
Pi′ ∈ P . The key segment combines with the faulty state
segment to produce the faulty ciphertext segment Ci,i′,j,k.

Let C1
i,i′,j,k, · · · , CN

i,i′,j,k be the faulty ciphertext outputs
upon N independent fault injections in the target location
Sk under fault injection intensity Fj , corresponding to the
intermediate state segment Pi′ and key segment Ki. We refer
to the tuple Ti,i′,j,k =

(
C1

i,i′,j,k, · · · , CN
i,i′,j,k

)
as a fault

template instance. This template instance is prepared and
stored for possible tuples (Ki, Pi′ , Fj , Sk) ∈ K×P ×F ×S,
where S is the set of all fault locations in the cipher state
that need to be covered for full key-recovery. The set of all
such template instances constitutes the fault template for the
target device. Algorithm 1 summarizes the main steps of the
template building phase as described above.

Note: The number of fault injections N required per fault
intensity during the template building phase may be deter-
mined empirically, based upon the desired success rate of key
recovery in the subsequent template matching phase. Quite
evidently, increasing N improves the success rate of key
recovery.

B. Template Matching Phase

In this phase, the adversary has black-box access to the target
device. Under the purview of black-box access, we assume the
following:
• The adversary can feed a plaintext P of his choice to the

device and run the encryption algorithm multiple times
on this plaintext.

• Upon fault injection under a fault intensity Fj ∈ F ,
the adversary can induce the target location Sk in the
cipher state where the fault is induced, by observing the
corresponding faulty ciphertext C ′j,k.

3



Algorithm 1 Template Building Phase

Require: Programmable target device
Require: Target block cipher description
Ensure: Fault template T for the target device

1: Fix the set S of fault locations to be covered for successful
key recovery depending on the block cipher description

2: Fix the space F of fault injection intensities depending on
the device characteristics

3: Fix the number of fault injections N for each fault
intensity

4: T ← φ
5: for each fault location Sk ∈ S do
6: for each corresponding intermediate state segment and

key segment (Pi′ ,Ki) ∈ P ×K do
7: for each fault injection intensity Fj ∈ F do
8: for each l ∈ [1, N ] do
9: Run an encryption of Pi′ such that the

target key segment has value Ki

10: Inject a fault under intensity Fj in the target
location Sk

11: Let Cl
i,i′,j,k be the faulty ciphertext seg-

ment
12: end for
13: Ti,i′,j,k ←

(
C1

i,i′,j,k, · · · , CN
i,i′,j,k

)
14: T ← T ∪ Ti,i′,j,k
15: end for
16: end for
17: end for
18: return T

• The adversary has no idea about the intermediate state
segment Pi′ where the fault is injected, or the key
segment Ki that subsequently combines with the faulty
state segment to produce the ciphertext.

The adversary again performs N independent fault injec-
tions under each fault injection intensity Fj in a target lo-
cation Sk, and obtains the corresponding faulty ciphertexts
C ′

1
j,k, · · · , C ′

N
j,k. All fault injections are performed during

encryption operations using the same plaintext P as in the
template building phase. These faulty ciphertexts are then
given as input to a distinguisher D. The distinguisher ranks
the key-hypotheses K1, · · · ,Kn ∈ K, where the rank of Ki

is estimated based upon the closeness of the experimentally
obtained ciphertext distribution with the template instance
Ti,i′,j,k, for all possible intermediate state segments Pi′ . The
closeness is estimated using a statistical measure M. The
distinguisher finally outputs the key hypothesis Ki that is
ranked consistently highly across all rank-lists corresponding
to different fault injection intensities. Algorithm 2 summarizes
our proposed template matching phase.

C. The Statistical measure M

An important aspect of the template matching phase is
choosing the statistical measure M to measure the closeness of

Algorithm 2 Template Matching Phase

Require: Fault template T corresponding to plaintext P
Ensure: The secret-key

1: for each fault location Sk ∈ S do
2: for each fault injection intensity Fj ∈ F do
3: for each l ∈ [1, N ] do
4: Inject a fault under intensity Fj in location Sk

5: Let C ′lj,k be the faulty ciphertext segment
6: end for
7: Ej,k ←

(
C ′

1
j,k, · · · , C ′

N
j,k

)
8: end for
9: end for

10: for each fault location Sk ∈ S do
11: for each fault injection intensity Fj ∈ F do
12: for each possible key hypothesis Ki ∈ K and

intermediate state segment Pi′ ∈ P do
13: ρi,i′,j,k ←M (Ej,k, Ti,i′,j,k)
14: end for
15: end for
16: Store the pair (Ki, Pi′) pair such that

∑
Fj∈F ρi,i′j,k

is maximum for the given fault location Sk.
17: end for
18: return the stored key hypothesis corresponding to each

unique key segment location.

the experimentally observed faulty ciphertext segment distri-
bution, with that corresponding to each template instance. We
propose using a correlation-based matching approach for this
purpose. The first step in this approach is to build a frequency-
distribution table of each possible ciphertext segment value
in each of the two distributions. Let the possible ciphertext
segment values be in the range [0, 2x−1] (for example, [0, 255]
for a byte, or [0, 15] in case of a nibble). Also, let f(y) and
f ′(y) denote the frequency with which a given ciphertext
segment value y ∈ [0, 2x−1] occurs in the template and the
experimentally obtained distribution, respectively. Since there
are exactly N sample points in each distribution, we have∑

y∈[0,2x−1] f(y) =
∑

y∈[0,2x−1] f
′(y) = N .

The next step is to compute the Pearson’s correlation
coefficient between the two distributions as:

ρ =

∑
y∈[0,2x−1]

(
f(y)− N

2x

)
·
(
f ′(y)− N

2x

)
√ ∑

y∈[0,2x−1]

(
f(y)− N

2x

)2√ ∑
y∈[0,2x−1]

(
f ′(y)− N

2x

)2
The Pearson’s correlation coefficient is used as the measure
M . The choice of statistic is based on the rationale that, for
the correct key segment hypothesis, the template would have a
similar frequency distribution of ciphertext segment values as
the experimentally obtained set of faulty ciphertexts, while for
a wrong key segment hypothesis, the distribution of cipher-
text segment values in the template and the experimentally
obtained ciphertexts would be uncorrelated.

An advantage of the aforementioned statistical approach is
that it can be extended to relaxed fault models such as multi-

4



(a) Template Building Phase (b) Template Matching Phase

Fig. 2: Experimental Set-Up

byte faults, that are typically not exploited in traditional FIA
techniques. In general, if a given fault injection affects multiple
locations in the block cipher state, the correlation analysis
is simply repeated separately for each fault location. This is
similar to the divide-and-conquer approach used in SCA-based
key-recovery techniques.

III. CASE STUDY: TEMPLATE-BASED FIA ON AES-128
In this section, we present a concrete case study of the
proposed template-based FIA strategy on AES-128. As is well-
known, AES has a plaintext and key size of 128 bits each, and
a total of 10 rounds. Each round except the last one comprises
of a non-linear S-Box layer (16 S-Boxes in parallel), a linear
byte-wise ShiftRow operation, and a linear MixColumn opera-
tion, followed by XOR-ing with the round key. The last round
does not have a MixColumn operation. This in turn implies
that if a fault were injected in one or more bytes of the cipher
state after the 9th round MixColumn operation, the faulty state
byte (or bytes) combines with only a specific byte (or bytes)
of the 10th round key. For example, if a fault were injected in
the first byte of the cipher state, the faulty byte would pass
through the S-Box and ShiftRow operation, and combine with
the first byte of the 10th round key to produce the first byte
of the faulty ciphertext. The exact relation between the fault
injection location and the corresponding key segment depends
solely on the ShiftRow operation, and is hence deterministic.
This matches precisely the assumptions made in our attack
description in the previous section. Consequently, this case
study assumes that all faults are injected in the cipher state
between the 9th round MixColumn operation and the 10th

round S-Box operations. The aim of the fault attack is to

recover byte-wise the whole 10th round key of AES-128, which
in turn deterministically reveals the entire secret-key.

A. The Fault Injection Setup

The fault injection setup (described in Figure 2) uses a
Spartan 6 FPGA mounted on a Sakura-G evaluation board,
a PC and an external arbitrary function generator (Tektronix
AFG3252). The FPGA has a Device Under Test (DUT) block,
which is an implementation of the block cipher AES-128.
Faults are injected using clock glitches. The device operates
normally under the external clock signal clkext. The glitch
signal, referred to as clkfast, is derived from the clkext via
a Xilinx Digital Clock Manager (DCM) module. The fault
injection intensity in our experiments is essentially the glitch
frequency, and is varied using a combination of the DCM
configuration, and the external function generator settings.
In the template building phase, the intermediate cipher state
Pi′ and the intermediate round key Ki are monitored using
a ChipScope Pro analyzer, while in the template matching
phase, the DUT is a black box with no input handles or
internal monitoring capabilities. Table I summarizes the glitch
frequency ranges at which these fault models were observed
on the target device.

B. Templates for Single Byte Faults

In this section, we present examples of fault templates
obtained from the device under test, for glitch frequencies that
result in single byte fault injections in the AES-128 module.
Since only a single byte is affected between the 9th round
MixColumn operation and the 10th round S-Box operations,
we are interested in the distribution of the corresponding

5



(a) Single bit faults: 125.3-125.5 MHz (b) Two-bit faults: 125.5-125.7 MHz (c) Three-bit faults: 125.7-126.0 MHz

Fig. 3: Templates for Single Byte Faults: Distribution of Faulty Ciphertext Byte for Different Fault Injection Intensities

(a) 1-bit, 2-bit fault in 2 bytes: 126.1 MHz (b) 1-bit, 2-bit, 3-bit fault across 3 bytes: 126.2 MHz

Fig. 4: Templates for Multi-Byte Faults: Distribution of Multiple Faulty Ciphertext Byte Values

TABLE I: Glitch Frequencies for Different Fault Models

Glitch Frequency (MHz) Faulty Bytes Bit Flips per Byte
125.3-125.5 1 1
125.6-125.7 1 2
125.8-126.0 1 3
126.1-126.2 2-3 1-3
> 126.2 > 3 > 5

faulty byte in the ciphertext. Figure 3 presents fault templates
containing ciphertext byte distributions for three categories of
faults - single bit faults, two-bit faults, and three-bit faults.
The templates correspond to the same pair of intermediate state
byte and last round key byte for an AES-128 encryption. Quite
evidently, the ciphertext distribution for each template reflects
the granularity of the corresponding fault model. In particular,
for a single bit fault, most of the faulty ciphertext bytes
assume one of 8 possible values, while for three-bit faults, the
ciphertext bytes assume more than 50 different values across
all fault injections. In all cases, however, the distribution of
ciphertext values is non-uniform, which provides good scope
for characterizing the fault behavior of the device in the

template building phase.

C. Templates for Multi-Byte Faults

In this section, we present examples of fault templates
constructed for glitch frequencies that result in multi-byte
fault injections. Figure 4 shows the distribution of different
bytes injected with different faults. It is interesting to observe
that at the onset of multi-byte faults, the distribution of
faulty ciphertext bytes is not uniformly random; indeed, it is
possible to characterize the fault behavior of the device in
terms of templates under such fault models. Given the absence
of MixColumn operation in the last round of AES, each
faulty intermediate state byte combines independently with a
random last round key byte. This allows a divide-and-conquer
template matching approach, where the statistical analysis
may be applied to each faulty ciphertext byte independently.
This is a particularly useful mode of attack, since it can be
launched even without precise fault injection techniques that
allow targeting a single byte of the cipher state.

6



(a) Target Key Byte = 0x00 (b) Target Key Byte = 0x01

(c) Target Key Byte = 0x02 (d) Target Key Byte = 0x03

Fig. 5: Frequency Distributions for Faulty Ciphertext Byte : Same Intermediate State Byte but Different Key Byte Values

D. Variation with Key Byte Values

The success of our template matching procedure with re-
spect to AES-128 relies on the hypothesis that for different
key byte values, the ciphertext distribution corresponding to
the same fault location is different. Otherwise, the key recovery
would be ambiguous. We validated this hypothesis by examin-
ing the ciphertext distribution upon injecting a single bit fault
in the first byte of the cipher state, corresponding to different
key byte values. We illustrate this with a small example in
Figure 5. Figures 5a, 5b, 5c and 5d represent the frequency
distributions for faulty ciphertext byte corresponding to the
same intermediate byte value of 0x00, and key byte values
0x00, 0x01, 0x02 and 0x03, respectively. Quite evidently,
the three frequency distributions are unique and mutually
non-overlapping. The same trend is observed across all 256
possible key byte values; exhaustive results for the same could
not be provided due to space constraints.

E. Template matching for Key-Recovery

In this section, we present results for recovering a single
key-byte for AES-128 under various fault granularities. As
demonstrated in Figure 6, the correlation for the correct key
hypothesis exceeds the average correlation over all wrong key
hypotheses, across the three fault models - single bit faults,

two-bit faults and three-bit faults. As is expected, precise
single-bits faults within a given byte enable distinguishing
the correct key hypothesis using very few number of fault
injections (50-100); for less granular faults such as three-
bit faults, more number of fault injections (200-500) are
necessary. Finally, the same results also hold for multi-byte
fault models, where each affected byte encounters a certain
number of bit-flips. Since the key-recovery is performed byte-
wise, the adversary can use the same fault instances to recover
multiple key bytes in parallel.

IV. CONCLUSION

We presented the first template based fault injection analysis
of block ciphers. We presented a a generic algorithm com-
prising of a template building and a template matching phase,
that can be easily instantiated for any target block cipher. The
templates are built on pairs of internal state segment and key
segment values at different fault intensities, while the number
of fault instances per template depends on the statistical
methodology used in the matching phase. In this paper, we
advocated the use of the Pearson correlation coefficient in
the matching phase; exploring alternative techniques in this
regard is an interesting future work. In order to substantiate
the effectiveness of our methodology, we presented a case-

7



0 500 1,000 1,500 2,000

0.3

0.4

0.5

0.6

0.7

Number of Faulty Injections

C
or

re
la

tio
n

Va
lu

e

Correct Key
Wrong Key

(a) Single Bit Faults

0 500 1,000 1,500 2,000

0.4

0.5

0.6

Number of Faulty Injections

C
or

re
la

tio
n

Va
lu

e

Correct Key
Wrong Key

(b) Two-Bit Faults

0 500 1,000 1,500 2,000

0.3

0.35

0.4

0.45

0.5

Number of Faulty Injections

C
or

re
la

tio
n

Va
lu

e

Correct Key
Wrong Key

(c) Three-Bit Faults

Fig. 6: Correlation between template and Observed Ciphertext Distribution: Correct Key Hypothesis v/s Wrong Key Hypothesis

study targeting a hardware implementation of AES-128 on a
Spartan-6 FPGA. Interestingly, our attack allowed exploiting
even low-granularity faults such as multi-byte faults, that do
not require high precision fault injection equipment. It may
be emphasized that the attack is devoid of the exact knowl-
edge of the underlying fault model. Such fault models also
allowed parallel recovery of multiple key-bytes, thus providing
a trade-off between the number of fault injections, and the
number of recovered key-bytes. An interesting extension of
this work would be apply template-based analysis against
implementations with fault attack countermeasures such as
spatial/temporal/information redundancy.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in cryptologyCRYPTO99. Springer, 1999, pp. 789–789.

[2] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008,
vol. 31.

[3] N. Selmane, S. Guilley, and J.-L. Danger, “Practical setup time violation
attacks on aes,” in Dependable Computing Conference, 2008. EDCC
2008. Seventh European. IEEE, 2008, pp. 91–96.

[4] A. Barenghi, G. M. Bertoni, L. Breveglieri, and G. Pelosi, “A fault
induction technique based on voltage underfeeding with application to
attacks against aes and rsa,” Journal of Systems and Software, vol. 86,
no. 7, pp. 1864–1878, 2013.

[5] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria,
“When Clocks Fail: On Critical Paths and Clock Faults,” Smart Card
Research and Advanced Application, pp. 182–193, 2010.

[6] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
transient faults injection on a hardware and a software implementations
of aes,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2012 Workshop on. IEEE, 2012, pp. 7–15.

[7] G. Canivet, J. Clédière, J. B. Ferron, F. Valette, M. Renaudin, and
R. Leveugle, “Detailed analyses of single laser shot effects in the
configuration of a virtex-ii fpga,” in On-Line Testing Symposium, 2008.
IOLTS’08. 14th IEEE International. IEEE, 2008, pp. 289–294.

[8] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Re-
naudin, “Glitch and laser fault attacks onto a secure aes implementation
on a sram-based fpga,” Journal of Cryptology, vol. 24, no. 2, pp. 247–
268, 2011.

[9] B. Robisson and P. Manet, “Differential behavioral analysis,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2007, pp. 413–426.

[10] G. Piret and J.-J. Quisquater, “A differential fault attack technique
against spn structures, with application to the aes and khazad,” in CHES,
vol. 2779. Springer, 2003, pp. 77–88.

[11] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault.” WISTP, vol.
6633, pp. 224–233, 2011.

[12] D. Mukhopadhyay, “An improved fault based attack of the advanced
encryption standard.” Africacrypt, vol. 5580, pp. 421–434, 2009.

[13] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on
aes with faulty ciphertexts only,” in Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2013 Workshop on. IEEE, 2013, pp. 108–118.

[14] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault
intensity analysis,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2014 Workshop on. IEEE, 2014, pp. 49–58.

[15] D. Saha, D. Mukhopadhyay, and D. R. Chowdhury, “A diagonal fault
attack on the advanced encryption standard.” IACR Cryptology ePrint
Archive, vol. 2009, p. 581, 2009.

[16] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis.” in CHES, vol. 6225. Springer,
2010, pp. 320–334.

[17] O. Mischke, A. Moradi, and T. Güneysu, “Fault sensitivity
analysis meets zero-value attack,” in 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan, South
Korea, September 23, 2014, 2014, pp. 59–67. [Online]. Available:
http://dx.doi.org/10.1109/FDTC.2014.16

[18] J. Blömer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES),” in Financial Cryptography, ser. Lecture
Notes in Computer Science, R. N. Wright, Ed. Springer, 2003, vol.
2742, pp. 162–181.

[19] H. Choukri and M. Tunstall, “Round reduction using faults,” FDTC,
vol. 5, pp. 13–24, 2005.

[20] K. Heydemann, N. Moro, E. Encrenaz, and B. Robisson, “Formal veri-
fication of a software countermeasure against instruction skip attacks,”
in PROOFS 2013.

[21] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 13–28.

[22] P. Dusart, G. Letourneux, and O. Vivolo, “Differential fault analysis on
aes,” in Applied Cryptography and Network Security. Springer, 2003,
pp. 293–306.

[23] C. H. Kim, “Differential fault analysis against aes-192 and aes-256
with minimal faults,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2010 Workshop on. IEEE, 2010, pp. 3–9.

[24] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay,
“A biased fault attack on the time redundancy countermeasure for aes,”
in International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2015, pp. 189–203.

8


