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Abstract

We introduce a formal quantitative notion of “bit security” for a general type of cryptographic games
(capturing both decision and search problems), aimed at capturing the intuition that a cryptographic
primitive with k-bit security is as hard to break as an ideal cryptographic function requiring a brute force
attack on a k-bit key space. Our new definition matches the notion of bit security commonly used by
cryptographers and cryptanalysts when studying search (e.g., key recovery) problems, where the use of
the traditional definition is well established. However, it produces a quantitatively different metric in the
case of decision (indistinguishability) problems, where the use of (a straightforward generalization of) the
traditional definition is more problematic and leads to a number of paradoxical situations or mismatches
between theoretical/provable security and practical/common sense intuition. Key to our new definition
is to consider adversaries that may explicitly declare failure of the attack. We support and justify the new
definition by proving a number of technical results, including tight reductions between several standard
cryptographic problems, a new hybrid theorem that preserves bit security, and an application to the
security analysis of indistinguishability primitives making use of (approximate) floating point numbers.
This is the first result showing that (standard precision) 53-bit floating point numbers can be used to
achieve 100-bit security in the context of cryptographic primitives with general indistinguishability-based
security definitions. Previous results of this type applied only to search problems, or special types of
decision problems.

1 Introduction

It is common in cryptography to describe the level of security offered by a (concrete instantiation of a)
cryptographic primitive P by saying that P provides a certain number of bits of security. E.g., one may say
that AES offers 110-bits of security as a pseudorandom permuation [6], or that a certain lattice based digital
signature scheme offers at least 160-bits of security for a given setting of the parameters. While there is no
universally accepted, general, formal definition of bit security, in many cases cryptographers seem to have
an intuitive (at least approximate) common understanding of what “n bits of security” means: any attacker
that successfully breaks the cryptographic primitive must incur a cost1 of at least T > 2n, or, alternatively,
any efficient attack achieves at most ε < 2−n success probability, or, perhaps, a combination of these two
conditions, i.e., for any attack with cost T and success probability ε, it must be T/ε > 2n. The intuition is
that 2n is the cost of running a brute force attack to retrieve an n-bit key, or the inverse success probability
of a trivial attack that guesses the key at random. In other words, n bits of security means “as secure as an
idealized perfect cryptographic primitive with an n-bit key”.

∗Research supported in part by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research
Office under the SafeWare program. Opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views, position or policy of the Government.
†UC San Diego, USA. E-mail: daniele@cs.ucsd.edu
‡IST Austria, Austria. E-mail: michael.walter@ist.ac.at
1For concreteness, the reader may think of the cost as the running time of the attack, but other cost measures are possible,

and everything we say applies to any cost measure satisfying certain general closure properties, like the fact that the cost of
repeating an attack k times is at most k times as large as the cost of a single execution.
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The appeal and popularity of the notion of bit security (both in theory and in practice) rests on the fact
that it nicely sits in between two extreme approaches:

• The foundations of cryptography asymptotic approach (e.g., see [10, 9]) which identifies feasible ad-
versaries with polynomial time computation, and successful attacks with breaking a system with non-
negligible probability.

• The concrete security approach [3, 5], which breaks the adversarial cost into a number of different
components (running time, oracle queries, etc.), and expresses, precisely, how the adversary’s advantage
in breaking a cryptographic primitive depends on all of them.

The foundational/asymptotic approach has the indubious advantage of simplicity, but it only offers a qual-
itative classification of cryptographic functions into secure and insecure ones. In particular, it does not
provide any guidance on choosing appropriate parameters and key sizes to achieve a desired level of security
in practice. On the other hand, the concrete security treatment delivers (precise, but) substantially more
complex security statements, and requires carefully tracking a number of different parameters through secu-
rity reductions. In this respect, bit security offers a quantitative, yet simple, security metric, in the form of
a single number: the bit security or security level of a primitive, typically understood as the logarithm (to
the base 2) of the ratio T/ε between the cost T and advantage ε of the attack, minimized over all possible
adversaries.

Capturing security level with a single number is certainly convenient and useful: it allows for direct com-
parison of the security level of different instances of the same primitive (or even between different primitives
altogether), and it provides a basis for the study of tight reductions, i.e., constructions and reductions that
approximately preserve the security level. Not surprisingly, bit security is widely used. However, there is no
formal definition of this term at this point, but rather just an intuitive common understanding of what this
quantity should capture. This understanding has led to some paradoxical situations that suggest that the
current “definitions” might not capture exactly what they are meant to.

It has been noted that only considering the adversary’s running time is a poor measure of the cost of an
attack [7, 8]. This is especially true if moving to the non-uniform setting, where an adversary may receive
additional advice, and the question of identifying an appropriate cost measure has been studied before [6].
However, the paradoxical situations have not, to this day, been resolved to satisfaction, and it seems that
considering only the adversary’s resources is insufficient to address this issue.

In order to explain the problems with the current situation, we first distinguish between two types of
primitives with respect to the type of game that defines their security (see Section 3 for a more formal defi-
nition): search primitives and decision primitives. Intuitively, the former are primitives where an adversary
is trying to recover some secret information from a large search space, as in a key recovery attack. The latter
are games where the adversary is trying to decide if a secret bit is 0 or 1, as in the indistinguishability games
underlying the definition of pseudorandom generators or semantically secure encryption. For search games,
the advantage of an adversary is usually understood to be the probability of finding said secret information,
while for decision games it is usually considered to be the distinguishing advantage (which is equal to the
probability that the output of the adversary is correct, over the trivial probability 1

2 of a random guess).

The Peculiar Case of PRGs Informally, a PRG is a function f : {0, 1}n 7→ {0, 1}m, where m > n,
such that its output under uniform input is indistinguishable from the uniform distribution over {0, 1}m. In
the complexity community it is common knowledge according to [8] that a PRG with seed length n cannot
provide more than n/2 bits of security under the current definition of security level. This is because there
are non-uniform attacks that achieve distinguishing advantage 2−n/2 in very little time against any such
function. Such attacks were generalized to yield other time-space-advantage trade-offs in [7]. This is very
counter-intuitive, as the best generic seed recovery attacks do not prevent n-bit security (for appropriate
cost measure), and thus one would expect n bits of security in such a case to be possible.

The Peculiar Case of Approximate Samplers Many cryptographic schemes, in particular lattice based
schemes, involve specific distributions that need to be sampled from during their execution. Furthermore,
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security reductions may assume that these distributions are sampled exactly. During the transition of such
a cryptographic scheme from a theoretical construction to a practical implementation, the question arises
as to how such a sampling algorithm should be implemented. In many cases, it is much more efficient or
secure (against e.g. side channel attacks) or even only possible to approximate the corresponding distribution
rather than generating it exactly. In such a case it is crucial to analyze how this approximation impacts
the security of the scheme. Tradionally, statistical distance has been employed to quantify this trade-off
between approximation and security guarantee, but it leads to the unfortunate situation where the 53-bit
precision provided by floating point numbers (as implemented in hardware in commodity microprocessors)
only puts a 2−53 bound on statistical distance, and results in a rather weak 53-bit security guarantee on
the final application. Proving better security using statistical distance methods seems to require higher
precision floating point numbers implemented in (substantially slower) software libraries. In recent years a
number of generic results have shown improved analysis methods based on different divergences [16, 2, 17, 15]
and using the conventional definition of bit security. Surprisingly, all of them apply exclusively to search
primitives (with the only exception of [2], which also considers decision primitives with a specific property).
This has led to the unnatural situation where it seems that decision primitives, like encryption, require
higher precision sampling than search primitives. This is counter-intuitive, because in search primitives, like
signature schemes, the distribution is often used to hide a specific secret and a bad approximation may leak
information about it. On the other hand, it is commonly believed within the research community that for
encryption schemes the distribution does not necessarily have to be followed exactly, as long as it has sufficient
entropy, since none of the cryptanalytic attacks seem to be able to take advantage of a bad approximation
in this case [1]. However, a corresponding proof for generic decision primitives (e.g., supporting the use of
hardware floating point numbers, while still targeting 100-bit or higher levels of security) has so far eluded
the attempts of the research community.

1.1 Contribution and Techniques

We present a new notion of bit security associated to a general cryptographic game. Informally, we consider
a game in which an adversary has to guess an n-bit secret string2 x. This captures, in a unified setting,
both decision/indistinguishability properties, when n = 1, and arbitrary search/unpredictability properties,
for larger n. The definition of bit security is quite natural and intuitive, building on concepts from infor-
mation theory, but we postpone its description to the end of this section. For now, what matters is that
a distinguishing feature of our framework is to explicitly allow the adversary to output a special “don’t
know” symbol ⊥, rather than a random guess. So, we can talk about the probability α that the adversary
outputs something (other than ⊥), and the (conditional) probability β that the output correctly identifies
the secret. This makes little difference for search problems, but for decision problems it allows the adversary
to express different degrees of confidence in its guess: admitting failure is more informative than a random
guess. We proceed by specializing our notion of bit security to the two important settings of search and
decision problems and show that:

• For the case of search primitives (large secret size n = |x|), this yields the traditional notion of bit
security, as the logarithm of the ratio T/ε between the attack cost T , and the success probability
ε = αβ. The fact that our definition is consistent with the current one in the case of search primitives
gives us confidence in its validity, since in this case the traditional definition is very intuitive and there
are no paradoxes casting doubts about it.

• Surprisingly, for decision primitives (i.e., for n = 1), our definition yields a different formula, which,
instead of being linear the distinguishing advantage δ = 2β − 1, is quadratic in δ. In other words, the
bit security is the logarithm of T/(αδ2). This is not entirely new, as a similar proposal was already
put forward in [11, 14] in a more specific context, but has so far received very little attention.

2More generally, the adversary has to output a value satisfying a relation R(x, a) which defines successful attacks. For
simplicity, in this introduction, we assume R is the identity function. See Definition 5 for the actual definition.

3



One of the implications of our new definition is that it seemingly resolves the paradoxical situation about
the bit security of pseudorandom generators (PRGs) described in [7]. (The significance of the nonuniform
attacks to one-way functions described in [7] can already be addressed by an appropriate choice of cost
measure.) For the PRG case, an attack achieving distinguishing advantage δ = 2−n/2 even in constant time
does not necessarily contradict n-bit security. In fact, [7] shows that for any algorithm distinguishing the
output of any function f : {0, 1}n 7→ {0, 1}n+1 from uniform with distinguishing advantage δ must use at
least T = Ω(δ22n) resources (for a suitable definition of resources, similar to the one-way function case). So,
this shows that by our definition, there exist PRGs with bit security log2(T/δ2) = n, as one would expect.

Of course, as definitions are abitrary, it is not clear if changing a definion is really solving any real
problem, and our definition of bit security needs to be properly supported and justified. Notice that a
reduction A ≤ B showing that if A is n-bit secure, then B is n/2-bit secure, may be interpreted in different
ways:

• Either the construction of B from A is not optimal/tight, i.e., it incurrs an actual security degradation

• Or the construction is tight, but the reduction (i.e., the security proof) is not

• Or the definition of bit security is incorrect.

The last possibility is most delicate when reducing between different types of cryptographic primitives (e.g.,
from search to decision) where the definition of bit security may take different (and somehow arbitrary)
forms. All these comments apply equally well to tight reductions, mapping n-bit security to n-bit security.
We support and justify our definition by providing a collection of results (typically in the form of tight
reductions3 between different cryptographic primitives), which are the main technical contribution of this
paper. For example,

• We observe that the Goldreich-Levin hard-core predicate is tight according to our definition, i.e., if
f(x) is an n-bit secure one-way permutation,4 then G(r, x) = (r, f(x), 〈r, x〉) is an n-bit secure PRG.

• There is a simple reduction showing that if G is an n-bit secure PRG, then the same G (and also f)
is an n-bit secure one-way function. (Interestingly, the reduction is not completely trivial, and makes
critical use of the special symbol ⊥ in our definition. See Theorem 4.)

Notice that, while both reductions are between different types of cryptographic primitives (search and deci-
sion, with different bit security formulas), combining them together gives a search-to-search reduction which
uses the same security definition on both sides. Since it would be quite counterintuitive for such a simple
reduction (from PRG to OWF) to increase the level of security from n/2 to n bits, this provides some con-
fidence that our definition is on target, and the Goldreich-Levin PRG is indeed as secure as the underlying
one-way function.

Other technical results presented in this paper include:

• Approximate samplers: we give a proof in Section 5.3.2 that shows for the first time that the sampling
precision requirement is essentially the same for search and decision primitives to maintain security. We
do this by extending a result from [15] for search primitives to decision primitives using our definition
of bit security.

• Hybrid argument: since our new definition of advantage no longer matches the simple notion of statis-
tical distance, the standard proof of the hybrid argument [12] (so ubiquitously used in cryptography
and complexity) is no longer valid. While the proof in our setting becomes considerably more involved,
we show (Theorem 7) that hybrid arguments are still valid.

3In the context of this work, “tight” means that bit security is (approximately) preserved, up to small additive logarithmic
terms corresponding to the polynomial running time of an attack. More specifically, a reduction is tight if it maps a primitive
providing n-bit security, to another with security level n−O(logn). For simplicity, we omit all the O(logn) in this introduction.

4The actual reduction holds for any one-way functions. Here we focus on permutations just to emphasize the connection
with PRGs. See Theorem 3.
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• Additional examples about non-verifiable search problems (Theorem 5), and tight reductions for
message-hiding encryption (Theorem 6), and multi-message security (Corollary 1).

Beside increasing our confidence in the validity of our new bit security notion, these reductions also start
building a toolbox of techniques that can be used to fruitfully employ the new definition in the analysis
of both old and new cryptographic primitives, and improve our theoretical understanding of the relation
between different cryptographic primitives by means of tight reductions. Finally, they allow us to expand
the use of divergence techniques [16, 2, 17, 15] to bound the floating point precision required to secure
cryptographic primitives with indistinguishability security properties.

We conclude this section with an informal overview of the new bit security definition. As already men-
tioned, our definition is based on concepts from information theory. In a purely information theoretic setting,
the advantage of an adversary A in discovering a secret X could be modeled by the mutual information
ε = I(A,X)/H(X), normalized by the entropy of the secret H(X) to ensure ε ≤ 1. Of course, this approach
completely fails in the computational setting, where the output of a one-way permutation f(X) is perfectly
correlated with the input X, but still we do not want to consider a trivial algorithm A(f(X)) = f(X) as
a successful attack (with advantage ε = I(A,X)/H(X) = 1 !) to the one-way permutation input recovery
problem: what the adversary knows (f(X)) identifies the input X information theoretically, but it does not
provide knowledge of it. We adapt this definition to the computational setting by replacing A with a different
random variable Y which equals (1) the secret X when A is successful (i.e., A = X), and (2) an independent
copy X ′ of the secret (conditioned on X ′ 6= X) when A failed to output X. We find this definition intuitively
appealing, and we consider it the main conceptual contribution of this paper. But words are of limited value
when arguing about the validity of a new definition. We view the technical results described above the most
important evidence to support our definition, and the main technical contribution of this work.

1.2 Related Work

While the informal concept of bit security is widely used in cryptography, not many papers directly address
the problem of its formal definition. Some of the works that are perhaps most directly related to our are
[6, 7, 8], which pinpoint the shortcoming of the traditional definition. The work of Bernstein and Lange
[6] provides an extensive survey of relevant literature, and attempts to provide a better definition. In [6,
Appendix B] the authors analyze different measures to address the underlying problems, and show how each
of them can be used to make partial progress towards a more sound definition of bit security, while pointing
out that none of them seem to solve the problem entirely. In contrast, the definitions and results in this
paper concern the definition of adversarial advantage, which we consider to be orthogonal to any of the ideas
presented in [6]. So, we see our work as complementary to [6, 7, 8].

To the best of our knowledge there are only two works proposing an alternative definition of adversarial
advantage for decision problems: the aforementioned works of Goldreich and Levin [11, 14] and the infamous
HILL paper [13]. The latter primarily works with the tradional definition of adversarial advantage, but
presents the advantage function δ2 (note the lack of α) as an alternative, observing that many of their
reductions are much tighter in this case. Our work can be considered as a generalization of them, and
supporting the definitional choices made in [11, 14]. In the last years, bit security has been the focus on a
body of work [16, 2, 17, 15] aimed at optimizing the parameters and floating point precision requirements
of lattice cryptography. Our work resolves the main problem left open in [17, 15] of extending definitions
and techniques from search to decision problems, and support the secure use of standard precision floating
point numbers in the implementation of cryptographic primitives (like encryption) with indistinguishability
security properties.

2 Preliminaries

Notation. We denote the integers by Z and the reals by R. Roman and Greek letters can denote elements
from either set, while bold letters denote vectors over them. Occasionally, we construct vectors on the fly
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using the notation (·)i∈S for some set S (or in short (·)i if the set S is clear from context), where · is a
function of i. For a set S, we denote its complement by S̄. We denote the logarithm to the base 2 by log
and the one to the base e by ln.

Calligraphic letters are reserved for probability distributions and x← P means that x is sampled from the
distribution P. For any x in the support of P, we denote its probability under P by P(x). All distributions
in this work are discrete, and U(S) is the uniform distribution over the support S. If S is clear from context,
we simply write U instead of U(S). A probability ensemble {Pθ}θ is a family of distributions indexed by
a parameter θ (which may be a string or a vector). We extend any divergence δ between distributions
to probability ensembles by δ({Pθ}θ, {Qθ}θ) = maxθ δ(Pθ,Qθ). For notational simplicity, we do not make
a distinction between random variables, probability distributions, and probabilistic algorithms generating
them.

Definition 1 The statistical distance between two distributions P and Q over S is defined as ∆SD(P,Q) =
1
2

∑
x∈S |P(x)−Q(x)|.

2.1 Information Theory

For our definition, we need a few concepts from information theory.

Definition 2 The Shannon entropy of a random variable X is given by

H(X) = EX

[
log

1

Pr{X}

]
= −

∑
x

Pr[X = x] log Pr[X = x].

Definition 3 For two random variables X and Y , the conditional entropy of X given Y is

H(X|Y ) = EY [H(X|Y )] =
∑
x,y

Pr[X = x, Y = y] log
Pr[Y = y]

Pr[X = x, Y = y]
.

Definition 4 The mutual information between two random variables X and Y is

I(X;Y ) = H(X)−H(X|Y ).

3 Security Games

In this section we formally define the bit security of cryptographic primitives in a way that captures practical
intuition and is theoretically sound. As the security of cryptographic primitives is commonly defined using
games, we start by defining a general class of security games.

Definition 5 An n-bit security game is played by an adversary A interacting with a challenger X. At the
beginning of the game, the challenger chooses a secret x, represented by the random variable X ∈ {0, 1}n,
from some distribution DX . At the end of the game, A outputs some value, which is represented by the
random variable A. The goal of the adversary is to output a value a such that R(x, a), where R is some
relation. A may output a special symbol ⊥ such that R(x,⊥) and R̄(x,⊥) are both false.

This definition is very general and covers a lot of standard games from the literature. Some illustrative
examples are given in Table 1. But for the cryptographic primitives explicitly studied in this paper, it will be
enough to consider the simplest version of the definition where R = {(x, x)|x ∈ X} is the identity relation,
i.e., the goal of the adversary is to guess the secret x. We formally define the indistinguishability game for
two distributions because we refer to it extensively throughout this work.

Definition 6 Let {D0
θ}θ, {D1

θ}θ be two distribution ensembles. The indistinguishability game is defined as
follows: the challenger C chooses b ← U({0, 1}). At any time after that the adversary A may (adaptively)
request samples by sending θi to C, upon which C draws samples ci ← Dbθi and sends ci to A. The goal of
the adversary is to output b′ = b.
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Table 1: Typical instantiations of security games covered by Definition 5. The security parameter is denoted
by κ. In the definition of digital signatures, the list Q of the adversary’s queries are regarded as part of its
output.

Game R n DX
Uninvertibility of one-way permutations {(x, y) | x = y} O(κ) U
Uninvertibility of one-way functions f {(x, y) | f(x) = f(y)} O(κ) U
2nd pre-image resistance for hash functions h {(x, y) | x 6= y, O(κ) U

h(x) = h(y)}
Indistinguishability of two distributions {(x, y) | x = y} 1 U
Unforgeability of signature scheme (K,S,V ) {(x, (m,σ,Q)) | O(κ) K(U)

(pk, sk)← K(x),
V (pk,m, σ) = 1,m /∈ Q}

We loosely classify primitives into two categories according to their associated security games: we call
primitives, where the associated security game is a 1-bit game (O(κ)-bit game), decision primitives (search
primitive, respectively).

Note that we allow the adversary to always output ⊥, which roughly means “I don’t know”, even for
decision primitives. This is a crucial difference from previous definitions that force the distinguisher to always
output a bit. The reason this is important is that in games, where the distinguisher is not able to check if
it produced the correct result, it is more informative to admit defeat rather than guessing at random. In
many cases this will allow for much tighter reductions (cf. Section 5.2). Such a definition in the context
of indistinguishability games is not entirely new, as Goldreich and Levin [11, 14] also allowed this type of
flexibility for the distinguisher. To the best of our knowledge, this is the only place this has previously
appeared in the cryptographic literature.

Now we are ready to define the advantage. The definition is trying to capture the amount of information
that the adversary is able to learn about the secret. The reasoning is that the inverse of this advantage
provides a lower bound on the number of times this adversary needs to be run in order to extract the entire
secret. We use tools from information theory to quantify exactly this information, in particular the Shannon
entropy. Other notions of entropy might be worth considering, but we focus on Shannon entropy as the most
natural definition that captures information. A straight-forward definition could try to measure the mutual
information between the random variables X (modeling the secret) and A (modeling the adversary output,
cf. Definition 5). Unfortunately, the variable A might reveal X completely in an information theoretical
sense, yet not anything in a computational sense. To break any computationally hidden connection between
X and A, we introduce another random variable Y , which indicates, when A actually achieves its goal and
otherwise does not reveal anything about the secret.

Definition 7 For any security game with corresponding random variable X and A(X), the adverdary’s
advantage is

advA =
I(X;Y )

H(X)
= 1− H(X|Y )

H(X)

where I(·; ·) is the mutual information, H(·) is the Shannon entropy, and Y (X,A) is the random variable
with marginal distributions Yx,a = {Y | X = x,A = a} defined as

1. Yx,⊥ = ⊥, for all x.

2. Yx,a = x, for all (x, a) ∈ R.

3. Yx,a = {x′ ← DX | x′ 6= x}, for all (x, a) ∈ R̄.

At first glance, the definition of Y might not be obviously intuitive, except for case 1. For case 2, note
that x completely determines the set R(x, ·) and if the adversary finds an element in it, then it wins the
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game. Therefore, one can think of R(x, ·) as a secret set, and finding any element in it as completely breaking
the scheme. Finally, the third case defines Y to follow the distribution of the secret, but is conditioned on
the event that it is incorrect. The intuition here is that if an adversary outputs something, then his goal is
to bias the secret distribution towards the correct one, i.e. it will allow us to quantify how much better A
performs than random guessing.

With the definition of the advantage in place, the definition of bit security follows quite naturally.

Definition 8 Let T : {A | A is any algorithm} 7→ Z+ be a measure of resources that is linear under rep-
etition, i.e. T (kA) = kT (A), where kA is the k time repetition of A. For any primitive, we define its bit

security as minA log T (A)
advA

.

For convenience we will often write T (A) as TA or simply T if A is clear from context. Note that we
leave out a concrete definition of the resources on purpose, since we focus on the advantage. Our definition
can be used with many different measures, for example running time, space, advice, etc., or combinations of
them.

4 The Adversary’s Advantage

While the advantage as defined in the previous section captures the intuition about how well an adversary
performs, it seems too complex to be handled in actual proofs or to be used in practice. A simple definition
in terms of simple quantities related to the adversary would be much more desirable. We begin by defining
the quantities of an adversary that we are interested in.

Definition 9 For any adversary A playing a security game, we define its output probability as αA = Pr[A 6=
⊥] and its conditional success probability as βA = Pr[R(X,A)|A 6= ⊥], where the probabilities are taken over
the randomness of the entire security game (including the internal randomness of A). Finally, in the context
of decision primitives, we also define A’s conditional distinguishing advantage as δA = 2βA− 1. With all of
these quantities, when the adversary A is clear from context, we drop the corresponding superscript.

The goal of this section is to distill a simple definition of advantage in terms of αA and βA by considering
a broad and natural class of adversaries and games.

Theorem 1 For any n-bit security game with uniform secret distribution, let A be an adversary that for
any secret x ∈ {0, 1}n outputs ⊥ with probability 1− α, some value a such that R(x, a) with probability βα,
and some value a such that R̄(x, a) with probability (1− β)α. Then

advA = α

(
1− (1− β) log(2n − 1) +H(Bβ)

n

)
(1)

where Bβ denotes the Bernoulli distribution with parameter β.

We defer the proof to Appendix A. Note that for large n we get advA ≈ αAβA, which is exactly A’s
success probability. Plugging this into Definition 8 matches the well-known definition of bit security for search
primitives. On the other hand, for n = 1 this yields advA = αA(1−H(BβA)) = αA(δA)2/(2 ln 2)+O(αA(δA)4)
by Taylor approximation, which, for our purposes, can be approximated by αA(δA)2. This matches the
definition of Levin [14], who proposed this definition since it yields the inverse sample complexity of noticing
the correlation between the adversary output and the secret. The fact that it can be derived from Definition
7 suggests that this is the “right” definition of the adversary’s advantage.

We now redefine the adversary’s advantage according to above observations, which, combined with Defi-
nition 8 yields the definition of bit security we actually put forward and will use throughout the rest of this
work.
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Definition 10 For a search game, the advantage of the adversary A is

advA = αAβA

and for a decision game, it is
advA = αA(δA)2.

Note that assuming that Definition 10 is equivalent to 7 for all adversaries is quite a leap as we only
proved it for a subclass of them, and in fact, it is not true at least for decision games. However, the following
theorem shows that when used in the context of bit security (Definition 8) for decision games, Definition 10
and 7 are in fact equivalent, since we are quantifying over all adversaries.

Theorem 2 For any distinguisher D playing a decision game with advD = ζ according to Definition 7,
there is a distinguisher D′ such that TD = TD

′
and αD

′
(δD

′
)2 ≥ ζ/9 for the same game.

Before we prove Theorem 2, we observe that the distinguisher D′ that we construct from D will run
D and decide on its output depending on the result. As such, D′ is essentially a distinguisher for the
indistinguishability game (restricted to one query) against the two distributions induced by the secret on D.
We start with a simple lemma that analyzes how well such a simple distinguisher does in this game.

Lemma 1 Let Dx for x ∈ {0, 1} be two distributions over the same support {a, b, c} and denote their
probabilities by zx = Dx(z) for z ∈ {a, b, c}. Let Dz be a distinguisher for the indistinguishability game
instantiated with Dx that on input z returns arg maxx(zx) and ⊥ otherwise. Then,

αDz (δDz )2 =
1

2

(z1 − z0)2

z1 + z0
.

We now prove Theorem 2 by showing that for any distinguisher D there is an event z ∈ {⊥, 0, 1} such
that αDz (δDz )2 ≈ advD.

Proof [of Theorem 2] Since advD is independent of the support/domain of D (as long as it has size exactly
3), we identify {⊥, 0, 1} with a, b, c to highlight this genericity.

With the same notation as in Lemma 1, we note that the conditional entropy of the secret X given Y is

H(X|Y ) =
1

2
(H1(a0, a1) +H1(b0, b1) +H1(c0, c1))

where

H1(z0, z1) = z0 log
z0 + z1

z0
+ z1 log

z0 + z1

z1

= ((z0 + z1) log((z0 + z1)− z0 log z0 − z1 log z1.

Setting z̄ = z1 − z0, H1 can be rewritten as

H1(z0, z̄) = (2z0 + z̄) log(2z0 + z̄) + z0 log z0 + (z0 + z̄) log(z0 + z̄).

We use the following bound on H1:

H1(z0, z̄) ≥ 2z0 for z̄ ≥ 0 (2)

H1(z0, z̄) ≥ 2z0 + z̄ − z̄2

z0
for |z̄| ≤ z0 (3)

where (2) follows from monotonicity in z̄ and (3) from Taylor approximation of order 2 in z̄ at z̄ = 0. Since
z̄ > z0 implies that (2) is larger than (3), these bounds imply

H1(z0, z̄) ≥ max

(
2z0, 2z0 + z̄ − z̄2

z0

)
(4)
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for all z̄ ∈ [−z0, 1−z0]. In the following, we will apply the bound (3) for z̄ ∈ [−z0, 0] and (4) for z̄ ∈ [0, 1−z0].
W.l.o.g. assume ā ≥ 0, b̄ ≤ 0 and c̄ ≤ 0 (note that

∑
z∈{a,b,c} z̄ = 0). Using (3) and (4)

H(X|Y ) ≥ 1

2

[
max

(
2a0, 2a0 + ā− ā2

a0

)
+ 2b0 + b̄− b̄2

b0
+ 2c0 + c̄− c̄2

c0

]
= 1 +

1

2

[
max

(
−ā,− ā

2

a0

)
− b̄2

b0
− c̄2

c0

]
which shows that

advD ≤ 1

2

[
−max

(
−ā,− ā

2

a0

)
+
b̄2

b0
+
c̄2

c0

]
=

1

2

[
min

(
ā,
ā2

a0

)
+
b̄2

b0
+
c̄2

c0

]
≤ 3

2
max

[
min

(
ā,
ā2

a0

)
,
b̄2

b0
,
c̄2

c0

]
.

Note that if the maximum is attained by one of the latter two terms, since b̄ and c̄ are negative, we have

αDb(δDb)2 ≥ b̄2

4b0
by Lemma 1 (and similarly for c). So advD ≤ 6αDz (δDz )2 for one of z ∈ {b, c}.

Now assume the maximum is min(ā, ā
2

a0
). If ā2

a0
≤ ā, then ā ≤ a0 and so a0 + a1 ≤ 3a0. Again by

Lemma 1, αDa(δDa)2 ≥ ā2

6a0
. Finally, if ā ≤ ā2

a0
then a0 ≤ ā, which means a0 + a1 ≤ 3ā and so by Lemma 1,

αDa(δDa)2 ≥ ā
6 . In both cases we have advD ≤ 9αDa(δDa)2. �

5 Security Reductions

To argue that our definition is useful in a theoretical sense, we apply it to several natural reductions, which
arise when constructing cryptographic primitives from other ones. As the novelty of our definition lies mostly
with decision games, we will focus on decision primitives that are built from search primitives (cf. Section
5.1), search primitives that are built from decision primitives (cf. Section 5.2), and finally decision primitves
that are built from other decision primitives (cf. 5.3).

Throughout this section we will refer to two distribution ensembles {D0
θ}θ and {D1

θ}θ as κ-bit indis-
tinguishable, if the indistinguishability game from Definition 6 instantiated with {D0

θ}θ and {D1
θ}θ is κ-bit

secure.

5.1 Search to Decision

A classical way to turn a search primitive into a decision primitive is the Goldreich-Levin hardcore bit[11].

Definition 11 Let f : X 7→ Y be a function and b : X 7→ {0, 1} be a predicate. The predicate b is a κ-bit
secure hardcore bit for f , if the distributions (f(x), b(x)) and (f(x),U({0, 1})), where x← U(X), are κ-bit
indistinguishable.

Goldreich and Levin showed a way to construct a function with a hardcore bit from any one-way function.
In this setting, one would hope that if the one-way function is κ-bit secure then also the hardcore bit is close
to κ bit secure. The next theorem due to Levin [14] establishes exactly such a connection.

Theorem 3 (adapted from [14]) Let f : {0, 1}n 7→ {0, 1}k be a κ-bit secure one-way function. Then
b(x, r) = 〈x, r〉 mod 2 is a (κ−O(log n))-bit secure hardcore bit for g(x, r) = (f(x), r).
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This theorem was proven in [14], and all we did was to adapt the statement from [14] to our nota-
tion/framework. So, we refer the reader to [14] for the proof details, and move on to make some general
observations. The proof for this theorem assumes a distinguisher D for b and constructs from it an inverter
A for f , where advD = advA (and the running time is polynomially related). Such security preserving
reductions are information theoretically only possible with a definition of advantage that is proportional to
(δD)2 for decision primitives, if it is proportional to αAβA for search primitives. This is because any inverter
querying a distinguisher with advantage δD and attempting to learn an (αAβA)-fraction of a uniformly cho-
sen n-bit secret, must make at least Ω(nαAβA/(δD)2) queries. Denote the resources of D by TD and note
that TA ≥ Ω(αAβA/(δD)2)TD is a lower bound on the resources of A. The goal of the proof is to find an
upper bound on TA/advA = TA/αAβA ≥ Ω(TD/(δD)2). This is only possible by assuming an upper bound
on TD/(δD)2. If only a bound on TD/δD is assumed, then the upper bound on TA/advA must contain a
linear factor in 1/δD, which may be as large as O(2n) and thus result in a dramatic loss in (nominal) security.

5.2 Decision to Search

In the following subsections we show constructions and the corresponding reductions in the other direction.
The first is just a straightforward converse to the Goldreich-Levin theorem, showing that any PRG is also a
OWF for the same bit security. The second construction is presented as a very natural and straight-forward
way of turning a decision primitive into a search primitive. The third reduction is one that naturally arises
in cryptographic applications, for example identification protocols.

5.2.1 PRGs are one-way functions

While the following theorem is intuitively trivial (and technically simple), as explained in the introduction
it serves to justify our definition of bit security. The proof also illustrates the subtle difference between an
adversary that outputs ⊥ and one that outputs a random guess.

Theorem 4 If g is a PRG with κ-bit security, then it is also a (κ− 4)-bit secure one-way function.

Proof Assume A is an attack to g as a one-way function with cost T , output probability αA, and conditional
success probability βA. We turn A into an adversary D to g as a PRG by letting D(y) output 1 if G(A(y)) = y
and⊥ otherwise. Assume that A has conditional success probability βA = 1. This is without loss of generality
because one-way function inversion is a verifiable search problem, and A can be modified (without affecting
its advantage) to output ⊥ when its answer is incorrect. So, A has advantage αA, equal to its output
probability. Notice that D is successful only when the indistinguishability game chooses the secret bit 1,
and then A correctly inverts the PRG. So, the success probability of D is precisely αDβD = αA/2. The
output probability of D can be a bit higher, to take into account the possibility that on secret bit 0, the
challenger picks a random string that belongs (by chance) to the image of the PRG, and A correctly inverts
it. But, in any case, it always belongs to the interval αD ∈ [1/2, 3/4] · αA. It follows that αD ≥ αA/2 and
βD = (αA/2)/αD ≥ 2/3. So, D has advantage at least αD(δD)2 = αD(2βD − 1)2 ≥ αA/9. Since the two
algorithms have essentially the same cost, they achieve the same level of bit security, up to a small constant
additive term log 9 < 4. �

We remark that our proof differs from the standard text-book reduction that pseudorandom generators
are one-way functions in a simple, but crucial way: when A(y) fails to invert G, instead of outputting 0
as a “best guess” at the decision problem, it outputs ⊥ to explicitly declare failure. The reader can easily
check that the standard reduction has output probability αD = 1 and (conditional) success probability
βD ≤ (αA + 1)/2. So, the advantage of the distiguisher in the standard proof is αD(2βD − 1)2 = (αA)2,
resulting in a substantial drop (logαA) in the bit security proved by the reduction.

5.2.2 Secret Recovery

We proceed by giving a construction of a search primitive from two distributions. We are not aware of
any immediate applications, but this simple example is supposed to serve as evidence that our definitions
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for search and decision primitives behave nicely under composition. It also provides an example of “non
verifiable” search problem, i.e., a cryptographic problem with exponentially large secret space defined by
a game at the end of which A cannot efficiently determine if the secret has been found. Differently from
Theorem 4, this time one cannot assume without loss of generality that the (hypothetical) attacker to the
search problem has conditional success probability β = 1.

Definition 12 Let D0,D1 be two distributions. We define the n-bit secret recovery game as the following
n-bit security game: the challenger X chooses an n-bit secret x← U({0, 1}n) and sends the vector c = (ci ←
Dxi)i≤n to A. The adversary A attempts to guess x, i.e. R is the equality relation.

The next theorem shows that when instantiating the game with two indistinguishable distributions, the
secret recovery game enjoys essentially the same bit security.

Theorem 5 If the κ-bit secret recovery game is instantiated with two κ-bit secure indistinguishable distri-
butions D0 and D1, and D0 is publicly sampleable, then it is (κ− 1)-bit secure.

Proof Let A be an adversary against the secret recovery game that recovers x from the vector c with
advantage advA = αAβA. We build a distinguisher D against the indistinguishability of D0 and D1 with
essentially the same resources and advantage: D chooses a secret x ∈ {0, 1}κ uniformly at random, which is
non-zero with high probability (otherwise output ⊥) and constructs the vector c by sampling D0 itself for
every zero bit in x and querying its orcale for every 1 bit in x (which will return either samples from D0 or
from D1). It sends c to A and returns 1 iff A returns x, otherwise it outputs ⊥.

The resources of D are essentially the same as those of A, so we analyze its advantage advD = αD(δD)2.
The output probability of D, conditioned on x 6= 0, is almost exactly A’s success probability, but note that
A is only presented with the correct input distribution if D’s challenger returns samples from D1, which is

the case with probability 1
2 . So αD ≥ 1−2−κ

2 αAβA. Furthermore, D’s conditional distinguishing advantage is
δD ≥ 1−2−κ+1, because it only outputs the incorrect value if A returned x even though c consisted of samples
only from D0. Note that in this case A has no information about x, which was chosen uniformly at random

and thus the probability of this event is at most 2−κ. Accordingly, advD = αD(δD)2 ≥ (1−2−κ+1)2

2 αAβA ≈
advA/2. �

5.2.3 Indistinguishability implies Message-Hiding

In our last example for this section we show that IND-CCA secure encryption schemes enjoy a message
hiding property, which we first formally define.

Definition 13 A private or public key encryption scheme is κ-bit message hiding, if the following security
game is κ-bit secure: the challenger chooses a message m ∈ {0, 1}n uniformly at random and sends its
encryption to A. The adversary A attemps to guess m, while C provides it with encryption (in case of
private key schemes) and decryption oracles.

This property naturally arises in the context of constructions of identification protocols from encryption
schemes (see e.g. [4]), where a random message is encrypted and identification relies on the fact that only
the correct entity can decrypt it. While it seems intuitively obvious that breaking message hiding is no
easier than distinguishing encrypted messages, showing that this is true in a quantifiable sense for specific
definitions of bit security is not as obvious. The next theorem establishes this connection.

Theorem 6 If a scheme with message space larger than 2κ is κ-bit IND-CCA secure, it is κ-bit message
hiding.

Proof Let A be an adversary that is able to extract a random message from an encryption scheme with
advantage advA = αAβA. We construct a IND-CCA distinguisher D against the scheme with essentially the
same resources and advantage: D generates two messages m0,m1 ← {0, 1}m uniformly at random, which are
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distinct with overwhelming probability (if not, output ⊥). It sends them to the challenger, which encrypts
one of them. Upon receiving the challenge cipher text cb, D forwards it to A. Any queries to the encryption
(in case of private key encryption) or decryption oracle are simply forwarded to D’s own oracles. If A returns
a message in {m0,m1}, D returns the corresponding bit. Otherwise, it outputs ⊥.

The resources of D are essentially the same as for A, so we focus on its advantage. Note that conditioned
on the event that m0 6= m1, D’s output probability αD is at least as large as the success probability of
A, so αD ≥ (1 − 2−κ)αAβA. The conditional distinguishing advantage of D is δD ≥ 1 − 2−κ+1, since the
only way D will guess incorrectly is when A somehow outputs the wrong message mb̄. Since A has no
information about this message (which was chosen uniformly at random), the probability of this happening
is at most 2−κ. This shows that D’s advantage in the indistinguishability game is advD = αD(δD)2 ≥
(1− 2−κ)αAβA(1− 2−κ+1)2 ≈ αAβA = advA, where the latter is A’s advantage in the message hiding game.
�

5.3 Decision to Decision

Finally, we turn to reductions between decision primitives. The results in this section are very generic.
The first establishes the validity of hybrid arguments when using our definition of advantage for decision
primitives. Our second result extends a previous result for approximate sampling to any decision primitive
fitting our definition.

5.3.1 The Hybrid Argument

This section is devoted to proving a general hybrid argument for indistinguishability games using our defi-
nition of advantage. Formally, we prove the following lemma.

Lemma 2 Let Hi be k distributions and Gi,j be the indistinguishability game instantiated with Hi and Hj.
Further, let εi,j = maxA advA over all T -bounded adversaries A against Gi,j. Then ε1,k ≤ 3k

∑k−1
i=1 εi,i+1.

Applying the lemma to our definition of bit security, we immediately get the following theorem.

Theorem 7 Let Hi be k distributions. If Hi and Hi+1 are κ-bit indistinguishable for all i, then H1 and Hk
are (κ− 2(log k + 1))-bit indistinguishable.

Proof Let A be any adversary with resources TA (when attacking H1 and Hk). By assumption, εi,i+1 ≤
TA/2κ (where εi,j is defined as in Lemma 2) for all TA-bounded adversaries against Hi and Hi+1. By Lemma
2, εi,k ≤ 3k2TA/2κ for all TA-bounded adversaries, in particular A. �

As a simple application, we get the following corollary.

Corollary 1 If a public key encryption scheme is κ-bit IND-CCA secure, then it is (κ − 2(log k + 1))-bit
IND-CCA secure in the k message setting.

In contrast to the standard hybrid argument, which simply exploits the triangle inequality of statistical
distance, we lose an additional factor of 3k in the advantage in Lemma 2. In particular, consider the case
where the bounds εi,i+1 = ε are the same for all i. This means that ε1,k ≤ 3k2ε. Note that this additional
factor has only a minor impact on bit security. (See below for details.) Still, one may wonder if this additional
factor is an artifact of a non-tight proof or if it is indeed necessary. Consider a distinguisher D that never
outputs ⊥ (i.e. αD = 1). Its distinguishing advantage δDi,j in game Gi,j is exactly the statistical distance

between D(Hi) and D(Hj). Assume δDi,i+1 = ε for all i, so D’s advantage in the game Gi,j according to

Definition 10 is ε2. The standard hybrid argument, or equivalently triangle inequality for statistical distance,
implies that δD1,k cannot be larger than – but may be as large as – kε. So, D’s advantage in G1,k may be

as large as k2ε2, which is k2 times as large as D’s advantage against the individual hybrids. This seems to
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suggest that our argument is tight (up to the constant factor 3). Either way, as Theorem 7 and Corollary
1 demonstrate, this additional factor only affects the constant in front of the log term in the number of
hybrids, so, we believe, it is only of secondary importance and we leave it as an open problem.

The rest of the subsection proves Lemma 2, where we make use of the following notation. For some
distinguisher D, let αDP,Q be its output probability, βDP,Q its conditional success probability, δDP,Q its con-

ditional distinguishing advantage, and advDP,Q = αDP,Q(δDP,Q)2 its advantage against the distributions P,Q.

Furthermore, let αDP = Pr[D(P) 6= ⊥] and γDP = Pr[D(P) = 1] for any distribution P. We can express the
advantage of D against P and Q in terms of αDP , αDQ, γDP , γDQ :

αDP,Q =
1

2
(αDP + αDQ)

βDP,Q =
γDP − γDQ + αDQ
αDP + αDQ

δDP,Q = 2βDP,Q − 1 =
2(γDP − γDQ ) + αDQ − αDP

αDP + αDQ

advDP,Q =
(2(γDP − γDQ ) + αDQ − αDP )2

2(αDP + αDQ)
. (5)

We begin with the observation that for computationally indistuingishable distributions the output prob-
abilities of any bounded distinguisher D cannot vary too much under the two distributions.

Lemma 3 Let P,Q be two distributions. If advDP,Q ≤ ε for all T -bounded distinguishers, then we have

αDP ≤ 2αDQ + 3ε and αDQ ≤ 2αDP + 3ε for any T bounded distinguisher.

Proof We prove the first claim. (The proof of the second claim is symmetrical.) Fix any distinguisher
D. Assume αDP ≥ 2αDQ, since otherwise we are done. Consider an alternative distinguisher D′, which runs
D and in the event that D 6= ⊥, outputs 1 and otherwise ⊥. Obviously, D′ is also T -bounded, and (setting
γD
′

P = αD
′

P , γD
′

Q = αD
′

Q in (5)) we get

advD
′

P,Q =
(αDP − αDQ)2

2(αDP + αDQ)

≥
(αDP − αDQ)2

3αDP

=
1

3

(
αDP − 2αDQ +

(αDQ)2

αDP

)
≥ 1

3

(
αDP − 2αDQ

)
.

The first claim now follows from ε ≥ advD
′

P,Q. �

Proof [of Lemma 2] We fix any distinguisher D and drop the superfix of α, γ, δ and adv for the rest of
the proof. Furthermore, we will abbreviate Hi by i in the subfixes of α, γ, δ, and adv.

Using induction, one can prove

k∑
i=1

advi,i+1 ≥
α1 + αk

α1 + 2
∑k−1
i=2 αi + αk

adv1,k

The proof proceeds by substituting in the definition of advi,i+1 from (5), applying the induction hypothesis
to the first k − 1 terms of the sum, and then minimizing over γk−1. Details can be found in Appendix B.
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It remains to show that
α1 + αk

α1 + 2
∑k−1
i=2 αi + αk

≥ 1

3k
.

We again proceed by induction and can thus assume that adv1,i ≤ 3i
∑i−1
j=1 εj,j+1 for all i < k and

symmetrically advi,k ≤ 3(k − i)
∑k−1
j=i εj,j+1 for all i > 1. By Lemma 3, this means that αi ≤ 2α1 +

9i
∑i−1
j=1 εj,j+1 for all i < k and again αi ≤ 2αk + 9(k − i)

∑k−1
j=i εj,j+1 for all i > 1. We note that

α1 + 2

k−1∑
i=2

αi + αk = α1 + 2

b(k−1)/2c∑
i=2

αi + 2

k−1∑
b(k−1)/2c+1

αi + αk

and using the above inequalities, the two sums are bounded by

2

b(k−1)/2c∑
i=2

αi ≤ 2(k − 3)α1 + 3k2

b(k−1)/2c∑
i=1

εi,i+1

and

2

k−1∑
b(k−1)/2c+1

αi ≤ 2(k − 3)αk + 3k2
k−1∑

b(k−1)/2c+1

εi,i+1

respectively. This bounds the entire sum:

α1 + 2

k−1∑
i=2

αi + αk ≤ 2k(α1 + αk) + 3k2
k−1∑
i=1

εi,i+1

This in turn leads to the lower bound

α1 + αk

α1 + 2
∑k−1
i=2 αi + αk

≥ 1

2k +
3k2

∑k−1
i=1 εi,i+1

α1+αk

The last step is noticing that we can assume that (α1 + αk) ≥ 6k
∑k−1
i=1 εi,i+1, because (α1 + αk)/2 ≥ ε1,k

and otherwise we would be done. Using this assumption we have

α1 + αk

α1 + 2
∑k−1
i=2 αi + αk

≥ 1

2k + 3k2

6k

≥ 1

3k

as desired. �

5.3.2 Approximate Samplers

In this section we bridge the gap between search and decision primitives making use of approximate samplers,
for the first time by extending a result from [15] to arbitrary decision primitives. It might be possible to
extend other results from the literature [16, 2, 17] to decision primitives using our definition, but we leave
that for future work. Our main result is given in Theorem 8. Combining it with results from [15] it implies
that approximating a distribution with relative error bounded by 2−κ/2 (e.g., as provided by floating point
numbers with κ/2-bit mantissa) allows to preserve almost all of κ bits of security.

Before introducing the result formally, we first need to cover some preliminaries from [15].
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Background Using the same terminology as [15], let δ(P,Q) be some divergence on probability distribu-
tions. A λ-efficient divergence satisfies three properties:

1. Sub-additivity for joint distributions: if (Xi)i and (Yi)i are two lists of discrete random variables over
the support

∏
i Si, then

δ((Xi)i, (Yi)i) ≤
∑
i

max
a

δ([Xi | X<i = a], [Yi | Y<i = a]),

where X<i = (X1, . . . , Xi−1) (and similarly for Y<i), and the maximum is taken over a ∈
∏
j<i Sj .

2. Data processing inequality: δ(f(P), f(Q)) ≤ δ(P,Q) for any two distributions P and Q and (possibly
randomized) algorithm f(·), i.e., the measure does not increase under function application.

3. Pythagorean probability preservation with parameter λ ∈ R: if (Xi)i and (Yi)i are two lists of discrete
random variables over the support

∏
i Si and

δ((Xi | X<i = ai), (Yi | Y<i = ai)) ≤ λ

for all i and ai ∈
∏
j<i Sj , then

∆SD((Xi)i, (Yi)i) ≤
∥∥∥∥(max

ai
δ((Xi | X<i = ai), (Yi | Y<i = ai))

)
i

∥∥∥∥
2

.

As an example, the max-log distance ∆ML(P,Q) = max|logP(x) − logQ(x)| is λ-efficient for any λ ≤ 1
3

[15].

Main Result for Approximate Samplers The next theorem states the main result of this section.
It shows that it suffices to approximate a distribution P up to distance δ(P,Q) ≤ 2−κ/2 for an efficient
divergence δ in order to maintain almost κ bits of security.

Theorem 8 Let SP be a 1-bit secrecy game with black-box access to a probability ensemble (Pθ)θ, and δ be
a λ-efficient measure for any λ ≤ 1

4 . If SP is κ-bit secure and δ(Pθ,Qθ) ≤ 2−κ/2, then SQ is (κ − 8)-bit
secure.

The remainder of this section is devoted to proving Theorem 8. We first rewrite a lemma from [15], which
we will use in our proof.

Lemma 4 (adapted from [15]) Let SP be any security game with black-box access to a probability dis-
tribution ensemble Pθ. For any adversary A with resources T that plays SP and event E over its output,
denote γP = Pr[A ∈ E]. For the same event, denote by γQ the probability of E when A is playing SQ. If
T
γP
≥ 2k and δ(Pθ,Qθ) ≤ 2−k/2 for any 2−k/2-efficient δ, then T

γQ
≥ 2k−3.

From Lemma 4 we can derive a bound on the output probability of an adversary when switching the
distribution of the scheme.

Corollary 2 For any adversary A with resources T attacking SP and any event E over A’s output, denote
the probability of E by γP . Denote the probability of E over A’s output when attacking SQ by γQ. If δ is√
γQ/16T -efficient and δ(Pθ,Qθ) ≤

√
γQ/16T , then 16γP ≥ γQ.

Proof We use Lemma 4 and set k such that 2k−4 = T
γQ

. This implies that T
γQ
≥ 2k−3 is false. Assuming

towards a contradiction that 16γP < γQ, we see that

2k−4 =
T

γQ
≤ T

16γP
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contradicting Lemma 4. �

With this bound in place, we are ready for the main proof.
Proof [of Theorem 8] Fix any TA-bounded adversary A against SP , output probability αAP and conditional

success probability βAP . By assumption we have αAP(2βAP − 1)2 ≤ TA/2κ. Denote the output and conditional
success probability of A against SQ by αAQ and βAQ. Assume towards contradiction that αAQ(2βAQ − 1)2 >
TA/2κ−8.

First we apply Corollary 2 to obtain αAP ≥ 2−4αAQ. Note that by assumption
√
αAQ/16T > 2(−κ+4)/2 >

2−κ/2 ≥ δ(Pθ,Qθ) and that trivially
√
αAQ/16T ≤ 1

4 .

We now consider the hypothetical modified games ŜP and ŜQ, which are the same as SP and SQ with
the only difference that the adversary has the ability to restart the game with fresh randomness at any time.
Consider the adversary B against Ŝ that simply runs A until A 6= ⊥ (restarting the game if A = ⊥) and
outputs whatever A returns. Let α = min(αAP , α

A
Q) and note that B’s resources are TB < TA/α, its output

probability is 1 and the (conditional) success probability is βBP = βAP (or βBQ = βAQ) if playing ŜP (or ŜQ,
respectively).

By the properties of δ and ∆SD, we have βBP ≥ βBQ−
√
TBδ(Pθ,Qθ) and so 2βBP −1 ≥ 2βBQ−1−2

√
TB/2κ.

By assumption we also have that 2βAP − 1 ≤
√
TA/αAP2κ, which yields

√
TA

α2κ
≥

√
TA

αAP2κ
≥ 2βBQ − 1− 2

√
TA

α2κ

because βBP = βAP , and so

2βAQ − 1 = 2βBQ − 1 ≤ 3

√
TA

α2κ
.

If αAQ ≤ αAP , then α = αAQ and the above inequality immediatly yields the contradiction. Otherwise, we
can derive an upper bound on αAP from it:

αAP ≤
9TA

2κ(2βAQ − 1)2
<
αAQ
24

where the latter inequality follows from the assumption. This contradicts our lower bound above. �
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A Proof of Theorem 1

Proof [of Theorem 1] From the definition of Y in Definition 7 we get for any x, y ∈ {0, 1}n with y 6= x

• Pr[Y = ⊥|X = x] = 1− α

• Pr[Y = x|X = x] = αβ

• Pr[Y = y|X = x] = α(1−β)
2n−1 .

From this we compute

• Pr[Y = ⊥] = 1− α

• Pr[Y = y] = Pr[Y = y|X = y]Pr[X = y] + Pr[Y = y|X 6= y]Pr[X 6= y] = αβ
2n + 2n−1

2n
α(1−β)
2n−1 = α

2n .

Now we calculate the conditional entropy

H(X|Y ) =
∑
x,y

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑
x

Pr[Y = ⊥|X = x]Pr[X = x] log
Pr[Y = ⊥]

Pr[Y = ⊥|X = x]Pr[X = x]

+ Pr[Y = x|X = x]Pr[X = x] log
Pr[Y = x]

Pr[Y = x|X = x]Pr[X = x]

+
∑

y 6=x∧y 6=⊥

Pr[Y = y|X = x]Pr[X = x] log
Pr[Y = y]

Pr[Y = y|X = x]Pr[X = x]

=
∑
x

1− α
2n

log
(1− α)2n

1− α
+
αβ

2n
log

α2n

αβ2n

+ (2n − 1)
α(1− β)

(2n − 1)2n
log

α2n(2n − 1)

2nα(1− β)

=(1− α)n+ αβ log
1

β
+ α(1− β) log

2n − 1

1− β
=(1− α)n+ α((1− β) log(2n − 1) +H(Bβ))

Finally, we compute the advantage

advA = 1− H(X|Y )

n

= 1− (1− α)− α (1− β) log(2n − 1) +H(Bβ)

n

= α

(
1− (1− β) log(2n − 1) +H(Bβ)

n

)
.

�

B Missing Details of Proof for Lemma 2

With the notation of Section 5.3.1, the goal of this section is to prove

k∑
i=1

advi,i+1 ≥
α1 + αk

α1 + 2
∑k−1
i=2 αi + αk

adv1,k.
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By Equation (5)
k∑
i=1

advi,i+1 =

k∑
i=1

(2(γi − γi+1) + αi+1 − αi)2

2(αi + αi+1)
.

Applying the induction hypothesis, this is lower bounded by

f(γk−1) =
(2(γ1 − γk−1) + αk−1 − α1)2

2(α1 + 2
∑k−2
i=2 αi + αk−1)

+
(2(γk−1 − γk) + αk − αk−1)2

2(αk−1 + αk)
.

Taking f ’s derivative

f ′(γk−1) =
2(2(γk−1 − γk) + αk − αk−1)

αk−1 + αk
− 2(2(γ1 − γk−1) + αk−1 − α1)

α1 + 2
∑k−2
i=2 αi + αk−1

Note that the second derivative is a positive constant, so if f has an extremum it must be a minimum, and
since it is a quadratic function, it is a global minimum. Setting f ′(γk−1) = 0 and solving for 2γk−1, we get:

2γk−1

(
α1 + 2

k−1∑
i=2

αi + αk

)
= 2(γ1 + αk−1 − α1)(αk−1 + αk)

+ 2(γk + αk − αk−1)

(
α1 + 2

k−2∑
i=2

αi + αk

)

Plugging this into the terms of f :

(2(γ1 − γk−1) + αk−1 − α1) =
2(γ1 − γk)− α1 + αk)

(
α1 + 2

∑k−2
i=2 αi + αk

)
α1 + 2

∑k−1
i=2 αi + αk

and

(2(γk−1 − γk) + αk − αk−1) =
(2(γ1 − γk)− α1 + αk)(αk−1 + αk)

α1 + 2
∑k−1
i=2 αi + αk

which yields that

f(γk−1) ≥
(2(γ1 − γk)− α1 + αk)2

(
α1 + 2

∑k−2
i=2 αi + αk

)2

(
α1 + 2

∑k−1
i=2 αi + αk

)2 (
α1 + 2

∑k−2
i=2 αi + αk

)
+

(2(γ1 − γk)− α1 + αk)2(αk−1 + αk)2(
α1 + 2

∑k−1
i=2 αi + αk

)2

(αk−1 + αk)

=
(2(γ1 − γk)− α1 + αk)2(
α1 + 2

∑k−1
i=2 αi + αk

)2

(
α1 + 2

k−1∑
i=2

αi + αk

)

=
(2(γ1 − γk)− α1 + αk)2(
α1 + 2

∑k−1
i=2 αi + αk

)
=

α1 + αk(
α1 + 2

∑k−1
i=2 αi + αk

)adv1,k

as desired.
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