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Abstract. Most algorithms for hard lattice problems are based on the
principle of rank reduction: to solve a problem in a d-dimensional lattice,
one first solves one or more problem instances in a sublattice of rank d−1,
and then uses this information to find a solution to the original problem.
Existing lattice sieving methods, however, tackle lattice problems such
as the shortest vector problem (SVP) directly, and work with the full-
rank lattice from the start. Lattice sieving further seems to benefit less
from starting with reduced bases than other methods, and finding an
approximate solution almost takes as long as finding an exact solution.
These properties currently set sieving apart from other methods.
In this work we consider a progressive approach to lattice sieving, where
we gradually introduce new basis vectors only when the sieve has sta-
bilized on the previous basis vectors. This leads to improved (heuristic)
guarantees on finding approximate shortest vectors, a bigger practical
impact of the quality of the basis on the run-time, better memory man-
agement, a smoother and more predictable behavior of the algorithm, and
significantly faster convergence – compared to traditional approaches, we
save between a factor 20 to 40 in the time complexity for SVP.

Keywords: lattice-based cryptography, lattice sieving, shortest vector
problem (SVP), nearest neighbor searching

1 Introduction

Finding short lattice vectors. A central hard problem in the study of lattices is
the shortest vector problem (SVP): given a lattice L = {

∑d
i=1 cibi : ci ∈ Z} ⊂

Rd, find a non-zero lattice vector s of minimum norm, i.e. find s ∈ L satisfying
‖s‖ = λ1(L) := minx∈L\{0} ‖x‖. The security of many lattice-based crypto-
graphic primitives can be traced back to the hardness of SVP or approximate
SVP (γ-SVP), where a non-zero vector s ∈ L of norm at most γ ·λ1(L) suffices as
a solution. Being able to estimate the computational hardness of these problems
is crucial for accurately assessing capabilities of cryptographic adversaries, and
for selecting parameters in cryptographic schemes [MLC+17]. Algorithms for ex-
act SVP are essential both for solving exact and approximate SVP, as the latter
problem can (heuristically) be reduced to solving several exact SVP instances in
lower-dimensional lattices through the BKZ algorithm [Sch87,SE94,CN11].



Exact SVP algorithms. There are currently two classes of algorithms for ex-
act SVP: algorithms requiring superexponential time 2ω(d) in the lattice di-
mension d, using a negligible amount of memory (such as enumeration [Kan83,
FP85, SE94, GNR10, AN17]), and algorithms requiring single exponential time
and space 2Θ(d) (such as lattice sieving [AKS01, HPS11] and Voronoi cell ap-
proaches [SFS09,MV10a,Laa16]). Although the latter methods have clear draw-
backs due to the large memory requirement, these algorithms will inevitably sur-
pass the former algorithms in terms of the time complexity in high dimensions.
Conservative estimates of the (post-quantum) hardness of SVP are therefore
often based on the state-of-the-art asymptotics for the best (quantum) lattice
sieving algorithms [ADPS16,DLL+18,BDK+18].

Lattice sieving. Lattice sieving was introduced in 2001 by Ajtai–Kumar–Siva-
kumar [AKS01], and was only made somewhat practical less than 10 years ago
with fast heuristics [NV08,MV10b]. Recent years have seen further developments
in decreasing the asymptotic time complexity of sieving at the cost of using more
space [WLTB11, ZPH13, BGJ14, Laa15, BGJ15, LdW15, BL16, BDGL16], while
tradeoffs in the reverse direction have also been studied recently to reduce the
large memory requirement [BLS16, HK17, HKL18]. Various efforts have further
been made to make these algorithms competitive in high-performance computing
environments [Sch11,MS11,Sch13,FBB+14,MTB14,MODB14,IKMT14,MLB15,
BNvdP16,MB16,MLB17,YKYC17,Duc18]. The theoretically fastest method in
high dimensions is currently the LDSieve, with asymptotic time and space com-
plexities 20.29d+o(d) [BDGL16], while in practice the GaussSieve and HashSieve
appear to be the most practical in high dimensions [MB16,MLB17,YKYC17].

Differences with other approaches. Existing lattice sieving methods are fun-
damentally different from other SVP approaches in several ways. Whereas for
instance enumeration and Voronoi cell-based methods use a rank reduction step
to reduce a d-dimensional problem to problems in lattices of rank d− 1, lattice
sieving never considers other lattices than the full-rank one. And unlike other
methods, lattice sieving (i) does not appear to benefit greatly from being given
better lattice bases as input (i.e. BKZ-reduced bases with larger block sizes), and
(ii) does not appear to be much faster when an approximate solution suffices –
often the algorithm only starts to find shorter vectors after the algorithm is al-
ready 80% finished with finding an exact solution. All these properties currently
set sieving apart from other methods, and so one might ask whether lattice siev-
ing can be adjusted and perhaps improved by applying similar rank-reduction
techniques, so that sieving also obtains these “natural” properties of finding
short vectors faster, and performing better when given more reduced bases.

1.1 Contributions

We present progressive lattice sieving as a new baseline sieving approach, which
resolves many of the above differences with other methods, and greatly im-
proves the performance of heuristic sieving algorithms in practice. Progressive



lattice sieving uses a bottom-up approach, initially starting with sieving in a
low-rank sublattice of the input lattice. Then, when this subspace of the original
space has been saturated with vectors from this sublattice, new basis vectors
are introduced to find shorter lattice vectors in sublattices of higher rank, until
ultimately the algorithm reaches the full-rank lattice and attempts to find short
vectors in the original lattice. Using this rank reduction approach, progressive
sieving offers various benefits over standard sieving techniques, which we list
below. These are mostly independent of the exact underlying sieve used (e.g.
the GaussSieve [MV10b], HashSieve [Laa15], or LDSieve [BDGL16]), although
in some cases the improvements are bigger than in other cases.

Faster convergence: Overall, progressive sieving finds shortest vectors in lat-
tices much faster than using current methods, with speedups as large as
a factor 40 in dimension 70. Tables 1–2 illustrate improvements for 70-
dimensional lattices for the GaussSieve and HashSieve, and Figure 1 shows
the improvements for various dimensions using progressive sieving.

Better memory usage: Working on low-rank lattices requires fewer vectors to
make progress, allowing one to do a large part of the algorithm using much
less memory than current approaches. Experiments further show progres-
sive sieving uses slightly less memory overall (Figure 2b). This is especially
relevant as the main bottleneck in sieving is hitting the memory wall [MB16].

Heuristic guarantees for approximate SVP: Using the Geometric Series
Assumption, progressive sieving heuristically finds approximate solutions
faster than the full solution, unlike other approaches which commonly re-
quire a large number of vectors and reductions to make any progress at all.3

Larger impact of reduced bases: The more reduced the input basis is, the
faster shorter lattice vectors are found, which contributes to a faster overall
running time. Similar to pruning in enumeration, this further opens up some
new directions for potential improvements (see Section 5.2).

Better predictability: As illustrated in the experimental profiles (Figures 2–
3), various aspects of sieving are easier to predict and easier to explain
theoretically with progressive sieving, which may lead to more accurate pre-
dictions when extrapolating to higher dimensions.

Less resource contention: Vectors in the sieved list are only modified sporad-
ically. Instead of using the lock-free mechanism of [MB16,MLB17], to avoid
collisions between different nodes, we may therefore be able to construct
parallel implementations with lower-overhead incurring mechanisms.

Outline. The remainder of this paper is organized as follows. In Section 2, we in-
troduce notation and related work on lattice sieving. Section 3 describes progres-
sive sieving, and an experimental comparison with previous approaches is given
in Section 4. Section 5 discusses various aspects of these different approaches to
sieving, and Section 6 concludes with open problems for future work.

3 Arguably for current sieving approaches one could also take a sublattice of the full
lattice, based on the GSA, and do sieving on that lattice. However, in that case the
lattice may be too small (no solutions found) or too big (taking too much time).
With progressive sieving no a priori choices need to be made (see also Section 5.1).



Exact SVP ←− GaussSieve −→ ←− HashSieve −→

LLL BKZ-10 BKZ-30 LLL BKZ-10 BKZ-30

Standard sieving 19100 18100 16500 3300 3050 2900

Progressive sieving 595 440 390 165 125 115

Speedup factor 32× 41× 42× 20× 24× 25×

Table 1. Running times (in seconds) for solving exact SVP on 70-dimensional lattices
from the SVP challenge [SVP18], using the baseline GaussSieve algorithm [MV10b] and
the near-neighbor-based HashSieve extension of the GaussSieve [Laa15]. The lattice
bases are pre-reduced with either LLL or BKZ with blocksize 10 or 30, where we used
fplll [fplll18] to perform the basis reduction. The timings above are based only on the
sieving step, and do not include the time for the basis reduction step.
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Fig. 1. Time complexities for solving exact SVP on BKZ-10 reduced bases for the SVP
challenge lattices, using standard lattice sieving approaches (GaussSieve and Hash-
Sieve) and progressive sieving modifications of these algorithms (ProGaussSieve and
ProHashSieve). The formulas written in the figure denote the least-squares fits of the
four data sets up to two significant digits.

Concurrent work. During the write-up of this paper, we learned similar ideas
were independently and concurrently being studied by Ducas, which were later
published in [Duc18]. The focus of that work however is on a different improve-
ment to sieving (“a few dimensions for free”), and the idea of progressive sieving
is only mentioned in passing, with little explanation where the improvement
comes from. In this paper we chose to focus only on the progressive sieving idea,
to understand why it works and where further improvements can be found.



2 Preliminaries

Given a set B = {b1, . . . , bm} ⊂ Rd of m independent d-dimensional vectors, we
denote the (rank-m) lattice spanned by B by L(B) = {

∑m
i=1 cibi : ci ∈ Z}. With

abuse of notation, we sometimes write L = L(B) when the basis B is implicit.

For k ≤ m, we write Lk = Lk(B) for the sublattice {
∑k
i=1 cibi : ci ∈ Z} ⊆ L

spanned by the first k basis vectors of B. For simplicity, we commonly assume
that the original problem concerns a lattice problem in a lattice of full rank
(m = d); however, using rank reduction we sometimes consider problems in
sublattices as well. We denote by Vol(L) =

√
det(BTB) the volume of a lattice

L, and by Vol(A) the volume of a set A ⊂ Rd.

2.1 Heuristic assumptions

To analyze lattice algorithms, various heuristic assumptions are commonly used.
These are not proven and may well be false for certain extreme lattices/bases,
but commonly hold for random lattices encountered in cryptography. Analyzing
algorithms under these (average-case) assumptions therefore commonly leads to
more accurate security assessments than analyses based on provable (worst-case)
bounds, which are commonly not tight for random lattices.

The Gaussian heuristic states that, given a subset A ⊂ Rd, the number of
lattice points in A is roughly |A ∩ L| ≈ Vol(A)/Vol(L). As a consequence, we
expect a ball of radius r around a random point in space to contain a lattice
point iff r ≥ r0 ∼

√
d/(2πe), and heuristically we expect λ1(L) ≈

√
d/(2πe).

The Geometric Series Assumption (GSA) states that, after performing BKZ
reduction [Sch87] with block-size β on a full-rank lattice basis, the Gram-Schmidt
orthogonalization b∗1 . . . b

∗
d of the output basis satisfies ‖b∗i ‖ ≈ δd−2i+1 ·Vol(L)1/d

for all i. Here δ = δ(β) determines the quality of the basis; the smaller δ, the

more orthogonal the basis and the shorter b1. Note that
∏d
i=1 ‖b

∗
i ‖ = Vol(L).

2.2 Lattice sieving algorithms

The Nguyen–Vidick sieve. When the idea of lattice sieving was introduced by
Ajtai–Kumar–Sivakumar [AKS01], it was still a purely theoretical idea, and no
practical instantiations existed until Nguyen–Vidick described a heuristic version
of this idea in [NV08]. This sieve starts by sampling many long lattice vectors
(e.g. from a discrete Gaussian over the lattice), and then iteratively applies a
sieve to this list of vectors to produce a list with fewer, shorter lattice vectors.
This sieve essentially works by considering all pairwise combinations of vectors
in the input list, and seeing if any of the sums/differences are shorter than the
original vectors. Note that any such combination of lattice vectors again forms a
vector which is in the lattice. These pairwise combinations are then used in the
next iteration, while the input vectors to the sieve are discarded. This process
of throwing away many short lattice vectors is unnaturally wasteful, and the
Nguyen–Vidick sieve is therefore not commonly used in practice.



Algorithm 1 The standard GaussSieve algorithm – GaussSieve

1: Initialize an empty list L← ∅ and an empty stack S ← ∅
2: Initialize collisions ← 0
3: while true do
4: Get a vector v from the stack S or sample a new one from L(b1, . . . , bd)
5: Reduce v with all w ∈ L // this naively takes O(|L|) time

6: Reduce all w ∈ L with v // NNS can speed up these searches

7: Move reduced vectors w ∈ L from the list L to the stack S
8: if v has not changed then
9: Add v to the list L

10: else
11: if v 6= 0 then
12: Add v to the stack S
13: else
14: collisions++
15: if collisions = 100 then // a target norm may be used instead

16: return argminv∈L ‖v‖ // the shortest vector found so far

The GaussSieve and ListSieve. In 2010, Micciancio–Voulgaris [MV10b] intro-
duced two new (heuristic) lattice sieving algorithms, which unlike the Nguyen–
Vidick sieve both start from an empty list L, and gradually grow this list by
adding more (short) lattice vectors to the list, until this list contains a solution.

In the ListSieve, before adding a randomly sampled lattice vector v to the
list, the vector is reduced with all list vectors w ∈ L by checking whether either
of the sum/difference vectors v ± w are shorter than v – if so, v is replaced
by this shorter vector. Once v has been reduced with all list vectors, and no
pairwise sums/differences with list vectors lead to shorter vectors anymore, v is
added to the list. This process is repeated until L contains a shortest vector.

In the GaussSieve this process is essentially the same, except that list vectors
w ∈ L are also reduced with newly sampled vectors v, before adding v to the
list; in contrast, in the ListSieve vectors which have been added to the list L
are never modified again. Algorithm 1 describes the GaussSieve, while removing
Lines 6–7 leads to the ListSieve algorithm.

Extensions and variants. Over the last few years, various extensions and variants
of these heuristic sieving algorithms have been studied, to make them even more
efficient in practice. High-dimensional nearest neighbor search algorithms have
been used to obtain speed-ups in the searches in Lines 5–6 of Algorithm 1, which
naively take time O(|L|) but can be done in sublinear time O(|L|ρ) with ρ < 1
with more advanced methods of indexing and querying the list L [Laa15,LdW15,
BGJ15, BL16, BDGL16]. Recent work on tuple sieving [BLS16, HK17, HKL18]
focused on reducing the memory of lattice sieving, by considering a larger number
of vectors w1, . . . ,wk ∈ L from the list to form short combinations v ± w1 ±
· · · ±wk with v. Other work has shown that the same techniques can be used
to solve the Closest Vector Problem (CVP), and how near neighbor techniques
can be used to obtain fast CVP algorithms with preprocessing [Laa16].



3 Progressive lattice sieving

When given a (full-rank) d-dimensional lattice basis, standard sieving approaches
attempt to saturate this entire d-dimensional space from the start, always work-
ing with vectors from the full-dimensional space. With pairwise reductions be-
tween lattice vectors, one needs roughly 20.21d+o(d) vectors to saturate this space
and make significant progress in obtaining shorter vectors. This means that
also approximate shorter vectors are not found until the list size approaches
20.21d+o(d), which means a lot of effort is spent even before any progress is made
at all. Naively this means the time complexity to find any shorter vectors at all
is at least 20.42d+o(d) (or 20.29d+o(d) using near neighbor techniques [BDGL16]).

Using BKZ, finding approximate shortest vectors does not necessarily require
the same amount of effort as finding exact solutions. More specifically, BKZ only
solves SVP instances in lower-dimensional lattices, thereby finding short lattice
vectors in (projected) sublattices sooner. The idea of progressive lattice sieving is
similar: by first considering low-dimensional sublattices of the full lattice, which
already contain many short lattice vectors, we will find approximate solutions
faster, which will eventually contribute to finding exact solutions faster as well.

The GaussSieve. Applying progressive sieving to the GaussSieve means mak-
ing the following modifications. First, we start with a sublattice of the original
lattice, spanned by the first few basis vectors. We then run a sieve on this sub-
lattice, until we reach the stopping criterion (e.g. a certain number of collisions).
We then add a new basis vector to the search space, and continue sieving in this
sublattice of slightly higher rank. We repeat this procedure until we reach the
complete lattice, where we expect to find an exact solution to SVP. The result of
applying progressive sieving to the GaussSieve is sketched in Algorithm 2, where
the main modifications are (1) vectors are sampled from sublattices, and (2) the
rank counter is increased and the collision counter is reset when we reach 100
collisions. For simplicity we start with a sublattice of rank 10 – everything below
rank 30 or 40 generally finishes within a second anyway, so setting the initial
rank to any rank below 40 will lead to similar results in higher dimensions.

Other sieving algorithms. Naturally the same idea can be trivially applied to
most other sieving algorithms as well. Applying the same idea to the List-
Sieve [MV10b] would simply mean we do not reduce list vectors with sam-
pled vectors in Lines 6–7 of Algorithm 2. Near neighbor extensions to siev-
ing [Laa15,BDGL16] only affect the search procedure for finding reducing pairs of
vectors, and this can naturally be combined with progressive sieving as well. For
tuple sieving [BLS16, HK17, HKL18] we simply run tuple sieving on sublattices
until the corresponding sublattice has been saturated, after which we increase
the rank as before. Applying progressive sieving to the CVP sieve of [Laa16] is
also straightforward. The same idea can also be applied to the Nguyen–Vidick
sieve, but in that case the integration of progressive sieving is slightly more con-
trived; since the practical results with the Nguyen–Vidick sieve will likely be
worse than when using the GaussSieve, we have chosen to omit this application.



Algorithm 2 The progressive GaussSieve algorithm – ProGaussSieve

1: Initialize an empty list L← ∅ and an empty stack S ← ∅
2: Initialize collisions ← 0, rank ← min{10, d}
3: while true do
4: Get a vector v from the stack S or sample a new one from L(b1, . . . , brank)
5: Reduce v with all w ∈ L // this naively takes O(|L|) time

6: Reduce all w ∈ L with v // NNS can speed up these searches

7: Move reduced vectors w ∈ L from the list L to the stack S
8: if v has not changed then
9: Add v to the list L

10: else
11: if v 6= 0 then
12: Add v to the stack S
13: else
14: collisions++
15: if collisions = 100 then
16: if rank = d then
17: return argminv∈L ‖v‖ // the shortest vector found so far

18: else
19: rank++ // continue with the next sublattice

20: collisions ← 0 // reset the collisions counter

4 Experiments

Heuristically, sieving naively requires a search over all pairs of vectors in the list
(when not using near neighbor techniques), leading to a quadratic time com-
plexity in the list size. With progressive sieving, these arguments still hold, and
so the asymptotic improvement of progressive sieving will not be visible in the
leading time/memory exponents. Experimentally however there are rather large
hidden order terms, and these may become smaller with progressive sieving. To
get an insight into this improvement, we will experimentally evaluate progres-
sive sieving and compare it to standard sieving approaches. As a baseline we will
use the GaussSieve [MV10b], the baseline sieve without near neighbor searching,
and the HashSieve [Laa15], which is perhaps the most practical near neighbor
extension of the GaussSieve to date [MLB15, MB16, MLB17]. In Section 5 we
will give a more in-depth discussion of various aspects of these results.

Experiment setting. All experiments were performed on a Medion Erazer P6661
laptop with an Intel Core i7-6500 CPU (2.50 GHz) and 8 GB of RAM. Except for
approximate SVP, where the termination condition was finding a vector of a cer-
tain length, all experiments used a bound on the number of “collisions” (reduc-
ing to the all-zero vector) as the termination condition. Similar to e.g. [MV10b,
IKMT14] we used (an unoptimized version of) Klein’s sampler [Kle00]. For the
HashSieve, we used the same parameters as in [Laa15,MLB15]. All experiments
were performed on lattices from the SVP challenge [SVP18], where the LLL/BKZ
basis reduction was done using fplll [fplll18].



4.1 Profiles

To get an idea how progressive sieving differs from classical sieving in practice,
Figures 2–3 depict typical profiles of the classical and progressive HashSieve,
when solving SVP on 70-dimensional lattices from the SVP challenge [SVP18].
As described in the captions of the figures, the time complexities are significantly
better, the list size increases more steadily (and predictably) than in the original
HashSieve, approximate solutions are found considerably faster, and vectors in
the list are updated much less frequently in progressive sieving.

Note that as in Figure 2c, classical sieving can be viewed as a special case
of progressive sieving, with the initial value of rank set to d. Also note that in
all figures, the horizontal axis counts the number of iterations of the while-loop
of Algorithms 1–2), which translates to actual time complexities as in Figure 2a
– this means that e.g. a vector of Euclidean norm 2400 in this 70-dimensional
lattice is not found a factor 5× faster (as one might guess from Figure 3a), but
close to a factor 5 · 20 ≈ 1000× faster (taking into account Figure 2a).

4.2 Results

To get reliable complexity estimates for arbitrary dimensions, we ran several ex-
periments of both standard and progressive sieving on lattices of dimensions 40
to 80, the results of which are displayed in Figure 1. These results clearly show a
large decrease in the time complexities for sieving in arbitrary dimensions, both
for the classical GaussSieve and the near-neighbor-optimized HashSieve algo-
rithm [Laa15]. For both algorithms the improvement is more than a factor 20×
for all tested dimensions, showing that the improvement of progressive sieving
can indeed be combined with near neighbor techniques.

Focusing only on 70-dimensional lattices, we also ran experiments with dif-
ferent quality bases, to see how the basis reduction affects the performance of
(progressive) sieving. The results in Table 1 are based on at least 10 experiments
each on randomized lattice bases (where only the experiments that took several
hours are based on just 10 runs). As can be seen in the table, progressive siev-
ing benefits more from reduced bases, with the speedup factor increasing as the
quality of the basis improves. We further observe that the speedup factor for the
HashSieve is slightly smaller than for the GaussSieve, which can be explained by
the HashSieve spending most of its time working with the near neighbor data
structure – costs which are not affected by progressive sieving.

Finally, to illustrate the improvements for finding approximate shortest vec-
tors, Table 2 lists the time complexities for 1.1-SVP on 70-dimensional lattices
from the SVP challenge [SVP18]: the measured complexities are based on termi-
nating the algorithm as soon as a vector v ∈ L of norm ‖v‖ ≤ 1.1·λ1(L) has been
found. As the results show (and as could already be seen in Figure 3a), standard
sieving barely benefits from this relaxed termination requirement, while progres-
sive sieving improves considerably both when an approximate solution suffices,
and when the input bases is more reduced, leading to extreme speedup factors
as high as 5000×. This highlights a weakness of existing lattice sieving methods.
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Fig. 2. Sieving profiles for the HashSieve (red) and ProHashSieve (blue), when given
as input a BKZ-30 reduced lattice basis of a 70-dimensional lattice.
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Fig. 3. Sieving profiles for the HashSieve (red) and ProHashSieve (blue), when given
as input a BKZ-30 reduced lattice basis of a 70-dimensional lattice.



Approximate SVP ←− GaussSieve −→ ←− HashSieve −→
(γ = 1.1) LLL BKZ-10 BKZ-30 LLL BKZ-10 BKZ-30

Standard sieving 18500 17200 15600 3180 2960 2700

Progressive sieving 120 40 3 65 20 2

Speedup factor 150× 400× 5000× 50× 150× 1000×

Table 2. Running times (in seconds) for solving approximate SVP with approximation
factor γ = 1.1 on 70-dimensional lattice bases from the SVP challenge [SVP18]. When
the bases are sufficiently well-reduced, low-rank sublattices already contain very short
lattice vectors, leading to substantially faster convergence for progressive sieving.

5 Discussion

In this section we will briefly discuss different aspects of lattice sieving, and how
various design choices affect the performance of (progressive) sieving in practice.

5.1 Approximate SVP

As shown in Table 2, progressive sieving benefits greatly from being given a
relaxed termination condition, in the sense that an approximate solution to
SVP suffices. To quantify where this improvement comes from, recall that by
the Geometric Series Assumption (GSA), BKZ gives us a reduced lattice basis
{b1, . . . , bd} where the Gram-Schmidt orthogonalization vectors satisfy ‖b∗i ‖ ≈
δd−2i+1 · Vol(L)1/d for all i = 1, . . . , d. As a result, the first k basis vectors
together form a rank-k sublattice Lk = L(b1, . . . , bk) ⊂ L of volume:

Vol(Lk) =

k∏
i=1

‖b∗i ‖ = Vol(L)k/d · δ
∑k

i=1(d−2i+1) = Vol(L)k/d · δk(d−k) (1)

By the Gaussian heuristic we have λ1(L) ≈ Vol(L)1/d/
√

2eπd, and therefore the
shortest vector in this rank-k sublattice Lk has relative norm:

λ1(Lk) ≈ Vol(Lk)1/k√
2eπk

=
δd−k Vol(L)1/d√

2eπk
≈ δd−k

√
d

k
· λ1(L) (2)

To obtain a solution to γ-SVP, i.e. approximate SVP with approximation factor
γ, we need δd−k

√
d/k ≈ γ. Depending on the basis quality δ, dimension d, and

approximation factor γ, this tells us how many dimensions we can essentially
“skip” at the end when looking for approximate solutions: already at rank k, we
will then expect to find a vector of sufficiently short length.

One could argue that the picture sketched by Table 2 is painted too rosily
in favor of progressive sieving, since classical sieving approaches could also find
approximate solutions faster by (a) computing a similar heuristic on what rank



k is required to find an approximate solution in a suitable sublattice, and then
(b) simply running sieving on such a sublattice until an approximate solution
has been found. Even in that case however, progressive sieving has the benefits
of not requiring an a priori choice of k (it automatically finds the right rank k
required to find a sufficiently short vector), and having a faster convergence for
exact SVP in such sublattices as well (as sketched in Table 1).

5.2 Effects of basis reduction

The experiments in Section 4 further suggest that progressive sieving benefits
more from being given a more reduced basis than classical sieving approaches.
To explain this, we observe that there are two sides to having better bases, and
previous sieving approaches only benefited from one of these advantages.

Standard sieving. When given a better basis, classical sieving methods will be
able to sample shorter lattice vectors in Line 4 more easily. Being able to sample
shorter vectors means that vectors will need to be reduced less frequently before
“stabilizing” in the list, thus reducing the overall cost of the algorithm as for
each vector, we might save some searches and reductions.

Progressive sieving. Besides the benefit stated above, which also holds for
progressive sieving, there is a second advantage to being given a nice lattice basis.
This is closely related to the heuristic analysis for approximate SVP above, as
having a reduced basis means that δ is smaller and therefore low-rank sublattices
will already contain shorter lattice vectors. And being able to find very short
lattice vectors early in low ranks, which will then be contained in the list L when
moving to higher-rank sublattices, means that reductions will proceed faster in
those higher ranks as well.

Formally, let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit sphere, and let v ∼
Sd−1 be sampled uniformly at random from this sphere. Then, using spherical
cap arguments similar to e.g. [BDGL16], one can show that the probability
that v can be reduced with a random vector w ∈ Sd−1 (i.e. ‖v ±w‖ ≤ ‖v‖) is
(3/4)d+o(d) ≈ 2−0.21d+o(d). However, when the norms of list vectors w differ from
1, so that the norms of v and w are different, this probability changes. Intuitively,
for small ‖w‖ → 0 the probability of reducing v with w approaches 1, as either
v + w or v − w is likely to be shorter than v. For large ‖w‖ →

√
2‖v‖ the

probability of being able to reduce v with w approaches 0, and for ‖w‖ ≥ 2‖v‖
it is even impossible for such a reduction to take place. For arbitrary α ∈ (0,

√
2)

and random w ∈ αSd−1, a geometric exercise shows that this probability scales
as (1 − α2/2)d/2+o(d), showing that if list vectors w ∈ L are a factor α shorter
than the sampled vectors v, the likelihood that v can be reduced with the list is
exponentially larger (in α) than when vectors in the list have equal norm as v.

Summarizing, if the input basis to the sieve is more reduced, then in lower
ranks the algorithm will already find shorter lattice vectors to add to the list L,
and having shorter vectors in the list means that new vectors can be reduced



faster and more easily. Since in classical sieving approaches it takes much longer
to find (approximate) short lattice vectors, previous approaches to sieving do
not benefit from this accelerated reductions when the list vectors are short. We
believe this mostly explains the bigger improvements to progressive sieving when
using more reduced bases.

Pruning. Note that when the lattice basis is very reduced, the last coefficients
of the shortest lattice vector in terms of these basis vectors are commonly small
or zero. If the search space in the last few coefficients is small, one could simply
guess or enumerate these potential coefficients, while doing sieving on the first
coefficients. This suggests an approach where we only do sieving up to a certain
rank, and for the last few basis vectors we use a different procedure of either
guessing the coefficients and randomizing/restarting when we fail (similar to
pruned enumeration with randomized bases), or using e.g. enumeration or Babai
rounding to deal with these latter dimensions. A somewhat similar idea of dealing
with these last dimensions faster was analyzed in [Duc18].

5.3 Effects of the sampler

By the sampler, we are referring to the procedure in Line 4 of Algorithms 1–
2 of sampling new lattice vectors, in case the stack is empty: a new vector is
sampled from a certain distribution over the lattice, using some efficient sam-
pling algorithm. This sampling is often done through a randomized enumeration
procedure [Kle00], and the exact specification of this procedure determines how
short the sampled lattice vectors will be, how often similar vectors (in particular,
the vector 0) are sampled, and how long the procedure takes to produce a new
sample.

Standard sieving. Choosing the best parameters for the sampler, to get the
best performance for sieving, is a rather cumbersome procedure: there are several
parameters to tune in the sampler alone, and the best choice varies per dimension
and per lattice sieve method (GaussSieve, HashSieve, etc.). Experiments in the
past have shown that for previous sieving approaches, this choice of parameters
may also greatly influence the practical performance of the algorithm [IKMT14,
FBB+14, MLB15, MB16], which makes this aspect of sieving hard to deal with
properly – choosing parameters optimally is both difficult and important.

Progressive sieving. Although choosing parameters accurately still influences
the performance of progressive sieving, sampling longer vectors causes less of a
slowdown due to the list having many short vectors early on (as discussed before,
in the context of the input basis quality). Long sampled vectors are reduced in
length faster and more easily, so that sampling longer vectors is less of an issue.
Therefore fine-tuning the sampler will likely not lead to as big improvements for
progressive sieving as for standard sieving. However, this also means that the



numbers in Tables 1–2 and Figure 1 may not be entirely accurate when using
optimized samplers – our numbers are based on a simple, straightforward proof-
of-concept implementation of Klein’s sampler, rather than having optimized all
aspects of the algorithm (and in particular this sampling routine).4

5.4 Effects of list updates (GaussSieve vs. ListSieve)

As mentioned, the main difference between Micciancio–Voulgaris’ GaussSieve
and ListSieve is that in the ListSieve, vectors that are added to the list are never
modified again. By “list updates”, we are referring to either making updates to
the list vectors as in the GaussSieve, or never updating list vectors as in the
ListSieve algorithm.

Standard sieving. In classical sieving approaches, as can for instance be seen
in Figure 3b, lattice vectors in the sieved list are quite often reduced and moved
back to the stack, after which they are processed again and pushed back to
the list. In the ListSieve-variant of such algorithms, where list vectors are never
touched again, one would miss all these reductions, leading to a significantly
worse performance overall [MODB14]. Although the ListSieve is conceptually
slightly simpler, the performance loss would not be worth it to ever consider
using the ListSieve instead of the GaussSieve in high-performance environments.

Progressive sieving. For progressive sieving, reductions of list vectors almost
never happen, as can also be seen in Figure 3b. Recall that the experiments de-
scribed in Figures 2–3 are based on the GaussSieve-based HashSieve, where such
list updates are allowed if they produce shorter lattice vectors. For progressive
sieving, the execution times of the GaussSieve and ListSieve variants are much
closer, which suggests using ListSieve-like sieving may be practical as well. Note
that the ListSieve does not save any inner product computations between sam-
pled and list vectors, since we already need to compute v · w to see if v can
be reduced with w in Line 5 (before reducing w with v in Line 6), and so the
performance is still worse when doing the ListSieve instead of the GaussSieve:
skipping potential reductions which are “free” is almost never a wise choice.

A potential application of ListSieve-style sieving, knowing that its perfor-
mance is closer to the GaussSieve when using progressive sieving, is in parallel
implementations. For shared memory systems, current approaches use (proba-
ble) lock-free lists [MTB14, MLB15, MLB17], and these lock-free lists may no
longer be needed when we know that once a vector is added to the list, it is
never updated again and it becomes read-only memory. For distributed-memory
implementations [IKMT14,BNvdP16,YKYC17], using a ListSieve as a baseline

4 Concurrent work [Duc18] suggests that ideas similar to progressive sieving only lead
to a factor 5× speed-up, i.e. roughly a factor 4× less than described here. We con-
jecture that this difference is mainly caused by Ducas using a more optimized im-
plementation of the baseline approach, and in particular using a better sampler.



may also be beneficial in terms of performance and simplicity – synchronization
between nodes only has to be done on local sampled vectors, and not on list
vectors which are modified by different nodes.

6 Open problems

As we have seen, progressive sieving has a better (experimental) performance
than current sieving approaches in many ways, making sieving slightly smoother,
more predictable, less dependent on parameter choices for the sampler, and more
dependent on the quality of the input basis. Below we state some open problems
for future work, related to the ideas presented in this paper.

6.1 BKZ and sieving on sliding windows

A long-standing open problem is to efficiently implement sieving as the SVP sub-
routine for BKZ, which now commonly uses enumeration as its SVP subroutine
instead. Only recently has sieving become rather competitive with enumeration,
and projects in this direction are likely ongoing.

When running BKZ on d-dimensional bases, there is often a sliding window of
k indices i+1, . . . , i+k, for which SVP in k dimensions needs to be solved to form
an HKZ-reduced basis in this block. Then, when this block has been properly
reduced, the index i is increased by 1, and the same procedure is applied to
the window i+ 2, . . . , i+ k + 1. Since there is a large overlap between different
windows, a natural question is whether dealing with this new block can be done
more efficiently than starting from scratch.

This is somewhat similar to progressive sieving, where as an abstraction
we start with k basis vectors b1, . . . , bk, and after reducing this basis (running
sieving on this block), we switch to a basis π1(b2), . . . , π1(bk+1), with π1(x)
being the projection of x orthogonal to b1, and bk+1 being linearly independent
of the previous basis vectors. So (besides the projections) not only do we add
a new basis vector bk+1 to the system as in progressive sieving, we also remove
one vector b1, making all vectors currently in our list with a non-zero coefficient
of b1 “unusable” in the next iteration.

One potential way of dealing with shifting windows in sieving is to discard
all vectors w with non-zero coefficient of b1 when moving from one window to
the next – the contribution of b1 may be crucial for this vector to be short,
and removing this contribution may result in a long lattice vector. By the GSA,
the number of vectors of norm less than 4

3 · λ1(L(b1, . . . , bk)) in L(b1, . . . , bk)
is approximately [ 43 · λ1(L(b1, . . . , bk))/λ1(L(b2, . . . , bk))]d, which is roughly a
fraction [λ1(L(b1, . . . , bk))/λ1(L(b2, . . . , bk))]d of all vectors in the sieved list
L ⊂ L(b1, . . . , bk). Although this fraction may be small depending on the shape
of the lattice and the block size k, a non-negligible fraction of vectors can thus
be reused in the next iteration without difficulties.

Besides this straightforward approach, one could also imagine vectors with
non-zero coefficients of b1 being reused in the next iteration by just removing this



contribution of b1, and hoping that the resulting vector is still short. This might
make the vectors slightly longer on average, but makes sure that all vectors can
be reused, potentially saving even more work on the sieve in the next window.

6.2 Enumeration with sieving

Another long-standing open problem in lattice algorithms is to consider ap-
proaches based on enumeration and sieving, and combining the “best of both
worlds” to construct even better SVP algorithms. As suggested in [Laa16], one
potential such combination would consist of running sieving on a subset of the
basis (say b1, . . . , bk), and then using the sieved list as an approximate Voronoi
cell for faster enumeration. This enumeration procedure would then consist of
considering combinations of the vectors bk+1, . . . , bd as in state-of-the-art enu-
meration algorithms, and then using the sieved list L ⊂ Lk to see whether those
enumerated vectors are close to a vector in the sublattice Lk. If it is close to
such a vector, the difference with that vector is likely a short vector in the full
lattice. In this case sieving would be used as a batch-CVP/CVPP oracle.

While this idea also works with classical sieving methods, it becomes even
more natural with progressive sieving, which already considers increasingly large
sublattices to make progress. Modifying progressive sieving to the above appli-
cation would simply mean changing the upper bound in Line 16 from the full
rank d to some bound d0. Similar ideas of combining sieving on a sublattice with
enumerating the “last few dimensions” have been studied in [Duc18], but more
work is needed to understand the full potential of such a hybrid approach.
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DLL+18. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
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