
Constructions of S-boxes with uniform sharing

Kerem Varici1, Svetla Nikova1, Ventzislav Nikov2, and Vincent Rijmen1

1 KU Leuven, imec-COSIC, Belgium, {name.surname}@esat.kuleuven.be
2 NXP Semiconductors, Belgium, venci.nikov@gmail.com

Abstract. In this paper we focus on S-box constructions. We consider
the uniformity property of an S-box which plays an important role in
Threshold Implementations (TI). Most papers so far have studied TI
sharings for given S-boxes. We proceed in the opposite way: starting
from n-bit S-boxes with known sharings we construct new (n + 1)-bit
S-boxes from them with the desired sharings. In addition, we investigate
the self-equivalency of S-boxes and show some interesting properties.

1 Introduction

Block ciphers are one of the key components in cryptography. Recently, lightweight
cryptography became popular and it carried the design approach of a block cipher
into different points. Depending on the requirements of the platform: low energy
consumption, restriction on area, low multiplicative complexity, resistance against
side-channel attacks etc., many new design approaches were proposed over the
years.

In 1945, Shannon defined two properties of a block cipher: diffusion and
confusion. Restrictions on lightweight cryptography pushes the search of a per-
fectly secure diffusion and confusion components to find suboptimal secure but
efficient components. S-boxes are one of the main primitive in symmetric-key
cryptography. They are the smallest component in an algorithm which provides
non-linearity. The size of an S-box can change from three bit to n-bit but mostly
four and eight bit length is preferred. In this work, we studied general n-bit
S-boxes but we did our experiments for small sizes i.e. three to five bits.

The classification of all 3-bit and 4-bit S-boxes according to affine equivalency
was first given in [3, 6].

Definition 1. Two S-boxes S1 and S2 are affine equivalent if there exists a pair
of invertible affine permutations A and B, such that S1 = A ◦ S2 ◦B.

Note the ordering used in the paper for A ◦B is first apply A, then apply B. It
is well known that all invertible 2× 2 S-boxes are affine, hence there is only one
class. The set of invertible 3× 3 S-boxes contains 4 equivalence classes: 3 classes
containing quadratic functions, and one class containing the affine functions. The
maximal algebraic degree of a balanced n-variable Boolean function is n− 1 [4,7].
De Cannière lists 302 equivalence classes for the 4 × 4 bijections: the class of
affine functions, 6 classes containing quadratic functions and the remaining 295
classes containing cubic functions. There is a transformation [2] which expands



the 3-bit classes Q3
1, Q3

2, and Q3
3 into Q4

4, Q4
12 and Q4

300 correspondingly. That
is, given a 3-bit permutation S(x1, x2, x3) = (y1, y2, y3), its 4-bit extension is
generated by S(x1, x2, x3, x4) = (y1, y2, y3, x4).

Recently a classification of all quadratic 5× 5 S-boxes was presented in [1].
The authors have also pointed out that the 5-bit classes Q5

1,Q5
3,Q5

4,Q5
7,Q5

13 and
Q5

30 are extensions of the 4-bit quadratic classes Q4
4, Q4

294, Q4
12, Q4

299, Q4
293 and

Q4
300 from [2] respectively. That is, given a 4-bit permutation S(x1, x2, x3, x4) =

(y1, y2, y3, y4), its 5-bit extension is generated by S(x1, x2, x3, x4, x5) =
(y1, y2, y3, y4, x5). Let x̄ = (x1, ..., xn) then the method used in the above men-
tioned publications can be summarized as follows

S(x̄, xn+1) = S1(x̄) for the first n bits (1)

= xn+1 for the (n + 1)-st bit

Another well known construction is the so-called Shannon expansion.

Definition 2 (Shannon Expansion). Let x̄ = (x1, ..., xn) then

F (x̄) = xiFxi
(x̄) + (xi + 1)Fxi+1(x̄) (2)

where Fxi(x̄) = F (x1, ..., xi = 1, ..., xn) and Fxi+1(x̄) = F (x1, ..., xi = 0, ..., xn)
i.e. these are two functions on n− 1 variables x1, . . . , xi−1, xi+1, . . . , xn.

The recent developments in the technology come with some new security
requirements like physical security. Today, many ways exist for physically secure
implementations. One of the most popular ways is Threshold Implementations
(TI) [8]. The method uses the idea of secret sharing schemes and techniques
from multiparty computation, and requires a sharing which needs to satisfy
the following properties: Correctness, Non-completeness and Uniformity. In this
paper we will mainly focus on the last property which simply can be stated as
follows. Whenever a given n-bit S-box is a permutation, its sharing with k shares
is a permutation on GF (2kn). The number of shares k in d-th order TI depends
on the algebraic degree t of the S-box - namely k ≥ td + 1, hence for 1-st order
security one needs at least t + 1 shares. We do not consider here the approach
based on decomposition on the S-box into low degree S-boxes.

It is well known how to find a uniform sharing for all 3×3 and 4×4 S-boxes [2].
Recall that a uniform sharing with 3 shares exists for Q3

1, Q3
2, but not for Q3

3;
and a uniform sharing with 4, 5 and more shares exists for all 3 of them. Also
recall that a uniform sharing with 3 shares exists for Q4

4, Q4
294, Q4

12, Q4
299, Q4

293,
but not for Q4

300; and a uniform sharing with 4, 5 and more shares exists for all
6 of them Q4

4, Q4
294, Q4

12, Q4
299, Q4

293, and Q4
300. Also a uniform sharing with 4

shares is known for C41 , C43 , C413 and C4301. The remaining cubic 4-bit S-boxes have
no uniform sharing with 4 shares. However, all of them have a uniform sharing
with 5 shares. Recently, a 3-share uniform sharing for 30 of the 5-bit quadratic
classes (namely classes 1− 27, 31, 33 and 34) was found [1]. Moreover, all 5-bit
quadratic permutation classes have a uniform sharing with 4 and more shares. It
is well known that any Boolean function of 3 or more variables has a uniform TI
sharing with 3 and more sharings [9].

2



It is clear that method (1) is providing uniform sharing with k shares for S if
and only if S1 has a uniform sharing with k shares. In this work, we focus on the
uniformity property of an S-box since it needs a special treatment and there does
not exist a straightforward way of checking the property. We show under which
conditions a uniform sharing of n-bit S-box can be used to construct uniform
sharing of (n + i)-bit S-boxes where i ≥ 1. The main reason to do this, is that
we want to avoid an exhaustive uniformity check, whose complexity increases
exponentially with the size of the S-box and the number of shares used. We used
the idea of Shannon’s expansion to generate bigger S-boxes and manage to show
the cases that uniformity will hold for the newly generated S-boxes. Moreover, we
showed for small sizes n = 3 and 4, which n-bit classes maps to which (n+ 1)-bit
classes.

The original intention of the affine equivalence algorithm [3] was to discover
equivalence relations between different S-boxes, but the algorithm can be applied
for a single S-box S as well. In this case, the algorithm will return affine mappings
A and B for the self-equivalent S. The number of different solutions for this
equation can be seen as an indicator for the symmetry of the S-box [3]. S-boxes
that have at least one non-trivial solution are called self-equivalent S-boxes [3].

A well known example is the 8-bit S-box S used in RIJNDAEL [5]. It has 2040
different self-equivalence relations. Although this number might seem surprisingly
high at first, in [3] it is shown that it can easily be explained from the special
algebraic structure of the S-box of RIJNDAEL and it can be generalized for the
inversion in GF (2n). Let first introduce the notation [a], which denotes the n×n-
bit matrix corresponding to a multiplication by a in GF (2n). Similarly, denote
by Q the n × n-bit matrix which performs the squaring operation in GF (2n)
note this is a linear operation. Considering the fact that the RIJNDAEL S-box
is defined as S = inv ◦A with A a fixed affine mapping, we can derive a general
expression for all pairs of affine mappings C and B that satisfy B ◦ S ◦ C = S

C = A−1 ◦ [a] ◦Qi ◦A, and B = [a] ◦Qi

with 0 ≤ i < n and a ∈ GF (2n) \ {0}. Since i takes n different values and there
are 2n − 1 different choices for a, one obtains exactly 2040 in the case n = 8
different solutions, while in general there are n(2n − 1) self-equivalent S-boxes of
the inversion. It is easy to check that Qn = Id and thus Qi = Qn−i.

As noted in [3] these ideas also apply to a large extent to other ciphers that
use S-boxes based on power functions, e.g., CAMELLIA, MISTY and KASUMI,
whose S-boxes S7 and S9 are both designed to be affine equivalent to a power
function over GF (27) and GF (29), respectively. In this paper we will investigate
this property for any S-box, i.e. not only for the power functions.
Our contribution. In Section 2 we first study the Shannon expansion for S-
boxes and derive a condition to obtain a new invertible S-box. We then show
how to use the Shannon expansion to construct from given n-bit S-boxes with
a uniform sharing (n + 1)-bit S-boxes with a uniform sharing and (n + 2)-bit
S-boxes with a uniform sharing. We apply this for all 3-bit and 4-bit S-boxes
to derive results on 4-bit and 5-bit S-boxes. Alas, we find that our method is

3



not able to generate all (n + 1)-bit S-boxes. In Section 3 we present some results
on the presence of self-equivalent S-boxes and involutions in affine equivalence
classes. We conclude in Section 4.

2 Constructions of S-boxes with uniform sharing

2.1 Increasing the size of an S-box by one

We start with a slightly modified definition of Shannon’s expansion.

Definition 3. Given two n× n S-boxes (bijections) S1(x̄) = (t1, t2, . . . tn) and
S2(x̄) = (u1, u2, . . . un), where x̄ = (x1, ..., xn). Using Shannon’s expansion, we
get an (n + 1) × (n + 1) S-box (not always a bijection) S(x1, . . . , xn, xn+1) =
(y1, y2, . . . , yn+1):

yi = xn+1ti + (1 + xn+1)ui, for i = 1, . . . , n (3)

yn+1 = xn+1F (x̄) + (1 + xn+1)G(x̄),

where F and G are Boolean functions of n inputs.

It follows that the truth table of the constructed (n + 1)× (n + 1) S-box S has
the form shown in Table 1.

Table 1. Truth table of S constructed by Definition 3

(x̄, xn+1 = 0) (x̄, xn+1 = 1)

(S2(x̄), G(x̄)) (S1(x̄), F (x̄))

Theorem 1. S is a bijection if and only if

G(x̄) = F (S−11 (S2(x̄))) + 1 or equivalently G = S2 ◦ S−11 ◦ F + 1 . (4)

Proof. (⇐) Let the condition (4) hold and assume there are two different inputs
(x̄′, x′n+1) and (x̄′′, x′′n+1), such that S(x̄′, x′n+1) = S(x̄′′, x′′n+1), i.e. assume S is
not a bijection. Then we consider the following two cases:

a) if x′n+1 = x′′n+1 then it follows that x̄′ 6= x̄′′ since the inputs are different.
From S(x̄′, x′n+1) = S(x̄′′, x′′n+1) and x′n+1 = x′′n+1, it follows that either
S1(x̄′) = S1(x̄′′) or S2(x̄′) = S2(x̄′′). But since both S1 and S2 are bijections,
we arrive at a contradiction.

b) if x′n+1 6= x′′n+1 then it follows either

b1) S1(x̄′) = S2(x̄′′) and F (x̄′) = G(x̄′′) or
b2) S1(x̄′′) = S2(x̄′) and F (x̄′′) = G(x̄′).

4



Let us consider case b1): since S1(x̄′) = S2(x̄′′) we get x̄′ = S−11 (S2(x̄′′)) and
hence F (S−11 (S2(x̄′′))) = G(x̄′′) but this contradicts to (4). Similarly one can
get a contradiction for b2).

Therefore, our assumption is incorrect and hence S is a bijection when the
condition (4) holds.
(⇒) Let S be a bijection. Choose x′n+1 = 0 and x′′n+1 = 1, then for any n-tuple x̄′

there exist n-tuple x̄′′, such that S1(x̄′) = S2(x̄′′). Since S(x̄′, x′n+1) 6= S(x̄′′, x′′n+1)
this implies that F (x̄′) 6= G(x̄′′) or in other words F (x̄′) = G(x̄′′)+1. Again since
S1(x̄′) = S2(x̄′′) we get x̄′ = S−11 (S2(x̄′′)) and thus F (S−11 (S2(x̄′′))) + 1 = G(x̄′′)
which is exactly the condition (4). This completes the proof. ut

We conclude that one has to choose only S1, S2 and F in order to build S.
When S1 and S2 are fixed there are “only” 2n choices for F in order to get S.
We should stress that deg(S) = max{dA, dB}, where

dA =

{
max{deg(S1),deg(S2)} deg(S1 + S2) < max{deg(S1),deg(S2)}
max{deg(S1),deg(S2)}+ 1 deg(S1 + S2) = max{deg(S1),deg(S2)},

dB =

{
max{deg(F ),deg(G)} deg(F + G) < max{deg(F ),deg(G)}
max{deg(F ),deg(G)}+ 1 deg(F + G) = max{deg(F ),deg(G)}.

Note that whenever S1 = S2 condition (4) can be simplified to: F (x̄) = G(x̄) + 1.
In this case deg(S) = max{deg(S1),deg(F )}, i.e. the simplified equation is:

yi = ti for i = 1, . . . , n (5)

yn+1 = xn+1 + F (x̄)

Here, instead of F + 1 we write F for simplicity. Note that compared to the
construction (1) used in [2] to get from 3× 3 an 4× 4 S-box and similarly in [1]
from 4× 4 an 5× 5 S-box, the construction (5) extends it to allow F to be any
Boolean function on n variables.

Now we will show how the constructions (3) or (5) can be used to find uniform
sharings. Let 1̄i denote the vector (0, ..., 0, 1, 0, ..., 0) with 1 on the i-th position.

Theorem 2. Let us consider any n× n S-box S1 which has a uniform sharing
with k shares and any Boolean function F with n variables which also has a
uniform sharing with k shares. If S2 is chosen in one of the n + 1 forms: S1(x̄),
S1(x̄ + 1̄i) for i = 1, ..., n, then the generated (n + 1) × (n + 1)-bit S-box S by
using S1, S2 and F has also a uniform sharing with k shares.

Proof. When S1 = S2 it follows from Theorem 1 that S is a bijection if and only
if F (x̄) = G(x̄) + 1 and in this case the equation (5) can be used. It is also clear
in this case that S will have a uniform sharing with k shares. Now let us consider
the general case when S2(x̄) = S1(x̄ + 1̄i). According to Definition 2 we have:

S1(x̄) = xiS1,xi(x̄) + (xi + 1)S1,xi+1(x̄) (6)

F (x̄) = xiFxi(x̄) + (xi + 1)Fxi+1(x̄)

5



We rewrite (6) as follows:

S1(x̄) = (xi + 1)[S1,xi
(x̄) + S1,xi+1(x̄)] + S1,xi

(x̄) (7)

F (x̄) = (xi + 1)[Fxi
(x̄) + Fxi+1(x̄)] + Fxi

(x̄)

Note also that (6) implies:

S1(x̄ + 1̄i) = (xi + 1)S1,xi(x̄) + xiS1,xi+1(x̄) (8)

F (x̄ + 1̄i) = (xi + 1)Fxi(x̄) + xiFxi+1(x̄)

Next we replace S2(x̄) with S1(x̄ + 1̄i) in the definition of S

S(x̄, xn+1) = xn+1S1(x̄) + (1 + xn+1)S1(x̄ + 1̄i) for i = 1, . . . , n (9)

= xn+1F (x̄) + (1 + xn+1)[F (x̄ + 1̄i) + 1]

Here we used that condition (4) should hold in order for S to be a bijection.
Then let’s rewrite the first n-bits of (9) using (6) and (8)

S(x̄, xn+1) = xn+1S1(x̄) + (1 + xn+1)S1(x̄ + 1̄i) (10)

= xn+1xiS1,xi
(x̄) + xn+1(xi + 1)S1,xi+1(x̄)

+ (1 + xn+1)(xi + 1)S1,xi
(x̄) + (1 + xn+1)xiS1,xi+1(x̄)

= [xn+1 + xi + 1]S1,xi
(x̄) + [xn+1 + xi]S1,xi+1(x̄)

= [xn+1 + xi][S1,xi
(x̄) + S1,xi+1(x̄)] + S1,xi

(x̄)

Comparing (10) with (7), we notice that the change of variables, namely [xn+1+xi]
to [xi + 1] gives a equivalence between the first n bits of S and S1. Since (7) has
a uniform sharing then (10) also has a uniform sharing, meaning that this is a
kn× kn bijection. Finally, let’s rewrite the last (n+ 1)-st bit of (9) using (6) and
(8)

S(x̄, xn+1) = xn+1F (x̄) + (1 + xn+1)[F (x̄ + 1̄i) + 1] (11)

= xn+1xiFxi
(x̄) + xn+1(xi + 1)Fxi+1(x̄)

+ (1 + xn+1)(xi + 1)Fxi
(x̄) + (1 + xn+1)xiFxi+1(x̄) + (1 + xn+1)

= [xn+1 + xi + 1]Fxi
(x̄) + [xn+1 + xi]Fxi+1(x̄) + (1 + xn+1)

= [xn+1 + xi][Fxi
(x̄) + Fxi+1(x̄)] + Fxi

(x̄) + (1 + xn+1)

Now comparing (11) with (7) and using again the change of variables, namely
[xn+1 + xi] to [xi + 1], it gives “near” equivalence between the last bit of S and
F except the term xn+1 + 1. In other words, S can be rewritten as follows:

S(x̄, xn+1) = S1(x̄) for j = 1, . . . , n (12)

= xn+1 + F (x̄) + 1

upon the change of variables [xn+1 + xi] to [xi + 1]. This completes the proof,
since this is equivalent to the case S2 = S1 where we know uniform sharings
exist. ut

To summarize: the case S2(x̄) = S1(x̄ + 1̄i) reduces to the case S2(x̄) = S1(x̄)
with the change of variables [xn+1 + xi] to [xi + 1].

6



2.2 Application of Shannon’s Expansion to S-boxes

We first investigate what happens when we use constructions (3) or (5) with affine
equivalent S-boxes. Let S be constructed from S1, S2, F and S′ be constructed
from S′1 = A ◦ S1 ◦B, S′2 = A ◦ S2 ◦B and F ′ = A ◦ F . Then we have:

S(x̄, xn+1) = xn+1S1(x̄) + (1 + xn+1)S2(x̄)

= xn+1F (x̄) + (1 + xn+1)G(x̄),

where G(x̄) = S2 ◦ S−11 ◦ F (x̄) + 1 and

S′(x̄, xn+1) = xn+1[A ◦ S1 ◦B(x̄)] + (1 + xn+1)[A ◦ S2 ◦B(x̄)]

= xn+1[A ◦ F (x̄)] + (1 + xn+1)G′(x̄).

Since S′−11 = B−1 ◦ S−11 ◦A−1 we have

G′ = [A ◦ S2 ◦B] ◦ [B−1 ◦ S−11 ◦A−1] ◦ [A ◦ F ] = A ◦ S2 ◦ S−11 ◦ F = A ◦G.

If we define A′ =

[
A 0
0 1

]
and B′ =

[
B 0
0 1

]
then we see that A′ ◦ S ◦B′ = S′ i.e.

the constructed S and S′ are affine equivalent.
We will now explore two approaches that use this affine equivalence of the

extended S-box to reduce the search complexity.

1. We go class per class by first fixing S1 = S2 to the class representative and
then vary F over all possible Boolean functions to get S in its reduced form
via the construction (5).

2. We go again class per class by first fixing S1 to the class representative.
However, next we run a second loop for S2 varying it over all possible S-boxes
and last we vary F over all possible Boolean functions. Then S is obtained
in its most general form via the construction (3).

Applying the first approach over 3× 3 S-boxes to obtain 4× 4 S-boxes showed
that (5) enriches the number of classes we can construct and the uniform sharings
we can obtain as shown in Table 2.

Table 2. Extension of 3-bit S-box classes into 4-bit S-box classes

3-bit Class 4-bit Class

A3
0 A4

0, C41 , Q4
4

Q3
1 C43 , Q4

4, Q4
294

Q3
2 C413, Q4

12, Q4
293

Q3
3 C4301, Q4

300

These results show that in addition to the four corresponding classes A4
0, Q4

4,
Q4

12 and Q4
300 which were already known from [2], we also get three additional

7



quadratic classes and even four cubic classes. Using Theorem 2 we get a uniform
sharing with k shares for S, whenever such sharing exists for S1 and F . This
explains the results obtained in [2] for the four cubic S-boxes which are the only
ones among the cubic 4× 4 S-boxes, which have uniform sharing with 4-shares.
However, it also should be noted that we were not able to obtain class Q4

299 from
any of the 3× 3 S-boxes via this approach.

Similarly, applying the first approach over 4× 4 S-boxes to obtain 5× 5 but
restricted only to the affine and quadratic S-boxes gives the results shown in
Table 3. We obtain 23 out of the 75 quadratic classes given in [1]. In addition,
it is clear from this construction why for the classes Q5

30 and Q5
32 no uniform

sharing with 3 shares was found in [1]. Namely, they are extensions of class Q4
300

which has no uniform sharing itself.

Table 3. Extension of non-cubic 4-bit S-box classes into 5-bit S-box classes

4-bit Class 5-bit Class

A4
0 Q5

0,Q5
1,Q5

14

Q4
4 Q5

1,Q5
2,Q5

3,Q5
15,Q5

18

Q4
12 Q5

4,Q5
6,Q5

13,Q5
17,Q5

20,Q5
21

Q4
293 Q5

13,Q5
24,Q5

31

Q4
294 Q5

3,Q5
5,Q5

12,Q5
16,Q5

19,Q5
23

Q4
299 Q5

7,Q5
22

Q4
300 Q5

30,Q5
32

We finish this section by applying the second approach over 3× 3 S-boxes to
obtain 4× 4 S-boxes. It is to be expected that the second approach based on the
construction (3) generates more solutions than the first one based on construction
(5), however, the complexity is much higher. We experimentally determined that
by constructing 4-bit S-boxes from 3-bit S-boxes we obtain all the 4-bit classes
except the 11 classes presented in Table 4. Notice that 8 out of these 11 exceptions
belong to the Optimal Golden S-boxes [6]. Recall that there are 16 classes of the
best 4-bit S-boxes i.e., {Diff(S) = 4,Lin(S) = 8} = {G0, .., G15} and among them
is the inversion G3. Apparently the Shannon expansion has certain limitations,
which make it impossible to obtain the 11 classes from Table 4. For one example,
namely the class Q4

193, we did some kind of backward search to verify our results.
For each S-box in this class we used (3) to determine all possible decompositions
to 3-bit S-boxes. We tried with using each of the 4 variables x1, x2, x3, x4 as
xn+1 in the formula and used every row once as “the last row”. In this way, for
any 4-bit S-box we derived 16 cases and for each of them obtained two 3-bit
S-boxes. We found that for none of the S-boxes in this class and none of the 16
cases subsequently considered the obtained 3-bit S-boxes are permutations. This
confirms that Q4

193 cannot be obtained via (3) when S1 and S2 are permutations.

8



Table 4. 4-bit S-box classes not obtained from 3-bit S-box classes

Q4
193 Q4

196 Q4
197 Q4

231 Q4
270 Q4

272 Q4
273 Q4

278 Q4
282 Q4

283 Q4
295

G7 G13 G4 G6 G5 G3 G12 G11

2.3 Extending an S-box with two dimensions

Given four n×n S-boxes (bijections) S1(x̄) = (t1, t2, . . . tn), S2(x̄) = (u1, u2, . . . un),
S3(x̄) = (v1, v2, . . . vn) and S4(x̄) = (w1, w2, . . . wn), where x̄ = (x1, ..., xn) then
using Shannon’s expansion we get an (n + 2) × (n + 2) S-box (not always a
bijection) S(x1, . . . , xn+1, xn+2) = (y1, y2, . . . , yn+2) with

yi = xn+2[xn+1ti + (1 + xn+1)ui]

+ (1 + xn+2)[xn+1vi + (1 + xn+1)wi] for i = 1, . . . , n (13)

yi+1 = xn+2[xn+1F1(x̄) + (1 + xn+1)G1(x̄)]
+ (1 + xn+2)[xn+1F2(x̄) + (1 + xn+1)G2(x̄)]

yi+2 = xn+2[xn+1F3(x̄) + (1 + xn+1)G3(x̄)]
+ (1 + xn+2)[xn+1F4(x̄) + (1 + xn+1)G4(x̄)]

where F1, F2, F3, F4 and G1, G2, G3, G4 are Boolean functions of n inputs.
It follows from this definition that the truth table of the constructed (n+2)×(n+2)
S-box S has the following form.

Table 5. Truth table of S

(x̄, xn+1 = 0, xn+2 = 0) (x̄, xn+1 = 0, xn+2 = 1) (x̄, xn+1 = 1, xn+2 = 0) (x̄, xn+1 = 1, xn+2 = 1)

(S4(x̄), G2(x̄), G4(x̄)) (S3(x̄), F2(x̄), F4(x̄)) (S2(x̄), G1(x̄), G3(x̄)) (S1(x̄), F1(x̄), F3(x̄))

Theorem 3. S is a bijection if and only if

F1(S−11 (x̄)) = G2(S−14 (x̄)) + 1 = F2(S−13 (x̄)) = G1(S−12 (x̄)) + 1 and (14)

F3(S−11 (x̄)) = G4(S−14 (x̄)) + 1 = F4(S−13 (x̄)) + 1 = G3(S−12 (x̄)).

Proof (Sketch). The proof is similar to the proof of Theorem 1. First we consider
the following subcases separately: xn+1 = 0 and xn+2 = 0, 1; xn+1 = 1 and
xn+2 = 0, 1; xn+2 = 0 and xn+1 = 0, 1; xn+2 = 0 and xn+1 = 0, 1. From those
four subcases we get four conditions accordingly:

G1(z̄) = F1(S−11 (S2(z̄))) + 1 (15)

G2(z̄) = F2(S−13 (S4(z̄))) + 1

G4(z̄) = G3(S−12 (S4(z̄))) + 1

F4(z̄) = F3(S−11 (S3(z̄))) + 1

9



or analogously (15) can be rewritten as:

G1(S−12 (z̄)) = F1(S−11 (z̄)) + 1 (16)

G2(S−14 (z̄)) = F2(S−13 (z̄)) + 1

G4(S−14 (z̄)) = G3(S−12 (z̄)) + 1

F4(S−13 (z̄)) = F3(S−11 (z̄)) + 1

Next consider the special case when the first n-bits z̄ are fixed

z̄ = S1(d̄)

z̄ = S2(c̄)

z̄ = S3(b̄)

z̄ = S4(ā)

and thus we have four different n-bit inputs ā, b̄, c̄, d̄ as given above. Then the
four tuples of the last two bits are formed by

G2(ā), G4(ā)

F2(b̄), F4(b̄)

G1(c̄), G3(c̄)

F1(d̄), F3(d̄)

and we want to ensure that they are exactly the following four tuples (0, 0), (0, 1), (1, 0)
and (1, 1) in any order. From this, four additional conditions can be derived

G2(ā) = F1(d̄) + 1

G4(ā) = F3(d̄) + 1

G1(c̄) = F2(b̄) + 1

G3(c̄) = F4(b̄) + 1

Combined with the previous four conditions namely (16) written in a similar way

G1(c̄) = F1(d̄) + 1

G2(ā) = F2(b̄) + 1

G4(ā) = G3(c̄) + 1

F4(b̄) = F3(d̄) + 1

we arrive at:

F1(d̄) = G2(ā) + 1 = F2(b̄) = G1(c̄) + 1

F3(d̄) = G4(ā) + 1 = F4(b̄) + 1 = G3(c̄)

which is exactly the condition (14) in the Theorem. This completes the proof. ut

10



Therefore one has to choose only S1, S2, S3, S4 and F1, F3 in order to build
S. When S1, S2, S3 and S4 are fixed there are “only” 2n+1 choices for F1, F3 in
order to get S. In the general case the construction then becomes as follows:

yi = xn+2[xn+1ti + (1 + xn+1)ui]

+ (1 + xn+2)[xn+1vi + (1 + xn+1)wi] for i = 1, . . . , n (17)

yi+1 = xn+2[xn+1F1(x̄) + (1 + xn+1)[F1(S−11 (ui)) + 1]]
+ (1 + xn+2)[xn+1[F1(S−11 (vi))]
+ (1 + xn+1)[F1(S−11 (wi)) + 1]]

yi+2 = xn+2[xn+1F3(x̄) + (1 + xn+1)[F3(S−11 (ui))]]
+ (1 + xn+2)[xn+1[F3(S−11 (vi)) + 1]
+ (1 + xn+1)[F3(S−11 (wi)) + 1]]

The complexity to construct all 6× 6 S-boxes given four 4× 4 S-boxes will be 232.

3 Permutations and Self-Equivalence

If we rewrite Definition 1 as A−1 ◦S = S ◦B we can say that one can “push” the
affine S-box B through S (so moving it from “left to right”) and obtain A−1. We
can thus associate with a self-equivalent S-box S the pair (A,B), where one of
the pair entries completely determines the other one. Note that for a given S-box
S more than one pair (A,B) can exist (here we do not consider the trivial case
of A = B = Id) since S = A ◦ S ◦B can also be rewritten as A−1 ◦ S ◦B−1 = S,
for example. In other words when (A,B) is a pair for S then (A−1, B−1) is a
pair too.

Lemma 1. The number of self-equivalent pairs (A,B) is an affine invariant, i.e.
all S-boxes in a given affine equivalent class has the same number of pairs.

Proof. Let S′ and S be two S-boxes which are affine equivalent (i.e. belong
to the same class), then there exist affine permutations C and D, such that
S′ = C ◦ S ◦ D or equivalently S = C−1 ◦ S′ ◦ D−1. Using Definition 1 it
follows that C−1 ◦ S′ ◦ D−1 = A ◦ C−1 ◦ S′ ◦ D−1 ◦ B or equivalently S′ =
C◦A◦C−1◦S′◦D−1◦B◦D. Denote by A′ = C◦A◦C−1 and by B′ = D−1◦B◦D
we get S′ = A′ ◦ S′ ◦B′. ut

Definition 4. An S-box S is called (affine) self-equivalent inverse if there exist
affine permutations A and B such that S−1 = A ◦ S ◦B holds.

Note that the inverse S-box in general may not belong to the same affine
class, e.g. because it has different algebraic degree, however when this is the case
we can establish some interesting properties. Again, if we rewrite the definition
above as A−1 ◦ S−1 = S ◦B we can say that one can “push” the affine S-box B
through S (so moving it from “left to right”) and obtain A−1 for S−1.

Similar to the self-equivalence case one can thus associate with a self-equivalent
inverse S-box S the pair (A,B) where one of the pair entries completely determine

11



the other. Note that for a given S-box S more than one pair (A,B) can exist
(here we do not consider the trivial case of A = B = Id and S involution).
Indeed observe that if (A,B) is a pair for self-inverse S then (B,A) is pair too.
Since S−1 = A ◦ S ◦B can be rewritten as A−1 ◦ S−1 ◦B−1 = S we obtain that
B ◦ S ◦A = S−1 holds.

Lemma 2. The number of self-equivalent inverse pairs (A,B) is an affine in-
variant, i.e. all S-boxes in a given affine equivalent class have the same number
of pairs.

Proof. Let S′ and S be 2 S-boxes which are affine equivalent (i.e. belong to the
same class) then there exist affine permutations C,D such that S′ = C ◦ S ◦D
or equivalently S = C−1 ◦ S′ ◦ D−1 and thus S−1 = D ◦ S′−1 ◦ C. Using
Definition 4 it follows that D ◦S′−1 ◦C = A ◦C−1 ◦S′ ◦D−1 ◦B. or equivalently
S′−1 = D−1 ◦A ◦C−1 ◦ S′ ◦D−1 ◦B ◦C−1. Denote by A′ = D−1 ◦A ◦C−1 and
by B′ = D−1 ◦B ◦ C−1 then we get S′−1 = A′ ◦ S′ ◦B′. ut

We should further check whether every self-equivalent inverse S-box gives an
involution, i.e. S−1 = S or equivalently S ◦ S = Id.

Lemma 3. If a self-equivalent inverse S-box S has a pair (A,B), such that
A = B then in that affine equivalent class there is an involution.

Proof. We have shown in the previous lemma that by setting A′ = D−1 ◦A◦C−1
and B′ = D−1 ◦B ◦C−1 one transforms an S-box S to another S′. Now when S′

is an involution then A′ = B′ = Id and thus A = B = D ◦ C. ut

Lemma 4. If an affine equivalent class, except for the class of the affine permu-
tations, has an involution then it has many involutions.

Proof. If S−1 = S then every affine permutation C will give a rise to another
involution S′ = C ◦ S ◦ C−1. This directly follows from the transformation
A′ = D−1 ◦ A ◦ C−1 and by B′ = D−1 ◦ B ◦ C−1 by taking into account that
A = B = Id and D = C−1 so A′ = B′ = Id. ut

Can we claim a relation between the number of self-equivalent pairs and the
number of self-equivalent inverse pairs in a given class?

Theorem 4. The number of self-equivalent pairs in an affine equivalent class is
at least the number of self-equivalent inverse pairs in that class.

Proof. Since (A,B) and (B,A) are both pairs for self-inverse S we have S−1 =
A ◦ S ◦B and S−1 = B ◦ S ◦A. From the first we get S = A−1 ◦ S−1 ◦B−1 and
replacing S−1 in the second we get S = A−1 ◦B ◦ S ◦A ◦B−1 which is what we
are aiming for: by setting C = A−1 ◦B and D = A ◦B−1 i.e S = C ◦S ◦D. Thus,
the self-equivalent inverse pair (A,B) uniquely determines the self-equivalent
pair (C,D).

For the opposite direction, given self-equivalent pair (C,D) we have B = A◦C
then B−1 = C−1 ◦ A−1 which gives D = A ◦ C−1 ◦ A−1. However, how many

12



A satisfy this last equation is not clear. Notice that for a fixed self-equivalent
pair (C,D) and any self-equivalent inverse pair (A,B) one can obtain a “new”
self-equivalent inverse pair (A′ = A ◦ C,B′ = D ◦B) = (B,A). ut

Corollary 1. When we have a self-equivalent inverse S in a given affine equiva-
lent class then we have also an involution in that class.

Proof. Since (C = Id,D = Id) is the trivial self-equivalent pair for S, then it is
easy to find the corresponding self-equivalent inverse pair (A,B). Using Theorem
4 we obtain that A = B should hold. The latter implies that in the class of S
there will be an involution (using Lemma 3). ut

One approach to find an involution in a class (when exists) is to use the
brute-force method to find the inverse self-equivalence S−1 = A ◦ S ◦B through
all possible pairs (A,B). Instead, we can do better using Lemma 3 to look for
a single affine permutation A, such that S−1 = A ◦ S ◦ A holds. Then both
S′ = A ◦ S or S′′ = S ◦A are involutions. The complexity of this search is half of
the brute-force complexity.

4 Conclusions

We have shown that Shannon’s expansion can be used to construct uniform
sharing for certain affine equivalent classes of S-boxes. We have also shown the
limitations of this expansion, namely that not all 4-bit S-box classes can be
obtained from the 3-bit S-box classes in this way.

References

1. D. Bozilov, B. Bilgin, HA. Sahin, A Note on 5-bit Quadratic Permutations Classifi-
cation, IACR ToSC 2017 (1), pp. 398-404.

2. B. Bilgin, S. Nikova, V. Rijmen, V. Nikov, G. Stutz, Threshold Implementations of
all 3× 3 and 4× 4 S-boxes, CHES 2012, LNCS 7428, pp. 76-91.

3. C. De Canniere, Analysis and Design of Symmetric Encryption Algorithms, PhD
thesis, KU Leuven, 2007.

4. C. Carlet, Vectorial Boolean Functions for Cryptography, chapter of the volume
“Boolean Methods and Models”, Cambridge University Press, Eds. Yves Crama and
Peter Hammer.

5. J. Daemen, V. Rijmen, The Design of Rijndael: AES The Advanced Encryption
Standard, Springer-Verlag, 2002.

6. G. Leander, A. Poschmann, On the classification of 4 bit S-boxes, WAIFI 2007,
pp. 159176

7. R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematicsand its Applica-
tions, vol. 20, Addison-Wesley, 1983.

8. S. Nikova, C. Rechberger, V. Rijmen, Threshold Implementations Against Side-
Channel Attacks and Glitches, ICICS 2006, LNCS 4307, Springer-Verlag pp. 529-545.

9. S. Nikova, V. Rijmen, M. Schlaffer, Secure Hardware Implementation of Nonlinear
Functions in the Presence of Glitches, Journal of Cryptology (2011), Volume 24,
Issue 2 pp. 292-321.

13


