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Abstract

Conventional (M,N )-threshold signature schemes leave users with
a painful choice. SettingM = N offers maximum resistance to key
compromise. With this choice, though, loss of a single key renders
the signing capability unavailable, creating paralysis in systems that
use signatures for access control. Lower M improves availability,
but at the expense of security. For example, (3, 3)-multisig wallet
experiences access-control paralysis upon loss of a single key, but
a (2, 3)-multisig allows any two players to collude and steal funds
from the third.

In this paper, we introduce techniques that address this impasse
by making general cryptographic access structures dynamic. Our
schemes permit, e.g., a (3, 3)-multisig, to be downgraded to a (2, 3)-
multisig if a player goes missing. This downgrading is secure in the
sense that it occurs only if a player is provably unavailable.

Our main tool is what we call a Paralysis Proof, evidence that play-
ers, i.e., key holders, are unavailable or incapacitated. Using Paraly-
sis Proofs, we show how to construct a Dynamic Access Structure
System, which can securely and flexibly update target access struc-
tures without a trusted third party such as a system administrator.
We present DASS constructions that combine a trust anchor (a
trusted execution environment or smart contract) with a censorship-
resistant channel in the form of a blockchain. We offer a formal
framework for specifying DASS policies, and define and show how
to achieve critical security and usability properties (safety, liveness,
and paralysis-freeness) in a DASS.

Paralysis Proofs can help address pervasive key-management chal-
lenges in many different settings. We present DASS schemes for
three important example use cases: recovery of cryptocurrency
funds should players become unavailable, returning funds to users
when cryptocurrency custodians fail, and remediating critical smart-
contract failures such as frozen funds. We report on practical im-
plementations for Bitcoin and Ethereum.

1 Introduction

A common paradox in key management and access control systems
is the “always/never” dilemma: systems must be always available
when authorized, and never used when not [70]. In general, this
trade-off between availability and potential for misuse exists in
all key management or authentication systems, extending even
to nuclear arms [28]. One simple example is the task of securing
a single private key: replicate the key broadly across geography,
machine architectures, and custodians, and the attack surface for
key compromise increases. Store the key in a single secured location
and the probability of loss increases, as do barriers to timely access.

Generally, this challenging trade-off is navigated through organi-
zational structures for distributing control to a small number of
trusted and independent parties, thereby choosing the desired opti-
mum point on the defensibility vs. availability spectrum. Sometimes,
however, this is impossible. In a cryptocurrency wallet setting, for
example, large direct incentives for theft combined with suspicion
among users make distributing trust extremely difficult. Worse still,
a number of access-control failures have occurred through both
custodial failures [11, 61] and user errors [22, 63, 79].

Consider for example three players, Alice, Bob, and Carol, who
jointly own a pool of cryptocurrency. For maximum protection
against key compromise, they might use a (3, 3)-multisignature
wallet (“multisig"). Spending the money would then require the
signatures of all keys skA, skB and skC . This provides good security:
an adversary would need to compromise all three keys to steal the
money. If, however, just one key became unavailable, e.g., Alice lost
skA, the money would be permanently lost. To provide availability
should a key be lost, the players might instead use a (2, 3)-multisig.
Unfortunately, in this case, any two players could cheat the third.

Neither choice seems optimal: it appears that these three players
can realize either good security or good availability.

In this paper, we show how to achieve both properties and obtain a
better security vs. availability trade-off than either multisig option
alone. The key idea is to enable an multisig to be conditionally
downgraded, e.g., to change a (3, 3)-multisig to a (2, 3)-multisig only
if a player becomes unavailable. More generally, we show how to
securely downgrade (or otherwise change) any access structure [37],
i.e., policy determining which players can control a resource.

The main technical challenge in our work is ensuring that down-
grading only happens when a player is truly unavailable. Otherwise,
players can cheat by simulating the disappearance of a live player.
Secure downgrading relies crucially on an ability to construct strong
proofs of player incapacitation, what we call Paralysis Proofs.

Constructing and consuming Paralysis Proofs securely without a
trusted third party (TTP) such as a system administrator, as we aim
to do in this paper, is challenging, as explained below. We show
how two new technologies, trusted execution environments (TEEs)
and blockchains, together make it feasible for the first time.

Problem setting Paralysis Proofs help address a fundamental key-
management challenge that is pervasive in cryptographic systems.
Cryptocurrencies vividly illustrate the problem.

Private signing keys for cryptocurrencies embody direct and total
control over funds. Key theft thus leads to immediately and irrevo-
cably stolen money, and is therefore attractive for hackers. Over
980,000 Bitcoin (worth about $9.8 billion at the time of writing) [67]
have been stolen from exchanges alone.
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At the same time, lost keys—resulting from, e.g., accidental deletion
or corruption—can also be catastrophic. It is estimated that nearly 4
million Bitcoin (worth around $4 billion at the time of writing), have
been lost forever due to lost keys [68]. Unlike traditional online
banking systems where lost credentials can be recovered via out-
of-band mechanisms, the decentralized nature of cryptocurrencies
makes direct recovery of credentials from these systems impossible.

The main approach to dealing with such problems in cryptocur-
rencies is multisig addresses or wallets [59]; more generally, secret
sharing is a common technique [72]. These techniques enable gen-
eral access structures in which a set of players holds key shares,
and predetermined subsets of players can use their shares to access
the target resource (e.g., spend cryptocurrency). The most common
choice is a simple (M,N )-access structure (forM ≤ N ), which gives
control to any subset of M players among a total set of N . For a
given N , M dictates a trade-off between security and availability.
LargerM means higher security, as more players must agree to ac-
cess the resource, while smallerM means fewer players must agree,
lowering per-response effort and implying higher availability.

Today’s systems, however, only support fixed or static access struc-
tures (i.e., for all times τ1,τ2, any set of players that satisfies the
access structure at time τ1 also does so at time τ2). When no choice
ofM offers a good security vs. availability balance, as in our exam-
ple, users face an unresolvable dilemma.

Paralysis Proofs help resolve this dilemma. They enable secure dy-
namic access structures in what we call a Dynamic Access Structure
System (DASS), a system that changes M securely as players be-
come unavailable. We call this process access-structure migration,
as access may be changed beyond simple downgrades.

Overview of our Approach Proving to a third party that a player
is available is easy: Just have her sign a fresh message. But how
can Bob prove that Alice cannot (or refuses to) sign a message, as
opposed to Bob faking a failure and not communicating with Alice?

Our Paralysis Proof constructions leverage the censorship-resistance
[27] and data persistence of a public blockchain to detect and record
the fact of an unavailable player. If, e.g., Alice disappears, a challenge
can be issued to her on chain. Public blockchains are censorship-
resistant, in the sense that if Alice tries to post a response within ∆
epochs (blocks) for some suitable∆ she can do sowith high probabil-
ity even in the face of powerful network adversaries. Thanks to this
property, lack of response from Alice within ∆ blocks of a challenge
constitutes a Paralysis Proof showing Alice’s unavailability.

Given a TTP, it is then easy to migrate an access structure securely.
For example, our three players might use a (3, 3)-multisig, with
skA, skB and skC held by the TTP. Given a Paralysis Proof showing
Alice has disappeared, the TTP could release skA to Bob or Carol,
effectively downgrading to a (2, 3)-multisig.

We aim in our work, however, to avoid TTPs. Our DASS schemes
therefore rely on two technologies that serve as trust anchors by em-
ulating TTPs: smart contracts where available, and trusted execution
environments (TEEs) such as Intel SGX, where they are not.

Example applications We explore three illustrative use cases for
Paralysis Proofs, exploring forms of paralysis:

• Cryptocurrency key loss: Generalizing our running example, we
present protocols that permit any (M,N )-multisig cryptocur-
rency scheme to be downgraded (i.e., have lowerM) if and only
if keys or players go missing. We report on a purely smart-
contract based Ethereum implementation and one for Bitcoin
that involves use of a TEE. The Bitcoin scripting language, de-
spite its time-based opcodes, cannot support a Paralysis Proof
System; we present some script-based alternative schemes, how-
ever, that are less secure than our main scheme and/or require
proposed enhancements to Bitcoin.

• Cryptocurrency custody failures: The challenges of key main-
tenance and endpoint security make third-party custody solu-
tions appealing to users. Custodians can themselves become
paralyzed, though, and can also freeze specific users’ funds. We
propose a DASS which, if a custodian is failing to honor a valid
withdrawal request for any reason, allows a user to migrate
control of her funds to a backup key. Because this key is not
usable for spending absent such a proof, the user is not trusting
her own endpoint’s key management security by default.

• Smart contract failures: Smart contract bugs can result not just
in exploits, but in funds being permanently paralyzed. The
famous (second) Parity Multisig Wallet bug is just one example
that permanently froze approximately $150 million in Ether
in 2017 [64]. We propose a continuous-integration framework
that regularly applies a test suite to a smart contract to validate
its correct functioning, including liveness of funds. If (and only
if) fund paralysis occurs, a paralysis proof submission triggers
an “escape hatch” [51], failover logic that refunds or moves a
smart contract’s assets. Our techniques are general, and can
help address other non-paralysis smart contract failures.

We emphasize that Paralysis Proofs are general and can be applied
beyond cryptocurrency, e.g. for (M,N )-sharing of decryption keys.

We also emphasize that a TEE-based application can, of course,
store a master key or all players’ keys and directly mediate all
access requests by players. Our schemes, however, avoid placing
a TEE on the critical path for ordinary transactions, preventing
vulnerability to denial-of-service and service or hardware failures.

Contributions

In summary, our main contributions are as follows:

• Paralysis Proofs:We introduce the concept of Paralysis Proofs,
and show how to achieve them using blockchains. We also in-
troduce Dynamic Access Structure Systems (DASSes), which
combine Paralysis Proofs with a trust anchor (smart contract or
TEE) to enable secure access-structure migration. They thereby
offer security vs. availability trade-offs unachievable in conven-
tional, static access-structure systems.

• Formal definitions and framework:We formally define key prop-
erties for a DASS (liveness, safety) and its underlying migration
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policy, called a DASP (privilege-preserving, paralysis-free) (Sec-
tion 3). We also present a general Universal-Composability-type
ideal functionality that formally specifies security properties
required for a broad range of applications (Section 4).

• Applications:We present three example applications: Cryptocur-
rency key loss (Section 4), cryptocurrency custody failures (Sec-
tion 5), and smart contract failures (Section 6).

• Implementation: We present implementations in Ethereum and
Bitcoin for the first application, using smart contracts and TEEs
(Intel SGX, in particular) respectively. We offer a UC proof
(sketch) of security for the latter. To illustrate the limitations
of pure blockchain approaches for Bitcoin, we also explore
script-based schemes in the paper appendix.

• TEE compromise: We explore alternative DASS designs that
provide resilience to TEE compromise, such as through side-
channel attacks demonstrated against SGX (Section 4.5).

2 Background

In this section we provide some basic background on Trusted Exe-
cution Environments, Bitcoin, and smart contracts.

Trusted Execution Environments and SGX A Trusted Execu-
tion Environment (TEE) is a black-box-like execution environment
that provides confidentiality and integrity for applications running
on potentially malicious hosts.

Intel Software Guard EXtensions (SGX) [6, 34, 36, 54] is a realization
of TEEs as a new instruction set architecture extension enabled
on most new Intel processors. SGX allows processes to execute in
an enclave, an environment that enforces application confidential-
ity and integrity against even a malicious operating system and
some classes of hardware attacks. SGX also enables applications
to emit third-party verifiable attestations to their origin and out-
puts. Enclaves cannot make system calls, but can communicate
with untrusted programs running in the host OS. As a result, an
enclave depends upon a potentially malicious operating system
for network and file system operations. Enclaves can therefore
secure applications’ state and execution, but cannot ensure suc-
cessful network communications or file accesses. Despite these
limitations, enclaves are powerful tools for building a variety of
functionalities [21, 40, 89].

Bitcoin Bitcoin is a decentralized electronic cash scheme in which
transactions moving funds are recorded in an append only log, a
blockchain. Rather than storing funds in accounts whose balance
is altered by transactions, Bitcoin uses transactions themselves to
record both ownership and balance. Transactions consist of inputs
and outputs. An output consists of an amount and a script_pubkey
that specifies how that amount can be spent. Inputs specify the
transaction output which is the source of the funds and include a
script_sig showing authorization to use the funds. Thus trans-
actions spend the outputs of previous transactions. Unconsumed
outputs are known as UTXOs or Unspent Transaction Outputs. One
can check if a transaction has been spent by seeing if it is in the
set of UTXOs. By requiring that outputs can only be spent once

and that the amount of money included in a transaction’s inputs
is at least as much as its outputs, Bitcoin enforces invariants of a
monetary system and prevents forgery.

Beyond monetary invariants, Bitcoin must also handle access con-
trol. script_pubkey and script_sig are the authorization mech-
anisms for transactions that ensure funds cannot be stolen or mis-
used. Typically the script_pubkey in an output specifies the keys
that must sign any transaction spending that output. This may be a
single key or an arbitrary combination of keys, e.g., (pk1∧pk2)∨pk3.
An input consuming an output with such a script_pubkey would
then need a signature that satisfied that requirement, e.g., it would
need to contain signatures under both pk1 and pk2. These require-
ments are represented in a stack based language known as Bitcoin
script. While in principle Bitcoin script can represent complex logic,
in practice limitations on supported instructions and the length of
a script mean it is mainly used for simple authorization checks.

Smart Contracts Smart contracts are small, deterministic pro-
grams that are stored in a blockchain system’s state and interpreted
by a virtual machine. Beyond the value field associatedwith a simple
currency transaction, transactions on smart contract blockchains
contain two additional key parameters: input data and code loca-
tion [85]. To process a transaction, a smart contract system looks up
the code stored in the provided location, executing the code with
the provided input data and processing any side effects output by
the execution of the code. A key differentiator between such smart
contract-enabled systems and simpler script like Bitcoin script is
the capability of contract platforms to provide rich statefulness [83].
In a system providing rich statefulness, all executing transactions
have native access to persistent state (stored across transactions,
blocks, and time), and can interact with and update both local state
for data storage and global blockchain state for system-wide infor-
mation (like the current height of the blockchain, or the hash of the
block the transaction eventually gets mined in). Rich statefulness
is particularly relevant to our system, as access to state across time
is required to track whether a Paralysis Proof has been initiated,
is pending, or has been responded to. It is Bitcoin’s lack of such
native statefulness that makes trusted hardware the only practical
solution for handling paralysis with large numbers of users.

3 Dynamic Access Structure Systems

In this section, we develop formal definitions and framework that
we use to reason about the security of Dynamic Access Structure
Systems.

A Dynamic Access Structure Policy (DASP) consists of a set of access
structures and rules dictating migration conditions among them.
For example, “this Bitcoin fund requires signatures from Alice, Bob
and Carol to spend; if any of them disappears, signatures from the
remaining two suffice to spend the fund” informally specifies a
DASP.

We use the term Dynamic Access Structure System (DASS) to denote
a system that enforces a DASP. Essential to our DASS constructions
is the use of Paralysis Proofs to demonstrate conditions, e.g., party
incapacitation, that justify migration from one access structure to
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another. We now provide formalism for DASP specification (Sec-
tion 3.1), followed by security definitions for a DASS (Section 3.2).

3.1 Specification of a Dynamic Access Structure Policy

3.1.1 Basic Definitions A Dynamic Access Structure Policy
(DASP) comprises a tuple (R,S,M) that specifies the resources
(R) being access-controlled, a set of access structures (S), and a
set of migration rules (M) dictating when access-structure mi-
grations are permitted.

Let {Pi } = {Pi }Ni=1 denote the set of N parties at beginning of the
protocol, and Lt the set of live (i.e. not incapacitated) parties at
time t . As we shall see shortly, correctly determining Lt , i.e. which
parties are actually live, is the main technical challenge in enforcing
a DASP. We use Lt to denote the ground truth. We assume that if a
party becomes incapacitated, it remains incapacitated throughout
the protocol, i.e. P < Lt implies P < Lt ′ for all t ′ > t .

In this paper, an access structure s is a function s(L) → {true, false}
that determines whether a set of live parties L ⊆ {Pi } is allowed to
access the managed resource. Access structures are monotonic, i.e.,
s(L) = true and L ⊆ L′ together imply that s(L′) = true. A migra-
tion rulemsi ,sj ∈ M is a functionmsi ,sj (L) → {true, false} that
determines whether migrating from si to sj is permitted if the set
of live parties is L. We use si

L
→ sj to denotemsi ,sj (L) = true.

For a given DASP, the set of access structures S and the associated
migration rulesM may be represented as a directed graph G =
(S,M). Here we overload S andM to denote respectively the sets
of nodes and edges. A node si ∈ S is an access structure and an
enhanced edge (si , sj ) ∈ M represents the migration rulemsi ,sj ,
which specifies the condition to migrate from access structure si to
sj . Access structure sn is said reachable from s1 by L ⊆ L0, denoted
s1

L
⇝ sn , if there exists a path (s1, s2, . . . , sn ) in G such that for all

i ∈ [1,n − 1],msi ,si+1 (L) = true.

3.1.2 SecurityGoals. A fundamental correctness requirement
for any access control is that migration between access structures
does not eliminate the privilege of live parties. We capture this
notion by stipulating that a DASP be privilege-preserving. To
define this property, we first require two technical definitions.
Definition 3.1. The set of least permissive access structures for L ⊂
{Pi }, denoted by SLP(L), is as follows:

SLP(L) = {s ∈ S : s(L) = true ∧ (∀L′ ⊊ L, s(L′) = false)}.

Intuitively, SLP(L) is the set of all access structures such that if the
only possible live parties are in L, then all such parties must be
live to access the resource. Given the above definition, we have the
priviledge-preseving is defined as follows.
Definition 3.2. (Privilege-preserving) Let Lt be the set of live parties
at time t . A DASP (R,S,M) is privilege-preserving if Lt can never
migrate to an access structure that can be satisfied with a set L′ of
parties such that L ⊈ L′ at any time t . Formall, ∀s ∈ S such that
s(Lt ) = true:

∀s ′ s .t . s Lt
→ s ′, s ′ ∈

⋃
Lt ⊆L

SLP(L).

A DASP is paralysis-free if the current access structure cannot be
satisfied, switching to another satisfiable access structure should be
permitted, provided that the migration will not deprive the privilege
of any live party.

Definition 3.3. (Paralysis-freeness) Let Lt be the set of live parties at
time t . A DASP (R,S,M) is paralysis-free if at any time t , ∀s ∈ S
such that s(Lt ) = false:

SLP(Lt ) , ∅ =⇒ ∃s ′ ∈ SLP(Lt ) s .t . s Lt⇝ s ′.

Note that a paralysis-free DASP doesn’t imply the availability of
the resource. What a paralysis-free policy can guarantee is the best
possible availability: if there is a access structure that can get the
system out of paralysis, then the DASP should permit a transition
to that access structure. However, if the set of live parties is too
sparse to satisfy any of the prescribed access structures, then the
availability cannot be achieved.

Example 3.4. Let’s take the example of N shareholders who wish
to retain access to the resource R should one party disappear. Let
P = {Pi }

N
i=1 denote the set of N parties, and P−i = P\{Pi } denote

the set of N − 1 parties that excludes Pi . Let I(·) denote an indicator
function. ADASP (R,S,M) that realizes the aforementioned access
control can be specified by S = {si }Ni=0 where

s0 = IP
si = IP−i , 1 ≤ i ≤ N

and the conditionms0,si ∈ M is fulfilled for Lt = P−i .

According to Definition 3.2 and Definition 3.3, the DAS in Exam-
ple 3.4 is privilege-preserving and paralysis-free.

3.2 Security definitions for a DASS

We use the term Dynamic Access Structure System (DASS) to denote
a system that enforces a DASP. In this section, we formally define
the security of a DASS with a Universal Composability (UC) [19]
ideal functionality FDASS. Later in Section 4 we present a protocol
ΠSGX that UC-realizes FDASS.

3.2.1 Adversarial model. We assume an adversary that may
corrupt an arbitrary number of parties. An honest party always
follows the protocol, while a corrupted party controlled by the
adversary may deviate arbitrarily (i.e. Byzantine corruption). We
assume that the adversary has complete control of the network,
with the exception that a blockchain is available to all parties, i.e.
is censorship-resistant, and the maximum network latency to the
blockchain is bounded by a known ∆.

3.2.2 Ideal Functionality. We specify the security goals of a
Dynamic Access Structure System in the ideal functionality FDASS
defined in Figure 1.

To reduce clutter, we omit the handling of session IDs [19] in FDASS
but readers are advised that messages received and sent by FDASS
are implicitly associated with an SID. When FDASS sends subrou-
tine output to parties, we use the delayed output terminology from
[19] to model the power of the network adversary. Specifically,
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The Ideal Functionality of a Dynamic Access Structure System
FDASS[s0, R, S,M] with parties {Pi }Ni=1

1 : On receiving∗ (init) from any Pi :
2 : Lt := {Pi }ni=1 , s := s0
3 : On receiving (paralysis, Pi ) from A:
4 : Lt = Lt \ {Pi }
5 : On receiving (access, inp) from Pi ∈ Lt :
6 : let current time be t
7 : // if there is an unexpired access reqeuest for inp

8 : if find a stored (inp, P, T0) and t < T0 + ∆a then:
9 : add Pi to P
10 : // if no access reqeuest for inp or it has expired, create a new one

11 : else : store (inp, {Pi } , t ), overwriting (inp, _, _) if exists
12 : if s(P) = true then:
13 : send a public delayed output R(P, inp) to all parties in P
14 : On receiving (migrate, s ′) from Pi ∈ Lt :
15 : assert

(
s ′ ∈ S ∧ms,s′ ∈ M

)
16 : Lfake-death = ∅
17 : for all corrupted parites Pc ∈ Lt :
18 : ask A if Pc choose to pretend to be paralyzed; if so add Pc to Lfake-death
19 : if ms,s′ (Lt \ Lfake-death) = true then:
20 : send a public delayed output (s, s ′, Pi , ok) to all parties; s = s ′

Figure 1: The ideal functionality of a Dynamic Access Structure System.
The entry point marked with ∗ is only executed once.

when FDASS sends a public delayed output to party Pi , the output
is first sent to A and then forwarded to Pi after A’s acknowledge-
ment or ∆ time has past, whichever happens first.

FDASS maintains internal states (Lt , s) for the set of live parties and
the currently enforced access structure respectively. To capture the
paralysis explicitly, we extend the standard corruption model [19]
with a special “paralysis” corruption. Upon receipt a paralysis mes-
sage from A, a party immediately announces its paralysis and
halt until the end of the protocol. In the ideal protocol, A sends
(paralysis, Pi ) to FDASS, who then removes Pi from the set of live
parties.

To access the resource, a set of parties P send (access, inp), in which
inp specifies the parameter of access, to FDASS. If P is permitted
to access by the current access structure, i.e. s(P) = true, FDASS
returns the result of accessing R. A set of parties can initiate a
migration to another access structure s ′ by sending (migrate, s ′) to
FDASS. If the transition to s ′ is permitted by the enforced DASP,
FDASS sets the current enforced access structure to s ′.

3.2.3 Security Properties FDASS[s0,R,S,M] encapsulates
the following security properties of a Dynamic Access Structure
System. Let s denote the effective access structure of FDASS, and Lt
the set of live parties at time t , then FDASS guarantees both safety
and liveness in all states s ∈ S at any time t :

Safety:

• A set of parties L ⊆ Lt can access R only if s(L) = true.

• A transition to s ′ , s occurs only ifms,s ′(Lt ) = true.

Liveness:

• If s(L) = true for some L ⊆ Lt , then L can access R within
∆ time after interacting with the DASS honestly.

• Ifms,s ′(Lt ) = true, then a transition to s ′ , s occurs within
∆ after Lt interacts with the DASS honestly.

Examples Consider a DASS enforcing the DASP in Example 3.4,
the Safety property ensures that access is enforced by the current
access structure at any time, and that the access structure can be
downgraded to allow access by N − 1 shareholders only if |Lt | < N ,
i.e., a collusion of N − 1 shareholders cannot maliciously accuse
the N th shareholder of being incapacitated and thereby steal her
share. The Liveness property ensures that access is granted if the
structure is satisfied by a set of cooperating parties. Moreover, if
allowed by the policy, the Liveness property ensures that the ac-
cess structure will be downgraded within a bounded time should
parties submit legitimate requests. Note that the Liveness property
does not stipulate that access structure si for i > 0 is automatically
instantiated if |Lt | < N . This is because parties may not immedi-
ately activate an access-structure migration; in fact, if all parties
are incapacitated, such migration cannot happen.

3.2.4 DASSes and Paralysis Proofs. The main challenge in
realizing FDASS is to determine the set of live parties Lt in a trust-
worthy way. Our solution to that is Paralysis Proofs. Specifically,
a DASS realizing FDASS leverages the censorship-resistance of
blockchain to enable parties to construct Paralysis Proofs to prove
that Pi < Lt for a given party Pi or similar facts about Lt . In par-
ticular, as we shall see, to prove that Pi < Lt , parties issue to Pi a
challenge on the blockchain. If Pi does not respond within some
time ∆, the challenge together with evidence of this failure to re-
spond constitute a Paralysis Proof one that prove Pi < Lt .

4 Paralysis Proofs for Cryptocurrency

In this section, we explore the use of Paralysis Proofs to recover
from cryptocurrency key loss (and related failures, e.g., player disap-
pearance), as in our motivating example in the paper introduction.
We focus on Bitcoin, which presents particular technical challenges.
For comparison, we also briefly present a conceptually straightfor-
ward scheme for Ethereum.

It is challenging to implement secure Paralysis Proofs compatible
with the current Bitcoin protocol because of the limited expressive-
ness of Bitcoin scripts. (We show in Appendix D that it is possible
were a proposed feature called “covenants” available [57].) We there-
fore explore Paralysis Proofs for Bitcoin using TEEs—specifically,
Intel SGX, a powerful TEE available in existing CPUs. Readers can
refer to Section 2 for background on SGX.

We give technical preliminaries and discuss our trust model in
Section 4.1. We present our main protocol (denoted ΠSGX) in Sec-
tion 4.2, and discuss its security in the Universal Composability
framework in Section 4.4, giving a proof (sketch) in the paper appen-
dix. We discuss ways to reduce trust assumptions for SGX nodes in
Section 4.5. For comparison, we present our basic Dynamic Access
Structure System for Ethereum in Section 4.6.
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4.1 Preliminaries

Bitcoin Transaction and CSV. In Bitcoin, spendable money is
known as an Unspent Transaction Output (UTXO). We use (V ,ϕ)
to denote an UTXO of V coins and script ϕ. The script ϕ stipu-
lates the condition to be satisfied in order to spend the UTXO. A
Bitcoin transition (with the exception of coinbase transitions) con-
sumes a set of UTXOs and creates one or more new ones. We use
⟨{Ini }ni=1

w1, ...,wn
−−−−−−−−→

{
Outj

}m
j=1⟩ to denote a Bitcoin transaction

with n inputs,m outputs, and n witnesses, one for each input, such
thatwi satisfies the script of Ini .

An essential ingredient of ΠSGX is Bitcoin’s relative timeout script
instruction, also known as CheckSequenceVerify or CSV [16]. By
putting the CSV instruction with parameter τ in the script ϕ of a
UTXO u, we assert that the transaction that spends u must reside
in a block whose height (or timestamp) is more than τ relative to u.
This assertion can be part of a conditional script, such that other
branches of the script do not need to satisfy the CSV condition.

SGX andAttested Execution. Throughout the paper, we use SGX
as a concrete building block. However, our protocol can be realized
by any TEE that protects the confidentiality and integrity of compu-
tation, and can issue proofs, known as attestations, of computation
correctness.

In our formal specification, we adopt the (local) ideal function-
ality GSGX by Pass et al [65] to model SGX. Informally, a party
first loads a program progencl into an SGX enclave with a install
message. On a resume call, the program is run on the given in-
put inp, generating an output along with an attestation σSGX =
ΣSGX.Sig(skatt, (progencl, outp)), a signature under the hardware
key skatt. The public key pkatt is can be obtained fromGSGX.getpk().
We refer readers to [65] for details.

Ideal Blockchain. Our protocol relies on an append-only ledger.
We define the ideal functionality F blockchain[succ] in Figure 2 (in-
spired by [20]) to model a general-purpose append-only ledger
implemented by common blockchain protocols. The parameter
succ(history, item) → {0, 1} is a function that specifies the crite-
ria for a new item to be appended to history, modeling the no-
tion of transaction validity. We retain the append-only property of
blockchains but abstract away the inclusion of items in blocks.

We assume a trustworthy time source available to F blockchain and
items are timestamped when added. In practice, block numbers
can serve as such timestamps. We also assume the blockchain is
censorship-resistant, namely messages sent to F blockchain will be
delivered within ∆ time. In practice, this requires each party to have
reliable access to the peer-to-peer network.

Trust assumptions. To summarize, our protocol relies on TEE
with attestation that protects the confidentiality and integrity of
computation, and an append-only, and censorship-resistant ledger.
Concretely, we assume SGX is correctly implemented and that the
Bitcoin blockchain is secure and available to all parties. Let us stress
that the trust assumptions in SGX is local, i.e., only the parties in
the protocol will be affected should the SGX properties be broken.
We discuss ways to minimize the trust in SGX in Section 4.5.

Fblockchain[succ]

1 : Parameter: successor relationship succ : {0, 1}∗ × {0, 1}∗ → {0, 1}
2 : On receiving∗ (init, genesis): storage := genesis

3 : On receiving (read): output storage
4 : On receiving (write, inp) from P :
5 : send (write, inp, P ) to A
6 : if succ(storage, inp) = 1 then
7 : t = clock(); storage := storage ∥ (t, P, inp);
8 : output (receipt, inp)
9 : else output (reject, inp)

Figure 2: Ideal blockchain. The entry point marked with ∗ is only executed
once. The parameter succ defines the validity of new items. A new item can
only be appended to the storage if the evaluation of succ outputs 1.

Protocol ΠSGX with P1, . . . , PN
1 : Hardcoded: δ (e.g. 10−4), network latency ∆
2 : For any party Pi :

3 : On receiving (init) from environment Z:
4 : (pki , ski ) ←$KGen(1n ); publish pki

5 : wait to receive
{
pkj

}
j,i

from other parties

6 : send (install, progencl) to GSGX and wait to receive eid

7 : send (eid, resume, init,
{
pki

}N
i=1) to GSGX and wait for pkSGX ; publish pkSGX

8 : send (init, ((δ, pkSGX), (V , (all pk ∈
{
pki

}N
i=1) ∨ pkSGX)) to Fblockchain

9 : if Fblockchain is not properly initialized: broadcast abort
10 : else broadcast ok
11 : wait to receive ok from others and abort if a abort is received

12 : On receiving (access, addrnew) from environment Z:
13 : obtain UTXOfund from Fblockchain
14 : compute σ = Sig(ski , (UTXOfund, addrnew))

15 : send (resume, (spend, σ , UTXOfund, addrnew)) to GSGX

16 : On receiving (migrate, P ′) from environment Z :

17 : assert P ′ ⊆
{
pki

}N
i=1

18 : obtain UTXOfund from Fblockchain
19 : send (resume, (migrate, UTXOfund, P ′)) to GSGX and wait for t1, t2
20 : send t1, t2 to Fblockchain // t2 will be accepted ∆ time after Fblockchain accepts t1

Figure 3: An SGX based protocol for Paralysis Proofs.

4.2 Protocol Details

We denote our DASS for Bitcoin by ΠSGX. We give text descriptions
below of the steps involved in ΠSGX, so the general reader need not
reference formal protocol or ideal-functionality specifications to
understand the workings of our scheme.

ΠSGX is formally specified in Figure 3. As we prove, ΠSGX UC-
realizes the ideal functionality FDASS in the (GSGX,F blockchain)
hybrid model. Figure 4 gives the logic of the SGX enclave, the
application running on GSGX. The successor function in F blockchain
implicitly models the logic of Bitcoin scripts.

Notation. Let N be the number of players at the start of ΠSGX. We
denote each player as Pi for i ∈ {1, 2, . . . ,N }. Each Pi is associated
with a Bitcoin public key pki , whose corresponding secret key is
only known to Pi . For simplicity, {Pi } is used to refer to the entire
set of players.
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Program for the SGX Enclave (progencl)
1 : Hardcoded: δ , ε , network latency ∆, access grace period Ta
2 : On input∗ (init, P0):
3 : Parties := P0
4 : (skSGX, pkSGX) ←$KGen(1n ) and output pkSGX
5 : On input (spend, σ , UTXOfund, addrnew)
6 : parse UTXOfund as (V , (all pk ∈ P ) ∨ pkSGX) or abort
7 : if received |P | requests for (UTXOfund, addrnew) within Ta :
8 : assert Vf(σi , pki ) for all 1 ≤ i ≤ n
9 : sign transaction t := ⟨UTXOfund → addrnew ⟩ with skSGX
10 : send t to Fblockchain
11 : else store σ and wait for more requests

12 : On input (migrate, UTXOfund , P ′):
13 : parse UTXOfund as (V , (all pk ∈ P ) ∨ pkSGX) or abort
14 : (pkr , skr ) ←$KGen(1n )
15 : // a life signal for players affected by the migration

16 : ϕlifesignal := ((any pk ∈ P \ P ′) ∨ (pkr ∧ (CSV ≥ ∆)))

17 : sign transitions t1, t2 with skSGX and pkr :
18 : t1 := ⟨(δ, pkSGX) → (ε, ϕlifesignal), (δ − ε, pkSGX)⟩

19 : t2 := ⟨(ε, ϕlifesignal), (V , (all pk ∈ P ) ∨ pkSGX) → (V , (all pk ∈ P ′) ∨ pkSGX)⟩
20 : output t1 and t2

Figure 4: The Paralysis Proof Enclave. The entry point marked with ∗ is
only executed once.

Initialization. To start the protocol, some honest party needs to
load an SGX instance with progencl and invoke the init procedure.
For now we assume a single SGX available for all honest parties;
thus any honest party can initiate the enclave (once initialized,
sequential initializations will be ignored). In Section 4.5 we present a
distributed setup procedure that avoids the availability assumption
and provides stronger guarantee.

After the setup procedure is completed, the parties send a small
fund of δB (e.g. δ = 0.00001) to a new output that can be spent
by pkSGX. Then the parties launch the protocol by sending their
unspent output of V coins (denoted UTXOfund) to a new output of
V coins with a script that can be spent by either

{
pki

}N
i=1 or pkSGX.

Spending funds. There are two ways to spend the funds that are
managed in ΠSGX. At any time, the players can spend the money
via a Bitcoin transaction that embeds their N signatures (per ϕall
in Figure 3). Hence, even in the case that all of the N SGX CPUs
are destroyed, the players are still able to spend the funds just as
they could before the execution of ΠSGX. However, a better way
to spend the funds is by sending N requests to an enclave, letting
the enclave create a Bitcoin transaction with a single signature
(signed by skSGX). This reduces the on-chain complexity and the
transaction fee (see also Appendix E).

Migrating to another access structure. The migrate procedure
of ΠSGX resolves system paralysis by letting the live shareholders
spend the money if one or more shareholders is incapacitated. Intu-
itively, the role of SGX is to be an arbitrator: when any shareholder
alleges that the money is stuck due to an unresponsive party, SGX
first gives the accused party ∆ time to appeal, and the set of share-
holders that controls the fund will be reduced only if no appeal
occurred.

Init:

t1:

t2:

5000 BTC
pk1 ∧ pk2 ∧ pk3

5000 BTC
(pk1 ∧ pk2 ∧ pk3) ∨ pkSGX

0.00001 BTC
pkSGX

0.00001 BTC
pk1 ∨ (pkR ∧ (CSV ≥ 144))

5000 BTC
(pk2 ∧ pk3) ∨ pkSGX

UTXOfund

UTXOlifesignal

UTXOfund

UTXOlifesignal

Figure 5: Example of ΠSGX with three players and P1 accused of being
incapacitated.

The core idea of implementing an “appeal” in Bitcoin is to use what
we call life signals. A life signal for party Pk is a UTXO of negli-
gible Bitcoin amount εB, that can be spent either by Pk—thereby
signaling her liveness—or by pkSGX, but only after a delay. ΠSGX
makes use of life signals to securely migrate to remove a party from
the current access structure. Specifically, suppose the current set of
shareholders is P = {Pi }Ni=1, to (propose to) remove party Pk from P ,
any live players can send a message (migrate,UTXOfund, P \ {Pk })
to progencl. Then progencl will generate two signed transactions, t1
and t2 (defined in Figure 4 and examplified in Figure 5), as follows:

• Transaction t1: Acts as a life signal for Pk .

• Transaction t2: Spends both the life signal (i.e., UTXOlifesignal)
and the escrowed fund (i .e .UTXOfund) to a script that is spend-
able without Pk (i.e., by

(({
pki

}N
i=1 \

{
pkk

})
∨ pkSGX

)
).

The SGX enclave gives both t1 and t2 together as output. If t1 is sent
to the Bitcoin blockchain, Pk can cancel her removal by spending
t1. Otherwise, t2 will become valid after the ∆ delay and can be
sent to the blockchain, thereby removing Pk ’s control over the fund.
Figure 5 demonstrates an example with three players.

Notice that progencl parsesUTXOfund and obtains the list of current
shareholders, so that progencl does not have to keep track of current
live shareholders locally, nor does it need to have an up-to-date
view of the blockchain. As we’ll discuss shortly, this is an important
security feature because it makes ΠSGX more resilient to SGX’s
availability failure and avoids complexity of SGX with a blockchain.

4.3 Implementation

We implemented ΠSGX using Intel SGX SDK and Bitcoin Core. The
source code is published at [2]. Our trusted functions contribute
874 lines of C++ code. The entire Trusted Computing Base (TCB)
includes the Bitcoin Core implementation, two widely used crypto-
graphic libraries (i.e., libsecp256k1 and OpenSSL), and the Panoply
implementation [74].
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4.4 Security of ΠSGX

Intuitively, the security of ΠSGX stems from the use of SGX and the
relative timeout feature of Bitcoin. We first discuss the security of
ΠSGX informally, then we present a formal security proof.

Use of relative timeout. The core security property of ΠSGX is
that a live party cannot be falsely removed from the access structure,
no matter how many of parties are malicious. This is achieved by
the use of the relative timeout feature of Bitcoin [16] in the fresh
t1, and the atomicity of the signed transaction t2.

To elaborate, t2 will be valid only if the witness of both inputs
(UTXOfund and UTXOlifesignal) is correct. The witness that the SGX
enclave produced for spending the UTXOfund is immediately valid,
but the witness for spendingUTXOlifesignal becomes valid only after
t1 has been incorporated into a Bitcoin block that has been extended
by ∆ additional blocks (due to the CSV condition). The shareholder
Pi that accused Pk of being incapacitated should therefore broadcast
t1 to the Bitcoin network, wait until t1 is added to the blockchain,
then wait for the next ∆ blocks, and then broadcast t2 to the Bitcoin
network. However, while these ∆ blocks are being generated, Pk
has the opportunity to appeal by spending t1 with the secret key
skk that is known only to her (the script of t1 does not require the
CSV condition for spending with skk ). ∆ is set to a large enough
value for two purposes: (1) to give Pk enough time to respond, and
(2) to ensure that it is infeasible for an attacker to create a secretive
chain of ∆ blocks faster than the Bitcoin miners, and then broadcast
this chain (in which t2 is valid) to overtake the public blockchain.

Note that a fresh, ephemeral key pair is generated for each life
signal to ensure that t1 is unique and hence does not already reside
on the blockchain (e.g., Pk may have failed to respond to an earlier
life signal but luckily another shareholder Pj was removed at that
time). The SGX enclave does not need store these ephemeral keys,
as they are consumed right after generation.

No need to sync SGXwith a blockchain. It is important to point
out that the security of ΠSGX does not require the SGX enclave
to have an up-to-date view of the blockchain (in fact it does not
require any view of the blockchain), nor does it require a trusted
clock. By contrast, protocols that require so have a larger attack
surface, and in particular such protocols need additional security
measures in order to be protected against rollback attacks (see, e.g.,
[10, 52]) and the problems of SGX clock (see, e.g. [20]).

In Appendix G we give a similar Paralysis Proof system that works
with the current Bitcoin protocol and does not require SGX, but
the construction has a weaker security guarantee and more than
exponential overhead.

Security Proof. The security of ΠSGX is formally analyzed using
the framework developed in Section 3. Specifically, we formulate the
security goal of ΠSGX as a DASP, and then prove in the University
Composability (UC) framework that ΠSGX securely realizes the
ideal functionality that implements the same DASP.

Specification of the DASP The resource being managed by the
ΠSGX is access to an oracle R(·) that produces valid signatures au-
thorizing Bitcoin expenditures. Initially, a Bitcoin fund is controlled

by a set of N parties, denoted by P0. ΠSGX aims to implement the
following DASP:

S := {sP (·) = IP (·) : ∀p ∈ P(P0)} and
M :=

{
msA,sB (·) = IB (·) : A,B ⊆ P0,B ⊊ A

}
.

We prove that ΠSGX realizes (formally, UC-realizes) the ideal func-
tionality FDASS[sP0 ,R,S,M] that enforces this DASP. In particu-
lar, we prove the following theorem:

Theorem 4.1 (The Security of ΠSGX). Assume GSGX’s attesta-
tion scheme and the digital signature used in ΠSGX are existentially
unforgeable under chosen message attacks (EU-CMA). Then ΠSGX
UC-realizes FDASS[sP0 ,R,S,M] in the (GSGX,F blockchain)-hybrid
model, for static adversaries.

Proof. See Appendix B for a proof sketch. □

4.5 Minimizing Trust in TEE

We now briefly consider some ways to minimize the trust placed in
the TEE (SGX node) employed in our protocol.

Avoiding a Single Point of Failure. Trusted hardware in general
cannot ensure availability. In the case of SGX, a malicious host can
terminate enclaves, and even an honest host could lose enclaves in
a power cycle. To avoid reliance on a centralized SGX server, each
party in ΠSGX can run her own SGX enclave with an identical pro-
gram. This way, any individual party (or set of parties) can always
use all the capabilities of the protocol without being dependent on
the other players.

Specifically, the initialization procedure of ΠSGX can be replaced
with the following procedure that distributes the master key skSGX
across multiple hosts. First, each enclave first generates a fresh key
pair (pkSGXi , skSGXi ) and outputs pkSGXi while keeping skSGXi
secret. Then, each player uses her identity Pi to endorse pkSGXi ,
and all the players reach agreement on the list of SGX identities{
pkSGXi

}N
i=1. Finally, the enclaves then use

{
pkSGXi

}N
i=1 to estab-

lish secure channels (TLS) with each other, and create a fresh shared
secret key skSGX that is associated with

{
pkSGXi

}N
i=1 (i.e., another

invocation of the setup procedure will generate a different shared
key). Given use of the secure hardware random number generator
(RDRAND), secret keys generated by SGX are known only to the
enclaves, not to any of the players. From now on, no inter-enclave
communication is needed in the course of the protocol. Each enclave
then seals its state (which mainly consists of skSGX) by encrypting
it using the hardware key (unique to each CPU) and storing the
ciphertext to persistent storage. Hence, the enclave program does
not have to run persistently, and each players can load and run the
backup when needed.

Side-channel Resistance. Although SGX aims to provide confi-
dentiality, recent work has uncovered data leakage via side-channel
attacks [14, 31, 32, 39, 46, 47, 56, 62, 71, 84, 87]. Admittedly ΠSGX
is not side-channel-free, but it has a relatively small and controlled
attack surface. The only secret in SGX is skSGX and only operation
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involving skSGX is signatures generation (besides key generation)—
which makes it more amenable to software-level side-channel miti-
gations, such as constant-time ECDSA implementation (e.g. [24]).

A more powerful and somewhat more interesting approach is
to design side-channel-free Paralysis Proofs. We claim that no
side-channel-free construction of Paralysis Proofs exists given the
current trust assumptions. However, if we relax the assumptions
slightly, for example, by assuming a trusted relative clock1 in SGX,
or assuming certain stationarity properties of the blockchain (e.g.
difficulty), a side-channel-free Paralysis Proofs can be constructed
by establishing an up-to-date view of blockchain in SGX (e.g., us-
ing techniques in [20]). Specifically, SGX will only be activated
when paralysis happens (which requires an up-to-date view of the
blockchain to detect), and will generate a new key skSGX for every
new UTXOfund. Since the enclave secret is used only once, such a
construction is side-channel-free.

Least-privileged SGX. In ΠSGX and the examples above the fund
can be spent by pkSGX alone, but it’s important to note that is not
the only option. In fact, one can tune the knob between security
and paralysis-tolerance to the best fit their needs. Specifically, for a
desired level of paralysis-tolerance, one can design a DASP such that
the SGX is least-privileged. For example, if the three shareholders
only desire to tolerate up to one missing key share, what they can
do is to move the funds into 3-out-of-4multisig wallet where the 4th
share is only known to the SGX enclave. If all of the parties are alive,
then they can spend without use of the SGX node. If one of them is
incapacitated, the enclave will release its share upon presentation
of a Paralysis Proof. Therefore, even if the secret state of the SGX
node (i.e., the fourth share) is leaked via a successful side-channel
attack, the attacker cannot spend the fund unless two malicious
parties collude. It can be shown that the SGX in the above DASP
is least-privileged, in the sense that compromise of its secret state
imparts minimal capabilities to an adversary. Intuitively, since we
want to retain access even one player is incapacitated, the enclave
must store a credential equivalent to that of the lost player. We
leave formal specification of least-privileged SGXs for future work.

4.6 Paralysis Proofs via Ethereum

An Ethereum implementation of the ideal functionality FDASS is
straightforward. Our reference implementation of a paralysis-free
multisig wallet consists of 156 lines of commented Solidity code,
and its main logic is shown in Figure 7.

This implementation differs from the ideal functionality only in
minor engineering changes and optimizations. There is no way to
asynchronously prune keyholders that fail to respond to a challenge
in time in Ethereum, where all contract calls must be initiated by
some user. We instead check and prune any signers that did not
respond to a challenge at the beginning of each on-chain operation
that requires checking or manipulating only valid signers. This
ensures that the state of unparalyzed signers is correct before any
contract action.

1which SGX doesn’t offer, as confirmed by SGX SDK developers at https://github.
com/intel/linux-sgx/issues/161.

A final caveat is that block timestamps are used to measure time;
while this can be trivially replaced with block numbers, which are
less susceptible to miner manipulation (timestamps are miner set),
the bounded degree of manipulation and monotonically increasing
timestamp constraints on Ethereum provide some assurance that
the timestamps are reasonably accurate for our purposes.

One useful property of the Ethereum-based realization is that the
multisignature key holders need not necessarily run archival nodes:
because a log is emitted whenever a user is accused, users can
simply watch transaction receipts for an accusation against them,
using any Ethereum full or lite client to respond by calling the
respond function (guaranteed to work as long as an adversary
cannot censor a user’s connection to the blockchain, given that
the user accepts the relevant trust assumptions surrounding their
choice of node).

The full contract code, including the logic for pruning incapacitated
signers and updating the signature threshold is published at [3].

5 Custodial Paralysis

Until now, this work has considered paralysis in a generalized
setting– any setting in which multiple parties must authorize a
transaction. Consequently, we have adopted a very narrow defini-
tion of paralysis as unavailability of a party expected to be online.
Without a specific definition of what constitutes a user or a valid
transaction, there is no distinction between a party who honestly
refuses to sign an illegitimate message and one who maliciously
paralyzes a legitimate transaction. Unfortunately this makes it im-
possible to construct a mechanism that distinguishes between the
two. In some settings, however, the relationship between parties
and their separation of responsibilities with regards to transaction
signing are more well-defined.

In this section, we consider one such specific scenario and analyze
the consequences of paralysis: we consider a centralized custodian,
effectively a bank, responsible for providing access control to a
user’s funds. Here the goal is not to downgrade access if the bank
becomes unavailable or paralyzed, but rather to migrate to a com-
pletely distinct recovery policy when the custodian fails to perform
its assigned duties or either. Unlike in the previous setting, keys
are not equal in privilege and come with defined roles.

Why centralized custodians? Centralized service providers of-
ten offer better security than a user is capable of providing on their
own, and can relieve users from the burdens of key management
and storage. Centralized providers can also offer layered security
services including sophisticated access control, two-factor authen-
tication, account compromise detection, account recovery options,
and account insurance. Adding to these benefits, such services are
convenient in their availability and do not require their users to
purchase custom or dedicated hardware. Ease of key management
is a major consideration for many users when choosing so called
“web wallets” [42] and such services have seen remarkable success
with one US-based service Coinbase at times claiming to control
up to 10% of Bitcoins in active circulation [8].

9

https://github.com/intel/linux-sgx/issues/161
https://github.com/intel/linux-sgx/issues/161


Anonymous submission #246 to ACM CCS 2018

Centralized custodians, however, are a single point of failure for
both security and availability: they can steal funds directly or simply
disappear. A number of such cases of fraudulent or otherwise insol-
vent services leading to losses for their users have been observed
in practice [1, 73]. Such trust issues can be resolved by instead
layering private key security, requiring the custodian to sign off on
all transactions in a 2-of-2 multisignature scheme. This protects the
user from their funds being stolen by the exchange, but does not
ensure the user’s funds are available to spend. It does not ensure
users funds cannot be paralyzed, either maliciously or accidentally,
by the failure of the centralized custodian to sign transactions in a
timely fashion.

Paralysis-proof Custodians In our setting, we assume a user en-
trusts a centralized custodian with either a key that directly controls
their funds or is part of a mullti-signature address. The custodian
is responsible for authenticating the user before it authorizes any
transaction with its key. Separately, the user stores a recovery key
(e.g. on paper in a safety deposit box). Optimistically, the recovery
key will never be required, as the custodian will remain available.
If the recovery key had full control over the funds, then the custo-
dian would offer little additional security and the funds would only
be as safe as the recovery key. Instead, the recovery key is inert,
controlling no funds, and can only obtain funds through a paralysis
proof of the centralized custodian. If the custodian is paralyzed,
control is migrated from the exchange to the recovery key.

While basic paralysis proofs would guard against unavailability of
the custodian, they would not guard against a malfeasant custodian
that intentionally blocks legitimately authorized transactions. To
resolve this, we extend the functionality of basic paralysis proofs
to included a predicate that must be met for a given party to issue
a life signal. In our case, the predicate will ensure a life signal is
issued only if the custodian faithfully attempted to authenticate
the user and transaction and the authentication failed . The exact
details of this predicate can vary depending on the authentication
mechanism. We explore the set of custodian functionalities that are
paralysis proof compatible.

Mechanisms for Authentication and Secondary Authentica-
tion To authenticate to the custodian, the client will need to par-
ticipate in a possibly interactive authentication protocol with mes-
sages passed from the client to the custodian and potential back.
As a simple example, a standard password authentication protocol
would require the client to send the custodian the password. For
a paralysis proof against a malicious custodian, the client needs
to demonstrate that they did actually submit such a message and
conversely, an honest custodian defending against a false paralysis
proof needs to show no such message was sent or the message was
invalid. Because the custodian is realized in an Trusted Execution
Environment, we need not contend with the correctness of the
messages themselves: we can rely on the TEE to produce correct
messages and accept valid messages, we simply need a mechanism
for assured communication between the enclave and user.

Following the techniques of [40], any interactive authentication
protocol can be realized, “on-chain,” by posting encrypted messages
between the client and the custodian to the blockchain. A paralysis

proof then is simply an on chain execution of the protocol where
messages are delivered and logged via the blockchain. For example
in the password authentication protocol, a paralysis proof can be
realized by posting the password, encrypted under a key owned
by the enclave, in a challenge transaction. In responding to the
challenge, the enclave sees the included password and if and only
if the password incorrect, will contest the paralysis proof. This can
be applied n round protocol by posting each message, encrypted, to
the blockchain and extended to, for example, integrating federated
authentication protocols or challenge response based second factor
authentication mechanisms.

Third Party Authentication Another option is for the enclave to
contact third parties directly to provide primary or a secondary au-
thentication factor. Town Crier [89] demonstrated that it is possible
to make a TLS request from an enclave to a third party service and
condition behavior on the response. Combined with input from the
user via the blockchain, this can be used to directly authenticate
a user, to provide a second factor for authentication via services
such as Authy or Twillo, or ensure that a user still has an account
with some service. Many of these mechanisms depend on trusting
the third party service, but in the case of established and widely
used services this may be more palatable than trusting the custodial
service itself.

Account Recovery and Dual Paralysis Using the same mecha-
nisms for interactive protocols or authenticating via third parties,
the custodian can provide a paralysis proof compatible mechanism
for account recovery in the case of lost credentials. Indeed,if the
custodian relies on third parties for authentication, then it inherits
the account recovery mechanism automatically. This is, of course,
a double edged sword: the same mechanisms that are used for
account recovery can be used to hijack the account. We are not
limited, however, to simple password recovery mechanisms. If the
custodian only controls one of two keys necessary to spend the
funds, we can realize account recovery by requiring a paralysis
proof against the user to migrate access control to the recovery key.

6 Smart Contract Proof-Of-Paralysis

Throughout this work we have explored the relationship between
smart contracts and Paralysis Proofs, using, e.g., smart contracts to
implement Paralysis Proofs in Section 4.6. In the broader smart con-
tract community, it is well known that paralysis can occur within
smart contracts themselves. A classic example are the two well-
publicized Parity multisignature vulnerabilities [15] [75] which
together froze hundreds of millions of US dollars in smart con-
tracts. The Parity multisignature vulnerabilities are far from the
only high-profile failures that resulted in paralysis; early analysis
of Ethereum smart contract vulnerabilities [18] enumerated a num-
ber of vulnerable contracts with stuck funds and denial-of-service
vulnerabilities. Some of these vulnerabilities are subtle, involving
low-level platform details like the “gas" model for how computation
is priced per-transaction [85].

Most smart contract vulnerabilities, despite their different mani-
festations, have a fundamental commonality: in each case, a smart
contract was operating as intended until some unexpected change
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Program for Smart Contract Paralysis Proofs (progci)
1 : Hardcoded: T = {(π1, σ1, ω1), ..., (πn, σn, ωn ) } // test set
2 : // (where πi represents the code test i should run in state σi for expected output ωi )

3 : where σi =
{
(s1, v1), ..., (sj , vj )

}
// storage keys/values for test setup

4 : γ , β, // β is mapping from block hash to height, γ holds latest blockchain height

5 : ∆, // maximum time to construct a proof, in blocks

6 : C = [CP , CR ] // addresses of main and recovery contract

7 : On input (access, d ):
8 : Return C[0](d, msg.sender)

9 : On input (migrate, (i, p = {(s1, v1, p1), ..., (sk , vk , pk ) })):
10 : Assert pj .merkle_root == pq .merkle_root ∀j, q .1 ≤ j, q ≤ k

11 : Assert γ − β [p1 .merkle_root] ≤ ∆ // Ensure proof is fresh

12 : Σ := ∅ // Initialize state (location to value map) for test to run in

13 : For each (sj , vj , pj ) ∈ p :
14 : Assert is_valid((sj , vj , pj ))
15 : Σ[sj ] = vj // Initialize storage from environment

16 : For each (sj , vj ) ∈ σi :
17 : Σ[sj ] = vj // Initialize static per-test storage

18 : If πi (Σ) , ωi : // Contract paralyzed if test output differs from expected

19 : C = C \C[0]
20 : T = ∅

Figure 6: An example implementation of Paralysis Proofs for smart contracts.

to the state of the contract, the network, or the computation model
under which the contract was operating. These changes then caused
subsequent executions of previously working code/contracts to fail,
leaving the funds in a contract potentially “paralyzed," and stuck
indefinitely. This problem is so widespread and severe on Ethereum,
that hard-fork-based manual remediation of affected contracts has
been suggested as a major governance issue and debate [17] [33].

We find a natural solution to this class of stuck funds in software en-
gineering tradition. When integrating various system components
which may potentially be faulty, untrustworth, or unpredictable,
developers often create and execute thorough integration tests [38],
often continuously as software is developed, in a process known
as “continuous integration" [25] [77]. Continuous integration can
naturally be applied to the above paralysis scenarios: if a full contin-
uous integration suite is run with the full blockchain and external
interactions’ state for every block, and failure causes a “downgrad-
ing of access control" in the transfer of funds to a simpler recovery
contract, forms of paralysis described above are avoided.

Two variant implementations of this idea are possible. The first is
smart-contract based, with a protocol specification for the smart
contract given in Figure 6. (We omit user entry points from this
specification.) In this protocol, there is a static, hardcoded set of tests
T , with each test τi containing some storage locations to initialize
that are required for correct operation of the test. (These locations
but are not necessarily comprehensive; tests and should can pull
storage variables from the environment.) For example, static state
σi might contain an initialization of a special testing account with
some balance available to be transferred that is not present in the
real token contract, with the remainder of state required for the
test sourced from the global stateful environment.

If a smart contract is paralyzed, it must be failing some unit test
i at block b. A user who notices this submits a proof by sending
migrate, including Merkle proofs-of-inclusion for all state items
consumed by the test from the environment at block b in the global
Ethereum state trie [85]. The implementation progci checks that
submitted Merkle proofs are all from the same block, that the block
is recent (to prevent DoS via stale proofs), and that all proofs are
valid. A temporary state is instantiated, first with all the provided
state entries from the environment, then from all the hardcoded
static initialization state in σi . If observed test output differs from
expected, paralysis is detected and progci migrates any access to a
recovery contract that returns user funds, preventing paralysis of
contract funds (assuming the test set is sufficiently rich and recovery
operational). The test set is reset to prevent further migrations.

The smart-contract based scheme has important advantages. Pri-
marily, any user can prove paralysis using only on-chain data at
any time, minimizing the trust surface required to just the code
governing proof verification and recovery (and excluding com-
plex attestation schemes and trust in enclave confidentiality). The
scheme is also practical and optimistically efficient. We tested an
example implementation provided at [48] of a Merkle-Patricia state
item proof checker in a smart contract, usable for the is_valid
function referenced in progci. In the optimistic case where funds are
not paralyzed, our scheme adds no on-chain overhead or additional
cost to contract operation. In the exceptional case of paralysis, our
scheme’s cost is justified by the potential recovery of funds. Our
initial tests suggested a cost of about 1.36 million gas per invocation
of the functionality required by is_valid; this is approximately
1/6 of a full Ethereum block, or 12USD per storage location proof
at the time of writing: expensive but not prohibitive.

Several issues are however presentwith this SGX-free smart-contract
scheme. The on-chain Merkle proof verification is still somewhat
costly, and a transaction/test can potentially access many storage
locations. This may be acceptable in smart contract form, as tests
can be potentially broken up into small/short pieces. This scheme
financially incentivizes short tests, however, which may limit the
expressiveness of developers’ tests in an effort to make worst-case
verification cost tractable in a volatile and unpredictable fee market.
By making the cost of executing a test less dependent on the size
of the test using SGX and off-chain computation, longer and more
expressive tests become tractable.

An SGX-based solution can also leverage attestations and confi-
dential execution. For example, if any off-chain or legacy systems
are required in the integration test (e.g., when an oracle such as
Town Crier [90] is used), they can be queried or emulated by SGX,
or can use a trusted off-chain oracle. Also, confidential integration
tests may be useful for testing some contracts. While unsuitable in
a public network due to their ability to hide backdoors, one could
imagine a contract between parties where neutrally-agreed-on third
parties or arbiters were responsible for developing and maintaining
independent anti-paralysis test suites.
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7 Related Work

Bitcoin had built-in support for threshold signatures at launch,
and access-structure scripts for Bitcoin have been discussed since
at least 2012 (see, e.g., [66]). The witness for the built-in Bitcoin
opcode is a list that consists of the individual signatures that meet
the threshold, which increases the on-chain verification complexity
(this is undesirable, cf. [49]).

Gennaro, Goldfeder and Narayanan[30] presented a novel ECDSA
threshold signature construction that reduces the on-chain com-
plexity of multi-signature control over a Bitcoin address. However,
this contruction requires a rather complex setup using ZK proofs,
and does not support arbitrary access structures. Threshold Schnorr
signature is significantly more efficient [76], with planned support
on the roadmap of Bitcoin developers [86].

Mesh signatures [13] can be used to implement an arbitrary access
structure. Attribute-based signatures [50] is an alternative approach
that utilizes a trusted third party to implement arbitrary access
structures. These constructions rely on complex cryptographic
primitives such as bilinear pairings (which have no native support
in Bitcoin script language). By themselves, mesh signatures can
only support a static access structure (cf. Section 1).

Ethereum wallets such as Mist [55] and Gnosis [82] support multi-
signature access structures, along with other features such as daily
limits. However, these wallets are implemented via on-chain code,
which implies that users will incur higher costs (paid according to
gas) when the complexity of the access structure is greater.

Access-control policies with dynamic access-structures Se-
cret sharing schemes with revocation support do not provide the
same guarantees as a paralysis proof system, since such schemes re-
quire actions by at least a threshold of the players in order to update
the access structure (see [23, 88]). By contrast, a paralysis proof
system enables any player to remove the incapacitated players.
Privacy-preserving cloud services can allow remote administrators
tomodify the access-control policies dynamically, via cryptographic
constructions (see, e.g., [35, 41]). Dynamic access-control policies
for a non-confidential cloud service may also benefit from dynamic
access-control policies [58]. In all of these constructions, a policy
modification affects the ability of end-users to interact with the
server, but the set of administrators that are authorized to perform
the modifications is static.

Credential-recovery schemes Password-recovery systems allow
users to recover from the loss of a secret, but they require a trusted
third party. See [12] for a survey.

Blockchains as censorship-resistant channels Bitcoin and other
cryptocurrencies have been proposed as a means to facilitate a
censorship-resistant channel. For instance, ZombieCoin [5] ana-
lyzes the prospects of a botnet command&control center using
Bitcoin. Another recent work [4] allows users behind a government
firewall to discover Tor entry nodes, via a challenge-response pro-
tocol in which the messages are transmitted on a cryptocurrency
ledger.

8 BeyondParalysis Proof Systems andCryptocurren-
cies

The techniques we have introduced for Paralysis Proof System in
combining SGX with blockchains can be applied to settings other
than paralysis proofs and even to settings other than cryptocurren-
cies. We give some examples here:

• Daily spending limits: It is possible to enforce limits on the
amount of BTC that set of players can spend in a given interval
of time. For example, players might be able to spend no more
than 0.5 BTC per day. We explore this objective, and technical
limitations in efficient solutions, in Appendix F.

• Decryption: The credentials controlled by a Paralysis Proof
System need not be signing keys, but instead can be decryption
keys. It is possible then, for example, to create a deadman’s
switch. For example, a document can be decrypted by any of a
set of journalists should its author be incapacitated.

• Event-driven policies: Using an oracle, e.g., [89], it is possible
to condition access-control policies on real-world events. For
example, daily spending limits might be denominated in USD
by accessing oracle feeds on exchange rates. Similarly, decryp-
tion credentials for a document might be released for situa-
tions other than incapacitation, e.g., if a document’s author is
prosecuted by a government. (This latter example would in all
likelihood require natural language processing, but this is not
beyond the capabilities of an enclaved application.)

The last example involving prosecution does not require use of a
blockchain, of course. Many interesting SGX-enforceable access-
control policies do not. But use of a blockchain as a censorship-
resistant channel can help ensure that policies are enforced. For
example, release of a decryption key might be entangled with the
spending of cryptocurrency. A certain amount of cryptocurrency,
say, 10 BTC, might be spendable on condition that an oracle is
recently queried and the result consumed by an enclave application.
This approach provides an economic assurance of a censorship-
resistant channel from the blockchain to the enclave.

9 Conclusion

We have shown how Paralysis Proofs can enrich existing access-
control policies in a way that was previously unachievable without
a trusted third party. By leveraging Paralysis Proofs, DASSes allow
an access structure to be securelymigrated—typically downgraded—
given the incapacitation of a player, the inability of a set of players
to act in concert, or the functional paralysis of a smart contract.
Our supporting formalism includes a formal DASP framework, and
security and functionality property definitions for DASSes and
DASPs, as well as UC-type ideal functionality for a DASS.

Paralysis Proofs and DASSes can be applied in a number of set-
tings, as we show by exploring three in the paper: cryptocurrency
key loss, cryptocurrency custody failures, and smart contract fail-
ures, proposing practical schemes for all three. We report on a
straightforward DASS for cryptocurrency key loss in Ethereum,
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and show through detailed exploration that a DASS for Bitcoin is
only practical using our TEE-based techniques.

In summary, we believe that the combination of the advent of two
pivotal technologies, blockchains and trusted hardware (specifically
SGX), is a powerful one. It enables a powerful new range of access-
control regimes without the need for trusted third parties and, we
believe, will stimulate exploration of a broad spectrum of other
novel capabilities.
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A Addition Formalism

B Proof of Theorem 4.1

We recall Theorem 4.1:

Theorem 4.1 (The Security of ΠSGX). Assume GSGX’s attesta-
tion scheme and the digital signature used in ΠSGX are existentially
unforgeable under chosen message attacks (EU-CMA). Then ΠSGX
UC-realizes FDASS[sP0 ,R,S,M] in the (GSGX,F blockchain)-hybrid
model, for static adversaries.

Proof. For simplicity, we write FDASS[sP0 ,R,S,M] as FDASS
from now on. To prove Theorem 4.1, it suffices to show that for the
“dummy adversary” A, there exists a PPT adversary Sim such that
for any PPT environmentZ

EXECΠSGX,A,Z ≈ EXECFDASS,Sim,Z . (1)

Basically, the dummy adversary simply relays messages between
the environmentZ and parties. In particular, A corrupts parties
when instructed by Z and passes all gathered information to Z.
We refer readers to Section 4.4.1 of [19] for details on emulation
with respect to the dummy adversary.

We first present the construction of Sim, then we show that Sim
satisfies Equation (1).
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B.1 Construction of Sim.

Sim generally proceeds as follows: if a message is sent by an honest
party to FDASS, Sim emulates the appropriate real world “network
traffic” for Z using the information obtained from FDASS. If a
message is sent to F blockchain or GSGX by a corrupted party, Sim
intercepts the input and interact with A with the help of FDASS.
We provide further details on the processing of specific messages.

Initialization. For an honest party Ph , Sim faithfully emulates
ΠSGX as if Ph is called with a init message. In particular, Sim gen-
erates the key pair and simulates the initialization of GSGX and
F blockchain, if not already initialized. If a malicious party Pm sends
init with corrupted parameters (i.e. different from those of FDASS),
Sim aborts after simulating a abort message to all parties.

Access. For an honest party Ph calling FDASS with (access, inp),
Sim computes a signature σ over UTXOfund and inp (using the
secret key generated in the initialization phase) and simulates GSGX
faithfully.

If GSGX (simulated by Sim) is activated a malicious party Pc with
input (spend,σ ,UTXOfund, addrnew), Sim checks that 1) the signa-
ture is valid against the public key (distributed in the initialization
phase) and 2) UTXOfund is indeed unspent on F blockchain.

• If both checks pass, Sim proceeds as if Pc is honest.

• If the first check fails, Sim aborts.

• If the second check fails, ΠSGX will proceed normally since
GSGX doesn’t have an up-to-date view of the blockchain. There-
fore Sim simulates GSGX faithfully, but without sending any
message to FDASS.

Migration from SP to SP ′ . Without loss of generality, we only
consider the cases where P = P ′ ∪

{
pkk

}
, namely the migrations

that remove Pk from the access structure. Other cases can be ana-
lyzed similarly.

If FDASS is activated by an honest party Ph with input (migrate, P ′)
that removes Pk from the current access structure, Sim proceeds as
follows:

• If Pk is honest or paralyzed, Sim emulates Pi ’s part of ΠSGX
by computing t1 and t2. If FDASS authorizes the migration
(indicated by a public ok output), Sim delay the output for ∆
time, put t2 on the blockchain, and then permits FDASS to
deliver the output to all parties. If FDASS rejects the migration,
Sim spends the life signal on Pk ’s behalf.

• If Pi is malicious, Sim waits until FDASS asks whether Pk
chooses to pretend to be paralyzed. Sim generates t1, t2 and
sends t1 to F blockchain. If A spends the output on behalf of Pk
within ∆, Sim responds “yes” to FDASS. If not, Sim sends “no”
to FDASS and put t2 to F blockchain.

If GSGX (simulated by Sim) is activated by a corrupted party Pc with
input (migrate,UTXOfund, P

′) that removes Pk from the current
access structure, Sim computes t1, t2 and send both to A as if from
F blockchain, and then proceeds as follows:

• If Pk is honest and alive: IfA sends t1 to F blockchain, Sim spends
t1 on Pk ’s behalf, and send (migrate, sP ′) to FDASS on Pc ’s
behalf at the same time.

• If Pk is paralyzed: IfA sends both t1 and t2 to F blockchain, Sim
sends (migrate, sP ′) to FDASS on Pc ’s behalf.

• If Pk is malicious: If A sends both t1 and t2 to F blockchain, and
A doesn’t spend t1, then Sim sends (migrate, sP ′) to FDASS on
Pc ’s behalf, and sends “no” to FDASS when asked whether Pk
chooses to be paralyzed.

B.2 Validity of Sim.

We show that no environment can distinguish an interaction with
A and ΠSGX from one with Sim and FDASS by hybrid arguments.
Consider a sequence of hybrids, starting with the real-world exe-
cution of ΠSGX. H1 lets Sim to emulate GSGX and F blockchain. H2
filters out the forgery attacks against ΣSGX and H3 filters out the
forgery attacks against the signature scheme.

Hybrid H1 proceeds as in the real world protocol, except that Sim
emulates GSGX and F blockchain. Specially, Sim generates a key
pair (pkatt, skatt) for ΣSGX and publishes pkatt. Whenever A
wants to communicate with GSGX, Sim records A’s messages
and faithfully emulates GSGX’s behavior. Similarly, Sim emu-
lates F blockchain by storing items internally.

As A’s view in H1 is perfectly simulated as in the real world,
noZ can distinguish between H1 and the real execution.

Hybrid H2 proceeds as in H1, except for the following modifica-
tions. IfA invokedGSGX with a correctmessage (install, progencl),
then for all sequential resume calls, Sim records a tuple (outp,σSGX)
where outp is the output of progencl and σSGX is an attestation
under skatt. Let Ω denote the set of all such tuples. WheneverA
sends an attested output (outp,σSGX) < Ω to Sim or an honest
party, Sim aborts.

The indistinguishability between H1 and H2 can be shown by
the following reduction to the the EU-CMAproperty of ΣSGX: In
H1, ifA sends forged attestations to Sim, signature verification
will fail with all but negligible probability. IfZ can distinguish
H2 fromH1,Z andA can be used to win the game of signature
forgery.

Hybrid H3 proceeds as in H2, except for the following modifica-
tions. Suppose the set of public keys belonging to corrupted
parties is

{
pki

}N
i=1. If A sends (spend,σ , _, _) and σ verifies

under a public key pk <
{
pki

}N
i=1, Sim aborts.

Similarly, the indistinguishability between H2 and H3 can be
shown by a reduction to the EU-CMA property of signature
scheme.

It remains to observe that H3 is identical to the ideal protocol with
Sim.

□
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// Approve a proposal and execute if signature threshold is reached
function spend(uint256 proposal_id) public updateRequired {

require(is_active_keyholder(msg.sender));
require(proposal_id < proposals.length);

// add sender's signature to approval
proposal_sigs[proposal_id][msg.sender] = true;

// if enough proposers approved, send money
uint256 num_signatures = 0;
for (uint256 i = 0; i < keyholders.length; i++) {

if (!paralyzed[keyholders[i]]) {
if (proposal_sigs[proposal_id][keyholders[i]]) {

num_signatures++;
}

}
}

if (((num_signatures) * mu2) >=
(num_responsive_keys() * mu1)) {

if (!proposals[proposal_id].filled) {
proposals[proposal_id].filled = true;
proposals[proposal_id].to.transfer(

proposals[proposal_id].amount);
}

}
}

// Accuse a user of being paralyzed
function accuse(address accused) public
updateRequired returns(uint256) {
address accuser = msg.sender;

// users cannot accuse themselves
// (ensures always at least one active keyholder;
// prevent stuck funds)
require(accuser != accused);

// both requester and accused must be active keyholders
require(is_active_keyholder(accuser));
require(is_active_keyholder(accused));

// shouldn't be any outstanding claims against accused
require(!(paralysis_claims[accused].expiry >= now));

// create and insert an Paralysis Claim
uint256 expiry = now+delta;
paralysis_claims[accused] = ParalysisClaim(expiry, false);
NewAccusation(accused, expiry); // notify the accused
return expiry;

}

function respond() public {
require(paralysis_claims[msg.sender].expiry > now);
paralysis_claims[msg.sender].responded = true;

}

Figure 7: Partial Solidity implementation on Ethereum.

C Additional Code Sample

C.1 Paralysis Proofs via Ethereum

Figure 7 shows the code snippet of the Ethereum implementation
of Paralysis Proofs.

D Paralysis Proofs via Covenants

In the context of Bitcoin scripts, the notion of a covenant allows to
put restrictions on the way that an output can be spent. Covenants
were introduced by Moser, Eyal and Sirer [57], following an early
idea by Maxwell [53]. Another generic method for covenants was

given by O’Connor and Piekarska [60], and an efficient implementa-
tion of covenants (OP_PUSHTXDATA) was created by Lau [45]. So far,
covenants support has not been enabled on the Bitcoin mainnet.

The mechanism of [57] supports a recursive covenant by letting
the interpreter replace the Pattern keyword with the covenant
itself. The recursion is required in our paralysis use-case, because
the funds must be restored back to the original covenant whenever
an accusation attempt fails. However, the single Pattern capabil-
ity of [57] is inadequate for the paralysis covenant, because we
wish to move the funds between different covenants that depend
on the subset of remaining shareholders. Fortunately, the imple-
mentation of [45] supports multiple recursive patterns, by hashing
fixed and variable data and then comparing the result to the output
P2SH address [7] or the SegWit P2WPKH/P2WSH [44] (as well as
Merkelized syntax trees [43, 69]).

An exemplary paralysis covenant is illustrated in Figure 8, using
syntax that is similar to that of [57]. In this example, three share-
holders can spend the entire amount Vwith no restrictions, by using
the 3-out-of-3 multisig condition of the Pattern123 covenant. Any
two shareholders can accuse the third shareholder of being par-
alyzed, by moving the entire fund of V coins into an PatternIJ
covenant that lets them spend the coins after a relative timeout
of 150 blocks. While the 150 blocks are still being created, the
third shareholder can move the funds back into the initial covenant
Pattern123. Similarly, any single shareholder can accuse the two
other shareholders of being paralyzed, by moving the V coins into
the PatternI covenant.

Note that the covenants PatternIJ and PatternI must be distinct
for different values of I, J, in order to avoid collusion attacks. For
example, if PatternIJ allowed any 2-out-of-3 to spend the V funds
after the timeout, then two malicious shareholders P2, P3 could
pretend that P3 is paralysed, so that P1, P2 would accuse P3, and
after the 150 blocks timeout P2, P3 will spend the funds arbitrarily
(without the consent of the honest P1).

There is certain similarity between the SGX protocol of Figure 3
and the covenants implementation of Figure 8. The main differ-
ence is that the pkI, pkJ multisig replaces pkSGX in the condition
(pkSGX ∧ CSV ≥ ∆). Hence, by taking the paralysis use-case as
an example, it can be inferred that the complexity of the covenants
approach is significantly higher than that of an SGX implementa-
tion (in terms of conceptual as well as on-chain complexity, see
also Appendix E). As there have been recent proposals to support
stateless covenants in Ethereum (for better scalability, cf. [81]), the
comparative advantages of our SGX-based design may prove useful
in other contexts too.

E The Complexity of Access Structure Realizations

The ideal functionality of Section 4 is threshold predicates that
require consent from µN of the N live shareholders in order to
spend the funds. (µ = 1 would mean unanimous consent.)

However, it is also possible to consider an extended functionality
that requires signatures according to a more complex access struc-
ture. E.g., any subset of 35 out of {P1, P2, . . . , P40} can spend the
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Basic paralysis covenants for three shareholders
1 : Pattern123

2 : IF
3 : 3 <pk1> <pk2> <pk3> 3 CheckMultiSig
4 : ELSE IF
5 : <V> <Pattern12> CheckOutputVerify 2 <pk1> <pk2> 2 CheckMultiSig
6 : ELSE IF
7 : <V> <Pattern13> CheckOutputVerify 2 <pk1> <pk3> 2 CheckMultiSig
8 : ELSE IF
9 : <V> <Pattern23> CheckOutputVerify 2 <pk2> <pk3> 2 CheckMultiSig
10 : ELSE IF
11 : <V> <Pattern1> CheckOutputVerify <pk1> CheckSig
12 : ELSE IF
13 : <V> <Pattern2> CheckOutputVerify <pk2> CheckSig
14 : ELSE IF
15 : <V> <Pattern3> CheckOutputVerify <pk3> CheckSig
16 : ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF

17 : PatternIJ for (I, J) ∈ {(1, 2), (1, 3), (2, 3)}
18 : IF
19 : <150> CheckSequenceVerify 2 <pkI> <pkJ> 2 CheckMultiSig
20 : ELSE IF
21 : <V> <Pattern123> CheckOutputVerify 1 <pk1> <pk2> <pk3> 3 CheckMultiSig
22 : ENDIF ENDIF

23 : PatternI for I ∈ {1, 2, 3}
24 : IF
25 : <150> CheckSequenceVerify <pkI> CheckSig
26 : ELSE IF
27 : <V> <Pattern123> CheckOutputVerify 1 <pk1> <pk2> <pk3> 3 CheckMultiSig
28 : ENDIF ENDIF

Figure 8: Basic paralysis covenants for three shareholders.

funds, otherwise the funds can be spent with the consent of all
shareholders in the privileged set {P1, P2, P3, P4}, or otherwise the
privileged P1, P35, P36, P37, P38, P39, P40 can spend the funds.

Such an access structure can be accomplished using cryptographic
constructions, in particular mesh signatures [13] and attribute-
based signatures [50]. However, these schemes involve bilinear
pairings and are rather complex, which entails that the on-chain
verification of such schemes will be impractical or costly.

Recently, the use of SGX has been suggested for functional en-
cryption that is far more efficient in comparison to a standard
cryptographic variant [29]. In a similar fashion, the use of SGX
for an access structure based signature scheme implies substantial
efficiency gains too. Thus, the improved efficiency applies both
to the off-chain protocol that produces signatures, and to the on-
chain cost of verifying the signature (i.e., the on-chain complexity is
reduced to just one ordinary signature verification against pkSGX).

The ideal functionality of Section 4 can therefore be replaced with
an extended functionality that supports an access structure, and the
Bitcoin protocol of Figure 3 will essentially remain the same. This
is because the off-chain complexity of creating the signature will
be handled by the SGX enclave code, and the on-chain complexity
will be absorbed into a verification against pkSGX.

It is worth considering whether it is inherently that case that the
high efficiency requires SGX, or whether it is possible to design
a cryptocurrency with built-in support to access structure based
signatures. In fact, certain support is offered via the use of Merkl-
ized Abstract Syntax Trees [43, 69] and Schnorr aggregate signa-
tures [86]. As in the “Large multi-signature constructs” of [43], we
can for example have a Merkle tree with 2+

(40
35
)
−
(36
31
)
−
(33
28
)
+
(30
25
)
<

218 leaves, such that all but two of the leaf nodes require a mul-
tisig by a specific subset of {P1, P2, . . . , P40} of size 35 (excluding
subsets that already include the privileged sets {P1, P2, P3, P4} and
{P1, P35, P36, P37, P38, P39, P40}, without double counting), put only
the root hash on the blockchain, and expect a valid Merkle authenti-
cation path to spend the coins. Further, the script of the leaf can use
a single aggregated public key that is created from the public keys
of the 35 signers (using delinearization [9, 80]), so that the on-chain
complexity is on par with that of verifying one ordinary signature.
Regarding the total on-chain complexity, we have that transaction
that spends the funds consists of one aggregated signature for the
leaf node and a Merkle authentication path of 18 sibling hashes.

However, per the discussion of OP_EVAL in [43], the use of a Merkl-
ized Abstract Syntax Trees becomes significantly more challenging
for a predicate that involves a more complex relation than a logical
OR among the leaves. For instance, if the access structure speci-
fied that P1, P2, P3 must consent, and either P4, P5 or P6, P7 must
also consent, then this cannot be handled by the implementation
of [43]. By contrast, SGX can handle this instance just as easily as
the previous example.

As the above discussion illustrates, harnessing SGX to spend funds
according to an access structure can be highly useful even for a
cryptocurrency with a Turing-complete scripting language (such
as Ethereum). Let us point out that as long as [86] is not yet opera-
tional, it can be quite beneficial to employ SGX even for threshold
signatures, since an ECDSA threshold scheme (without a trusted
dealer) is rather complex, cf. [30].

The use of access structures in a cryptocurrency can also incor-
porate a notion of time, which in turn can help to avoid system
paralysis that is caused by disagreement together with the disap-
pearance of some players. For instance, the functionality can require
75% of the active players to agree on how to spend the funds, but
require only 50% of the active players after one year, and only 20%
after three years. In the UTXO model of Bitcoin, this can be accom-
plished via trusted hardware: whenever the players agree to spend
the funds they will specify absolute timeouts for the 50% and 20%
cutoffs (using CLTV [78]), and whenever the SGX enclave is asked
to remove an incapacitated player it will create a transaction whose
output hardcodes the same absolute timeouts as the input that is
being spent. If the access structures for the different points in time
are complex, the trusted hardware based implementation will be
particularly beneficial (otherwise covenants could be used).

F Daily Withdrawal Limit using SGX

Let us consider a functionality Fdaily that allows N shareholders
to spend the funds if at least µN of them reach an agreement (for
µ ≤ 1), and allows each individual shareholder to spend a small
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portion of the funds (e.g., 0.1%) each day.Moreover, the functionality
allows ρN shareholders to disable the daily spending of funds by
individual shareholders (for ρ ≤ µ, which is useful in the case that
some shareholders appear to spend too much). By using ρ < µ, it is
easier to block the daily withdrawals than to reach consensus on a
large expenditure.

It may be quite useful to combine Fdaily with a functionality for
paralysis proofs, but for simplicity we focus in this section on a bare
implementation of just Fdaily itself. Given an expressive enough
covenants support for Bitcoin (such as [45]), it is possible — though
quite complex — to implement Fdaily using similar methods to the
ones that we describe in Appendix D. However, let us present here
the more efficient implementation that relies on trusted hardware,
and can be deployed on the current Bitcoin mainnet.

The SGX-based protocol Πdaily that implements Fdaily is given in
Figure 9.

Since Bitcoin outputs must be fully consumed, Πdaily does not
realize Fdaily exactly, but instead lets each one of the shareholders
perform a daily withdrawal, in sequential order. Thus, the first
shareholder has the privilege to withdraw a small amount on the
first day, the second shareholder can withdraw a small amount on
the second day, the third shareholder on the third day, and so on. If
for example the third shareholder did not withdraw, then on the
forth day any single shareholder can withdraw a small amount (on
a first come first served basis), but on the fifth day the sequential
order resumes and the forth shareholder will have the privilege to
withdraw.

It should be noted that in a cryptocurrency that uses the accounts
model rather than the UTXO model (e.g., Ethereum), a more expres-
sive realization of Fdaily is possible. E.g., multiple shareholders can
withdraw small amounts as long as the daily limit has not yet been
reached.

The gist of Πdaily is an embedding of a public key pkSGXj into the
spending transaction, corresponding to the shareholder Pj who
currently has the daily withdrawal privilege. Since the secret key
skSGXj is known only to the SGX enclave, Pj cannot spend the
funds arbitrarily, but instead has to submit to enclave a request to
spend a small amount V ′ of the V coins to an arbitrary destination
T ′. The enclave will thus also produce a new output for the rest of
the V −V ′ funds, with pkSGXj+1 embedded into it.

Since Pj may not necessarily wish to withdraw, the output that the
enclaves produces also allows spending of a small amount with a
special master public key pkSGX0 , but only after a relative timeout of
∆ blocks (since Bitcoin blocks are created once every 10 minutes on
average, ∆ = 144 blocks implies ≈ 1 day). Hence, any shareholder
who submitted a request to withdraw from the current funds will
be able to spend the signed transaction that the enclave produced
for her, but only after ∆ blocks so that Pj has the opportunity to
spend first.

In case µN shareholders wish to spend an arbitrary amount, or in
case ρN shareholders wish to disable the daily withdrawal feature,
they can submit their µN (or ρN ) signatures to the enclave and
receive a signed transaction that takes precedence over any daily

Protocol Πdaily

Hardcoded:
{
pki

}N
i=1 , µ, ρ,Vmax,∆,∆′

Init:
(1) Setup: securely generate and share (skSGX, pkSGX),

(skSGX0 , pkSGX0 ) and
{
(skSGXk , pkSGXk )

}N
k=1

among the
enclaves.

(2) Let ϕµ ≜ [µN -out-of-N multisig among pk1, pk2, . . . , pkN ].
(3) For j ∈ [N ], let ψj ≜ [ϕall ∨ pkSGX ∨ (pkSGX0 ∧ (CSV ≥

∆)) ∨ (pkSGXj ∧ (CSV ≥ ∆′))].
(4) {Pi } escrow UTXOfund by publishing ⟨UTXOfund → (V ,ψ1)⟩.
Spend:
(1) {Pi } send µN signatures, the escrowed (V ,ψcurr), and Tnew

to the enclave.
(2) The enclave returns a signed transaction t = ⟨(V ,ψcurr) →

Tnew⟩.
Daily withdrawal:
(1) Pk sends a signed request with the escrowed (V ,ψcurr) and
(V ′,T ′) to the enclave.

(2) The enclave verifies that V ′ ≤ Vmax.
(3) The enclave fetches curr by parsingψcurr.
(4) If k = curr then sk := skSGXk else sk := skSGX0 .
(5) If k < N then ℓ := k + 1 else ℓ := 1.
(6) The enclave uses sk to create the signed transaction

t = ⟨(V ,ϕcurr) → (V −V ′,ψℓ), (V
′,T ′)⟩, and returns t .

Disallow daily withdrawals:
(1) {Pi } send ρN signatures and the escrowed (V ,ψcurr) to the

enclave.
(2) The enclave returns a signed transaction t = ⟨(V ,ψcurr) →
(V , [ϕall ∨ pkSGX])⟩.

Figure 9: An SGX-based realization of Fdaily.

withdrawal transaction. This is accomplished by using a small rela-
tive timeout ∆′ in the condition that allows the current privileged
shareholder to perform a daily withdrawal, so that the transaction
that was agreed upon by µN (or ρN ) shareholders can be incorpo-
rated into the blockchain earlier (e.g., ∆′ = 3 is reasonable).

Other parts of the Πdaily protocol (in particular the setup procedure)
are identical to ΠSGX, see Section 4 for details.

G Purely Bitcoin-Based Paralysis Proofs

A Paralysis Proof mechanism can also be implemented without
SGX (on the current Bitcoin mainnet), albeit with subpar security
and more than exponential overhead.

Our construction utilizes the “life signal” method of Section 4. In
the initial setup phase, each player Pi will prepare unsigned trans-
actions

{
ti, j,k

}
j ∈[N ]\{i },k ∈[K ] that accuse Pj (these transactions

are similar to t1), and all players will sign transactions t ′i, j,k that
take UTXO0 and the output of ti, j,k as inputs (these transactions
are similar to t2). K is a security parameter specifying the number
of accusation attempts that can be made. Figure 10 illustrates the
transactions in the aforementioned scheme.
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0.00001 BTC
pki

0.00001 BTC
pkj ∨ (pki ∧ (CSV ≥ 144))

5000 BTC∧
n,j

pkn

5000 BTC∧
n∈[N ]

pkn

UTXOj
life-signal

UTXOj
life-signal

ti, j,k :

t ′i, j,k :

Figure 10: Bitcoin-based Paralysis Proofs with N players (with public
keys

{
pkn

}
n∈[N ]). Each player Pi will prepare unsigned transactions{

ti, j,k
}
j∈[N ]\{i },k∈[K ]. All players will sign transactions t ′i, j,k .

This scheme can be implemented post-SegWit [26], where trans-
action hash (txid) excludes the ScriptSig witness. In particular,
SegWit allows one to prepare t ′i, j,k and condition its validity on
that of unsigned ti, j,k .

After every player receives all the signed transactions, the players
will move the high-value fund into UTXO0. This guarantees atom-
icity: either every player will have the ability to eliminate all the
incapacitated player, or none of the player will have this ability.
The output of ti, j,k requires a signature from Pj before the CSV
timeout and a signature from Pi after the CSV timeout, and Pi may
embed this signature into t ′i, j,k after Pj failed to spend the output
of ti, j,k on the blockchain. Since UTXO0 requires the signatures of
all parties, the only way to eliminate an incapacitated player is by
using the signed transactions t ′i, j,k that were prepared in advance.

The parameter K specifies the number of accusation attempts that
can be made; hence a malicious player that pretends to be incapaci-
tated more than K times will break this scheme. The SGX scheme
does not exhibit this deficiency, because any player can send a
fresh small amount of bitcoins to the enclave and thereby create an
accusation transaction.

Furthermore, in order to support sequences of ℓ > 1 incapacitated
players, the N players will need to prepare in advance additional
transactions that spend the outputs of t ′i, j,k in order to eliminate
another player, and so on. The scheme offers the most safety when
ℓ = N − 1, as this implies that any lone active player (i.e., all other
players became incapacitated) will be able to gain control over the
fund. The number of signed transactions that need to be prepared
in advance is
f (ℓ,N ,K) ≜ KN (N−1)·K(N−1)(N−2) · · ·K(N−ℓ+1)(N−ℓ) ≥ Ω(KℓN ℓ).

Thus, ℓ = N−1 implies that f (ℓ,N ,K) grows faster thanд(N ) = 2N .
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