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Abstract. Functional encryption (FE) is a cryptographic primitive which
allows to partially decrypt ciphertexts, e.g. evaluate a function over en-
crypted inputs and obtain the output in clear. The downside of employing
FE schemes is that some details about input data “leak”. We call infor-
mation leakage of a FE scheme the maximal information one can gain
about input data from the clear-text output of FE evaluated function.
FE which are usable in practice support only limited functionalities, in
particular linear or quadratic polynomial evaluation. In a first contribu-
tion of this work we describe how to combine a quadratic FE scheme
with a classification algorithm in order to perform a classification over
encrypted data use-case. Compared to direct usage of FE for a linear
or a polynomial classifier our method allows to increase classification
accuracy and/or decrease the number of used FE secret keys.
In a second contribution we show how to estimate the information leakage
of the classification use-case and how to compare it to an ideal informa-
tion leakage. The ideal information leakage is the minimal information
leakage intrinsic to achieve the use-case requirement (e.g. perform a clas-
sification task). We introduce a method for estimating the information
leakage (real and ideal ones) based on machine learning techniques, in
particular on neural networks.
We perform extensive experimentations using MNIST image classifica-
tion and Census Income datasets. In the case of MNIST, we were able
to reconstruct images which are close (in terms of MSE distance and as
well as visually) to original images. The knowledge of someones hand-
writing style facilitate the possibility to impersonate him, to steal his
identity, etc. As for the second dataset, we were able to increase the
accuracy of predicting input dataset features (e.g. an individual’s race)
from FE outputs available in clear. Obtained information leakages rep-
resent a major security flaw of FE based classifiers because they reveal
sensible information about individuals.

Keywords: Functional encryption · Information leakage · Private clas-
sification.
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Introduction

Functional encryption (FE) is a generalization of traditional public key cryp-
tography. It offers the possibility to partially decrypt ciphertexts with a fine-
grained control. More precisely, a FE scheme allows to evaluate a function over
encrypted inputs and obtain the output in clear. Cloud computing [6] and veri-
fiable computation [24] are typical fields, among many others, where FE can be
used. Functional encryption generalizes attribute-based encryption [27, 20, 26],
identity based encryption [5, 25] or predicate encryption [15, 23].

An important application of FE schemes is the classification over encrypted
input data. Several works from the literature [22, 10] propose to use simple yet
practical FE schemes in order to build classifiers of encrypted images. The inner-
product FE (IPFE) was used in [22] and quadratic FE in [10]. In these works,
the MNIST dataset of handwritten digits is used to test the realizability and the
practical performance of such classifier.

A drawback of FE schemes is that some details about encrypted input data
“leak”. We call information leakage of a FE scheme the maximal information
one can gain about input data from the clear-text output of the FE evaluated
function. Information leakage analysis of classification use-cases based on IPFE
was studied in paper [21]. A classifier of MNIST images based on IPFE was used
in this work too. The authors used different machine learning algorithms and
tools in order to reconstruct input images from the inner-product evaluations
given by the FE scheme.

In the the present work we generalize the idea of using a second classifier over
linear FE first step from [22] to quadratic FE schemes. We introduce the notion
of ideal and real information leakages of FE based use-cases. Roughly speaking,
the ideal leakage is the minimal information leakage intrinsic to achieve the use-
case requirement (e.g. perform a classification task). Whether the real leakage is
the information leakage from an actual implementation of the use-case. The real
information leakage is necessarily larger than the ideal one because intermediate
use-case data is available in clear form contrary to the ideal one.

A second contribution of this work is the estimation and the comparison
of real and ideal information leakages in classification use-cases. Information
leakage is estimated using machine learning tools, in particular neural networks.
We perform extensive experimental studies on 2 datasets: the MNIST dataset
and the Census Income dataset. Compared to the MNIST dataset where an
attacker is able to reconstruct (more or less precisely) input digit images, in
the case of Census Income dataset an attacker is able to gain more insights on
highly-private features of individuals. For example, the attacker will be able to
affirm with higher confidence whether an individual is a male or if its race is
white, etc.

The MNIST classification based on logistic regression proposed in [10] uses a
large number of FE evaluations, at least larger than needed. As we shall see using
a second classifier we are able to decrease the number of needed FE evaluations
and by consequence to lower the real information leakage.
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This paper is organized as follows. We start with a formalization of a generic
FE scheme and a description of linear and quadratic schemes. Afterwards in
section 2 we describe in details the information leakage in FE based classification
use-cases and how to estimate it using machine learning tools. In section 3 we
describe the used datasets together with experiments we have performed and
we perform an analysis of obtained numerical results about information leakage.
Finally, in last section we conclude this work and give some perspectives for
future works.

1 Functional encryption

Functional Encryption (FE) is a quite recent generalization of public-key cryp-
tography. This paradigm adds a new party, an authority, to the two traditional
asymmetric parties. The authority generates a master secret key and a public
key. The master secret key is known only by the authority. This particular key
is necessary to derive what is called secret keys. The secret keys are associated
with functions; for instance, we denote by skf the secret key associated with
function f . The public key, as expected, is used to encrypt messages. Let ctx
be an encryption of a message x. An user owning skf and ctx can run the eval-
uation/decryption algorithm and get f(x) as plaintext output. Hence, this is
not a traditional way to decrypt, but a kind of evaluation of f over encrypted
messages, with an unencrypted result at the end.

Boneh et al. give in [6] the following standard definitions for functional en-
cryption using the notion of functionality.

Definition 1. A functionality F defined with (K,X) is a function F : K×X →
Σ ∪ {⊥}. The set K is the key space, the set X is the plaintext space, and the
set Σ is the output space and does not contain the special symbol ⊥.

Definition 2. A functional encryption scheme for a functionality F is a tuple
FE = (setup, keyGen, encrypt, decrypt) of four algorithms with the following
properties.

– The setup algorithm takes as input the security parameter 1λ and outputs
a tuple composed of a public key and a master secret key (PUB,MSK).

– The keyGen algorithm takes as inputs the master secret key MSK and k ∈ K
which is a key of the functionality F . It outputs a secret key sk for k.

– The encrypt algorithm takes as inputs the public key PUB and a plaintext
x ∈ X. This randomized algorithm outputs a ciphertext cx for x.

– The decrypt algorithm takes as inputs the public key PUB, a secret key
and a ciphertext. It outputs y ∈ Σ ∪ {⊥}.

It is required that for all (PUB,MSK) ← setup(1λ), all keys k ∈ K and all
plaintexts x ∈ X, if sk ← keyGen(MSK, k) and c← encrypt(PUB, x) we have
F (K,X) = decrypt(PUB, sk, c) with an overwhelming probability.
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authority
(PUB,MSK)← setup(1λ)
skf ← keyGen(MSK, f)

keyowner
f(x)← decrypt(skf , ctx)

user
ctx ← encrypt(PUB, x)

skf

ctx

Fig. 1: The three actors of a functional encryption system, the algorithm they
use and their communications. In this figure, the public key, the master secret
key and the secret key associated with function f are respectively called PUB,
MSK and skf .

The cryptographic community is looking for public-key functional encryption
schemes enabling to evaluate any polynomial time computable function. Gold-
wasser et al. proposed a construction based on fully homomorphic encryption
[12], Garg et al. proposed another construction using an indistinguishability ob-
fuscator [11]. At present, however, these constructions remain mostly of theoret-
ical interest. Nevertheless, more recent schemes for simpler functionalities have
been proposed, for example FE schemes supporting linear [1, 2] (also called inner-
product functional encryption or IPFE) or quadratic [4] polynomial evaluation.
The advantage of these schemes is their decent performance and applicability in
real applications.

Linear FE or inner-product FE We call linear functional encryption a
scheme that enables the evaluation of degree-one polynomials. In the litera-
ture these schemes are also called functional encryption for the inner-product
functionality or inner-product functional encryption. Let v be a vector, ctv an
encryption of v, w be a vector of coefficients, and skw the secret key asso-
ciated with w. The decryption of ciphertext ctv with secret key skw returns
vT ·w =

∑
i wi · vi, thus a linear polynomial evaluated at v.

Abdalla et al. [1] proposed constructions for the inner-product encryption
schemes satisfying standard security definitions, under well-understood assump-
tions like the Decisional Diffie-Hellman and Learning With Errors. However they
only proved their schemes to be secure against selective adversaries. Agrawal et
al. [2] upgraded those schemes to provide them a full security (security against
adaptive attacks).

Quadratic FE We call quadratic functional encryption a functional encryption
system that can evaluate degree-two polynomials. A first construction of this
type was given in [4]. Let v be a vector, ctv an encryption of v, W a square
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matrix of coefficients and skW the secret key associated with W . The decryption
of ciphertext ctv with secret key skW returns v ·W · vT =

∑
i,jWi,j · vi · vj ,

thus a quadratic polynomial evaluated at v.

2 Information leakage of functional encryption schemes

2.1 Classification use-case

A natural use-case for functional encryption schemes is the classification over
encrypted data. Several classification algorithms from the machine learning field
use polynomial projection of input data features. As examples we refer to Linear
Classification, Gaussian Mixture Model, etc.

Functional encryption schemes found in the literature do not allow to per-
form arbitrary computations over encrypted data. The schemes which are prac-
tical (from a performance point of view) allow to evaluate linear and quadratic
polynomials only. Use-cases employing functional encryption need computations
which are more complex than these. A solution to bypass this limitation is to
adapt the use-case algorithm and decompose it in 2 steps: (i) linear/quadratic
polynomial evaluations over encrypted data, (ii) any computation performed on
clear data resulting from the first step. Figure 2 illustrates this decomposition.
Here, in the first step, k polynomials (given by FE secret keys skP1

, . . . , skPk
) are

evaluated on encrypted input sample X. Afterwards, as the second step, the rel-
evant additional computations are performed in the clear domain on evaluations
P1 (X) , . . . , Pk (X).

Fig. 2: Algorithm decomposition in a FE use-case. Red and green boxes denote
respectively encrypted and clear data.

The classification over encrypted data use-case described above can be built
upon this decomposition. The first step of the use-case algorithm is either a linear
or a quadratic polynomial evaluation over encrypted data. After this step any
computation is possible on the first step output values because they are available
in clear form. For the second step we have several possibilities (non-exhaustive
list):

– “sign” function for binary classification,
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– “arg max” function for one-vs-all multi-class classification,
– a full-fledged classification algorithm.

The last possibility needs some clarification. Any classification algorithm taking
as input the polynomial evaluations from the first step can be used as a “final”
classification algorithm.

2.2 Information leakage

The output of a FE scheme is clear-text data representing the evaluation of the
functionality embedded in the FE secret key. An attacker is able to use this
clear text data in order to infer more information about the input data then it
is supposed to have. We call information leakage this downside of FE schemes.
A more formal definition is given below:

Definition 3 (Information leakage). Let skf be a functional encryption se-
cret key embedding functionality f . The decrypt operation (described in previous
section) allows to obtain a clear-text value of f(x) from an encrypted x. The in-
formation leakage is the maximal information which can be inferred about x from
an access to function’s f specification.

Knowing the specification of f we are able to evaluate f and consequently to
obtain clear-text value f(x) for any x. This information leakage definition is
straightforwardly generalized to FE scheme instantiations where several secret
keys skf1 , . . . , skfk are available.

In the context of the classification use-case illustrated in Figure 2 we define
2 types of information leakages:

– ideal information leakage is the information leakage when only one secret
key skpred is available,

– real information leakage is the information leakage when k secret keys skP1 , . . . , skPk

are available.

The ideal leakage corresponds to the case when the entire classification algorithm
can be evaluated by the FE scheme. It corresponds to computing both use-case
steps without clear-text access to intermediary data. The notion of ideal leakage
can be viewed as the minimal information needed to accomplish the use-case
requirement, i.e. classifying input samples.

The real information leakage is larger when compared to the ideal one as
more clear-text data is available. Measuring the absolute information leakage
of a function (for a given input or a given set of inputs) is not easy as it is
linked to the Kolmogorov complexity of that input. In essence, the output of a
function f : {0, 1}m −→ {0, 1}n with m >> n leaks at most n bits about the
corresponding input (at most because some functions, e.g. a constant function,
lead to no leak at all). Intuitively, feeding random data, or equivalently, an input
with large Kolmogorov complexity, into any function appears benign because the
leak is indeed limited to n bits. Difficulties start to crop up when low Kolmogorov
complexity data are fed into a given function because in that case n may not be
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much smaller than the minimum number of bits required to describe that input.
Therefore the induced leak could (in principle, yet intrinsically) allow to retrieve
the input in question with enough precision. When considering machine learning
algorithms we are typically in a setup where the function purpose in to extract
a few highly discriminant bits from highly correlated partially redundant data
i.e. data of relatively low Kolmogorov complexity. So we are bending towards
the dark side. Yet due to the non-computability of Kolmogorov complexity it
is difficult to quantitatively apprehend the above intuitions. Still, the neural
network-based leakage estimation technique presented subsequently provides an
(efficient) approximation of an oracle able to retrieve low Kolmogorov complexity
inputs from the corresponding outputs.

2.3 Leakage estimation

In this section we introduce a method for estimating information leakage of
a functional encryption scheme using machine learning tools. We propose to
measure the leakage using the information discovery capabilities of a neural
network (NN).

Leakage estimation protocol Let f be a functionality encoded in an FE scheme
and letX be a representative dataset. By “representative dataset” we understand
a dataset which follows the same distribution as a dataset used by the FE scheme.
We note that the datasetX is available in clear and that we can straightforwardly
obtain f(x) for any x ∈ X. Our goal is to accurately predict/reconstruct dataset
samples x from f(x). The accuracy is measured using a suitable metric (more
details are given later). To accomplish this goal a neural network is employed.
Even though, any machine learning algorithm can be used.

Achieving maximum accuracy is not possible as the problem of obtaining an
universal predictor [13, 14, 19] is intractable in the general case. The estimated
information leakage (measured by the accuracy metric) will be a lower bound to
the real information leakage. Nevertheless, even a such an estimation proves use-
ful for comparing information leakages of different FE instantiations. We make
the assumption that the NN model has the same information extraction power
independently of FE instantiation it is used upon. This is (supposedly) the case
when comparing estimated ideal and real information leakages of classification
use-case.

We place ourselves, in the context of the FE-based classification use-case
described before. A neural network is used to reconstruct input X from use-case
data available in clear. Figure 3 illustrates this methodology. We have 2 possible
leakage estimation NNs as a function of use-case clear-text data:

– FE outputs P1(X), . . . , Pk(X) (linear/quadratic polynomial evaluations),
– second classifier prediction pred(X) only.

An estimation of the real information leakage is obtained in the first case and
respectively ideal information leakage in the second one. By comparing the pre-
diction accuracies of these 2 NNs we should be able to better understand and to
gain insights about classification use-case information leakage.
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Fig. 3: Real and ideal information leakage estimation using neural network. Top
part of this illustration is the FE use-case from figure 2.

3 Experiments

In this section we begin by giving more details about the employed datasets
and the neural networks used for classification and for information leakage esti-
mation. Afterwards, we provide an aggregation of the results we obtained. We
shall note that no FE schemes evaluation were performed in this work. Typical
execution times for linear and quadratic FE schemes decryption (corresponding
to polynomial evaluation) is small (few seconds). Please refer to [22, 10] for more
details about FE performance.

3.1 Datasets

Two datasets are used in our experimentations. The first one is the well known
MNIST dataset [18]. The MNIST database is a collection of handwritten digit
images. Dataset images have size 28 × 28 and each pixel has 256 levels of grey.
The handwritten digits are normalized in size and are centered. There are 10
output classes in the dataset (digits from 0 to 9). The MNIST dataset has been
extensively used by the ML community for classifier validation. For a review of
ML methods applied to MNIST, please refer to [7, 17].

The second one is the Census Income dataset introduced in [16] and can be
found in [3]. This dataset contains highly-sensible personal data (age, education,
race, etc.) of approximatively 50 thousands individuals given by 14 features. 6
features are continuous (e.g. age) and other 8 are categorical (e.g. race). Con-
tinuous features have been scaled to zero mean and unit variance. Categorical
features have been one-hot-encoded, i.e. transformed to binary features denoting
whether an individual is in the corresponding category. The prediction task is
to determine whether a person earns over 50K$ a year.

These datasets are split into training, validation part and test subsets. The
training subset is used for training the prediction classifier and the information
leakage estimation neural network. The validation subset is used to choose the
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final neural network. The test subset is used for asserting the prediction accuracy
and respectively the estimated information leakage of the chosen neural network.

3.2 Neural networks structure

We describe in more details the neural networks used for prediction and for
information leakage estimation.

Prediction NN The neural network used for prediction has the following struc-
ture:

– linear or quadratic first layer,

– one hidden layer (optional),

– one output layer.

First layer The first layer corresponds to the functionality of a linear, respec-
tively quadratic, FE scheme. In this way, the neural network model automatically
choses parameters for the secret keys of the FE scheme. This layer has n outputs,
i.e. n FE secret keys. In our experiments n belongs to {1, . . . , 10}. No activation
function is used, so that the hidden and output layers can be directly evaluated
from the outputs of a FE scheme.

The linear layer performs simply inner products or equivalently a projection
to an n-dimensional space. For the quadratic layer we used the same approxima-
tion of quadratic polynomials as in work [10]. In particular, input data is firstly
projected to a d-dimensional space for d ∈ {50, 100}. Each component of the
d-dimensional space is then individually squared. Finally, these components are
projected to an n-dimensional space.

Hidden layer The hidden layer is optional. When there is no intermediary layer
the neural network corresponds a logistic regression model (or multi-label logistic
regression in case of MNIST). In this way we can test simple linear or quadratic
prediction models and compare our prediction results with those from [21, 22,
10]. A ReLU (rectified linear unit) activation function is used here. This layer
has 256 nodes. Empirical results have shown that there is no need for more than
one hidden layer in our experimental setup.

Output layer The output layer has a single node for the Census Income and 10
nodes for the MNIST dataset. The activation functions are sigmoid and respec-
tively softmax. The sign and argmax functions are not included in the neural
network to facilitate the training phase.

The validation metric is the accuracy of the obtained neural network classi-
fier.
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Information leakage – MNIST The input layer has n nodes which correspond
to the FE scheme decryption output. In the case of ideal information leakage
estimation the neural network has 10 input nodes (one-hot-encoded digit). Two
hidden layers with 256 nodes each are used. The output layer has 784 nodes
corresponding to each pixel of the image to reconstruct. The validation metric
is the MSE score (mean square error).

Information leakage – Census Income The input layer has n nodes which
correspond to the FE scheme decryption outputs. In the case of ideal information
leakage estimation the neural network has a single input node. Two hidden layers
with 256 and 32 nodes are used. The output layer has a single node.

The information leakage for the Census Income dataset is measured as the
capability of the leakage estimation model to make good predictions on a feature
from the input dataset. In our experiments we only use binary input dataset fea-
tures. The input dataset features we use are Sex Male, Race White, Race Black,
Race Asian-Pac-Islander and Race Other. The validation metric is the ROC AUC
score (Area Under the Receiver Operating Characteristic Curve).

To summarize we have 2 datasets, 3 types of FE (one linear and 2 quadratic),
10 possibilities for FE secret keys number and a logistic regression model. Ad-
ditionally for the Census Income dataset real information leakage estimation is
performed on 5 different features. So finally, we have modeled 66 neural networks
for the prediction, 198 for real information leakage and 6 for ideal information
leakage. Keras [9] framework was used to implement these neural networks. A
batched training over 100 epochs is performed. The best network (after each
epoch) in terms of optimization metric value on the validation set is chosen as
the neural network to keep.

3.3 Results

In this subsection we present the experimental results we have obtained for the
prediction and information leakage estimation. In the presented results we use
the following notations:

– linear NN model (fe1) – linear FE and a neural network as second classifier,
– linear logistic model (fe1 logit) – linear FE and a logistic regression model

as second classifier,
– quadratic NN model (fe2 d) – quadratic FE d-space projection and a neural

network as second classifier.
– quadratic logistic model (fe2 d logit) – quadratic FE with d-space projection

and a logistic regression model as second classifier.

MNIST dataset The prediction accuracy (i.e. the ratio between the number
of good predictions vs the total number of samples) is given in figure 4. We
can observe that there is no significant difference between the projection size
of the quadratic models. As expected, the quadratic models always gives better
accuracies then the linear ones.
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The quadratic logistic model (fe2 d logit) attains the same accuracy as the
quadratic NN model (fe2 d). Although, similar accuracies are obtained by the
quadratic NN model starting with 5 FE secret keys. The number of FE decryp-
tions to perform will be smaller in this case.

The linear logistic model accuracy (fe1 logit) corresponds to the accuracy of
a linear NN model with 5− 6 FE secret keys.
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Fig. 4: MNIST dataset – prediction accuracy.

Figure 5 illustrates the information leakage in terms of MSE (lower MSE
means more information leaks). The black dotted line is the ideal leakage (Ideal).
Observe that the ideal leakage is approximatively equal to the real leakage of
linear/quadratic NN models with one FE secret key. We can deduce that one
polynomial evaluation reveals the same information about input image as the
predicted class of this image.

There is no significant difference between linear/quadratic NN models in
terms of information leakage. Although, for bigger number of FE secret keys
the linear NN model (f1) leaks a little more information than the quadratic
counterpart (fe2 d).

The leakage of logistic models is equivalent with the leakage of linear/quadratic
NN models with 10 FE secret keys. This fact was expected as the same number
of polynomial evaluations are revealed in both cases.

In order to better see the impact of different number of FE secret keys on the
resemblance of reconstructed images with input ones in figure 6 some examples
are given. Each image contains 4 lines of digits from 0 to 9 (on rows). First and
third lines are input sample images. Second and fourth lines are the reconstructed
images with the minimal and respectively maximal MSE score. Thus, second line
images are the best reconstructed digits.
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Fig. 5: MNIST – information leakage.

We observe that for the ideal leakage model there is no significant difference
between the reconstructed images. On the other side, when 10 FE secret keys are
available reconstruction quality is quite good. Reconstructed images for other
real information leakage estimation models follow the same resemblance pattern.

Census Income dataset The prediction accuracy obtained for the Census
Income dataset is given in figure 7. The logistic models have better performance
than the NN ones with the same count (1) of FE secret keys. The NN models
become better starting with 2 FE secret keys.

The number of FE secret keys doest not change a lot the classification per-
formances. The fluctuations in the prediction accuracy (after 2 FE secret keys)
we observe are due to the fact that the NN learning process is not deterministic.
For this particular dataset using a NN model does not significantly change the
prediction accuracy of a basic logistic models. Although, using quadratic models
with a higher dimensional first projection (100) is better. Sometimes simpler
models provide better results.

The bar plot in figure 8 illustrates the ROC AUC score for input dataset
feature leakage we study for each prediction model with one FE secret key.
We note that a predictor giving an ROC AUC score of 0.5 is equivalent to
a random predictor. In our context this means that there is zero information
leakage estimated by the NN model. ROC AUC score is never 0.5 because of
dataset skewness allowing the NN to perform better than random guessing.

Ideal (blue) and real (red) leakages are plotted on the same bar to ease the
comparison. As expected the real information leakage is always larger than the
ideal one. It means, for example, that an attacker will be able to increase its
confidence in the fact that a given individual is a male.
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(a) Ideal (b) 1

(c) 5 (d) 10

Fig. 6: Samples of reconstructed images by the quadratic NN model fe2 100
with different number of FE secret keys (b-d) and the ideal leakage estimation
model (a).
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Fig. 7: Census Income – prediction accuracy.
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In our experiments we have observed that information leakage estimation
depends a lot on the frequency of a studied feature in the input dataset. Infor-
mation leakages of features which are encountered for a large number of input
dataset individuals are better estimated. It is a well know fact that machine
learning algorithm learn better on un-skewed datasets.
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Fig. 8: Census Income – information leakage.

The real information leakage for the MNIST dataset increased with the num-
ber of FE secret keys. In order to see if this pattern is verified also for the Census
Income dataset we have estimated the leakage of the Sex Male feature as a func-
tion of the number of secret keys. Real and ideal information leakages for this
feature are given in figure 9.

As expected the real information leakage increase when the number of FE
secret keys increase. The leakage of NN and logistic models is very close for one
secret key. When the number of FE secret keys belongs to 9 − 10 an attacker
will be able to state with very high probability that a given individual is a male.
Deploying a prediction model using 9 or 10 FE secret keys will represent a real
risk to individual privacy.

Conclusion and future works

In this paper we have studied different FE based classification use-cases and their
information leakage. We have combined a basic classifier (based on quadratic FE)
with an additional classification algorithm. The use of a second classifier allows
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Fig. 9: Census Income – Sex Male feature information leakage.

either to increase the performance of the overall classification or to decrease the
number of FE secret keys. We have proposed a methodology to estimate and
compare the information leakage of classification use-cases. Our work is easily
generalizable to any FE based use-case.

We have performed extensive experimental studies on classification and infor-
mation leakage estimation parts. Two well-knows dataset were used, particularly
the MNIST digit classification and the Census Income datasets. Experimental
result have shown that the information leakage heavily depends on the number
of FE secret keys. One way to lower the information leakage is to decrease the
number of employed secret keys. Another way is to employ FE schemes with
more “complex” functionalities (quadratic FE instead of linear one in our case).

The information leakage was measured by the ability to predict input data
set features. We have measured prediction accuracy of input dataset features
increase for Census Income. The MSE score between input and reconstructed
images was used for MNIST. In future work, we envisage to develop more refined
methods to measure the information leakage. For example, in the case of MNIST
an image resemblance metric would be more suitable than the MSE.

As a final remark, our work is not limited to linear and quadratic FE schemes
only. It can be applied to the more recent FE schemes for polynomial with degree
larger than 2 evaluation [8]. Studying the information leakage of use-cases based
on these FE schemes will allow to assert more on their operational security in
practical applications, and potentially to help finding countermeasures for the
kind of information leakage considered in this paper.
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