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Abstract

We present two new protocols in the common random string model:

• A succinct publicly verifiable non-interactive argument system for log-space uniform NC
computations, under the assumption that any one of a broad class of fully homomorphic
encryption (FHE) schemes has almost optimal security against polynomial-time adver-
saries. The class includes all FHE schemes in the literature that are based on the learning
with errors (LWE) problem.

• A non-interactive zero-knowledge argument system for NP, assuming almost optimal hard-
ness of search-LWE against polynomial-time adversaries.

Both results are obtained by applying the Fiat-Shamir transform with explicit, efficiently com-
putable functions (specifically, correlation intractable functions) to certain classes of interactive
proofs. We improve over prior work by reducing the security of these protocols to qualitatively
weaker computational hardness assumptions. Along the way, we also show that the Fiat-Shamir
transform can be soundly applied (in the plain model) to a richer class of protocols than was
previously known.
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1 Introduction
The Fiat-Shamir transform [FS86] is an attractive template for designing non-interactive argument
schemes:

1. Design a potentially highly interactive proof (or argument) system Π in which the verifier is
“public-coin”, meaning that its only messages are fresh random coins.

2. Compile Π into a two-message protocol ΠFS, as follows.

- The ΠFS verifier first sends a description of a “sufficiently complex” hash function h.
- The ΠFS prover responds with the transcript of an emulated execution of Π (including
an input x, as well as all messages exchanged between the prover and verifier), in which
each verifier message is set to be the value of h applied to the transcript so far.

- The ΠFS verifier checks that the transcript it received is consistent with h, and that the
verifier of Π would have accepted.

The resulting protocol ΠFS is indeed non-interactive (h can be chosen ahead of time, say as part
of a common reference string), it is publicly verifiable, and it adds little in communication and com-
putation. In practice, the Fiat-Shamir transform has been heuristically used as the basis for many
important protocols, including identification and signature schemes, publicly-verifiable succinct
non-interactive arguments (pv-SNARGs) and NIZKs, e.g. [FS86,PS96,Mic00,BCS16,WTS+18].

A central question in the foundational study of cryptography regards the security of this trans-
formation:

For which protocols and hash families does the Fiat-Shamir transform preserve sound-
ness? Under what assumptions can we prove this?

Security analysis in the random oracle model (ROM) has provided some justification for this
design methodology: If h is modeled as a random oracle, then ΠFS is sound as long as Π is
computationally sound and either has a constant number of rounds [FS86,PS96,AABN02] or more
generally, satisfies a stronger soundness property called soundness against state restoration attacks
[BCS16].

Still, it has remained largely open whether there exist concrete hash families that are “FS-
compatible” (i.e. that can guarantee soundness and potentially also zero-knowledge for the trans-
formed protocol). Initial results in this direction were negative. Indeed, Goldwasser and Kalai [GK03]
(following Barak [Bar01]) demonstrated a three-round, public-coin argument scheme for which ap-
plying the Fiat-Shamir transform with any hash family never yields a sound protocol. Furthermore,
Bitansky et al. [BDG+13] show that, even when starting with a three-round proof, soundness of
the Fiat-Shamir transform with a concrete hash family cannot be proved via black box reduction
to a standard, game-based assumption.

In contrast, a recent line of work [KRR17,CCRR18,HL18] circumvents the [BDG+13] impossi-
bility result by using stronger than standard hardness assumptions to construct FS-compatible hash
families. Kalai et al. [KRR17] gave the first construction of a hash family that is FS-compatible
for arbitrary constant-round (public-coin) interactive proofs, albeit from complex obfuscation as-
sumptions. Canetti et al. [CCRR18] then provide alternative constructions of FS-compatible hash
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families without obfuscation, but using complex KDM-security assumptions on secret-key encryp-
tion schemes.

We emphasize that the assumptions made by [KRR17,CCRR18] are highly complex in the fol-
lowing sense: both involve an adversary that is in part computationally unbounded. For example,
the KDM security of [CCRR18] allows messages to be arbitrary functions of the key (which may not
be efficiently computable). These assumptions are problematic: they are not complexity assump-
tions [GK16], and they are not falsifiable [Nao03,GW11] except with exponential time. Holmgren
and Lombardi [HL18], building on [KRR17], construct a hash family with a different set of serious
drawbacks; it relies on indistinguishability obfuscation and is applicable only to a comparatively
limited class of protocols.

1.1 Our Contributions

We construct explicit hash functions that are FS-compatible for a rich class of protocols, and we
prove their security under assumptions that are qualitatively weaker than what was previously
known. Using these hash families, we derive new results for delegation of computation and zero
knowledge.

We first describe our delegation protocol, which we obtain by applying Fiat-Shamir to the
interactive proof of [GKR08] using our new FS-compatible hash functions (and overcoming some
technical obstacles that will be further discussed below).

Theorem 1 (Informally Stated, see Theorem 6.6). If any one of the LWE-based fully homomorphic
encryption schemes in the literature (such as [BV11,BGV12,Bra12,GSW13,BV14]) has optimal
security against polynomial-size key-recovery attacks, then there is a publicly verifiable succinct
non-interactive argument (pv-SNARG) for (log-space uniform) NC. Moreover, there is an efficiently
computable hash function family H such that applying the Fiat-Shamir transform to the [GKR08]
doubly efficient interactive proof, using H, results in such a protocol.

Here and below, by optimal security against poly-size attacks, we mean that every poly-size
circuit family breaks the assumption with probability at most λO(1)/2λ. We identify a range of the
LWE parameters in which this assumption seem plausible. (This range, in particular, involves very
high noise magnitude. See further discussion in Appendix A).

Note that this is the first time that the Fiat-Shamir transform, with an explicit hash function
family, is meaningfully applied to an interactive protocol with a super-constant number of rounds.
In particular the results of [KRR17,CCRR18,HL18] only hold when the Fiat-Shamir transform is
applied to constant-round protocols. See further discussion in Sections 1.1.2 and 2.1.

Second, by applying the Fiat-Shamir transform to a specific instantiation of the classical
[GMW91] zero-knowledge proof-system we obtain a non-interactive (statistical) zero-knowledge
argument for NP from a strong variant of LWE:

Theorem 2 (Informally Stated, see Theorem 7.8). If Search-LWE is optimally hard for polynomial-
size adversaries, then there is an (adaptively sound) non-interactive statistical zero-knowledge
(NISZK) argument for NP. Moreover, there is an efficiently computable hash family H such that
applying the Fiat-Shamir transform to the [GMW91] honest-verifier zero-knowledge proof, using H
(and a specific commitment scheme), results in such a protocol.

Note that the assumption made in Theorem 2 is weaker than that made in Theorem 1 as it is
directly related to the Search-LWE problem (rather than relying on security of the fully homomorphic
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encryption schemes which rely on LWE together with a certain circular security assumption). Both
assumptions are significantly simpler than those in previous work [KRR17,CCRR18]. In particular,
our assumptions do not involve a universal quantifier over computationally unbounded functions.

The proofs of both Theorems 1 and 2 rely on new correlation intractable hash functions that we
construct as well as new insights on interactive proofs. We next describe these in more detail, since
we believe they may be of independent interest. To do so, we first recall the notion of correlation
intractability and its relation to Fiat-Shamir.

Correlation Intractability. Loosely speaking, a hash function family H is correlation intractable
(CI) for a sparse relation R if any polynomial size adversary, given a description of h← H, outputs x
such that

(
x, h(x)

)
∈ R with only negligible probability [CGH04]. (A relation is sparse if for every x,

the fraction of y’s such that (x, y) ∈ R, is negligible.) The hash function is fully correlation intractable
if it is R-correlation intractable for all sparse relations R. Halevi et al. [HMR08] observed that if a
hash family H is fully correlation intractable then it is also FS-compatible for every constant-round
public-coin interactive proof.

Obtaining fully correlation intractable hash functions appears to be quite difficult; as discussed
earlier, the only known constructions of such a hash family [KRR17,CCRR18] require assumptions
that are not falsifiable except with exponential time. We circumvent this difficulty by focusing on
hash families that are correlation intractable for a rich subclass of relations. Namely, we consider
the class of relations R with the property that it is computationally easy, given an input x, to
sample a random output y such that (x, y) ∈ R. We call such relations efficiently sampleable.

A priori, it is unclear (1) that such hash families are useful for obtaining the desired applications,
and (2) that they are any easier to construct than fully correlation intractable hash families. The
main focus of this work is showing that both of these are actually the case:

• We give new constructions of hash families that are correlation intractable for efficiently
sampleable relations, extending the work of [CCRR18]. Crucially, we are able to prove security
relying on simple, polynomial time game-based assumptions (albeit with exponentially small
winning probability).

• We show that if a hash family H is correlation intractable for efficiently sampleable relations,
then it suffices to instantiate the Fiat-Shamir transform in order to obtain both pv-SNARGs
and NIZKs.

We now describe these two contributions in more detail.

1.1.1 Correlation Intractability for Efficient Relations

We construct two types of efficiently computable hash families that are correlation intractable for
the class of efficiently sampleable relations. In our first construction, the (polynomial) complexity
of the hash family is allowed to depend on the complexity of sampling the relation.

Theorem 3 (Informally Stated, see Theorems 3.11 and 4.11). If Search-LWE is optimally hard for
polynomial-size circuits, then for every polynomial S(λ), there is a hash family (whose description
size grows with S) that is R-correlation intractable for all relations that are sampleable by size-S
circuits.
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This theorem suffices for our construction of NIZK arguments (i.e., Theorem 2) because the
verifier (which must evaluate a hash function), is allowed to run in any polynomial time, even
potentially larger than the time required by the NP verification procedure. In contrast, for our
delegation application, we do not know how to use such a non-compact hash function. Rather, we
construct a compact correlation intractable hash function (under a stronger assumption).

Theorem 4 (Informally Stated, see Theorems 3.11 and 4.6). If any one of the LWE-based fully
homomorphic encryption schemes in the literature (such as [BV11,BGV12,Bra12,GSW13,BV14])
has optimal circular security1 against polynomial-size key-recovery attacks, then there exists a hash
family that is R-correlation intractable for all relations R that are sampleable by polynomial-size
circuits.

1.1.2 Round-by-Round Soundness

Toward proving Theorem 1, we would like to apply the Fiat-Shamir transform to the [GKR08] pro-
tocol using the hash function that we constructed in Theorem 4. However, we run into a difficulty:
correlation intractability is only known to suffice for the Fiat Shamir transform of constant-round
interactive proofs, whereas the [GKR08] protocol has a super-constant number of rounds.2

We overcome this difficulty by formulating a stronger soundness requirement for public-coin
interactive proofs that we call round-by-round (RBR) soundness. We show that RBR soundness
suffices for applying the Fiat-Shamir transform (using a correlation intractable hash function) even
for multi-round interactive proofs.3 To complete the proof of Theorem 1, we show that the [GKR08]
protocol satisfies RBR soundness and is moreover compatible with our notion of bounded correlation
intractable hash functions.

As a side note, we also show that any public-coin interactive proof Π can be easily transformed
into an interactive proof that has RBR soundness. The transformation simply applies parallel
repetition. As an immediate corollary, fully correlation intractable hash families can be used to
transform any public-coin, doubly-efficient interactive proof into a publicly verifiable non-interactive
argument.

Our main results are summarized in Fig. 1:

1.2 Related Work

On Fiat-Shamir and Magic Functions. Dwork et al. [DNRS99] define magic functions to
be FS-compatible hash functions for the case of transforming a three-round honest-verifier zero-

1The circular security assumption is actually redundant here because all these schemes include an encryption
of the secret key to facilitate the bootstrapping procedure [Gen09] and so their security implies that they are also
circular secure.

2As a matter of fact, there exist statistically sound interactive proofs with a super constant number of rounds
(and negligible soundness), to which the Fiat-Shamir transform cannot be applied securely, even in the random oracle
model. Consider for example taking the sequential repetition of any interactive proof with constant soundness. While
sequential repetition reduces the soundness at an exponential rate, applying the Fiat-Shamir transform (even in the
random oracle model) results in an insecure protocol.

3We remark that soundness against state restoration attacks (which is weaker than RBR soundness) was shown by
Ben Sasson et al. [BCS16] to suffice for proving soundness of the Fiat-Shamir transform in the random oracle model,
even for protocols with a super-constant number of rounds. In contrast, we are interested in using Fiat-Shamir in
the plain model using explicit hash functions, see further discussion in Section 2.1.
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Compact CI for Non-Compact CI for

NIZKpv-SNARG

Efficiently Sampleable Relations Efficiently Sampleable Relations

Trivial

New Result

(Regev-Extractable) FHE

Optimally Secure Optimal Hardness of LWE

Figure 1: Summary of results.

knowledge argument into a signature scheme, and study the relationship between the existence of
magic functions and the existence of general three round zero knowledge protocols.

Correlation Intractability and Fiat-Shamir This work continues a series of recent devel-
opments [CCR16, KRR17, CCRR18, HL18] focused on instantiating correlation intractable hash
functions in the standard model. We discuss the latter three works, which provide instantiations
of FS-compatible hash functions in the standard model.

Kalai et al. [KRR17] and Canetti et al. [CCRR18] construct correlation intractable hash families
from very strong assumptions. Specifically, [KRR17] assumed input-hiding obfuscation for multi-bit
point functions and general-purpose indistinguishability obfuscation. Subsequently, [CCRR18] gave
a construction that assumed encryption satisfying a form of nearly optimal key-dependent message
(KDM) security. More specifically, they assume that polynomial-size adversaries cannot recover
the secret key with significantly better probability than random guessing, even given encryptions of
arbitrary (even inefficiently computable) functions of the secret key. [CCRR18] then give candidate
encryption schemes satisfying this security property under strong variants of the LWE and CDH
assumptions.

We emphasize that both of these assumptions involve an adversary that is in part computa-
tionally unbounded. The input-hiding obfuscation in [KRR17] applied to a distribution of point
functions

Pα,β(x) =
{
β if x = α

0 otherwise

must hide α even when β is chosen as an arbitrary function of α, and the KDM security of [CCRR18]
similarly allows messages to be arbitrary functions of the key. This makes these assumptions difficult
to analyze, and in particular they are not falsifiable [Nao03, GW11] except with (non-uniform)
exponential time.

A first step towards rectifying this situation was taken by Holmgren and Lombardi [HL18], who
consider a weakening of full correlation intractability. Their weakening essentially only asks for
R-correlation intractability when R is non-uniformly efficiently sampleable – there is a circuit of
fixed polynomial size that, given x, samples approximately uniformly from the set {y : (x, y) ∈
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R}. [HL18] constructs this form of “bounded” correlation intractable hash family from a sub-
exponentially secure indistinguishability obfuscator and a nearly optimally secure one-way function,
and demonstrate that this restricted form of correlation intractability still implies FS-compatibility
for the [GMW91] 3-message zero-knowledge proof system for NP. However, their result still requires
subexponentially secure indistinguishability obfuscation and has no implications for pv-SNARGs.

pv-SNARGs. Constructions of pv-SNARGs are known in the random oracle model [Mic00], from
knowledge assumptions [BCC+17], or from generic assumptions on strong (noiseless) graded en-
codings with no known candidates [PR17].

A construction of pv-SNARGs was also given by [CCRR18]: they applied the Fiat-Shamir
transform (using their hash family) to the [RRR16] constant round interactive proof system for
bounded space computation.

In very recent independent work, Kalai et al. [KPY18] also construct a publicly verifiable ar-
gument system for (logspace uniform) NC. On the positive side, they rely only on falsifiable
assumptions about groups equipped with a bilinear map. However, their argument system is in
the preprocessing model. In this model, the prover and verifier have access to a common refer-
ence string, which is as long as the computation transcript (and must be generated securely by a
trusted party). In contrast, our protocol requires only a short common random string but relies on
seemingly stronger assumptions.

Lastly, we remark that privately-verifiable (aka designated verifier) non-interactive arguments
for all of P are known to exist under LWE [KRR14,BHK17].

NIZK Arguments for NP. NIZK arguments for NP are currently known from trapdoor permu-
tations [FLS99], falsifiable assumptions on bilinear maps [GOS06], or indistinguishability obfsuca-
tion [SW14, BP15]. The works [GOS06, SW14] also construct NIZK arguments for NP satisfying
statistical zero knowledge. Constructing NIZK proofs (or even arguments) for NP from LWE is a
long-standing open problem.

NIZK arguments simultaneously satisfying adaptive soundness and statistical zero knowledge
are currently only known from knowledge assumptions4 [AF07], so our construction is the first such
NIZK proven secure under a complexity assumption.

Prior works on instantiating the Fiat-Shamir heuristic in the standard model [KRR17,CCRR18,
HL18] also give NIZK argument schemes for NP under qualitatively stronger assumptions than what
is required in this work.

Finally, while not explicitly noted in prior work, combining results of [CCR16,HL18] yields a
construction of NIZK arguments (in the common reference string model) from sub-exponentially
secure indistinguishability obfuscation and VGB obfuscation. This is the only standard model
application of Fiat-Shamir that we are aware of that does not require assuming nearly optimal
hardness.

2 Our Techniques
We now describe our contributions and high level proof ideas in more detail.

4In particular, the [GOS06] and [SW14] constructions of NISZK arguments are not shown to be adaptively sound.
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2.1 Round-By-Round Soundness

We provide a new soundness definition for interactive proofs that interacts well with the Fiat-
Shamir transform. We say that a public-coin interactive proof Π for a language L is round-by-round
(RBR) sound if at any stage of the protocol there is a well-defined state (depending on the transcript
thus far) and some of these states are “doomed”; in the sense that once doomed you will forever
remain doomed. More specifically, the first requirement is that for x 6∈ L, the initial state (i.e.,
corresponding to the empty transcript) is doomed. Second, for every doomed state and every
possible next message that a cheating prover might send, with overwhelming probability over the
verifier’s next message, the protocol state will still be doomed. Lastly, we require that if at the end
of the interaction the state is doomed then the verifier will reject (in particular, the state function
is efficiently computable on full transcripts).

An illustrative example of an interactive proof with round-by-round soundness is the celebrated
sumcheck protocol of Lund et al. [LFKN92]. Recall that the purpose of the sumcheck protocol is to
allow the verifier to check a claim of the form

∑
x1,...,xm∈{0,1} P (x1, . . . , xm) = v, where P : Fm → F

is an m-variate polynomial (to which the verifier has oracle access) over a finite field F and v ∈ F
is a fixed field element.5

The protocol proceeds as follows - the first message from the prover is the (univariate) polyno-
mial g(·) =

∑
x2,...,xm∈{0,1} P (·, x2, . . . , xm). Upon receiving some polynomial g̃ (which may or may

not be equal to the prescribed g) from the prover, the verifier checks that it is indeed a low degree
polynomial and that g̃(0)+ g̃(1) = v. Observe that if the initial claim is false, then the prover must
send a polynomial g̃ 6≡ g (or the verifier will immediately reject). Since g and g̃ are low degree
polynomials, they must differ on many points. The idea then is for the verifier to select r1 ∈ F
at random and send r1 to the prover. Since g and g̃ differ on many points, with high probability
g̃(r1) 6= g(r1) =

∑
x2,...,xm∈{0,1} P (r1, x2, . . . , xm). The point is that the latter equation is a sum-

check instance with respect to an (m− 1)-variate polynomial P ′(x2, . . . , xm) def= P (r1, x2, . . . , xm),
so the parties recursively run the sumcheck protocol on P ′.

To see that the sumcheck protocol has round-by-round soundness we define a partial transcript
as doomed if the initial claim for the corresponding step in the recursion is false. As explained
above, the sumcheck protocol has the property that at any step of the recursion if we start with a
false claim then, with overwhelming probability, we end up with a false claim for the next step in
the recursion. This is exactly the meaning of round-by-round soundness. For further details, see
Section 5.

As one of our contributions, and toward establishing our main delegation result, in Section 6
we show that the GKR protocol for log-space uniform NC also has round-by-round soundness.

Round-by-round Soundness and Fiat-Shamir. Our primary motivation for defining round-
by-round soundness is to instantiate the Fiat-Shamir transform in the standard model for protocols
with a possibly super-constant number of rounds. Indeed, we show that a correlation-intractable
hash family suffices for the soundness of the FS transform if the initial protocol is RBR-sound.

To see this, fix any RBR-sound interactive proof Π along with an input x 6∈ L, and consider the
5Here and throughout this work we use lowercase blackboard font to denote elements of a finite field.
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relation:

R
def=

(τ, β) :
τ is a doomed partial transcript

and
τ |β is not doomed


(where τ is a partial transcript ending with a prover message and β is a verifier message).

Round-by-round soundness ensures that R is a sparse relation. Suppose we now apply the
Fiat-Shamir transform to the interactive proof, while using a hash function h that is R-correlation
intractable. Suppose further that the (computational) soundness of the resulting non-interactive
argument is broken. By definition of RBR soundness, this means that the cheating prover has
efficiently found some partial transcript τ and verifier message β = h(τ) such that τ is doomed, but
(τ, β) is not doomed.6 Thus, the prover can be used to find a pair

(
τ, h(τ)

)
∈ R, in contradiction

to the correlation intractability of the hash function.

Round-by-Round Soundness vs. State Restoration Attacks. A state restoration attack
[BCS16] on an interactive proof (or more generally an interactive oracle proof) is a cheating prover
strategy that is allowed to rewind the protocol to some previous state a limited number of times.
Ben Sasson et al. showed that soundness against state restoration attacks suffices for compiling
interactive proofs using the Fiat-Shamir in the random oracle model.7

Negligible round-by-round soundness readily implies state restoration soundness for a polyno-
mial number of rewinds. Although it seems reasonable that soundness against state restoration
attacks would suffice for instantiating the Fiat-Shamir transform using a correlation interactable
hash function (rather than in the random oracle model as shown in [BCS16]), we were unable to
prove this.

2.2 Bounded Correlation Intractable Hash Families

So far, we have shown that correlation intractable hash functions can be used to instantiate the
Fiat-Shamir transform for the [GKR08] protocol, yielding pv-SNARGs. In addition, it was already
known8 [CCRR18,HL18] that correlation intractable hash families – with mild additional properties
– are also sufficient to yield NIZK argument schemes for NP.

The rest of this work focuses on new constructions of correlation intractable hash families that
suffice to yield these applications. These constructions and security reductions all use as a first
step (a parameterized version of) the main theorem of [CCRR18] (our Theorem 3.11), which shows
how to interpret a secret-key encryption scheme as a correlation intractable hash family if the
encryption scheme satisfies two properties (the first being a statistical property and the second a
computational one):

1. Universal Ciphertexts: An encryption of a random message under any fixed secret key is
distributed like an encryption of a random message under a random secret key. In particular,
this means that ciphertexts are not attached to any one particular key.

6Such a partial transcript must exist since the empty transcript is doomed, but a full accepting transcript is not
doomed.

7Prior to the work of [BCS16] this was only shown for constant-round interactive proofs [HMR08].
8As mentioned earlier, we do improve on previous Fiat-Shamir NIZK instantiations by obtaining statistical zero

knowledge, for example.
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2. Nearly Optimal Bounded-KDM Security against Poly-size Adversaries: For any
function f computable by circuits of a fixed polynomial size, every adversary of arbitrary
polynomial size can, given an encryption of f(k) under a (uniformly random) key k, can
recover k with probability at most 1/Ω̃

(
2|k|
)
- i.e., only a polynomial factor better than

guessing.

The above property does not suffice to obtain correlation intractable hash families for all sparse
relations; however, it does suffice to obtain hash families that are correlation intractable for all
sparse relations that are sampleable in some fixed polynomial time. We note that the notion of
“bounded correlation intractability” considered in this work is incomparable to that of [CCR16];
they consider correlation intractability for relations that are decidable in a fixed polynomial time.

Since the relations arising from the [GKR08] protocol and a broad class (including [GMW91])
of 3-message zero knowledge proofs for NP satisfy the above notion of efficient sampleability, we
have reduced the overall problem to constructing encryption schemes satisfying this weaker notion
of bounded-KDM security.

2.3 Constructing Optimal Bounded-KDM Secure Encryption

There is a long line of prior work on constructing bounded-KDM secure encryption schemes
[BHHO08, ACPS09, BG10, BHHI10, App11]. Unfortunately, the optimal level of security stated
above that we require is more stringent than was achieved by prior work (which considered any
negligible success probability) and poses a significant technical problem, especially when combined
with the universal ciphertexts requirement. Still, we show that some of the techniques and instan-
tiations can be adapted to our setting.

Non-Compact CI from Search-LWE. We construct an encryption scheme as above assuming
the nearly optimal hardness of search-LWE for poly-time adversaries. Our construction follows
the blueprint of [App11], which shows that the class of functions for which an encryption scheme
satisfies KDM security can be amplified using randomized encodings in the regime of polynomial-
size adversaries with inverse polynomial success probabilities.

Recall that a randomized encoding [AIK04] for a function f is a randomized function f̂ such
that f̂(x) reveals exactly f(x) and nothing else9 – i.e., there are algorithms RE.Dec and RE.Sim
such that for all x, RE.Dec(f̂(x)) = f(x), and RE.Sim(f(x)) ≈ f̂(x). The key point is achieving
this so that the function f̂ is significantly simpler than f in some way. For example, Yao’s garbled
circuits [Yao86] are a randomized encoding f̂ for any polynomial-time computable f , with the
special property that for every r and every input length n, each bit of f̂(x; r) for x ∈ {0, 1}n is a
projection of x – that is, either a constant or xi ⊕ b for some fixed i ∈ [n] and fixed bit b.

Applebaum’s idea, following [BHHI10], was to construct an f -KDM secure encryption scheme
out of an encryption scheme E that is f̂(· ; r)-KDM secure for every choice of randomness r.
Since f̂ is simpler than f , we have made progress. Specifically, the constructed scheme E ′ en-
crypts messages as E ′.Enc(m) def= E .Enc(RE.Sim(m)), and correspondingly decrypts ciphertexts as
E ′.Dec(ct) def= RE.Dec(E .Dec(ct)). The point is that an adversary for E ′ receives E ′.Enc

(
f(k)

)
≡

E .Enc
(
RE.Sim(f(k))

)
≈ E .Enc

(
f̂(k; r)

)
for some random r, which still “protects” k by the assumed

9Technically, f̂(x) may also reveal the input length |x|. We will avoid this technicality by, without loss of generality,
only considering functions that additionally output the length of their input.
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KDM security of E . This construction can also be modified to obtain a (single) encryption scheme
that is simultaneously f -KDM secure for all f in a family F . What is needed in this case is (1) a
randomized encoding for a universal function UF , that takes as input a description of f ∈ F and
an input x and outputs f(x), and (2) an encryption scheme E that is ÛF (f, · ; r)-KDM secure for
every f and r.

Crucially, we observe that the additional properties we require of E ′, namely universal ci-
phertexts and nearly optimal security, are inherited from E as long as the randomized encoding
scheme RE satisfies two additional properties. First (to ensure universal ciphertexts), RE should be
blind [BLSV18]: for a uniformly random y, RE.Sim(y) should also be uniformly random. Addition-
ally, RE should be 1/Ω̃(2|k|)-secure.

Bounded KDM Security from Binary-Secret Search-LWE. Our first approach for instan-
tiating the above framework is to use point-and-permute garbled circuits [BMR90] in conjunction
with the known circular security of binary-secret Regev encryption. Point-and-permute garbled
circuits are perfectly blind [BLSV18], they yield a universal randomized encoding Û for all circuits
of some fixed polynomial size, and Regev encryption with an appropriate10 noise distribution also
has (perfectly) universal ciphertexts.

In terms of security, the randomized encoding Û can also be made sufficiently secure if one-
way functions exist that are 2−λΩ(1)-hard to invert for λO(1)-size adversaries. This assumption is
in turn implied by our nearly-optimal Search-LWE assumption. As mentioned previously, for any
fixed circuit C and randomness r, each bit of Û(C, x; r) is a projection of x. Regev encryption
with binary secrets is known to be KDM-secure with respect to such projections of the key, under
the assumption that binary-secret Search-LWE is hard, and the reduction in fact preserves nearly
optimal hardness [ACPS09].

Combining point-and-permute garbled circuits with Regev encryption with binary secrets thus
yields, for any polynomial S = S(n), an encryption scheme that has universal ciphertexts and is
KDM-secure with respect to any size-S computable functions.

Bounded KDM Security from More General Search-LWE One unsettling aspect of the
preceding construction is the reliance on binary-secret LWE, a variant for which algorithms em-
pirically perform better [BG14]. Although we are not aware of attacks on binary-secret LWE
that are successful enough to refute a nearly-optimal security conjecture, we still wish to base our
constructions on a more general setting of parameters.

We do so by turning to the encryption scheme of [ACPS09], a variant of Regev encryption
whose KDM security reduces to Search-LWE with a secret distribution in which each coordinate
has higher entropy. Specifically, the secret distribution is uniform over [−p

2 ,
p
2)n , and the noise

distribution is uniform over [− q′

2 ,
q′

2 )`, for a modulus q = pq′ and a prime p. Unfortunately, the
KDM security of this scheme is with respect to affine functions over Zp. In particular, this scheme
is not known to be secure with respect to bit-by-bit encryptions of its secret key.

To address this difficulty, we construct a new blind randomized encoding from sub-exponentially
secure one-way functions for the function Up that takes as input a boolean circuit C : Znp → {0, 1}`
(with elements of Znp encoded in binary), an input x ∈ Znp , and outputs C(x). Our construction

10Specifically, let the modulus q be even, and take the noise distribution to be uniform on the interval [−q/4, q/4).
With a limited number of samples (as is the case in our application), Search-LWE with this setting of parameters
reduces to the more typical “narrow discrete Gaussian” noise by a “drowning out the noise” technique.
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has the property that for any C and any r, the function Ûp(C, · ; r) is Zp-affine, which renders our
construction suitable for amplifying the KDM security of [ACPS09].

Our construction composes two (blind) randomized encodings.

1. Point-and-permute garbled circuits, which give an encoding Ûbin of the function Ubin that
maps (C, x) 7→ C(x), where C : Znp → {0, 1}` is a boolean circuit, and x ∈ Znp is an input.
The advantage of this scheme is that it supports arbitrary, e.g. high-depth circuits. On the
other hand, Ûbin(C, · ; r) is a projection of the binary representation of x, instead of a Zp-affine
function of x.

2. An encoding Ûproj for projections π : Znp → {0, 1}, where for any π, the function Ûproj(π, · ; r)
is affine over Zp. Such a randomized encoding follows from a (modified) result of [AIK11]
(hereafter AIK), which states that any function f computable by a uniform depth-d arith-
metic circuit (ensemble) {Cn : Znp → Zp}n has a perfectly secure, perfectly blind randomized
encoding f̂ such that f̂(· ; r) is affine over Zp for every r. Specifically, we represent π by a
vector e ∈ {0, 1}n·dlog pe (with at most one 1) and a bit b such that π(x) = 〈e, [[x]]〉 ⊕ b, where
[[x]] denotes the binary representation of x. Then we use the AIK encoding of

Uproj
(
(e, b), x

)
= 〈e, [[x]]〉 ⊕ b =

b ·
(∑n·dlog pe

i=1 ei · [[x]]i
)

+
(1− b) ·

(
1−

∑n·dlog pe
i=1 ei · [[x]]i

)
.

(1)

Uproj is computable by a depth O(logn+ log p) and size Õ(n · p) arithmetic circuit over Zp by
applying the formula

[[xj ]]k =
∑

y∈Zp:[[y]]k=1

(
1− (y − xj)p−1)

to compute each [[x]]i.

A first attempt at composition defines11 Ûp(C, x; rproj, rbin) def= Ûproj
(
Ûbin(C, · ; rbin), x; rproj

)
, but

this (with the natural simulator) is not blind. The issue is that the simulator for Ûbin produces a
uniformly random string with alphabet {0, 1}, but the AIK simulator for Ûproj requires a uniformly
random string with alphabet Zp for its output to be uniformly random (also with alphabet Zp).

To remedy this, we modify Ûproj. To start, we partition Zp into two sets of nearly equal size,
Zp = P (0)tP (1), and define a function U ′proj that, compared to Uproj takes two additional inputs r(0)

and r(1). On input
(
(e, b, r(0), r(1)), x

)
, U ′proj outputs r(〈e,[[x]]〉⊕b) (this can be done by a low-depth

circuit analogous to Eq. (1)). We then redefine Ûproj so that Ûproj
(
(e, b), x

)
samples r(0) ← P (0)

and r(1) ← P (1), then returns the AIK encoding Û ′proj
(
(e, b, r(0), r(1)), x

)
. The new decoder for

Ûproj evaluates the AIK decoder for Û ′proj, obtaining y′ ∈ Zp, and outputs b if y′ ∈ P (b). The new
simulator for Ûproj on input b samples y′ ← P (b), and then returns the output of the AIK simulator
for Û ′proj on y′.

This nearly completes the description of our randomized encoding, except for one subtle issue.
For any odd prime p, it is impossible for a partition Zp = P (0) t P (1) to be exactly balanced. This

11Here, we abuse notation in two ways. First, we write Ûbin(C, · ; rbin) to denote the descriptions of the corre-
sponding projection functions. Second, we allow Ûproj to take as input these multiple projection functions. We let
Ûproj((π1, . . . , πm), x) denote the product distribution Ûproj(π1, x)× · · · × Ûproj(πm, x).
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causes the randomized encoding to only be approximately blind, where our notion of approximation
is the Renyi divergence (rather than statistical difference) between the simulator output distribution
and the uniform distribution. To suitably decrease the approximation error, we need to replace Zp
by Zkp for a sufficiently large k.

A Compact Family From FHE. While the above hash families suffice to obtain NIZK argument
schemes, they do not yield pv-SNARGs when combined with the [GKR08] protocol. This is because
in the above hash family, the description of a hash function (and the complexity of hashing) grows
polynomially with the complexity of the sampling algorithms of the relations R for which correlation
intractability holds.12 In order to obtain pv-SNARGs, we require a hash family (corresponding to
an encryption scheme) that is SIZE(S)-correlation intractable, but yet consists of functions that are
evaluable in time much less than S. We in fact construct something stronger – a single hash family
that is correlation intractable against all relations that are sampleable by polynomial-size circuits.

This construction also adapts KDM-security amplification techniques in the literature; instead
of using randomized encodings [App11], we use fully homomorphic encryption to amplify KDM-
security. In particular, [BHHI10] observe that any circularly secure FHE scheme satisfying a strong
form of evaluation correctness13 is also KDM-secure for arbitrary polynomial functions of the secret
key. The basic [BHHI10] idea is that an adversary can homomorphically generate encryptions of
f(k) from the encryption of k (for efficiently computable functions f).

The [BHHI10] observation suggests the following plan to obtain the CI hash families that we
desire: start with a FHE scheme that has universal ciphertexts and (sufficiently strong) circular
security, and invoke an appropriately modified [BHHI10] argument. However, there are two major
flaws in this plan.

• No fully homomorphic encryption scheme in the literature has (anything remotely resembling)
universal ciphertexts. Indeed, all schemes in the literature utilize (at the very least) some form
of a low-noise Regev encryption, which itself is very far from having universal ciphertexts. A
low-noise Regev ciphertext (A, b) under secret key s has the property that stA− b is close to
either 0 or q

2 , and therefore Regev encryption is not universal.

• It is not clear how to adapt the [BHHI10] security reduction (that relies on a generic FHE
scheme) to the setting of (near-)optimal security. This is because [BHHI10] relies on a FHE
scheme with the following strong correctness property: the distribution Eval(f,Enc(x)) is
statistically indistinguishable from an encryption of f(x). In the setting of near-optimal
security, a naive application of the [BHHI10] argument would require an extreme form of this
correctness property that does not hold for existing FHE schemes in the literature.

As a result of these problems, we deviate from the plan above in order to achieve unbounded
polynomial correlation intractability. Instead of directly working with a fully homomorphic encryp-
tion scheme in the construction, we consider secret-key Regev encryption, with secret keys uniformly
distributed over a moderately sized interval [−B,B)n ⊂ Znq , and noise distribution [−q/4, q/4). This
setting of parameters (which by design yields a scheme with universal ciphertexts) was proposed

12In the case of [GKR08], we can only give a sampling algorithm that runs in time poly(T ), which ruins succinctness.
13Namely, that an f -evaluated encryption of m is statistically indistinguishable from an encryption of f(m)
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by [CCRR18]14, and should be contrasted with the typical Regev encryption scheme in which the
secret is uniform in Znq but the noise must be smaller to allow for correct decryption.

We prove that this encryption scheme satisfies unbounded polynomial KDM-security using some
associated FHE scheme in the security proof.

The KDM security of Regev encryption with these parameters follows from two main observa-
tions.

1. Many natural fully homomorphic encryption schemes (e.g., [BV11, BGV12, Bra12, GSW13,
BV14]) contain a low-noise instantiation of Regev encryption “embedded” within them. That
is, from any homomorphically evaluated ciphertext that decrypts to m under an FHE key s,
one can efficiently extract a small-noise Regev encryption of m under s. We call this property
Regev-extractability.

2. Any Regev ciphertext with small noise (which may be arbitrary and malicious) can be re-
randomized to obtain a Regev ciphertext whose noise distribution is statistically approxi-
mately uniform over [−q/4, q/4)m.

Combining (1) and (2) yields a multiplicatively advantage-preserving reduction from the KDM
security of high-noise Regev to the circular security of the (low-noise) Regev-extractable FHE
scheme. At a high level, the reduction works as follows: given FHE-circular ciphertexts {cti =
FHE.Enc(sk, ski)}i, one can homomorphically compute a (non-random) FHE-ciphertext correspond-
ing to an arbitrary polynomial function f(sk). Then, a secret-key Regev ciphertext of f(sk) can
be extracted from this FHE-ciphertext, and the Regev ciphertext can be re-randomized to obtain
an approximately uniform Regev encryption of f(sk). Thus, an algorithm that recovers sk from a
Regev encryption of f(sk) with better-than-trivial probability can be used to achieve the same key
recovery success for the FHE scheme.

We note that a crucial aspect of the analysis is the use of Renyi divergence rather than total
variational (aka, statistical) distance in characterizing the re-randomization sampling error.

3 Correlation Intractability from KDM-Secure Encryption
This section recalls the definitions of correlation intractable (CI) hash functions and encryption
schemes that are secure against key-dependent message (KDM) attacks, as well as the [CCRR18]
construction of CI hash functions from strong KDM secure encryption.

Since this work crucially relies on finer-grained notions of indistinguishability and security
against resource bounded adversaries, we first fix the following notation, which is more fine-grained
than the standard one. We say that two distribution ensembles {Xλ} and {Yλ} are (s(λ), δ(λ))-
indistinguishable if for all O(s(λ))-sized circuit ensembles {Aλ},∣∣∣Pr [Aλ(Xλ) = 1]− Pr [Aλ(Yλ) = 1]

∣∣∣ ≤ O(δ(λ)).

If {Xλ} and {Yλ} are (λc, δ)-indistinguishable for all c > 0 then we say they they are δ-indistinguishable.
If {Xλ} and {Yλ} are (λc, 1/λc)-indistinguishable for all c > 0 then we say they they are polynomi-
ally indistinguishable. Throughout, we extend this notational convention also to other primitives
and their security.

14 [CCRR18] leaves the relationship between B and q to be arbitrary except that B ≤ q; we require that B is
significantly smaller than q because we reduce from the security of (necessarily low-noise) FHE schemes. Our notion
of optimal security for these FHE schemes can only hold when the secret has less entropy than the noise.
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3.1 Correlation Intractable Hash Functions

Definition 3.1. A hash family is a collection H = {hλ : Iλ×Xλ → Yλ}λ∈Z+ of keyed hash functions
such that {Iλ} is uniformly poly(λ)-time sampleable and {hλ} is uniformly poly(λ)-time evaluable.

We will also write Hλ to denote the distribution on functions hλ(I, ·) obtained by sampling
I ← Iλ.

The above definition details the functionality of a hash function; there are several security
notions that one could require. We focus on (single input) correlation intractability, as put forth
by Canetti et al. [CGH04].

Definition 3.2 (Correlation Intractability). For a given relation ensemble R = {Rλ ⊆ Xλ × Yλ},
a hash family H = {hλ : Iλ × Xλ → Yλ}λ∈Z+ is said to be R-correlation intractable if for every
polynomial-size A = {Aλ},

Pr
I←Iλ

x←Aλ(I)

[(
x, hλ(I, x)

)
∈ Rλ

]
≤ λ−ω(1).

Correlation intractability is a useful and versatile property of random oracles that we would
like to guarantee in the standard model. However, even a random oracle is only R-correlation
intractable for sparse relations R.

Definition 3.3 (Sparsity). For any relation ensemble R = {Rλ ⊆ Xλ × Yλ}, we say that R is
ρ(·)-sparse if for λ ∈ Z+ and any x ∈ Xλ,

Pr
y←Yλ

[
(x, y) ∈ Rλ

]
≤ ρ(λ).

When ρ is a negligible function, we say simply that R is sparse.

An important complexity measure of a relation R for the purpose of achieving correlation
intractability is the complexity of sampling from the relation. More formally, we define (following
[HL18]) what it means for a relation R to be efficiently (approximately) samplable.

Definition 3.4. A distribution P multiplicatively ε-approximates a distribution Q if for all outcomes
ω, it holds that P (ω) ≥ ε ·Q(ω).

We note that if P multiplicatively ε-approximates a distribution Q, then it also holds for all
events E, that P (E) ≥ ε ·Q(E).

Definition 3.5 (Approximate Samplability of Relations). A relation ensemble R = {Rλ ⊆ Xλ×Yλ}
is non-uniformly efficiently ε-approximately samplable if there is a poly(λ)-sized circuit ensemble
{Sampλ} such that for every (x, y) ∈ Rλ, the distribution Sampλ(x) multiplicatively ε-approximates
the uniform distribution on the (by assumption, non-empty) set

{
y′ ∈ Yλ : (x, y′) ∈ R

}
.

We say that R is (non-uniformly) efficiently approximately samplable if it is non-uniformly
ε-approximately samplable for some ε ≥ 1

poly(n) .

Remark 3.1 (Domain Translation). Throughout this paper, we make use of the following fact: if
R is a sparse ensemble of relations {Rλ ⊆ X ′λ × Yλ}, then the ensemble R′ obtained by viewing
each Rλ as a subset of Xλ×Yλ via some embedding fλ : X ′λ → Xλ is also sparse. Moreover, if R is
efficiently sampleable and if {f−1

λ } is efficiently sampleable, then R′ is also efficiently sampleable.
This result is used implicitly, e.g. to view a correlation-intractable hash family mapping Znp →

{0, 1}` as a correlation-intractable hash family mapping {0, 1}n·blog pc → {0, 1}`.
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3.2 Encryption Schemes and Key-Dependent Message (KDM) Security

Definition 3.6. A secret-key encryption scheme (SKE) E with message spaceM = {Mλ} consists
of poly(λ)-time sampleable key distributions {Kλ}λ along with poly(λ)-time evaluable functions
Enc = {Encλ}λ and Dec = {Decλ}λ (where Encλ may be probabilistic) satisfying that for all λ, all
m ∈Mλ, and all k ∈ Kλ, it holds with probability 1 that Decλ(k,Encλ(k,m)) = m.

In the special case that Mλ = {0, 1} for every λ, we say that E is a secret-key bit-encryption
scheme.

Definition 3.7. A secret-key encryption scheme E = {(Kλ,Encλ,Decλ)}λ with message spaceMλ

has universal ciphertexts if for any secret key k ∈ Kλ, the distribution Enc(k,UMλ
) multiplicatively

1
poly(λ) -approximates the distribution Enc(Kλ,UMλ

), where UMλ
denotes the uniform distribution

onMλ.

Definition 3.8. A secret-key fully homomorphic bit-encryption (FHE) scheme consists of distributions
{Kλ}, probabilistic functions {Encλ}, and functions {Decλ,Evalλ} such that:

1. {Kλ} is poly(λ)-time sampleable, {Encλ} and {Decλ} are poly(λ)-time evaluable, and Evalλ(ek,
C, ct1, . . . , ctn) is computable in poly(|C|, n, λ) time.

2. If K(sk)
λ denotes the distribution of sk when sampling (sk, ek) ← Kλ, then E ′ def= {(K(sk)

λ ,
Encλ, Decλ)} is a secret-key bit-encryption scheme, which we call the underlying secret-key
bit-encryption scheme of E.

3. For any (sk, ek) ∈ Kλ, any m1, . . . ,mn ∈ {0, 1}, and any circuit C : {0, 1}n → {0, 1}, it holds
with probability 1 that

Decλ
(
sk,Evalλ

(
ek, C,Encλ(sk,m1), . . . ,Encλ(sk,mn)

))
= C(m1, . . . ,mn).

Definition 3.9. If E is a secret-key encryption scheme
{
(Kλ,Encλ,Decλ)

}
with message space

Mλ, and if f = {fλ : Kλ
$→ M∗λ} is any (potentially probabilistic) function, then E is said to be

δ(·)-immune to key recovery by an f -KDM query if for all polynomial-size A = {Aλ}, it holds that

Pr
K←Kλ

(M1,...,M`)←fλ(K)
{Ci←Encλ(K,Mi)}i∈[`]

[Aλ(C1, . . . , C`) = K] ≤ δ(λ).

If E is a secret-key fully homomorphic bit-encryption scheme, we say that E is δ(·)-immune to
key recovery by an f -KDM query if for all polynomial-size A = {Aλ}, it holds that

Pr
(K,E)←Kλ

(M1,...,M`)←fλ(K)
{Ci←Encλ(K,Mi)}i∈[`]

[Aλ(E,C1, . . . , C`) = K] ≤ δ(λ).

In either case, throughout this paper we will abbreviate the above by saying that E is f -KDM
δ-secure. If F is a set of functions then we say that E is F-KDM δ-secure if E is f -KDM δ-secure
for all f ∈ F .
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3.3 Correlation Intractability from Strong KDM Security

In this section, we recall the generic transformation of [CCRR18] and state a stronger version of their
main theorem (that follows from their security proof). The differences are explained immediately
after the theorem statement.

Construction 3.10 (CCRR Hash Family). Let E = {(Kλ,Encλ,Decλ)} be any secret key encryp-
tion scheme with message space {0, 1}` for ` = `(λ). The CCRR hash family associated to this
encryption scheme, denoted HECCRR, is

HECCRR =
{
hλ : Iλ ×Kλ → {0, 1}`

}
λ

where
hλ(C, x) := Decλ(x,C),

and the distribution Iλ is a random ciphertext C obtained by sampling K ← Kλ along with M ←
{0, 1}` and defining C := Encλ(K,M).

The following theorem, which is based on [CCRR18], shows that the hash family associated with
any encryption scheme that (1) has universal ciphertexts (see Definition 3.7) and (2) is exponentially
KDM secure (see Definition 3.9), is suitable for the Fiat-Shamir transform.

Theorem 3.11. Let E = {(Kλ,Encλ,Decλ)} be a secret key encryption scheme with universal
ciphertexts, message space {0, 1}`, and key space Kλ equal to the uniform distribution on {0, 1}κ for
some κ = κ(λ). If E is F-KDM δ-secure and R is a ρ-sparse relation that is λ−O(1)-approximately
F-sampleable, then HECCRR is R-correlation 2−κ

δ(λ)·ρ(λ) · λ
−O(1)-intractable.

Remark 3.2. There are two main differences between Theorem 3.11 and the original statement
in [CCRR18].

• Theorem 3.11 parameterizes what KDM functions are required in order to prove correlation
intractability for a given relation R in terms of its (approximate) samplability.

• Theorem 3.11 assumes a weaker notion of “universal ciphertexts” (Definition 3.7) as compared
to [CCRR18].

However, Theorem 3.11 follows directly from the proof given in [CCRR18], and our proof is
included only for completeness.

Proof of Theorem 3.11. Let HECCRR =
{
hλ : Iλ × Kλ → {0, 1}`

}
λ
be as in Construction 3.10.

Suppose that for some ρ-sparse relation ensemble R = {Rλ}, there is a polynomial-size adversary
A = {Aλ} that, given I ← Iλ, finds an input x ∈ Kλ such that

(
x, hλ(I, x)

)
∈ Rλ with probability

ε(λ) > 2−κ
δ(λ)·ρ(λ) · λ

−O(1), for infinitely many λ. Recall that Iλ is sampled as an encryption of
a uniformly random message under a uniformly random key. That is, we have I ← Enc(K,M)
where K and M denote random variables whose distributions are uniform over {0, 1}κ and {0, 1}`,
respectively.

Consider independently sampling a uniformly random key X∗ ← Kλ. Then, we have that
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Pr
K,X∗←Kλ
M←{0,1}`
I←Enc(K,M)

[
A(I) = X∗ ∧

(
X∗, hλ(I,X∗)

)
∈ Rλ

]
≥ ε

2κ ,

because the above expression can be interpreted as the probability that A wins the correlation
intractability game and that A(I) = X∗.

The universal ciphertexts property of E implies that

Pr
X∗←Kλ
M←{0,1}`

I←Enc(X∗,M)

[
A(I) = X∗ ∧

(
X∗, hλ(I,X∗)

)
∈ Rλ

]
≥ ε

2κ · poly(λ) ,

because the distribution Enc(X∗,M) multiplicatively 1
poly(λ) -approximates the distribution Enc(K,M).

Next, we note that for I ← Enc(X∗,M), we have that hλ(I,X∗) def= Dec(X∗, I) = M by the
perfect correctness of E . Thus if

(
X∗, hλ(I,X∗)

)
∈ Rλ, then (X∗,M) ∈ Rλ. Let Sx,λ denote the

set {m : (x,m) ∈ Rλ}.

Pr
X∗←Kλ,M̃←SX∗,λ
I←Enc(X∗,M̃)

[
A(I) = X∗

]
=
∑
x

Pr
X∗←Kλ

[X∗ = x] · Pr
M̃←Sx,λ

I←Enc(x,M̃)

[A(I) = x]

≥
∑
x

Pr[X∗ = x] ·

Pr
M←{0,1}`
I←Enc(x,M)

[A(I) = x ∧ (x,M) ∈ Rλ]

Pr
M←{0,1}`

[M ∈ Sx,λ]

≥ 1
ρ
·
∑
x

Pr[X∗ = x] · Pr
M←{0,1}`
I←Enc(x,M)

[A(I) = x ∧ (x,M) ∈ Rλ]

= 1
ρ
· Pr
X∗←K,M←Uλ
I←Enc(X∗,M)

[A(I) = X∗ ∧ (X∗,M) ∈ Rλ]

≥ 1
ρ
· ε

2κ · poly(λ) ,

where ρ = ρ(λ) denotes the sparsity of R = Rλ.15

Finally, we let Samp = {Sampλ} ∈ F denote an approximate sampler for the relation R, which
exists by assumption. Since the distribution Sampλ(x) multiplicatively 1

poly(λ) -approximates the
uniform distribution on Sx,λ by definition, we see that

Pr
X∗←K,M̃←Sampλ(X∗)

I←Enc(X∗,M̃)

[A(I) = X∗] ≥ 1
ρ
· ε

2κ · poly(λ) .

But this contradicts the assumed F-KDM δ-security of E . Thus, we have proved Theorem 3.11.
15To avoid ambiguity in the case where SX∗ is empty, we note that by “ Pr

X∗←Kλ,M̃←SX∗,λ

I←Enc(X∗,M̃)

[f(X∗, M̃)]” we actually

mean “ E
X∗←Kλ

χ(SX∗ is nonempty) Pr
M̃←SX∗,λ

I←Enc(X∗,M̃)

[f(X∗, M̃)].”
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4 Optimally Secure KDM-Secure Encryption From Simpler As-
sumptions

This section presents our two new constructions of KDM-secure encryption schemes from assump-
tions that are weaker and simpler than previously known. Combined with the results of [CCRR18],
recalled in the previous section, this amounts to proving Theorems 3 and 4 (in Sections 4.2 and 4.3,
respectively).

4.1 Learning with Errors

The learning with errors (LWE) problem was introduced by Regev [Reg09]. The following overview
is based on Peikert’s survey [Pei16].

Definition 4.1 (LWE Distribution). For any s ∈ Znq and any distribution χ ⊆ Zq, the LWE
distribution As,χ ∈ Znq × Zq is sampled by choosing a ∈ Znq uniformly at random, sampling e ← χ,
and outputting (a, b = 〈s,a〉+ e).

Definition 4.2 (Search LWE). Let ` = `(n) ≥ 1, q = q(n) ≥ 2 be integers, and let χsec(n) and
χerr(n) be distributions on Zq(n). The Search-LWE`,q,χsec,χerr problem, parameterized by n, is to
output s given as input `(n) independent samples from As,χerr(n), for s that is sampled from χsec(n)n.

For the rest of this paper, we will write LWE in place of Search-LWE.
All of our lattice based hash functions require (at least) making an assumption of the following

form.

Assumption 1. Any poly(n)-time algorithm A solves Search-LWE`,q,χsec,χerr with probability at
most µ(χsec)n · poly(n, log(q)), where µ(χsec) := |Supp(χsec)|−1.

In order for this assumption to have any hope of being true, χsec must be nearly uniform on
its support and it must hold that µ(χerr) ≤ µ(χsec) (so that the “error guessing attack” does not
violate the assumption).

In Appendix A we describe some basic analysis showing that the best-known polynomial-time
algorithms for LWE do not violate our assumption subject to the two conditions above.

Definition 4.3 (Secret-Key Regev Encryption). For any positive integers q = q(λ) ≤ 2poly(λ),
n = n(λ) ≤ poly(λ), and any poly(λ)-time sampleable distribution ensembles χsec = {χsec(λ)} and
χerr = {χerr(λ)} over Zq(λ), we define the encryption scheme Regevn,q,χsec,χerr to be the secret-key
bit-encryption scheme

{
(Kλ,Encλ,Decλ)

}
λ
, where:

• Kλ is the distribution χnsec.

• Encλ : Znq ×{0, 1}
$→ Znq ×Zq is defined so that Encλ(s,m) is obtained by sampling a uniformly

random vector a← Znq , sampling e← χerr(λ), and outputting (a, st · a +m ·
⌈ q

2
⌋

+ e)

• Decλ : Znq × (Znq ×Zq)→ {0, 1} is defined so that Dec(s, (a, b)) is the bit m for which b− st ·a
is closer to m ·

⌈ q
2
⌋
than to (1−m) ·

⌈ q
2
⌋
.

A pair (a, b) ∈ Znq × Zq is a Regev encryption of m ∈ {0, 1} under s ∈ Znq with B-bounded noise if
b− st · a −m ·

⌈ q
2
⌋
is in the interval [−B,B).
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4.2 (P/Poly)-KDM Security via Fully Homomorphic Encryption

In this section, we describe a somewhat generic assumption on the circular security of FHE
schemes that implies the existence of a (P/poly)-KDM exponentially-secure encryption scheme
with an obliviously sampleable universal ciphertext distribution. Our assumption is efficiently
falsifiable [Nao03,GW11], albeit with exponentially small probability, and is a complexity assump-
tion [GK16]. The (P/poly)-KDM secure encryption scheme is simply secret-key Regev encryption
(Definition 4.3) where both the secret and the noise distributions are uniform over a relatively large
interval in Zq.

We prove that this scheme achieves (P/poly)-KDM security assuming the security of a LWE-
based FHE scheme such as [BV11,BGV12,Bra12,GSW13,BV14] in which both the secret and the
noise are drawn from the uniform distribution on [−B,B). Our security reduction preserves the
kind of exponential security considered in Theorem 3.11, so our assumption can be used as the
basis for a candidate correlation intractable hash family.

We now define the notion of homomorphic encryption that suffices for our security reduction.
As discussed in Section 2, this notion captures FHE schemes whose ciphertexts in some sense
“contain” a (low-noise) secret-key Regev ciphertext.

Definition 4.4 (Regev-Extractable Secret-Key Homomorphic Encryption). A secret-key fully ho-
momorphic bit-encryption scheme

{
(Kλ,Encλ,Decλ,Evalλ)

}
is Regevn,q,χsec-extractable with B(λ)-

bounded noise if it satisfies the following structural properties.

• The distribution of s when sampling (s, ek)← Kλ is χnsec where χsec is a distribution over Zq.

• There is a poly(λ)-time evaluable function Extract = {Extractλ} such that:

– For any λ, any s ∈ χnsec, and any m ∈ {0, 1}, it holds that Extractλ(Encλ(s,m)) is a Regev
encryption (a, b) of m under s with B-bounded noise, and with a uniformly random in
Znq .

– For any m1, . . . ,mn ∈ {0, 1}, any circuit C : {0, 1}n → {0, 1}, and any (s, ek) ∈ Kλ, it
holds with probability 1 that

Extractλ
(
Evalλ

(
ek, C,Encλ(s,m1), . . . ,Encλ(s,mn)

))
is a Regev encryption (a, b) of C(m1, . . . ,mn) under s with B-bounded noise.

We do not assume any particular distribution on the noise of Regev ciphertexts that are ex-
tracted from homomorphically evaluated ciphertexts; we assume only that the noise is bounded.
For our applications, we require Regev extractable encryption schemes with the following security
property.

Definition 4.5. Let E be a FHE scheme with key distributions {Kλ}. For (sk, ek) ∈ Kλ, let [[sk]]
denote the binary representation of sk, and let κ = κ(λ) denote the length of such a representation.
For any ` = `(λ) and any ∆, E is said to be [`-bit CPA + circular] ∆-optimally secure with a κ-bit
key (abbreviated (κ, `,∆)-CCO secure) if for every collection of `-bit messages16 {mλ}, E is f -KDM

16In the case of Regev encryption, and also in our applications with Regev-extractable encryption, we can without
loss of generality assume that each message consists entirely of 0’s.
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(
2−κ+∆

)
-secure for the “augmented bit-by-bit circular security function”

f = {fλ : Kλ → {0, 1}`+κ}
fλ(k) = mλ ◦ [[k]] (◦ denotes concatenation)

Discussion. The requirement that an encryption scheme is (κ, `,∆)-CCO secure becomes stronger
as κ or ` increases, and weaker as ∆ decreases. In particular, the requirement is trivially satisfied if
∆ ≥ κ. This is related to the triviality of constructing a correlation-intractable hash family {Hλ}
in which the output length of Hλ is O(log λ) – in this case, the only sparse relations are the empty
ones.

Assumption 2 (Dream FHE). For some n, q, χsec, there exists17 a (κ, `,∆)-CCO secure secret-
key FHE scheme that is Regevn,q,χsec-extractable with B-bounded noise for κ = λΘ(1), ` = λΩ(1),
∆ = O(log λ), B ≤ q/Ω̃(λ), and χnsec that is sampleable in Õ(n) time using at most κ + O(log λ)
random bits.

While Assumption 2 is not itself falsifiable , the (stronger) assumption that any particular
Regev-extractable FHE scheme satisfies Definition 4.5 is a falsifiable (with exponentially small
probability) complexity assumption, as claimed.

We also note that the security property postulated in Assumption 2 is, even qualitatively,
slightly stronger than what is needed for our applications – see the discussion following the proof
of Theorem 4.6.

Possible Instantiations of Assumption 2 As mentioned earlier, a large family of (secret key
variants of) LWE-based FHE schemes – such as [BV11, BGV12, Bra12,GSW13,BV14] are Regev-
extractable. Like Regev’s encryption scheme, these homomorphic encryption schemes are param-
eterized by a modulus q, a secret distribution χsec, and an error distribution χerr. All of these
schemes, as written, set χsec to either be the uniform distribution on Zq or a sufficiently wide discrete
Gaussian. These distributions are optimal in the polynomial hardness regime [Reg09,ACPS09], but
they are trivially sub-optimal in the regime of exponential hardness. Specifically, if χsec is very non-
uniform (i.e., a discrete Gaussian), then a key can be directly guessed with probably much better
than 2−κ.18 On the other hand, if χsec were the uniform distribution over Zq, then given many
Regev ciphertexts (where each ciphertext’s noise level is q

4 -bounded), a secret can be relatively
efficiently guessed by first guessing the noise and then computing the secret by linear algebra.

We propose instantiating any of the above-mentioned schemes with secret distribution χsec
and noise distribution χerr such that both are uniformly random on intervals of length `sec and
`err, respectively, such that `err ≥ `sec and `sec is sufficiently large. We emphasize that, up to a
polynomial increase in the modulus-noise ratio, these changes do not affect the polynomial security
of the schemes. We are not aware of any algorithm violating Assumption 2 for any of these schemes
(with the secret distribution as described above), despite the fact that most of the schemes require
a superpolynomial (in the case of [BV11], even sub-exponential) modulus-to-noise ratio. However,
we explicitly note that the scheme [BV14] only relies on a polynomial modulus-to-noise ratio in the
underlying LWE scheme, which may give us more confidence in the claimed exponential security.
We describe the known cryptanalytic results further in Appendix A.

17In fact, it would even suffice for the construction to be non-uniform.
18Abstractly, the description length κ is the Shannon entropy of the secret key, while (the negative log of) the

trivial guessing probability is the min-entropy. The two entropies agree only for uniform distributions.
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We are now ready to state our security reduction.

Theorem 4.6. If Assumption 2 is true, then there exist parameters n = n(λ), q = q(λ), and
χsec = χsec(λ) such that for some ` = λΩ(1), Regevn,q,χsec,χerr is (P/poly)`-KDM 1/Ω̃(2κ)-secure
where (P/poly)` is the class of poly(λ)-size circuits with ` output bits and χerr is the uniform
distribution on [−q/4, q/4) and κ is the length of the binary representation of an element of χnsec.

Our proof of Theorem 4.6 relies on the following lemma, whose proof easily follows from direct
computation.

Lemma 4.7. For any e ∈ Z with |e| ≤ b and for any interval I = [c, d] of length `, the distribution
e+U[c−b,d+b] multiplicatively ( `

`+2b)-approximates the distribution UI , where for a set S, US denotes
the uniform distribution on S.

Proof of Theorem 4.6. Let E = {(Kλ,Encλ,Decλ,Evalλ)} denote the dream FHE scheme that is
(κ, `,∆)-CCO secure and Regevn,q,χsec-extractable with B-bounded noise for B ≤ q/Ω̃(λ). With-
out loss of generality suppose that ` ≤ λ. Let Extract = {Extractλ} denote the corresponding
extraction algorithm.

Let χerr(λ) denote the uniform distribution on [−q/4, q/4), and let {K′λ,Enc′λ,Dec′λ} denote
Regevn,q,χsec,χerr . Suppose for contradiction that Regevn,q,χsec,χerr is not (P/poly)`-KDM δ-secure.

That is, suppose there exist poly(λ)-size evaluable functions {fλ : Znq → {0, 1}`} and {Aλ} such
that for infinitely many λ,

Pr[Aλ(ct1, . . . , ct`) = s] > δ(λ).

in the probability space defined by sampling s← K′λ and, for each i ∈ [`], independently sampling
Regev encryptions cti ← Enc′λ(s, fλ(s)i).

We will now describe a poly(λ)-size evaluable adversary B = {Bλ} that contradicts Assump-
tion 2. Bλ is given as input (ek, c1, . . . , c`+κ), and does the following.

1. For i ∈ [`], define (ai, bi) := Extractλ(ci).

2. Compute (c′1, . . . , c′`) := Evalλ(ek, fλ, c`+1, . . . , c`+κ) and define (yi, zi) := Extractλ(c′i) for
every i ∈ [`].

3. For each i ∈ [`], update yi := yi + ai and zi := zi + bi.

4. For each i ∈ [`], sample ei from the uniform distribution on [− q
4 − 2B, q4 + 2B] and update

zi := zi + ei.

5. Compute and output Aλ
(
(y1, z1), . . . , (y`, z`)

)
.

If (s, ek) is sampled at random from Kλ, if c`+j ← Encλ(s, [[s]]j) for each j ∈ [κ], and if ci ←
Encλ(s, 0), then by the definition of extractability, it holds that after Step 2, each (yi, zi) is a Regev
encryption of fλ(s)i under s with B-bounded noise, and (a1, . . . ,a`) is uniformly random (and
independent of (y1, . . . ,y`)). After Step 3, each (yi, zi) is a Regev encryption of fλ(s)i under s
with 2B-bounded noise. After Step 4, by Lemma 4.7, it holds that, for

ε = ε(λ) def=
(

q/2
q/2 + 2B

)λ
=
(

1− 4B
q

)`
≥
(

1− 1
Ω̃(λ)

)λ
= λ−O(1),
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the distribution of
(
(y1, z1), . . . , (y`, z`)

)
multiplicatively ε-approximates the distribution on (ct1,

. . . , ct`) obtained by independently sampling cti ← Enc′λ(s, fλ(s)i) for each i ∈ [λ]. Thus Aλ, and
therefore Bλ, outputs s with probability at least δ

poly(λ) = 2−κ · λω(1).

Loosely speaking, what our reduction really requires is the ability to re-randomize Regev en-
cryptions in a somewhat weaker sense than what is typically meant by re-randomization. It can
receive this ability in the form of Regev ciphertexts. In contrast, (κ, `,∆)-CCO security gives the
reduction even more, specifically fresh E-ciphertexts from which Regev ciphertexts can be extracted.
It would instead suffice for E to satisfy a version of (κ, 0,∆)-CCO security in a setting where the
adversary is only given ` Regev encryptions {(ai, bi)}i∈[`] for uniform and independent {ai}.

4.3 SIZE(κc)-KDM Security via Randomized Encodings

In this section, we give two additional constructions of encryption schemes satisfying universal
ciphertexts (Definition 3.7) as well as SIZE(κc)-KDM δ-security for δ(λ) = 2−κ · poly(κ).19 These
schemes differ from the encryption scheme in Theorem 4.6 in two (related) ways:

• The size bound S for the KDM functions must be specified in advance before choosing the en-
cryption scheme; in contrast, Theorem 4.6 gives a single encryption scheme that is (plausibly)
KDM-secure for all polynomial-time computable KDM functions.

• Moreover, the encryption schemes in this section are non-compact; that is, the size of a
ciphertext depends polynomially on the size bound S.

While these schemes satisfy weaker efficiency properties than the scheme in Theorem 4.6, we
are able to prove security based on the exponential hardness of plain search-LWE (in contrast
to the additional circular security assumptions that were required in Theorem 4.6). Since non-
compact (exponential) KDM-secure encryption schemes of the above form suffices to instantiate
NIZK arguments in the common random string model (as shown in Section 7.2), this yields candidate
NIZK arguments based on exponential variants of plain LWE.

To prove our results in this section, we revisit the idea of KDM security amplification via
randomized encodings [BHHI10,App11]. In particular, we prove that the generic transformation
of [App11] allows us to amplify CCRR-compatibility provided that we use a randomized encod-
ing that is perfectly blind (which just means that the simulator applied to a uniformly random
string outputs a uniformly random20 string). By modifying (and composing) standard randomized
encoding schemes from the literature [BMR90, IK02,AIK11], we therefore reduce the problem to
constructing F-KDM 2−κpoly(κ)-secure encryption schemes (with universal ciphertexts) for simple
function classes F (namely, some form of affine functions modulo a prime). We then give schemes
(based on secret-key Regev encryption or a variant of the [ACPS09] encryption scheme) that satisfy
these weaker requirements under an appropriate LWE assumption.

4.3.1 The Generic Transformation

We first recall the generic transformation from [App11] that amplifies (standard) KDM security.
19As usual, by this we mean that for every polynomial size adversary A, there exists a constant c such that A

recovers the secret key with probability at most 2−κ · κc. Recall that κ = κ(λ) denotes the length of a secret key.
20We can actually rely on a slightly weaker property defined below.
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Definition 4.8 (Randomized Encoding). A randomized encoding scheme for a circuit class C
consists of three algorithms (RE.Enc,RE.Dec,RE.Sim) with the following syntax.

• RE.Enc takes as input a circuit C and an input x; it outputs an encoding 〈C, x〉.

• RE.Dec takes as input an encoding 〈C, x〉; it outputs an evaluation y.

• RE.Sim takes as input a size bound 1S, a circuit C, and an output y; it outputs an encoding
ỹ.

A randomized encoding scheme must satisfy two properties:

• Correctness: for any circuit C and input x, we have that RE.Dec(RE.Enc(C, x)) = C(x)
with probability 1.

• µ-simulation security: For every circuit C of size at most S and any input x, the following
two distributions are µ-(computationally) indistinguishable.

RE.Enc(C, x) ≈c,µ RE.Sim(1S , C, C(x)).

We say that a randomized encoding scheme is universal if there is a simulator RE.Sim as above that
takes as input only (1S , C(x)) and not the circuit C.

Definition 4.9 (Amplified KDM-secure Encryption Scheme). Let E ′ = {(K′λ,Enc′λ,Dec′λ)} denote a
secret key encryption scheme, and let RE = (RE.Enc,RE.Dec,RE.Sim) denote a universal randomized
encoding scheme for some circuit class C. Finally, let S = poly(κ) denote some size bound. We
then define the RE-amplified secret key encryption scheme AMPE ′ = {(Kλ,Encλ,Decλ)} as follows.

• Kλ is identical to K′λ.

• The output of Encλ(sk,m) is Enc′λ
(
sk,RE.Sim(1S ,m)

)
.

• The output of Decλ(sk, ct) is RE.Dec
(
Dec′λ(sk, ct)

)
.

In [App11], it is shown that if E ′ satisfies ordinary KDM security with respect to some function
class G, and if F is some function class with circuit representations such that for any f ∈ F , the
function x 7→ RE.Enc(f, x; r) lies in G for any fixed r, then AMPE ′ is KDM secure with respect to
F . Our goal is to prove an analogous result that also preserves the conditions of Theorem 3.11,
namely nearly optimal security and, more challengingly, the universal ciphertexts property. To do
this, we will require randomized encoding schemes satisfying the additional property that we call
(a relaxation of) blindness, following [BLSV18].

Definition 4.10 (Blind Randomized Encodings). A randomized encoding scheme RE = (RE.Enc,
RE.Dec,RE.Sim) is called ε-approximately blind for output distribution χout if for any circuit C of
size at most S, the following two distributions ε-multiplicatively approximate each other:

1. RE.Sim(1S , C, χout).

2. The uniform distribution on strings of length `′ :=
∣∣∣RE.Sim(1S , C, 0`)

∣∣∣.
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We say that RE is perfectly blind for output distribution χ if it is 1-approximately blind for χ.

In the context of statistical (or perfect) randomized encodings, [AIK04] refers to such an en-
coding scheme as balanced.

Given this additional property, we are able to state our theorem for this subsection.

Theorem 4.11. Suppose that RE is a universal randomized encoding scheme for a circuit class
C ⊂ SIZE(S) satisfying the following properties.

• RE satisfies o(2−κ)-simulation security.

• RE is ε-approximately blind for the uniform output distribution, where ε is any non-negligible
function.

• For every circuit C ∈ C and every fixed choice of randomness r, the function RE.Enc(C, x; r)
is in the class G.

Moreover, suppose that E ′ is an encryption scheme with universal ciphertexts that is G-KDM
δ-secure with uniformly random κ-bit keys and message length `′. Then, the amplified encryption
scheme AMP (Definition 4.9) is an encryption scheme for messages of length ` that has universal
ciphertexts and is F-KDM secure, where F denotes the class of all functions computable by circuits
in C.

Proof. We first prove the universal ciphertexts property; that is, that for any fixed secret key
sk, we have that the distribution AMP.Enc(sk, U`) multiplicatively ε = 1

poly(κ) -approximates the
distribution AMP.Enc(Un, U`). To see this, let Enc′λ and Dec′λ denote the encryption and decryption
procedures of E ′, and note that by the blindness of RE, we have that

AMP.Enc(sk, U`) ≡ Enc′λ(sk,RE.Sim(1S , U`)) �ε Enc′λ(sk, U`′),

where �ε denotes multiplicative ε-approximation. Similarly, we have that

AMP.Enc(Un, U`) ≡ Enc′λ(Un,RE.Sim(1S , U`)) ε� Enc′λ(Un, U`′).

Thus, we conclude that the universal ciphertexts property of AMP follows directly from the same
property for E ′.

Next, we prove that the transformation also preserves nearly-optimal KDM security. To see
this, suppose that for some f ∈ F , a ppt adversary A that is given

ct← AMP.Enc(sk, f(sk)) ≡ Enc′λ(sk,RE.Sim(1S , f(sk)))

returns sk with probability δ = ω(2−n). Then, by the o(2−n)-simulation security of RE, the same
is true when A is given

ct← Enc′λ(sk,RE.Enc(C, sk))

where C ∈ C is some circuit computing f . This will allow us to break the KDM security of E ′ for
some function g ∈ G. Namely, an adversary A′ can break the security of E ′ by choosing uniformly
random encoding randomness r and submitting the KDM function g(sk) = RE.Enc(C, sk; r). By
assumption, g lies in the class G, and feeding a SKE-KDM ciphertext ct to A will result in recovering
sk with probability δ − o(2−κ) = Ω(δ). This completes the security reduction.
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4.3.2 SIZE(κc)-KDM Secure Encryption Schemes with Universal Ciphertexts

Together with suitable randomized encoding schemes, Theorem 4.11 reduces the problem of con-
structing (non-compact) SIZE(κc)-KDM secure encryption schemes with universal ciphertexts to
the problem of constructing F-KDM secure encryption schemes for smaller classes of KDM func-
tions. We follow this recipe with two randomized encoding schemes from the literature, combined
with KDM-secure encryption schemes for (two classes of) simple functions. The first construction is
straight-forward, and assumes the nearly optimal hardness of Search-LWE with binary secrets and
a specific noise distribution (uniform on [−q/4, q/4)). The second construction is more involved,
but allows more general secret and noise distributions.

Point-and-Permute Garbled Circuits. Point-and-Permute garbled circuits, introduced by
[BMR90] in order to achieve constant round secure multiparty computation, are a modification
of Yao’s garbling scheme [Yao86,LP09]; in a nutshell, rather than requiring every entry of a garbled
table in Yao’s scheme to be decrypted (and that in an honest evaluation only one of the four ci-
phertexts should be decrypted successfully), point-and-permute garbled circuits augment each wire
key kg,b with a random pointer b⊕ rg indicating which table entries kg,b is able to decrypt. While
originally introduced in order to allow for a form of distributed garbling [BMR90], and later used
for reasons of efficiency (i.e. saving a factor of 4 in evaluation time), [BLSV18] noted and took
advantage of the fact that point-and-permute garbled circuits are also perfectly blind.

The following theorem follows from the works [BMR90,Rog91,BLSV18]. We refer the reader
to [BLSV18] for details on the proof of blindness.

Imported Theorem 4.12. If one-way functions exist, then there exists a universal randomized
encoding scheme RE for the class of all polynomial size circuits with the following properties.

• RE is perfectly blind.

• For any fixed choice of randomness r and circuit C, the function x 7→ RE.Enc(C, x; r) is an
F2-affine projection of x. This means that every output bit of RE.Enc(C, x; r) is an F2-affine
function of x that depends only one bit of x.

• The function (C, x) 7→ RE.Enc(C, x; r) is a concatenation f1(C, x; r)||f2(r), where each bit of
f1(C, x; r) has constant input locality.21

Moreover, if subexponentially secure one-way functions exist, then for any c > 0, RE can be
modified so that it is 2−κc-simulation secure.

A Scheme from Exponential LWE with Binary Secrets. Combining Theorem 4.11 with
Imported Theorem 4.12, we conclude that to construct a SIZE(κc)-KDM 2−κ · poly(κ)-secure en-
cryption scheme with universal ciphertexts, it suffices to construct a F-KDM 2−κ · poly(κ)-secure
encryption scheme (with universal ciphertexts), where F is the class of all Z2-linear functions and
κ is the bit-length of an encryption key.

We now claim that such an encryption scheme exists assuming the nearly optimal hardness
of Search-LWEn,`,q,χsec,χerr (Assumption 1) where q is even, χsec is the uniform distribution on
{0, 1} ⊂ Zq (so the key length κ is n) and χerr is the uniform distribution on [− q

4 ,
q
4) ⊂ Zq.

21We only use this property in Section 4.3.2.

25



Indeed, secret-key Regev encryption (Definition 4.3) with distributions (χsec, χerr) as above
immediately presents itself as a candidate encryption scheme. The reason that we choose χsec
to be supported on {0, 1} ⊂ Zq is that F-KDM security of this scheme for Z2-linear functions
tightly follows from LWE. The folklore security reduction works as follows. Let ϕ : Fn2 → F`2 be
any affine function parameterized by a matrix C and vector d such that ϕ(x) = xC + d. Given
an LWE sample (A,b = sA + e) with A ← Zn×`q and et ← χerr, one can efficiently produce a
ciphertext, namely (A − q

2 · C,b + q
2 · d), that is identically distributed to a Regev encryption of

ϕ(s) = sC + d (mod 2) with the above parameters. Therefore, if some adversary A when given a
Regev encryption Enc(s, sB+ c (mod 2)) recovers s with probability ε, then the adversary A′ that
is given LWE samples (A,b) and computes A(A − q

2C,b + q
2d) as above will also recover s with

probability ε.
Finally, we note that this scheme has universal ciphertexts (Definition 3.7) – indeed, for any s,

an encryption of a random bit-string under s is a uniformly random string – so this completes our
first construction and security proof.

Arithmetic Randomized Encodings. We next generalize the construction from Section 4.3.2
to rely on forms of LWE with secrets that are not restricted to be elements of {0, 1}n, and thus more
plausibly are nearly optimally secure. Specifically, we will be able to have secrets that are uniformly
random on the range [−p

2 ,
p
2)n and errors that are uniformly random in the range [− q′

2 ,
q′

2 )`, where
p is prime and q = pq′. For example, setting q′ = p, we could rely on an LWE assumption with
secret and noise of order 1√

q .
For this construction, we combine two tools: the KDM-secure encryption scheme of [ACPS09]

(appropriately modified to have the desired statistical property) and a slightly non-standard variant
of arithmetic randomized encodings over Zp [AIK11]. We first describe the latter tool.

Theorem 4.13. Let p be an arbitrary prime and let ε > 0. Then, there is an unconditionally
and information theoretically secure (non-universal) randomized encoding scheme REapprox

p for Zp-
arithmetic circuits of depth at most d that compute {0, 1}`-output functions with the following
properties:

• REapprox
p is perfectly secure.

• REapprox
p is (1 − ε)-approximately blind for the output distribution that is uniform on

{0, 1}` ⊂ Z`p.

• The size of a randomized encoding of (C, x) is poly(log p, 2d, |C|, log(1
ε )).

• For any fixed choice of randomness r, the function REapprox
p .Enc(C, x; r) is a Zp-affine function

of (C, x).

In order to prove Theorem 4.13, we first construct an intermediate randomized encoding using the
techniques of [AIK11].

Theorem 4.14. Let p be an arbitrary prime. Then, there is an unconditionally and information-
theoretically secure (non-universal) randomized encoding scheme REp for Zp-arithmetic circuits of
depth at most d with the following properties:

• REp is perfectly secure.
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• REp is perfectly blind for the uniform distribution on Ztp (when the simulator is called on
length-t outputs).

• The size of a randomized encoding of (C, x) is poly(log p, 2d, |C|).

• For any fixed choice of randomness r, the function REp.Enc(C, x; r) is a Zp-affine function of
(C, x).

Proof. Our construction is a modification of [AIK11], Section 7.1; namely, we remove the key-
shrinking gadget to obtain unconditional security.22

More formally, the construction is as follows: represent an arithmetic circuit

C = Bd ◦ . . . ◦B2 ◦B1

as a composition of d depth-1 circuits (with fan-in 2). We now inductively define encodings
Enci(C, y(i); r(i)) and simulators Simi(C, y(d)) as follows:

• Encd(C, y(d); r) := y(d) and Simd(C, y(d)) = y(d).

• For each i < d, define fi(C, y(i); r(i+1)) = Enci+1(C,Bi+1(y(i)); r(i+1)). By the inductive
hypothesis, each component Zp-element of fi,`(C, y(i); r(i+1)) is either a quadratic or a linear
function of (two components of) y(i), with coefficients that may depend arbitrarily on r(i+1).

• For every linear component fi(·)` of the form fi(y(i))` = a` · (y
(i)
j + y

(i)
k ) + b`, define

Enci,`,0(C, y(i); r(i+1)||r) = a` · y
(i)
j + r

Enci,`,1(C, y(i), r(i+1)||r) = a` · y
(i)
k + b` − r,

where r ∈ Zp is uniformly random. Define corresponding simulators

Simi,`,0(C, ỹ(i+1)
` ; r) = r

Simi,`,1(C, y(i+1)
` ; r) = ỹ

(i+1)
` − r,

where r ∈ Zp is uniformly random.

• For every quadratic component fi(·)` of the form a` · y
(i)
j · y

(i)
k + b`, define

Enci,`,1,1(C, y(i); r(i+1)||r, s, t) = a` · y
(i)
j − r,

Enci,`,1,2(C, y(i), r(i+1)||r, s, t) = s · a` · y
(i)
j + t,

Enci,`,2,1(C, y(i), r(i+1)||r, s, t) = y
(i)
k − s,

Enci,`,2,2(C, y(i), r(i+1)||r, s, t) = ry
(i)
k + b` − t,

22 [AIK11] notes that the construction with the key-shrinking gadget removed should give a randomized encoding
scheme but does not actually analyze it. [AIK11] also notes that previous works give perfect randomized encodings
with the parameters that we want, but it remains unclear if those schemes can be made perfectly blind.
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where r, s and t are uniformly random Zp-elements. Define corresponding simulators

Simi,`,1,1(C, ỹ(i+1)
` ; r, s, t) = r,

Simi,`,1,2(C, ỹ(i+1)
` , r, s, t) = t,

Simi,`,2,1(C, ỹ(i+1)
` , r, s, t) = s,

Simi,`,2,2(C, ỹ(i+1)
` , r, s, t) = ỹ

(i+1)
` − rs− t,

where r, s and t are uniformly random Zp-elements.

• Define the encoding algorithm

Enci(C, y(i)) =
(
Enci,`,b,c(C, y(i); r(i+1)‖r`, s`, t`)

)
`,b,c

and simulator
Simi(C, y(d)) =

(
Simi,`,b,c(C, ỹ

(i+1)
` ; r`‖s`, t`)

)
`,b,c

where ỹ(i+1) = (ỹ(i+1)
` )← Simi+1(C, y(d)).

Finally, the overall encoding algorithm REp.Enc is defined to be Enc0 with associated simulator
REp.Sim = Sim0.

For decoding, Decd(ỹd) is defined to output ỹd, and Deci is defined to add every pair of “additive”
encodings (z1, z2) 7→ z1 + z2, combine multiplicative encodings by computing (z1, z2, z3, z4) 7→
z1z3 + z2 + z4, and then iteratively call Deci+1 on the resulting concatenation of Zp-elements. The
algorithm Dec0 is then defined to be the decoding algorithm associated to REp.Enc.

Correctness of the above scheme is clear by inspection. We argue by induction that this scheme
is perfectly private and perfectly blind.

Perfect blindness is shown inductively as follows: Simd(C, y(d)) := y(d) is a uniformly random
string when y(d) is uniformly random. Moreover, if Simi+1(C, y(d)) is a uniformly random string
when y(d) is a uniformly random string, then Simi(C, y(d)) is also uniformly random, as for each Zp-
element ỹ(i+1)

` of Simi+1, the four (or two, in the additive case) Zp-elements in the corresponding
Simi-simulation are sampled to be uniformly random strings (r, s, t, u) subject to the equation
rs + t + u = ỹ

(i+1)
` (or r + s = ỹ

(i+1)
` in the additive case). Thus, by induction we conclude that

Sim0 is perfectly blind.
Perfect privacy follows by a similar inductive argument; namely, Simd(C, y(d)) is clearly a per-

fectly private simulator for the identity function, and if Simi+1(C, y(d)) is a perfectly private simu-
lator for the function Bd ◦ . . . ◦Bi+2, then we see that Simi(C, y(d)) is a perfectly private simulator
for the function Bd ◦ . . . ◦ Bi+1. To see this, we note that for every circuit-input pair (C, y(i)), we
have

Simi
(
C, yd := (Bd ◦ . . . ◦Bi+1)(y(i))

)
≡
(
Simi,`,b,c(C, ỹ

(i+1)
` ; r`, s`, t`)

)
`,b,c

for ỹ(i+1) ← Simi+1(C, y(i)). By the induction hypothesis, we know that Simi+1(C, yd) is identi-
cally distributed to ỹ(i+1) ← Enci+1

(
C,Bi+1(y(i))

)
. Thus, it suffices to show that the distribution(

Simi,`,b,c(C, ỹ
(i+1)
` ; r`, s`, t`)

)
`,b,c

is identical to the distribution
(
Enci,`,b,c(C, y(i); r(i+1), (r`, s`, t`))

)
`,b,c

.
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But for each `, the corresponding component
(
Enci,`,b,c(C, y(i); r(i+1), (r`, s`, t`))

)
b,c

is simply a uni-

formly random tuple (α, β, γ, δ) ∈ Z4
p subject to the constraint that αγ+β+δ = ỹ

(i+1)
` (or a random

tuple (α, β) subject to α+β = ỹ
(i+1)
` in the additive case), which exactly matches the corresponding

distribution
(
Simi,`,b,c(C, ỹ

(i+1)
` ; r`, s`, t`)

)
b,c
. This completes the induction, and hence the proof of

Theorem 4.14.

Using Theorem 4.14, we now prove Theorem 4.13.

Proof. The randomized encoding scheme REapprox
p for circuits of output length ` is defined as follows.

• REapprox
p .Enc(C, x; R, r0, r1) uses as randomness R for REp.Enc as in Theorem 4.14 along with

(for each i ∈ [`]) Zlog( `
ε
)

p -elements23 r0,i sampled uniformly from the set {0, 1, . . . , p
log( `ε )−1

2 }

and Zlog( `
ε
)

p -elements r1,i sampled uniformly from the set {p
log( `ε )+1

2 , . . . , plog( `
ε
)−1}. It outputs

REp.Enc(C ′, (x, r0, r1); R)

where C ′(x, r0, r1) = r[y] := (ryi,i)i ∈ Z` log( `
ε
)

p for y = C(x).

• REapprox
p .Dec(C, ỹ) computes r = REp.Dec(C ′, ỹ) and then sets output bit yi to 0 if and only

if 0 ≤ ri ≤ plog( `ε )−1
2 (and sets yi = 1 otherwise).

• The simulator REapprox
p .Sim(C, y) will sample (r0, r1) as above and output REp.Sim(C ′, ry).

Perfect correctness of the above scheme is clear by inspection. Moreover, perfect privacy is
also clear: for any (C, x, r0, r1), we know that REp.Sim(C ′, r[C(x)]) is identical to the distribution
REp.Enc(C ′, (x, r0, r1)), which immediately implies perfect privacy of the new scheme.

Finally, we see that the scheme is (1− ε)-approximately blind, as for a uniformly random bit yi,
the resulting distribution on r = ryi is a (1 − 1

plog( `ε )
)-multiplicative approximation of the uniform

distribution on Zp (and is (1− 1
plog( `ε )

)-multiplicatively approximated by the same distribution). By
repetition, we see that for a uniformly random y, the resulting distribution on r = r[y] is (1 − ε)-
multiplicatively comparable to the uniform distribution on Z` log( `

ε
)

p . Thus, (1 − ε)-approximate
blindness follows from the perfect blindness of REp.

We now combine Theorem 4.13 with Imported Theorem 4.12 to obtain a randomized encoding
scheme R̃Ep satisfying the structural and security properties required to be used with an [ACPS09]-
like encryption scheme. In this scheme, we consider the following notion of evaluating boolean
circuits on Zp-inputs: if C is a boolean circuit with input length κ · dlog(p)e and x ∈ Zκp , we
define C(x) := C([[x]] := ([[x]]1 , . . . , [[x]]κdlog(p)e)), where [[x]]i is defined to be the ith bit of x in
the representation [0, p− 1]κ ⊂ ({0, 1}dlog(p)e)κ. We consider randomized encodings of circuit-input
pairs (C, x) of this form, in which encodings are strings over the alphabet Zp.

23We interpret elements of Zlog( `
ε

)
p as represented by integers in the range [0, plog( `

ε
) − 1].
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Theorem 4.15. Let p = p(κ) be an arbitrary prime (sequence) and ε = ε(κ) > 0. If sub-
exponentially secure one-way functions exist, there is a universal randomized encoding scheme R̃Ep
for polynomial-size boolean circuits with Zp-inputs with the following properties:

• R̃Ep is o(2−κ)-secure, and all operations run in time poly(κ, p).

• R̃Ep is (1− ε)-approximately blind.

• For any fixed choice of randomness r and circuit C, the function R̃Ep.Enc(C, x; r) is a Zp-
affine function of x.

Proof. The randomized encoding scheme R̃Ep is a certain kind of composition of REp with point-
and-permute garbled circuits (which we denote by RE).24 More specifially, R̃Ep works as follows:

• Input: A circuit C, input x ∈ Znp , and randomness r1, r2.

• Compute f2(r1), where RE.Enc(C, [[x]] ; r1) = f1(C, [[x]] ; r1)||f2(r1) as in Imported Theo-
rem 4.12.

• Output REp.Enc(f̃1, (C, x, r1, f2(r1); r2), where f̃1(C, x, r, r′) def= (f1(C, [[x]] ; r), r′) is inter-
preted as a Zp-arithmetic circuit and the bit-strings C and r are interpreted as strings over
the alphabet {0, 1} ⊂ Zp.

To see that this scheme is efficient, we note that REp is only used to compute randomized
encodings of a function f̃1(C, x, r, r′) with the property that each output bit depends on a constant
number of bits of [[x]] and a constant number of bits of (C, r, r′). This in turn depends on only
a constant number of Zp-blocks of the input (C, x, r, r′). We claim that any such function can
be computed by a O(log(p))-depth Zp-arithmetic circuit: a function f̃(z1, . . . , zc) of c-many Zp
symbols can be expressed in the following form:

f̃(z1, . . . , zc) =
∑

a1,...,ac∈Zp
f̃(a1, . . . , ac)

c∏
i=1

(1− (zi − ai)p−1).

The outer sum can be computed in log(p) depth, and each term can be computed in at most
1 + log(c) + log(p) depth with repeated squaring. Thus, REp can be used to encode the function f̃
with the desired efficiency.

The simulator for this scheme R̃Ep.Sim(y) will simply call REp.Sim(RE.Sim(y)). Simulation
security follows from a standard hybrid argument.

Finally, (1 − ε)-approximate blindness follows because RE.Sim(U`) is identical to the uniform
distribution on binary strings of the appropriate length by the perfect blindness of RE, and so
R̃Ep.Sim(RE.Sim(U`)) is (1−ε)-approximately comparable to the uniform distribution on Zp-strings
of the appropriate length by the (1− ε)-approximate blindness of R̃Ep.

24This does not exactly match the usual notion of composition, as in [AIK04] Lemma 4.11.
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A Scheme from Exponential LWE with Moderately Small Secrets. Combining Theo-
rem 4.11 with Theorem 4.15, we conclude that to construct a SIZE(κc)-KDM 2−κpoly(κ)-secure
encryption scheme with universal ciphertexts, it suffices to construct a F-KDM 2−κpoly(κ)-secure
encryption scheme (with universal ciphertexts), where F is the class of all Zp-linear functions.

We now claim that such an encryption scheme exists assuming the exponential hardness of
LWEn,`,q,χsec,χerr (Assumption 1) where q = pq′ for some q′, χsec is the uniform distribution on
[−p

2 ,
p
2) ⊂ Zq and χerr is the uniform distribution on [− q

2p ,
q
2p) ⊂ Zq.

To do this, we will use a modification of secret-key Regev encryption in the spirit of [ACPS09].
Our scheme (Gen,Enc,Dec) is as follows.

• Gen(1n, q, p) samples a uniformly random s← [−p
2 ,

p
2)n ⊂ Znq .

• Enc(s,m ∈ Z`p) samples a uniformly random matrix A← Zn×`q and error e← [− q
2p ,

q
2p)` and

outputs (A, stA+ et + q′ ·m).

• Dec(s, ct) interprets ct = (A, b), computes b− stA (mod q), rounds each entry to the nearest
multiple of q′, and divides each entry by q′.

Correctness of the encryption scheme is clear. Moreover, (Gen,Enc,Dec) satisfies the statistical
property required of a CCRR-compatible encryption scheme, as for any fixed s, a random encryption
Enc(s, U`,p) is identical to a uniformly random element of Zn×`q × Z`q.

Finally, we see that our scheme satisfies exponential KDM-security for Fp-affine functions of the
secret key by a similar reduction to that of Section 4.3.2. Namely, for a secret s← [−p

2 ,
p
2)n, given

an LWEn,`,q,χsec,χerr sample (A, b = stA+et) with A← Zn×`′q , one can efficiently produce a ciphertext
(A− 2q′B, b+ c) that is identically distributed to a Regev encryption of stB + c (mod p) with the
above parameters. Therefore, if some adversary A that is given a Regev encryption Enc(s, stB + c
(mod p)) recovers s with probability ε, then the adversary A′ that is given an LWE sample (A, b)
and computes A(A− 2q′B, b+ c) as above will also recover s with probability ε.

Discussion. Our scheme most notably differs from that of [ACPS09] in our choice of error dis-
tribution (which is also made possible by the fact that we consider a secret-key variant). Namely,
[ACPS09] takes the error distribution χerr to be the same as χsec (and they use Gaussian distri-
butions of width Θ(p) rather than uniform distributions as well). Using uniformly random secrets
(over intervals) and errors is required for the exponential security and statistical properties of our
encryption scheme to plausibly hold. However, we note that it is also possible to rely on an LWE
assumption in which our error distribution χerr is instead uniform on [−p

2 ,
p
2) (i.e. the same as

χsec). Namely, this LWE variant actually follows from the LWE variant that we assume here, with
the caveat that we must then take q > ` · p. The reduction is similar to the high-noise-to-low-noise
reduction in Theorem 4.6.

A Scheme from ElGamal Encryption. In addition to our LWE-based constructions, we note
that by combining our amplification theorem (Theorem 4.11) with point-and-permute garbled cir-
cuits, we can generically reduce the problem of constructing SIZE(κc)-KDM secure encryption
schemes (with universal ciphertexts and almost optimal security) to constructing circular secure
encryption schemes (with the same properties). In particular, we can plug in the variant of ElGa-
mal encryption defined in [CCRR18].25 We immediately conclude that if this variant of ElGamal

25In [CCRR18], this scheme was assumed to satisfy almost optimal KDM-security for arbitrary KDM functions.

31



encryption satisfies almost optimal circular security, then NIZK arguments exist (combining The-
orem 4.11 and Theorem 7.7).

5 Round-by-Round Soundness and Fiat-Shamir
In this section we define the notion of an interactive proof with round-by-round soundness, and
prove that correlation intractability for a specific related relation is sufficient for a hash family to
ensure that the associated Fiat-Shamir heuristic is sound.

5.1 Definitions: Interactive Proofs and Arguments

We being by recalling the definitions of interactive proofs and arguments. We focus on doubly-
efficient proof-systems, in which the prover is polynomial-time and the verifier is quasi-linear.

Definition 5.1. A doubly-efficient interactive proof (resp., interactive argument) for a promise prob-
lem L = (Lyes,Lno) is a pair (P, V ) of interactive algorithms satisfying:

• Completeness. For any x ∈ Lyes, when P and V interact on common input x, the verifier
V outputs 1 with probability 1.

• Soundness. For any x ∈ Lno∩{0, 1}n and any unbounded (resp., polynomial-time) interac-
tive P ∗, when P ∗ and V (x) interact, the probability that V outputs 1 is a negligible function
of n.

• Efficiency. V runs in time Õ(n) and P runs in poly(n) time, where n is the input length.

The protocol is public coin if each of V ’s messages is an independent uniformly random string of
some length (and the verifier’s decision to accept or reject does not use any secret state).

Definition 5.2. A two-message argument scheme is one in which the interaction consists of a
single message from the verifier to the prover followed by a single message from the prover to the
verifier. The scheme is delayed input if the joint distribution of the first message together with the
resulting verifier state also depends only on n.

A delayed-input two-message argument scheme is said to be adaptively sound if soundness holds
for a cheating prover that chooses x after seeing the verifier’s first message. The scheme is publicly
verifiable if the verifier’s first message includes the verifier’s subsequent state.

5.2 Round-by-Round Soundness

Definition 5.3 (Round-by-Round Soundness). Let Π = (P, V ) be a 2r-message public coin inter-
active proof system for a language L. For any x ∈ {0, 1}∗, and any prefix τ of a protocol transcript,
let V (x, τ) denote the distribution of the next message (or output) of V when the transcript so far
is τ and V was executed on input x.

We say that Π has round-by-round soundness error ε(·) if there exists a deterministic (not nec-
essarily efficiently computable) function State that takes as input an instance x and a transcript
prefix τ and outputs either accept or reject such that the following properties hold:

1. If x 6∈ L, then State(x, ∅) = reject, where ∅ denotes the empty transcript.
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2. If State(x, τ) = reject for a transcript prefix τ , then for every potential prover message α, it
holds that

Pr
β←V (x,τ |α)

[
State

(
x, τ |α|β

)
= accept

]
≤ ε(n)

3. For any full26 transcript τ , if State(x, τ) = reject then V (x, τ) = 0.

We say that Π is round-by-round sound if it has round-by-round soundness error ε for some
ε(n) = negl(n).

Remark 5.1. The completeness condition of the interactive proof implies that for x ∈ L (i.e., a
YES instance) and an honestly generated transcript τ , with high probability over the coins tossed,
it holds that State(x, τ) = accept.

Before diving into the proof that the Fiat-Shamir paradigm can be applied to any interactive
proof with round-by-round soundness (in Section 5.3), we first discuss some basic properties of
these type of protocols.

Round-by-round Soundness vs. Standard Soundness. A first basic observation is that
round-by-round soundness implies standard soundness (with a loss proportional to the number of
rounds).

Proposition 5.4. Let Π be 2r-message interactive proof with round-by-round soundness error ε.
Then, Π has standard soundness error r · ε.

Proof. By a union bound over the error in all of the rounds.

Conversely, standard soundness implies some (smaller) amount of round-by-round soundness.

Proposition 5.5. Let Π be a 2r-message interactive proof with soundness error µ. Then, Π has
round-by-round soundness error µ

1
r .

Proof. Let Π = (P, V ) denote a 2r-message (public coin) interactive proof with soundness error µ.
We associate to Π the following State function, defined inductively for partial transcripts of length
2i.

• Given a full transcript τ , we define State(x, τ) = accept if and only if V (x, τ) accepts.

• Inductively, given a transcript τ of length 2i, we define State(x, τ) = accept if and only if
there exists a message α∗i+1 such that

Pr
βi+1

[
State(x, τ |α∗i+1|βi+1) = accept

]
> µ

1
r .

We claim that Π has round-by-round soundness error µ
1
r with respect to this State function. We

note that properties (2) and (3) of round-by-round soundness are satisfied by construction. All
that we need to verify is property (1), i.e., that State(x, ∅) = reject for x 6∈ L. To see this, we note

26By a full transcript, we mean a transcript for which the verifier halts.
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that if x 6∈ L but State(x, ∅) = accept, then by definition of State, there exists a prover strategy P ∗
such that

Pr
β=(β1,...,βr)

[State(x, τP ∗,β) = accept] > (µ
1
r )r = µ,

where τP ∗,β denotes the transcript associated to prover strategy P ∗ and verifier messages β. This
contradicts the µ-soundness of Π (since if State(x, τP ∗,β) = accept then the verifier accepts). Thus,
we conclude that Π satisfies round-by-round µ

1
r -soundness with respect to State, as desired.

Finally, we note that Proposition 5.5 is tight in its security loss.

Proposition 5.6. There exists an r-round interactive proof with soundness error 2−r that does not
have round-by-round soundness error 1

2 − ε for any ε > 0.

Proof. Consider the following interactive proof for the empty language. On input x ∈ {0, 1}n, the
protocol proceeds as follows. In each round the prover sends nothing, then the verifier tosses a
fresh coin and sends the result to the prover. After r rounds the verifier accepts if and only if all
coin tosses were 0.

Clearly this constitutes an interactive proof for the empty language (with soundness error
2−r). Suppose that the protocol has round-by-round soundness error 1/2 − ε and let State be a
corresponding state function. Fix also an arbitrary input x∗ (a NO input, needless to say).

By the first property of round-by-round soundness State(x∗, ∅) = reject. On the other hand, by
the third property, it holds that State(x∗, 0r) = accept (since the verifier accepts in case all coin
tosses were 0).

Thus, there must exist i ∈ [r] such that State(x∗, 0i) = reject and State(x∗, 0i+1) = accept. This
means that

Pr
b∈{0,1}

[
State(x∗, 0i|b) = accept

]
≥ 1

2 ,

in contradiction to the second property of round-by-round soundness.

Parallel Repetition and Round-by-Round Soundness. Given an interactive proof Π =
(P, V ) we can consider the k-fold parallel repetition of Π, denoted by Πk = (P k, V k), in which (P, V )
is executed k times independently and the verifier accepts if and only if a majority of executions
accept.27 It is known that parallel repetition reduces the completeness error and soundness error of
interactive proofs at an exponential rate (see [Gol99, Lemma C.1]).28 Together with Proposition 5.5,
this implies that any sound public coin proof system can be converted into one satisfying round-
by-round soundness.

Corollary 5.7. Suppose that Π is a 2r-round (public coin) proof system with soundness error µ.
Then, Πk has round-by-round soundness error µ

k
r .

27In case the base protocol (P, V ) has perfect completeness, it suffices for V k to check that all executions accept.
28The fact that the completeness error is reduced at an exponential rate is trivial. Soundness is more difficult to

analyze though since a cheating prover for V k does not have to act independently on the k executions. Nevertheless,
it was shown [Gol99, Lemma C.1] that the soundness error is reduced at an exponential rate.
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5.3 Round-by-Round Soundness and Fiat-Shamir

The main result of this section is that the Fiat-Shamir transform for compressing a public-coin
interactive proof Π into a non-interactive transform is provably (adaptively) sound when applied
to round-by-round sound interactive proofs using a hash family satisfying a restricted form of
correlation intractability.

Specifically, we show that it suffices for the hash family to be correlation intractable with
respect to a specific relation, which we now define. Let Π be an interactive proof with round-by-
round soundness error ε and let State be a corresponding state function. For every n ∈ N, we define
a relation R(n)

State as follows:

R
(n)
State

def=


((
x, τ |α

)
, β
)

:

x ∈ {0, 1}n,
State(x, τ) = reject

and
State(x, τ |α|β) = accept

 .

We define the relation ensemble RState = (R(n)
State)n∈N.

Note that RState is ε-sparse, since Π has round-by-round soundness ε. When there is a canonical
choice of the function State for a protocol Π, we will often write RΠ to denote RState.

Theorem 5.8. Suppose that Π = (P, V ) is a 2r-message public-coin interactive proof for a language
L with perfect completeness, polylog(n) total bits of prover-to-verifier communication, and round-
by-round soundness with a corresponding state function State. Let Xn denote the set of partial
transcripts (including the input and all messages sent) and let Yn denote the set of verifier messages
when Π is executed on an input of length n. If a hash family H = {Hn : Xn → Yn} is RState-
correlation intractable and evaluable in time Õ(n),29 then the algorithms (Gen, P̃ , Ṽ ) as defined
below constitute an adaptively sound publicly verifiable argument for L.

• On input 1n, Gen samples H ← Hn, and publishes H as a common reference string (or
common random string if H ← Hn is a uniformly random binary string of some length.

• On input x, the prover P̃ sends the r strings α1, . . . , αr that P would send on input x if the
verifier’s messages were given by βj = H(x, α1|β1| · · · |αj) for j ∈ [r]

• The verifier Ṽ , on input x∗ and α∗1, . . . , α∗r (which might be chosen maliciously) iteratively
computes

β∗j = H
(
x∗, α∗1|β∗1 |α∗2| . . . |β∗j−1|α∗j

)
for each j ∈ [r]. The verifier then accepts if and only if V (x∗, α∗1|β∗1 | . . . |α∗r |β∗r ) = 1.

Remark 5.2 (On Interactive Proofs with Imperfect Completeness). Theorem 5.8 applies to pro-
tocols with perfect completeness. However, it can be easily extended to protocols with imperfect
completeness by further requiring that the correlation intractable hash function is r-wise inde-
pendent (so as to assure the correct distribution of verifier messages). This can be done without
loss of generality by xor-ing the (bounded) correlation intractable hash function with an r-wise
independent hash function, which preserves (bounded) correlation intractability.

29This is only due to our definition of a doubly-efficient argument, which stringently requires that the verifier’s
running time is Õ(n).
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Proof of Theorem 5.8. Completeness follows immediately from the perfect completeness of (P, V ).
We proceed to show the adaptive soundness of the argument scheme. Suppose that a cheating

prover P ∗ given input (1n, H) produces, with probability at least ε = ε(n), a string x∗ ∈ {0, 1}n \L
and (α∗1, . . . , α∗r) such that V accepts the transcript derived from H(·). Let τi denote the transcript
prefix α∗1|β∗1 | · · ·α∗i |β∗i with β∗j defined as above.

Properties 1 and 3 of round-by-round soundness (see Definition 5.3) imply that for any accepting
transcript τ for x /∈ L there is at least one index i ∈ [r] such that State(x, τi) = reject and
State(x, τi+1) = accept. Thus, there must exist some index i∗n ∈ [r] such that with probability at
least ε

r , the output of P ∗ satisfies that State(x, τi∗) = reject and State(x, τi∗+1) = accept.
This fact can be used to construct an adversary A = {Aλ} that violates the RState-correlation

intractability of H: on input H ← Hn, Aλ runs P ∗(1n, H) to obtain x∗ and (α∗1, . . . , α∗r), computes
βj = H(x∗, τj−1|αj) for all j, and outputs τi∗ |α∗i+1. This is a contradiction, so the protocol must
be adaptively sound.

6 Publicly Verifiable SNARG
We present our construction of a publicly verifiable SNARG based on the GKR interactive protocol.
We begin in Section 6.1 by recalling some standard algebraic facts and notations.

Font Conventions. Throughout this section we will use the convention that blackboard bold
lowercase (e.g., z) is used for field elements whereas standard bold lowercase (e.g., z) is used for
bits. Likewise, we use z̄ to denote vectors of field elements and z̄ to denote bit strings.

6.1 Fields and Polynomials

We recall the definition of the multilinear extension and explicit representations of finite fields.

Definition 6.1 (Multilinear Extension). For any function f : {0, 1}n → {0, 1} and any field F,
the multilinear extension of f over F is the (uniquely) defined multilinear polynomial f̂ : Fn → F
satisfying f̂(x) = f(x) for each x ∈ {0, 1}n.

The polynomial f̂(z) is given explicitly by the formula

f̂(z) =
∑

x∈{0,1}n
f(x) · βx→z̄

where βx→z̄
def=
∏
i∈[n]

(
xi · zi + (1− xi) · (1− zi)

)
.

When the field F is clear from the context, we will omit it and simply say that f̂ is the multilinear
extension of f .

Definition 6.2. A TF(·)-time explicit representation of a finite field ensemble F = {Fi}i∈I is an
algorithm for solving each of the following problems in time TF(i) given an index i ∈ I.

• Field Membership. Given an additional string z, decide whether or not z ∈ Fi.

• Enumerability. Evaluate some bijection ϕi : [|Fi|]→ Fi.

• Explicit 0 and 1. Compute 0 ∈ Fi and 1 ∈ Fi.
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• Efficient Field Operations. Evaluate the operations +, −, ×, and ÷ on Fi.

• Sampleable. Sample from the uniform distribution on Fi.

When a TF(·)-time explicit representation exists, we say that F is TF(·)-time representable.

6.2 GKR: Round by Round Soundness and Efficient Sampleability

In this section, we briefly describe the interactive proof system of Goldwasser, Kalai, and Roth-
blum [GKR08], hereafter referred to as GKR. We explain why GKR (or rather a simplification due
to Goldreich [Gol17]) has round-by-round soundness, and we show that the corresponding relation
(as defined in Section 5) can be sampled in polynomial time.

We start by using a result from [Gol17] that allows one to transform uniform low depth circuits
into a form that is convenient for the GKR protocol.

Imported Lemma 6.3 ( [Gol17]). If L is a promise problem decidable by an ensemble of log-
space uniform boolean circuits of size S′ = S′(n) (without loss of generality S′(n) ≥ n) and depth
d′ = d′(n), then L is also decidable by an ensemble {Cn} of boolean circuits that satisfies the
following uniformity properties:

• Cn has size S(n) ≤ poly(S′(n)) and depth d(n) ≤ d′(n) · polylog(S′(n)). Assume without loss
of generality that S(n) is a power of two, and define s(n) def= log2 S(n).

• The gates of Cn have fan-in 2, and each compute either ⊕ or ∧.

• The gates of Cn can be (uniquely) partitioned into layers such that the inputs to a gate in
layer i are outputs of gates in layer i− 1, with the input wires viewed as layer 0.

• The wires of Cn can be labeled with the numbers 1 through S(n) (equivalently with s(n)-bit
strings) so that:

– The first n wires of Cn are the input wires.
– The last wire of Cn is the output wire.
– Let “wiring predicates” addn,multn :

(
{0, 1}s(n))3 → {0, 1} be defined so that addn (re-

spectively, multn) applied to (w1, w2, w3) is 1 iff w3 is an ⊕ (respectively, ∧) gate whose
input wires are w1 and w2, in that order.
Then both addn and multn are computable by polylog(n)-sized boolean formulas that them-
selves are computable from n in polylog(n) time. In particular this implies that over any
TF(·)-time representable finite field ensemble F = {Fi}, there exist polylog(n)-degree ex-
tensions ãddn,i, m̃ultn,i :

(
Fs(n)
i

)3 → Fi that are evaluable in time polylog(n) · TF(i).

Low-Degree Arithmetization. GKR depends on several polynomials, which we now define. Fix
L = (Lyes,Lno) to be any promise problem that is decidable by log-space uniform circuits of size
S′(n) and depth d′(n).30 Let {Cn} denote a circuit family that decides L as in the conclusion of
Imported Lemma 6.3.

30Recall that log-space uniformity implies that S′(n) = poly(n).
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For any x ∈ {0, 1}n, any field F , any i ∈ {0, . . . , d(n)}, and any j ∈ [3 · s(n)], we define
polynomials V̂ (i)

x,F : Fs(n) → F and P (i)
x,j,F : Fj × Fs(n) → F as follows.

We first define a function V (i)
x : {0, 1}s(n) → {0, 1} so that V (i)

x (w) is 1 iff wire w is in layer i and
carries the value 1 when Cn is evaluated on x. The polynomial V̂ (i)

x,F is defined as the multi-linear
extension of V (i)

x over the field F (see Definition 6.1 for the definition of the multilinear extension).
The polynomial P (i)

x,3s(n),F : F4s(n) → F is defined as

P
(i)
x,3s(n),F(w̄1, w̄2, w̄3, w̄) def=

 ãddn(w̄1, w̄2, w̄3) ·
(
V̂

(i−1)
x (w̄1) + V̂

(i−1)
x (w̄2)

)
+

m̃ultn(w̄1, w̄2, w̄3) · V̂ (i−1)
x (w̄1) · V̂ (i−1)

x (w̄2)

 · βw̄3→w̄. (2)

with βw̄3→w̄ as in Definition 6.1 on page 36. For j ∈ {0, . . . , 3s(n)−1}, the we define a polynomial
P

(i)
x,j,F as follows

P
(i)
x,j,F(z1, . . . , zj , w̄) def=

∑
zj+1∈{0,1}

P
(i)
x,j+1,F(z1, . . . , zj , zj+1, w̄) (3)

for z1, . . . , zj ∈ F and w̄ ∈ Fs(n). The polynomials P (i)
x,j,F are often referred to as the “sumcheck

polynomials”, arising from the sumcheck protocol of [LFKN92] that we are implicitly using.
By the definitions of the wiring predicates and multi-linear extension, it holds for any i, any w̄,

and any field F of characteristic two that

V̂
(i)
x,F(w̄) = P

(i)
x,0,F(w̄) (4)

=
∑

w̄1,w̄2,w̄3∈{0,1}s(n)

P
(i)
x,3s(n),F(w̄1, w̄2, w̄3, w̄)

These polynomials each have degree polylog(n), and the relations between them are at the heart of
the GKR interactive proof scheme, which we now describe.

The Protocol and Round-by-Round Soundness. Let {Fn}n be a polylog(n)-time explicit
representation of finite fields of characteristic two and order |Fn| ≥ nω(1), |Fn| ≤ 2polylog(n). When
executed on input x ∈ {0, 1}n, the protocol will only involve polynomials over the field Fn, and we
omit subscripts accordingly.

Throughout the GKR protocol, both the prover and verifier maintain a list of pending claims.
The initial claim, corresponding to the assertion that x ∈ Lyes, is that V̂ d(n)

x (wout) = 1, where wout
is the label of the output wire of Cn. In general claims will be of the form p(ū) = v where p is one
of the above polynomials, and ū and v are arbitrary.

In each round, the prover and verifier: (1) reduce multiple claims regarding some polynomial
p to a single claim regarding p, and (2) reduce that claim to several claims about a “simpler”
polynomial.

1. Suppose that the currently pending claims are p(ū1) = v1, . . . , p(ūk) = vk (k will in fact
always be at most 2). For some canonical association of the set [k] with a subset of F, the
prover and verifier construct the unique degree k − 1 polynomial curve for which γ(i) = ūi
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for all i ∈ [k]. The prover sends to the verifier an explicitly represented univariate polynomial
g∗ that has degree at most (k − 1) · deg(p) and is purportedly equal to p ◦ γ. The verifier
checks that g∗(i) = vi for each i ∈ [k], and responds with a random challenge r ← F. All
claims about p are then replaced with the single claim that p(ū∗) = v

∗, where ū∗ = γ(r) and
v
∗ = g∗(r).

2. The polynomial p has a defining equation – either Equation (2), (3), or (4) – that expresses
p(ū∗) as a function ϕ applied to a constant number of other polynomial evaluations. The
prover sends these other evaluations, and the verifier checks that applying ϕ yields v∗.

After r(n) = O
(
d(n) · s(n)

)
rounds a single claim remains, regarding X̂(0)

x . Such a claim is directly
checkable by the verifier in Õ(n) field operations.

Theorem 6.4. For every promise problem L = (Lyes,Lno) in log-space uniform NC, there is a
public-coin interactive proof Π for L with verifier running time Õ(n), prover running time poly(n),
and round-by-round soundness error negl(n). Moreover, the corresponding relation RΠ is sampleable
in poly(n) time.

Proof. The prover and verifier efficiency claims follow directly from examination of the above pro-
tocol.

We define State so that State(x, τi−1) is accept if each pending claim after τi−1 is true, and
otherwise State(x, τi−1) is reject. All the polynomials involved are evaluable in time poly(S), which
by log-space uniformity is poly(n), so State is too.

We analyze the round-by-round soundness error of steps 1 and 2 of the protocol, described
above.

The round-by-round soundness error incurred in step 1 is the fraction of r’s for which g∗(r) =
p(γ(r)). The assumption that the currently pending claims are not all true implies that the poly-
nomials g∗ and p ◦ γ are not equal, so the fraction of “bad r’s” is bounded by k·deg(p)

|F| . With our
choice of F, this is negligible in n.

Step 2 incurs no round-by-round soundness error: if v∗ 6= p(ū∗), then at least one of the
right-hand-side claims must be false.

To write the relation RΠ more explicitly, we first observe by inspection of Eqs. (2) to (4) that
there is a fixed sequence of polynomials Q1, . . . , Qr such that claims in the ith round are about Qi.
RΠ consists of the pairs

(
(x, τ |α), r

)
for which:

• α and β are in Fn, where n is the length of x.

• τ is of the form α1|β1| · · · |αi|βi for some 0 ≤ i < r(n).

• Each αj is of the form (vj,1,vj,2, gj), for some vj,1,vj,2 ∈ Fn and some gj that is a degree-
polylog(n) univariate polynomial, represented as a list of coefficients in Fn.

• Each βj lies in Fn.

• Of the claims “Qi+1(ūi+1,1) = vi+1,1” and “Qi+1(ūi+1,2) = vi+1,2” that are pending after the
prover sends αi+1, at least one claim is false, but gi+1(1) = vi+1,1 and gi+1(2) = vi+1,2.

• gi+1(r) = Qi+1
(
(1− r) · vi+1,1 + r · vi+1,2

)
.
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The algorithm for sampling RΠ works as follows. Given a transcript τi−1|αi, compute the list of
pending claims p(ū1) = v1, . . . , p(ūk) = vk that follow τi−1. If all pending claims are correct, then
there is nothing to do. Otherwise, let γ denote the unique degree k− 1 polynomial curve for which
γ(i) = ūi for all i ∈ [k], and parse αi as a univariate polynomial g∗. A verifier message βi ∈ F is
bad – that is,

(
(x, τi−1|αi), βi

)
∈ RΠ – if and only if g∗(βi) = p(γ(βi)).

Thus, to sample from RΠ, we just need to output a random root of g∗ − p ◦ γ. Using the
Cantor-Zassenhaus algorithm [CZ81], we can enumerate all roots with probability 2

3 , and therefore
with any probability arbitrarily exponentially close to 1 (i.e., 1 − e−poly(n) for any desired poly).
If this factorization succeeds, we can sample an element from the set of all roots with arbitrarily
exponentially small sampling error, giving the stated result.

6.3 Publicly Verifiable Delegation for Log-Space Uniform NC
Theorem 6.5. If Assumption 2 holds, then every promise problem in log-space uniform NC has a
publicly verifiable non-interactive argument scheme with adaptive soundness such that for inputs of
length n:

• The scheme uses a common random string of length Õ(n).

• Proofs are of length polylog(n) and are generatable in time poly(n).

• Proofs are publicly verifiable in time Õ(n).

Proof. Our construction uses the following building blocks.

• The round-by-round sound interactive proof of Theorem 6.4.

• A secret-key encryption scheme SKE = (SKE.Gen,SKE.Enc,SKE.Dec) with keys of length
κ = κ(λ) ≥ λΩ(1) and universal ciphertexts that are 2−κ · poly(κ)-KDM-secure for arbitrary
poly(λ)-size computable functions of the secret key.31 Specifically, Assumption 2 implies that
secret-key Regev encryption satisfies these properties, with secret distribution χsec that is
uniform on [−B,B) for some B specified below and error distribution χerr that is uniform on
[− q

4 ,
q
4).

Furthermore, the proof of security of our delegation scheme uses an additional building block:

• A (secret-key) fully homomorphic encryption scheme FHE that is 2−|sk| · poly(|sk|)-circular
secure. We instantiate FHE using the [BV14] FHE scheme in which the underlying LWE secret
and error distributions (χsec and χerr) are uniform in the range [−B,B) for B ≈ q

n.51 maxi |βi| .
Here, |βi| = polylog(n) denotes the length of the ith verifier message in the [GKR08] protocol.

Combining Theorem 3.11, Theorem 5.8, Theorem 6.4, and Theorem 4.6, we conclude that the
following protocol is a succinct non-interactive argument system for log-space uniform NC.

• Input: An instance x ∈ Lyes ∪ Lno.
31If given a time bound T in advance for the computations to be supported in the delegation protocol, there is an

explicit polynomial p(|sk|) that can replace the “arbitrary poly(|sk|)” condition. However, the description size of the
hash function must depend only logarithmically on T .
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• Common Random String: A uniformly random string h that describes a Regev ciphertext
ct ∈ Z(n′+1)×m

q where n′·blog(2B + 1)c is at least the length of a [GKR08] transcript (including
the input x), and m is at least as large as any verifier message.

• Proof : messages αi computed according to the [GKR08] prover algorithm, where the verifier
messages β1, . . . , βr are computed inductively by first padding the transcript prefix τj

def=
α1|β1| · · · |αj so that it can be viewed as an element of [−B,B)n′ , and then computing βj =
SKE.Dec(τj , h),

• Verification: The verifier accepts the transcript (h, α1, . . . , αr) as a proof for x if the GKR
verifier algorithm accepts the transcript α1|β1| · · · |βr−1|αr on input x, where each βi is com-
puted as above.

Security follows from the exponential KDM-security of SKE (and the universal ciphertexts property
of SKE, which holds unconditionally), which in turn follows from the exponential circular security
of FHE.

We are able to achieve an even shorter CRS (any nε rather than Õ(n)) if we are willing to settle
for non-adaptive soundness.

Theorem 6.6. If Assumption 2 holds, then for every promise problem L = (Lyes,Lno) in log-space
uniform NC and every ε > 0, there is a publicly verifiable non-interactive argument scheme with
non-adaptive soundness such that for inputs of length n:

• The scheme uses a common random string of length O(nε).32

• Proofs are of length polylog(n) and are generatable in time poly(n).

• Proofs are publicly verifiable in time Õ(n).

7 Non-Interactive Zero Knowledge
We present the construction of Non-Interactive Zero Knowledge (NIZK) Arguments assuming that
LWE holds with exponentially small inversion probability (and suitable parameters). We begin by
recalling the definition of NIZK.

7.1 Non-Interactive Zero Knowledge Arguments

Definition 7.1. A non-interactive zero knowledge (NIZK) argument system Π for an NP relation R
consists of three ppt algorithms (Setup, P, V ) with the following syntax.

• Setup(1n) takes as input a statement length n and outputs a common reference string crs.

• P (crs, x, w) takes as input the common reference string, as well as x and w such that (x,w) ∈
R. It outputs a proof π.

32Under stronger but still plausible assumptions, the common random string can instead have length polylog(n);
this would correspond to assuming FHE satisfying almost-optimal security against subexponential-time adversaries.
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• V (crs, x, π) takes as input the common reference string, a statement x, and a proof π. It
outputs a bit b. If b = 1, we say that V accepts, and otherwise we say that V rejects.

The proof system Π must satisfy the following requirements. Recall that L(R) denotes the language
{x : ∃w s.t. (x,w) ∈ R} and Rn denotes the set R ∩ ({0, 1}n × {0, 1}∗).

• Completeness. For every (x,w) ∈ R, it holds with probability 1 that V (crs, x, π) = 1 in the
probability space defined by sampling crs← Setup(1|x|) and π ← P (crs, x, w).

• Soundness. For every
{
xn ∈ {0, 1}n \ L(R)

}
and every polynomial size P ∗ = {P ∗n}, there is

a negligible function ν such that

Pr
crs←Setup(1n)
π←P ∗n(crs)

[
V (crs, xn, π) = 1

]
≤ ν(n).

• Zero Knowledge. There is a ppt simulator Sim such that for every ensemble
{
(xn, wn) ∈

Rn
}
, the distribution ensembles {(

crsn, P (crsn, xn, wn)
)}

n

and {
Sim(xn))

}
n

are computationally indistinguishable in the probability space defined by sampling crsn ←
Setup(1n) (and evaluating P and Sim with independent and uniformly randomness).
If the distributions are statistically indistinguishable, then Π is said to be statistically zero
knowledge.

A NIZK argument system can also satisfy various stronger properties. We list two important
variants below.

• Public Coin (or “Common Random String”): Π is called public coin (aka, a NIZK in the
common random string model) if Setup(1n) simply samples and outputs a uniformly random
string.

• Adaptive Soundness: Π is adaptively sound if for every polynomial size algorithm P ∗ =
{P ∗n}, there is a negligible function ν such that for all n,

Pr
crs←Setup(1n)
(x,π):=P ∗n(crs)

[x /∈ L(R) ∧ V (crs, x, π) = 1] ≤ ν(n).

7.2 NIZK from Bounded Correlation Intractability

In this section, we construct NIZK arguments in the common random string (CRS) model from hash
families that are correlation intractable with respect to efficiently samplable relations. We obtain
these NIZK arguments by applying the Fiat-Shamir transform to an instantiation of the [GMW91]
proof system (repeated in parallel) in which the underlying commitment scheme is encryption under
a public key that is included as part of the CRS).
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With a generic public-key encryption scheme or with a secret-coin hash family, this approach
yields NIZKs with a common reference string.33 However, if the public key encryption scheme and
the hash family both have pseudorandom (public) keys, then this approach yields NIZK arguments
in the common random string model. Also, we show that if encryption under a uniformly random
public key34 is lossy [KN08,PVW08,BHY09], then this argument system is statistical zero knowl-
edge (rather than just computational zero knowledge). Finally, we note that we can also obtain
adaptive soundness if the Fiat-Shamir hash function is applied to the concatenation x||a (where a
is the first message of a three-round protocol) rather than just to a.

We begin by recalling the folklore notion of a “commit-challenge-response” proof system. In
particular, the [GMW91] protocol for the (NP-complete) problem of 3-coloring falls into this frame-
work. We include for completeness an explicit definition that is taken verbatim from [HL18].

Definition 7.2 (Commit-Challenge-Response Proof System). A 3-message proof system Π =
(P, V ) for a language L with witness relation R is called commit-challenge-response if it satisfies
the following properties.

1. The first message is sent by the prover to the verifier. This message, which we denote by a,
consists of a block-wise commitment (under a statistically binding commitment scheme) to a
string y that is a function of both the common input x and the prover’s private input w.

2. The second message, which we denote by e and refer to as the verifier’s “challenge”, is sent
by the verifier to the prover and is sampled uniformly at random from a poly(|x|)-size alphabet
Σ.

3. The third and final message, which we denote by z, is sent by the prover to the verifier, and
consists of a decommitment to yT , i.e., a subset T of the blocks of y. Here, T is a function
of the challenge e.

4. The verifier V accepts if and only if (1) z is a valid decommitment of aT , and (2) the tuple
(x, yT , e) passes some efficient test Check, where yT is the value to which aT was decommitted.

In order to obtain our result on statistical zero knowledge, we also a define a specific kind of
honest-verifier zero knowledge for commit-challenge-response protocols.

Definition 7.3 (Special Honest-Verifier Zero Knowledge). We say that a commit-challenge-response
proof system Π is special honest-verifier zero knowledge if there is a ppt simulator SHVSim that
on input x produces a string (e, yT (e)) that is identical to the distribution of (e, yT (e)) where e is
uniformly random and y is produced by the honest proving algorithm P (x,w).

We note that if a commit-challenge-response protocol Π is special honest-verifier zero knowledge,
then it is also honest-verifier zero knowledge; the simulator simply runs SHVSim(x) and then
commits to a string ỹ that matches yT (e) in the locations corresponding to T (e) and satisfies ỹj = 0
otherwise.

Given any commit-challenge-response proof system Π = (P, V ) and any public key encryption
scheme PKE = (PKE.Gen,PKE.PKE.Enc,PKE.Dec), we instantiate the commitment scheme in Π

33In the common reference string model, the prover and verifier have shared access to a CRS sampled by some
trusted setup algorithm. In the common random string model, the CRS is required to be a uniformly random string.

34By “uniformly random public key”, we mean a public key that is a uniformly random string, rather than a public
key sampled according to the key generation algorithm.
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using PKE. That is, Π is augmented with a common reference string pk (a public key sampled using
PKE.Gen) and a commitment commit(pk, b) is sampled by calling PKE.Enc(pk, b). The encryption
randomness used in the call to PKE.Enc(pk, b) serves as a decommitment for the bit b.

We will apply the Fiat-Shamir transform to Π repeated λ · |Σ| times in parallel.35 The repeated
protocol Πλ·|Σ| consists of three messages (a, e, z), and for a fixed secret key sk and instance x 6∈ L,
we consider the relation

Rx,sk =
{

(a, e) : Check
(
x, y

(i)
T (e(i)), e

(i)
)

= 1 for all i, where y = Dec(sk,a)
}
.

In [HL18], it was shown that

Imported Theorem 7.4 ( [HL18], see Theorem 6.6). If H is correlation intractable with respect
to all relations of the form Rx,sk, then applying the Fiat-Shamir transform to Πλ·|Σ| yields a sound
two-message protocol.

In order to obtain adaptive soundness, we define a new relation Rsk as follows:

Rsk =
{

((x,a), e) : x 6∈ L and Check
(
x, y

(i)
T (e(i)), e

(i)
)

= 1 for all i, where y = Dec(sk,a)
}
.

As written, the length of the “output” e may depend on the input x (i.e. not just its length);
however, we can extend this relation by padding the output up to the maximum length of e as a
function of n.

We first note the following.

Lemma 7.5. Rsk is sparse and non-uniformly efficiently samplable for every (pk, sk) in the support
of PKE.Gen.36

Proof. The sparsity of Rsk follows from the 2−Ω(λ)-soundness of Πλ·|Σ|.37 To see this, note that
because Π is sound, we have in particular that for every x 6∈ L and every string y, with 1− 2−Ω(λ)

probability over the choice of e, we have that Check
(
x, y

(i)
T (e(i)), e

(i)
)

= 0 for some i. Therefore, we
have that for every a, the same statement holds for y = PKE.Dec(sk,a) (and every x 6∈ L). Thus,
Rsk is 2−Ω(λ)-sparse.

To see that Rsk is efficiently samplable, we note that given x,a and sk, we can compute
y = Dec(sk,a); then, for each block y(i), we can enumerate over all challenges e(i), compute
Check(x, y(i)

T (e(i))), and then sample a uniformly random e(i) subject to passing the check.

We will use this fact to construct a NIZK argument system for NP assuming public-key encryp-
tion and programmable hash functions that are correlation intractable for all efficiently samplable
relations. This follows the NIZK constructions of [CCRR18,HL18]. In addition, and as noted above,
we prove that for special PKE schemes such as Regev encryption, the NIZK can be made to satisfy
statistical zero knowledge and rely on a common random string.

Construction 7.6. Suppose that:
35Parallel repetition is done so that the soundness error is reduced to 2−Ω(λ).
36It is worth noting that Rsk may not be efficiently decidable, as this would require deciding whether x ∈ L. We

only need to be able to sample a uniformly random “bad” challenge when promised that x 6∈ L.
37We technically need the fact that 2−Ω(λ)-soundness holds for every fixed choice of (pk, sk).
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• Π = (P, V ) is a commit-challenge-response proof system for a language L,

• PKE = (Gen,Enc,Dec) is a public key encryption scheme, and

• H is a hash family.

We then define NIZKΠ,PKE,H
FS = (Setup, P̃ , Ṽ ) as follows.

• Setup: On input 1n, the setup algorithm samples pk ← Gen(1n) and h ← Hn, and then
outputs the common reference string (pk, h).

• P̃ : On input
(
(pk, h), x, w

)
, the prover P̃ generates a proof π that consists of:

– λ · |Σ| independently sampled first messages (commitments) a =
(
a(1), . . . , a(λ·|Σ|)

)
that

arise from instantiating P with the non-interactive commitment Enc(pk, ·).

– The responses z =
(
z(1), . . . , z(λ·|Σ|)

)
of P that correspond to the λ · |Σ| challenges

e = (e(1), . . . , e(λ·|Σ|)) obtained as an appropriate-length prefix of h(x||a).

• Ṽ : On input
(
(pk, h), x, π), the verifier accepts iff V accepts the λ·|Σ| transcripts

(
pk, x, a(i), e(i), z(i)

)
where e is again the first λ · |Σ| · log(|Σ|) bits of h(x||a).

Theorem 7.7. Suppose that:

• Π = (P, V ) is an honest-verifier zero knowledge commit-challenge-response proof system for
an NP language L.

• PKE = (Gen,Enc,Dec) is a public key encryption scheme.

• H is a hash family (with appropriate input and output lengths) that is correlation intractable
for all efficiently samplable relations, and in addition satisfies the following additional prop-
erty:

– Approximate Average-Case Programmability: There is an efficient sampling al-
gorithm h ← Samp(a, e) such that for any fixed a, the distribution {h ← Samp(a, e)}
for uniformly random e is statistically indistinguishable from h← H.

Then, the protocol Π̃ (as in Construction 7.6) is an adaptively sound NIZK argument scheme for
L.

Moreover:

1. If public keys pk generated using PKE.Gen are (computationally) pseudorandom and H has
(computationally) pseudorandom keys, then Π̃ is an adaptively sound NIZK when the CRS is
instead sampled to be a uniformly random string.

2. If a uniformly random public key pk of the scheme is lossy – meaning that (pk,Enc(pk, 0)) ≈s
(pk,Enc(pk, 1)) when pk is sampled uniformly at random – and Π satisfies special honest-
verifier zero knowledge, then Π̃ is an adaptively sound non-interactive statistical zero knowl-
edge (NISZK) argument system.
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3. If condition (2) holds and H has statistically pseudorandom keys, then Π̃ is an adaptively
sound NISZK argument when the CRS is sampled to be a uniformly random string.

Proof. Completeness of the protocol follows directly from the completeness of Π.
We next argue (adaptive) soundness. Suppose that some efficient algorithm A, given (pk, h),

is able to produce (x,a, z) such that, with non-negligible probability, it holds that x 6∈ L and
Π̃.V (pk, h, x,a, z) = 1. We then define the following algorithm A′ breaking the correlation in-
tractability of H.

• A′ first samples (pk, sk)← PKE.Gen(1λ) and chooses the relation Rsk defined as above.

• A′ is then given a hash function h ← H. It runs A(pk, h), obtaining (x,a, z) and outputs
(x,a).

To see that this breaks the correlation intractability of H with respect to Rsk, we note that
whenever Π̃.V (pk, h, x,a, z) = 1, z must contain valid decommitments to some strings ỹ(i)

T (ei) for each
i (where e is computed as in Construction 7.6), which are necessarily the corresponding blocks of
PKE.Dec(sk,a) by perfect decryption correctness. Then, the fact that Π̃.V (pk, h, x,a, z) = 1 implies
by definition that Rsk(x,a, h(x,a)) = 1.

Therefore, since we know by Lemma 7.5 that Rsk is sparse and efficiently samplable and H is
correlation intractable for all such relations, we conclude that Π̃ is adaptively sound.

If the CRS is instead sampled to be a uniformly random string and PKE and H have pseudo-
random (public) keys, then soundness follows by a hybrid argument: if an efficient cheating prover
could break the (adaptive) soundness of the protocol with a uniformly random CRS, then the
same prover would break (adaptive) soundness of the protocol Π̃ where the CRS is generated using
PKE.Gen and H.Gen. This would contradict soundness of the basic protocol, hence the modified
protocol is sound.

Finally, we show that our scheme is zero knowledge. To do so, we write down the following
simulator Sim(x, pk):

• Given x, first sample a uniformly random challenge vector e.

• Then, run the honest verifier simulator Π.HVSim(x, pk, e) associated to Π to produce a sim-
ulated first message a and third message z

• Finally, sample a hash function h using the sampler Samp(a, e) and output (CRS,a, z) where
CRS = (pk, h).

The claim is that when x ∈ L and pk is generated using PKE.Gen, Sim(x, pk) is computation-
ally indistinguishable from an honest proof (using x and a witness w). This follows by a hybrid
argument. First, we note that (a, e, z) as sampled by HVSim is computationally indistinguishable
from an honest proof (a, e, z) (using a uniformly random e) by the simulation security of Π, which
implies that the output of Sim(x, pk) is computationally indistinguishable from (CRS,a, z) where
(a, e, z) is an honest proof and h is sampled from the distribution h ← Samp(a, e). The approx-
imate average-case samplability of H then implies that this distribution is indistinguishable from
an honest (CRS, proof) pair in the round-compressed protocol.

Finally, suppose that PKE is a lossy encryption scheme in which lossy public keys are uniformly
random. We again consider the modified protocol in which the public key portion of the CRS is
sampled uniformly at random, and our simulator will operate as follows.
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• Sample a public key pk uniformly at random.

• Repeatedly call the special simulator Π.SHVSim(x), producing (e(i), y
(i)
T (e(i)))i.

• Set a to be a commitment to strings ỹ(i) matching the substrings above (and 0 otherwise),
and z to be decommitments to (y(i)

T (e(i)))i.

• Sample h← Samp(a, e).

In this situation, the commitment scheme used to instantiate Π is actually statistically hiding
by the lossiness of PKE, which implies that the simulated distribution (a, e, z) is statistically in-
distinguishable from a honest (parallel repeated) Π-proof. This implies that our simulated proof
(pk, h,a, z) is statistically indistinguishable from the distribution (pk, h,a, z) in which (a, e, z) is
an honest (parallel repeated) Π-proof and h is sampled from h ← Samp(a, e). Then, the ap-
proximate average-case samplability of H (along with the fact that H has statistically pseudoran-
dom keys) again tells us that this is statistically indistinguishable from an honest proof in the
round-compressed protocol. This completes the proof of statistical zero knowledge, and of Theo-
rem 7.7.

7.2.1 Instantiations

If the (standard) LWE assumption holds, then a variant of Regev public-key encryption satisfies all
the conditions required by Theorem 7.7 to ensure that the resulting NIZK argument is statistically
zero knowledge in the common random string model:
• Regev public-key encryption [Reg09] is a lossy public key encryption scheme.

• To ensure that decryption is perfectly correct, we will use a truncated Gaussian distribution
for the noise distribution in our variant of Regev encryption. The polynomial security of this
variant (which is all that we require of our commitment scheme) follows from this follows
from the security of standard Regev encryption, i.e. from LWE.

The hash family H in Theorem 7.7 can be instantiated using any of the KDM-secure en-
cryption schemes from Section 4.2 or Section 4.3. It is clear by inspection that the hash family
from Section 4.2 satisfies (perfect) programmbility (this was already noted in [CCRR18]). More-
over, the hash families from Section 4.3 satisfies approximate programmability. An approximate
sampling algorithm for the hash family using a secret-key Regev (or [ACPS09]) encryption scheme
(Gen,Enc,Dec) and randomized encoding scheme (RE.Enc,RE.Dec,RE.Sim) samples h← Samp(a, e)
by calling E ← RE.Sim(e) and then sampling from the conditional distribution h | Dec(a, h) = E.
If the randomized encoding is (1 − negl(λ))-approximately blind, then this sampling algorithm
satisfies the desired property.

7.3 Our NIZK Protocol

We conclude this section by giving an explicit description of our NIZK protocol.
Theorem 7.8. If Assumption 1 holds with modulus q = pq′ for some prime p, secret distribution
uniform over [−p

2 ,
p
2), and noise distribution uniform over [− q′

2 ,
q′

2 ), then every language L ∈ NP
has a (publicly verifiable) NIZK argument scheme Π. Moreover, Π has adaptive soundness and is
statistical zero knowledge.
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Proof. For simplicity, we describe the NIZK argument system assuming the exponential hardness
of Search-LWE with binary secrets, but our argument system that considers Search-LWE for
larger secrets follows the same blueprint.

Our NIZK argument scheme for NP uses the following building blocks.

• The 3-coloring protocol of [GMW91].

• A public-key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with perfect decryp-
tion correctness, which we instantiate with standard public-key Regev encryption. The only
constraint placed on this instantiation is that the error distribution χerr for this scheme must
be q

4n -bounded with probability 1.

• A secret-key encryption scheme S̃KE = (S̃KE.Gen, S̃KE.Enc, S̃KE.Dec) with universal cipher-
texts that is 2−|sk|poly(|sk|)-KDM-secure for S(|sk|)-size computable functions of the secret
key, where S(|sk|) is an explicit polynomial function dictated by the protocol below.

In order to instantiate S̃KE, we use two additional building blocks

• A secret-key encryption scheme SKE = (SKE.Gen,SKE.Enc,SKE.Dec) with universal cipher-
texts that is 2−|sk| · poly(|sk|)-KDM secure for key-dependent messages that are Z2-linear
functions of the secret key. This is instaniated with secret-key Regev encryption in which
the secret s← {0, 1}n is a uniformly random binary string, and the error distribution χerr is
uniform on the set [− q

4 ,
q
4) (and q is even).

• A randomized encoding scheme RE = (RE.Enc,RE.Dec,RE.Sim) for P/poly that is perfectly
blind and 2−ω(n log(q))-secure. This is instantiated with point-and-permute garbled circuits (see
Imported Theorem 4.12) instantiated with a subexponentially-secure one-way function.38

Combining Theorem 3.11, Theorem 7.7, Theorem 4.11, and Imported Theorem 4.12, we conclude
that the following protocol is a NIZK argument scheme for NP. In fact, it relies on a common
random string and satisfies statistical zero knowledge.

• Input: A graph x = (V,E). The prover receives as additional input a 3-coloring w of x.

• Common Random String: A pair (pk, h), where |pk| is the length of a Regev pub-
lic key and |h| is the length of a S̃KE ciphertext corresponding to a message of length
λ · |RE.Sim(0O(log(|x|)))|.

• Proof: A proof π consists of

– A sequence of λ · |Σ| independently sampled first messages a = (a(1), . . . , a(λ|E|)) using
the [GMW91] proof system, where commitment is instantiated using PKE.Enc.

– Responses z = (z(1), . . . , z(λ|E|)) using the [GMW91] proof system when provided λ|E|
challenges e consisting of the first λ · |E| · log(|E|) bits of RE.Dec(SKE.Dec(x||a, h)).

• Verification: The verifier accepts π if the [GMW91] verifier accepts the λ · |E| transcripts
(pk, x, a(i), e(i), z(i)) where e computed as above.

38In particular, the existence of such a function (family) follows trivially from the exponential LWE-hardness
assumed for the security of SKE.
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A Success probability of polynomial time algorithms on LWE
We provide a survey of the existing algorithms for breaking LWE and their success probabilities
when restricted to run in polynomial time. Recall from Assumption 1, we assume the success
probability of a polynomial time secret-recovery attack is at most |Supp(χsec)|−n · poly(n, log(q)).
For example, achieving the success probability of 2−0.99λ would violate this assumption (w.r.t. a
search space of size 2λ).

Loosely speaking, all known algorithms for LWE use one or more of the following techniques:

• Lattice basis reduction (e.g. [LLL82,Sch87,SE94]),

• Enumeration (since [Kan87])

• Sieving (since [AKS01])

• Combinatorial (since [BKW03])

• Algebraic (since [AG11]).

These algorithms are typically optimized to run in the smallest possible running time while still
solving LWE with overwhelming (or at least noticeable) probability. In contrast, we are concerned
with the complexity of solving LWE with tiny (but non-trivial) probability. It is in general not
clear if existing algorithms can be adapted to this setting. In particular, we do not know of any
way to scale enumeration, sieving, or combinatorial algorithms down to the polynomial-time regime
while achieving better success probability than guessing. Let us remark that any polynomial time
algorithm with success probability of 2−cλ can be turned into an algorithm that in Õ(2cλ) time
and polynomial space that succeeds with overwhelming probability, which would be a surprising
improvement to these types of algorithms.
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We further narrow down the scope of our discussion by restricting each entry of the error vector
e to be sampled from a distribution of standard deviation σ greater or equal to 2

√
n. This is

justified by both the worst-case to average-case reduction [Reg09] which requires σ to be greater
or equal to 2

√
n, and the Arora-Ge attack [AG11] which is only effective when σ < O(

√
n). We

remark that the Arora-Ge attack also requires sufficiently many samples. Meanwhile, [MP13] shows
when limited number of LWE samples are given out, LWE with small errors is as secure as standard
LWE. Still, we choose to restrict ourselves to the high noise regime, given that we need the search
space of the noise to be larger than the one for the secret anyway.

A.1 The success probability of the lattice basis reduction approach

In the rest of the survey we analyze the success probabilities of the basis reduction algorithms.
The flexible parameters in the LWE instance are the secret distribution χsec, the modulus q, and
noise/modulus ratio. We assume the secret distribution is uniform over [−B,B]n where B is a
bound that is typically much smaller than q/2, and (2B + 1)n is chosen to be close to 2λ.

Given an n-dimensional lattice L. The quality of the basis B produced by a lattice basis
reduction algorithm is typically measured by the root Hermite factor δ, defined as

(
‖b1‖

det(Λ)1/n

)1/n

where b1 is the shortest vector in B. The probabilistic polynomial time version of the LLL algorithm
[LLL82] achieves δ = 1.0746 in the worst case. Furthermore, Schnorr’s algorithm offers a trade-off
of finding a 2n/k-approximate shortest vector with the running time 2k [Sch87]. Within polynomial
time, Schnorr’s algorithm outputs a 2O

(
n log logn

logn

)
-approximate shortest vector in L.

In practice, it is widely observed that the basis reduction algorithms perform much better than
the worst-case bound in theory. Nguyen and Stehlé [NS06] suggest that the root Hermite factor
achieved by LLL is 1.02 on average. So to give a proper estimation of the hardness of LWE, we
consider both the theoretical bounds and the experimental evidences.

Choosing a proper basis. Let A ∈ Zm×nq , y = As + e (mod q) be our target LWE instance.
Considering the following lattice LA with basis B:

B =
(
qIm×m A

0 In×n

)
.

Expressing y as As + e + qk gives us B ·
(

k
s

)
−
(

y
0

)
=
(
−e
s

)
. If ‖s‖ is small (which is the

interesting case in our applications), then LWE can be solved by running a CVP solver on given

the basis B and target t :=
(

y
0

)
, or running an SVP solver on

(
B t
0 M

)
where M is a relatively

small integer (e.g. M = 1). This is referred to as the primal approach.
Alternatively, we can try to solve the SIS problem for A, then conduct a distinguishing attack.

This is referred to as the dual approach.
For both approaches, when m (i.e. the number of LWE samples) is sufficiently large, the success

probability (or the running time) of the basis reduction algorithm can be optimized by throwing
away a few samples and working with a smallerm. From now we assumem is the optimized number
of LWE samples. According to [MR09], for the dual approach, given a desired root Hermite factor
δ, the optimal choice for m is to set m ≈

√
n log q/ log δ, then the state-of-art basis reduction
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algorithm outputs a vector of length min{q, 22
√
n log q log δ}. For the primal approach the estimation

is similar.

The distribution of the reduced basis. Recall our goal is to estimate the success probability of
the secret-recovery attack, in an extreme setting where a success probability of say 2−0.99λ would be
considered non-trivial w.r.t. a search space of size 2λ. So we would like to estimate the probability
of finding a “significantly short” vector via the basis reduction algorithms. To keep the discussion
concrete, we stick with the following meaning of “significantly short”: the root Hermite factor is
(1 + ε) where ε > 0 is an arbitrarily small constant.

However, understanding the distribution of the outputs produced by LLL/BKZ is known as a
challenging problem. Below we survey a few recent studies that tackle the problem from different
directions. Jumping ahead, currently we are not able to draw a solid conclusion from these studies
to our assumption.

Fixing two target root Hermite factors δ0 > δ1 > 1. Suppose the LLL/BKZ algorithm outputs
a random basis among all the δ0-reduced bases (under a well-defined probability measure), then
the probability of achieving root Hermite factor δ1 can be estimated by counting the number of
δ1-reduced bases out of all the δ0-reduced bases. To this end, Kim and Venkatesh [KV16] study
the statistical behavior of δ-Siegel-reduced bases (the Siegel-reduced bases satisfy a slightly weaker
condition than the LLL-reduced bases). Their study shows that most of the δ-Siegel-reduced bases
have root Hermit factors very close to δ. Formally, let Nδ(L) be the number of the Siegel-reduced
bases for a lattice L of n-dimension with reduction parameter δ. The expectation of Nδ(L) satisfies
limn

log ENδ(L)
n3 = 1

6 log δ. Assuming Riemann hypothesis, the standard deviation of Nδ(L) is at most
e−O(n2) times its mean. This means for a fixed lattice L, by Chebyshev’s inequality, with probability
greater than 1− e−O(n2), the portion of (δ0 − 0.0001)-reduced bases out of all the δ0-reduced bases
is e−O(n3).

However, the result of [KV16] indeed justifies that the bases produced by the LLL/BKZ al-
gorithm in practice are largely biased, since otherwise the average root Hermite factor would be
closer to 1.0746 but not 1.02. The precise statistical behavior of LLL/BKZ remains largely elusive.
Recent experimental studies (cf. [GN08,CN11,MW16,YD17], and more) provide more predictions
on the standard deviation and other parameters, which suggest that the basis reduction algorithms
might produce an extremely short vector “more often than expected”. But at this moment, we are
not able to conclude that the basis reduction algorithms achieve root Hermite factor (1 + ε) for an
arbitrarily small constant ε > 0 with non-trivial probability.

Summary. Under the current understanding of the statistical behavior of LLL/BKZ, if the mod-
ulus q is chosen to be smaller or equal to 2polylog(n), then the existing lattice reduction algorithms
do not seem to achieve non-trivial success probabilities in breaking LWE. As a precautionary mea-
sure, the modulus q can be chosen as a polynomial in n, which implies the modulus/noise ratio is
polynomial. All of the applications in our paper can use such a choice of q.
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