
Hardness of Decoding

Random Linear Codes in the Exponent

Luke Demarest∗ Benjamin Fuller† Alexander Russell‡

June 7, 2019

Abstract

The hardness of decoding random linear codes with errors is a complexity-theoretic assumption
with broad applications to cryptography. In contrast, Reed-Solomon codes permit efficient decoding
in many representations. Despite this, a result of Peikert (TCC 2006) proves that in groups where
discrete log is hard, Reed-Solomon error correction is difficult if symbols are written in the exponent.
We bring these two lines of work together, examining hardness of decoding random linear codes in the
exponent.

Our main result is a pair of theorems that show hardness of decoding random linear codes in both
the generic group model and the standard model. These results hold for different classes of distributions
for errors. In the generic group model, security holds if all vectors in the dual of the random linear
code have an unpredictable inner product with the error distribution. While this condition is technical,
it is satisfied by:

1. Any distribution where symbols are independent and contribute a constant amount of entropy.
This requirement is met by the discretized Gaussian (Regev, STOC 2005), uniform interval
(Döttling and Müller-Quade, Eurocrypt 2013), and uniform bit error (Micciancio and Peikert,
Crypto 2013). Thus, most variants of learning with errors are hard in the generic group model.

2. Distributions where errors are either zero or random. Critically for applications, the location of
zero errors may be correlated as long as it is unlikely for a subset (whose size is the nullity of the
code) to have no errors.

3. Any distribution formed by a linear process as long as the dimension of the process is greater
than the nullity of the linear code.

Our results in the standard model show hardness of decoding random linear codes with a uniform
input point. This result improves on a result of Peikert (TCC 2006) who considered the problem for
Reed-Solomon codes.

We apply these results to reusable fuzzy extractors and pattern matching obfuscation, improving
parameters on recent state of the art constructions.

Keywords Learning with errors; error-correction; generic group model; fuzzy extractors; pattern-
matching obfuscation

∗Email: luke.johnson@uconn.edu. University of Connecticut.
†Email: benjamin.fuller@uconn.edu. University of Connecticut.
‡Email: acr@uconn.edu University of Connecticut.

1

1 Introduction

Human secrets are noisy and nonuniform. In contrast, cryptographic schemes prefer uniform inputs
and exact reproduction of values. This gap is illustrated when a user attempts to match a current
noisy value against a nonuniform secret value. This occurs in biometric authentication using fuzzy
extractors [DORS08] and pattern matching obfuscation [BKM+18]. Current constructions that secure
all viable distributions are inefficient, relying on either multilinear maps [BCKP17] or unbounded run-
time/space [FRS16, WCD+17].

To close this gap, we study the problem of decoding random linear codes in the exponent. We use this
tool to provide constructions in both applications for nonuniform, noisy distributions (we review these
applications in detail in Section 1.2 after introducing our technical results).

Our approach has two direct motivations: (i.) the flexibility and broad applicability of decoding
random codes to cryptography (as codified by the learning with errors (LWE) assumption [Reg05]) and
(ii.) the striking fact that decoding Reed-Solomon codes is difficult in the exponent even though efficient
algorithms exist when symbols are in the clear [Pei06]. This suggests that the problem of decoding random
linear codes in the exponent may be a useful cryptographic tool.

Hardness of Decoding Random Linear Codes. In the last twenty years, the hardness of decoding
error correcting codes has become a core cryptographic assumption yielding almost every cryptographic
primitive [BMvT78, Reg05, BV14, GVW15, WZ17]. The relevant cryptographic assumption is called
learning with errors or LWE [Reg10]. The decision version of LWE asks an adversary to distinguish an
encoded codeword with errors Ax + e from a uniformly selected vector, where x describes a message, A
is a random public matrix, and e is an error term. Here all operations are performed in the finite field
Fq. For particular distributions of e it is possible to show that any adversary that solves LWE implies an
adversary that can approximately solve worst case lattice problems (GapSVP [BLP+13] or SIVP [Reg05]).
While there is some flexibility in the distribution of e (e.g., a discretized Gaussian [Reg05], a uniform
interval [DMQ13], or a binomial distribution [MP13]), known reductions require each symbol of e to be
independently distributed.

Structured Codes in the Exponent. Structured codes also have far-reaching applications in cryp-
tography. An important motivating example arises in threshold public key encryption [Des92]. Using
a length n and dimension k Reed-Solomon code and El Gamal encryption [ElG85] one can exploit the
linear structure of El-Gamal to distribute shares of private keys to n parties such that any k parties can
decrypt messages without revealing their share of the secret key.

This scheme is private against adversaries that know fewer than k shares and is correct against
adversaries that keep at most n − k parties from participating in reconstruction. However, it is also
possible to correct errors for Reed-Solomon codes: indeed, the Berlekamp-Welch [WB86] algorithm can
efficiently correct up to t = (n−k+ 1)/2 errors. Suppose there is an adversary that intentionally submits
incorrect shares during reconstruction. A natural question is whether Reed-Solomon error-correction can
be applied to ensure correctness against this adversary. As it happens, the Berlekamp-Welch decoding
algorithm critically relies on nonlinear operations, so its not clear how to execute this algorithm “in the
exponent.” Peikert showed this is, in some sense, unavoidable with two results [Pei06, Theorems 3.1 and
4.1]:

1. If balls of radius t around codewords cover a noticeable fraction of the space, an algorithm that
corrects t errors implies a solver for the discrete logarithm problem. Importantly, this algorithm

2

only has to find some codeword within distance t (and not, necessarily, the closest codeword). This
is known as bounded distance decoding [CW07], in contrast to the more traditional unique decoding.
In order for balls around codewords to cover a noticeable fraction of the space, one needs to consider
an algorithm that corrects almost t = n−k errors. Note for Reed Solomon codes performing bounded
distance decoding in the exponent for distance n − k is easy: One picks k points and interpolates
the rest of the points which can be done linearly (and in the exponent). We stress that this result
does not rule out algorithms which correct fewer errors.

2. In the generic group model [Sho97], adversaries are limited to algebraic manipulations with linear
combinations of group elements. In particular, the adversary’s algorithm must work for an arbitrary
representation of the group. In this model, Peikert showed that given gc+e, where c is a codeword
and e is a random vector with t nonzero values, it is hard to find gc. In this model, no assumption
is necessary about the density of codewords. The main requirements for this theorem are (i.) that
t errors are uniformly distributed and (ii.) that the product of the dimension and number of errors
is large enough (namely, that tk = ω(n log n)).

Peikert’s work presented the above as negative results. However, these results can be seen as introducing
a new type of hardness assumption. The goal of this work is to combine the above two lines of work and
ask:

Does placing a random linear code in the exponent of a group amplify the hardness of decoding?

1.1 Hardness of Decoding Random Linear Codes in the Exponent

In the generic group model, we establish that decoding random linear codes in the exponent is hard for
a broad class of distributions which we call (k, β) − MIPURS or maximum inner product unpredictable
over random subspace distributions (Theorem 1). Specifically, an error distribution e (taking values in
Fnq) is (k, β)−MIPURS if—with high probability in selection of a random subspace W ⊂ Fnq of dimension
k—every nonzero w ∈W has the property that

∀z,Pr[〈w, e〉) = z] ≤ β.

This is formally defined in Definition 3. This definition is useful because it encompasses error distributions
of special interest:

1. Independent Any distribution where symbols are independent and contribute a constant amount
of entropy including the discretized Gaussian [Reg05], uniform interval [DMQ13], and uniform bit
error [MP13]. It follows that most previously considered variants of LWE are hard in the generic
group model. These results all hold for an arbitrary polynomial number of samples. Interestingly,
due to an attack by Arora and Ge, the uniform bit error is distinguishable in polynomial time
when n = Θ(|x|2) [AG11, MP13] so MIPURS is not sufficient if the adversary can perform nonlinear
operations.

2. Location Distributions where errors are either zero or random. Critically for applications, the
location of zero errors may be correlated as long as it is unlikely for a subset (of appropriate size)
to have no errors. This setting is closer to decoding random linear codes [BMvT78] than traditional
LWE.

Peikert’s result considered decoding random linear codes in the exponent where the position of errors
is uniformly distributed [Pei06]. Peikert’s result holds if the product of errors and the size of the

3

message is large enough (when tk = ω(n log n)). (An adversary can repeatedly try to find subsets of
size k without any errors and perform a linear operation to recover the original codeword [CG99],
succeeding when tk = Θ(n log n).) While Peikert considered uniform locations, we show a sufficient
condition for security is that each subset of size k has an overwhelming probability of including a
nonzero error (Lemma 4).

3. Linear Distributions formed by linear processes whose dimension is greater than `.

The quantitative relationships between these distributions and the MIPURS condition are established in
Section 3.1. Our main result is that MIPURS with ` equal to the nullity of the random linear code is
sufficient for hardness of distinguishing the noisy codeword and a uniform value in the generic group
model (Theorem 1). Furthermore, if the error distribution is not MIPURS there is an information-
theoretic distinguisher. Thus, the MIPURS condition is necessary and sufficient against information
theoretic adversaries in the generic group model. The only non-efficient part of the adversary is mapping
a subspace W to the vector w and point z at which they can predict.

Our proof uses the simultaneous oracle game introduced by Bishop et al. [BKM+18, Section 4]. In
this game, the adversary is given two oracles O1 and a second oracle O∗ that is either O1 or O2 with
probability 1/2. If O∗ = O1 it is sampled with independent randomness from the first copy. Bishop et
al. show that if an adversary cannot distinguish in this game, they cannot distinguish the two oracles O1

and O2. Since the adversary has access to two oracles simultaneously it is easier to formalize when the
adversary can distinguish: The adversary’s distinguishing ability arises directly from repeated responses.
The adversary can only notice inconsistency when (i.) one oracle returns a new response and the other
does not or (ii.) if both responses are repeated but not consistent with the same prior query. We formally
define the game in Section 2.

Standard Model Results. We show hardness of decoding random linear codes in the standard model
(assuming only hardness of discrete log), however these results require the error e to have independent
symbols, with e possessing t randomly chosen nonzero positions. We show this result for both random
linear codes (Theorem 4) and Reed-Solomon codes (Theorem 6). Both results provide a small improvement
of parameters over Peikert’s result [Pei06, Theorem 3.1]. As stated, these arguments require that a random
point lies close to a codeword with noticeable probability. As q increases this probability decreases but
discrete log becomes harder, creating a tension between these parameters. Peikert’s result requires that
q ≤

(
n
k+1

)
/n2. In our application to the fuzzy extractors we consider small k for which k = ω(log λ). This

means that the upper bound on q may be just superpolynomial. Our results allow q to grow more quickly,
improving the bound by a modest factor of n2 (requiring that q ≤

(
n
k+1

)
).

Theorems 4 and 6 consider an adversary that performs error correction: given gy it returns gz where
the distance between dis(y, z) ≤ t and gz is a codeword. Recently, Fuchsbauer et al. [FKL18] introduced
the algebraic group model which is weaker than the generic group model. From an input gy, an algebraic
adversary produces a solution gz along with a matrix Λ such that gz = gΛy. The model is weaker than
the generic group model as the adversary is allowed to see the elements gy before creating Λ.

A standard model adversary that decodes a linear code implies an algebraic adversary. One can find k
indices where gzi = gyi . One then uses the linear decoding (from these indices) and encoding procedures
of the code to find the coefficients such that gz = gΛy. Thus, decoding is a problem where the algebraic
model appears weaker than the generic group model.

We note the wide gap between error distributions we can show in the generic group model and assuming
discrete log. The main open question from this work is how much gap is necessary?

4

1.2 Applications

Fuzzy Extractors. A fuzzy extractor derives stable keys from a noisy source of entropy [DORS08].
Formally, a fuzzy extractor is a pair of algorithms: Generate or Gen(w) takes an initial reading of a noisy
source w and outputs a cryptographic key key and a public value pub; Reproduce or Rep(w′, pub) takes a
subsequent reading w′ and outputs key if w and w′ are within distance t. The security guarantee is that
key should be pseudorandom conditioned on pub. Fuzzy extractors secure distributions from nature such
as biometric and physical uncloneable functions, so it is prudent to minimize assumptions about these
distributions. For example, the Iriscode transform is estimated to have 249 bits of entropy out of a 2048
bit string [Dau04] (see discussion in [FRS16, SSF18]). Importantly bits of w are correlated.

Fuller et al. [FMR13] proposed a fuzzy extractor where the reading w served as the error vector for
an LWE instance, that is pub = Ax + w.1 The Rep algorithm performs “guess and check” on subsets
Ij ⊆ {1, ..., |w|} decoded as

x = A−1
Ij pubIj −w′Ij = A−1

Ij (Ax + w −w′)Ij .

This decoding succeeds if wIj = w′Ij . To achieve error tolerance, multiple independent sets Ij are sampled
and checked. Importantly, this decoding algorithm selects a subset and is then entirely linear. To ensure
hardness of the underlying lattice problem, the construction required: (i.) the dimension of x to be a
constant fraction the length of w and (ii.) for w to be a distribution for which LWE is hard. This limited
error tolerance to at most t = O(log |w|).

Canetti et al. [CFP+16] presented a fuzzy extractor that explicitly placed specific subsets in a digital
locker [CD08]. Digital lockers can be constructed using exponentiation in a Diffie-Hellman group [BC10].
This construction sampled multiple subsets wIj and locked the same key in a digital locker secured with

wIj . Roughly, pub = {rj , r
wIj
j · key, Ij}j . Decoding consisted of trying to open each digital locker. Digital

lockers improved allowable error tolerance to t = o(|w|). However, this construction explicitly writes
each subset to be tested. To achieve meaningful error tolerance for an actual biometric, millions of these
lockers are required [SSF18]. Canetti et al.’s construction is also reusable, allowing correlated versions of
w to be used to derive multiple keys.

We introduce a new fuzzy extractor that places a random linear code in the exponent (where r is a
random generator):

pub = (r, rAx+w).

(The second component is a vector of group elements.) Decoding proceeds as in the previous construc-
tions, randomly selecting subsets Ij and hoping they have no errors. This construction is secure if w is
drawn from a MIPURS distribution. If the construction is instantiated with a random linear code of small
dimension |x| = ω(log λ), error tolerance of t = o(|w|) is possible. If independent generators are used each
time that Gen is run, this construction is reusable.

A binary w ∈ {0, 1}n can be amplified into a location source, whose zero error positions may be
correlated (Definition 4). If w has low weight, one can multiply w by a uniform random vector e.
However, if w often has high weight this transform requires modification; see the discussion at the end of
Section 4.

This construction has two important advantages over Canetti et al. [CFP+16]. First, storage linearly
depends on the size of the source, in Canetti et al’s construction storage was a complex function of
(n, t) that grows quickly as t approaches a constant fraction of n. Second, many physical sources are

1The cryptographic key key is part of the x vector. Akavia, Goldwasser, and Vaikuntanathan showed when LWE is
sufficiently hard parts of x are hardcore [AGV09].

5

sampled along with correlated side information that is called confidence. Confidence information is a
secondary probability distribution Z (correlated with the reading W) that can predict the error rate
in a bit Wi. When Zi is large this means a bit of Wi is less likely to differ. Examples include the
magnitude of a convolution in the iris [SSF18] and the magnitude of the difference between two circuit
delays in ring oscillator PUFs [HRvD+16]. Herder et al. [HRvD+16] report that by considering bits with
high confidence it is possible to reduce the effective error rate from t = .10 · n to t = 3 × 10−6 · n. This
confidence information could not be used in Canetti et al’s work to guide subset selection as it is correlated
with W . Our construction can use Z at reproduction time only. Thus, nothing that depends on Z is
revealed to the adversary.

Pattern Matching Obfuscation. In a recent work, Bishop et al. [BKM+18] show how to obfuscate a
pattern v where each vi ∈ {0, 1,⊥} indicating that the bit vi should match 0, 1 or either value. The goal
is to allow a user to check for input string y, if y and v are the same on all non-wildcard positions. Their
construction was stated for Reed-Solomon codes but works for any linear code. We state the construction
for a random linear code: Let |v| = n and assume A← (Zp)2n×n. Then for a random x the construction
outputs the following obfuscation:2

Ow =

oi =

(gA2ix, r2i+1), r2i+1 ← Z∗p vi = 1

(r2i, g
A2i+1x), r2i ← Z∗p vi = 0

(gA2ix, gA2i+1x) vi =⊥

|v|−1

i=0

.

Bishop et al. prove security of the scheme in the generic group model. Intuitively, their argument rests on
two facts: (i.) its hard to isolate wildcard positions where both values can be used to find x and (ii.) for
nonwildcard positions its hard to pick a set without including errors. Their analysis focuses on allowing a
large number of randomly placed wildcards with the uniform distribution for nonwildcard bits of v. Most
applications of string matching are on nonuniform and correlated values such as human language. We
show the same construction is secure for more distributions over v. First, we define an auxiliary variable
s of length 2n that describes the placement of errors as follows:

si =

10 if vi = 1,

01 if vi = 0,

00 if vi =⊥.

We show it is sufficient for probability distribution s to have entropy in all subsets of size n (see Defini-
tion 4). In human language, it seems subsets of bits do have this property [Sha51, BPM+92, MZ11].

Concurrent Work. In concurrent work Bartusek, Lepoint, Ma, and Zhandry [BLMZ18] present two
contributions of interest to this work. They consider the pattern matching obfuscation application. Their
first contribution raises the upper bound on the number of wildcards in [BKM+18] from w < 0.774n to
w < n−ω(log n) using a new dual form of analysis. Their analysis still considers the uniform distribution
over nonwildcard positions. Thus, our analysis expands the provably secure distributions over v. Their
second contribution considers random linear codes not in the exponent, they use a modified version of
the Random Linear Code (RLC) assumption defined in [IPS09]. They prove for some structured error

2Bishop et al. state their construction where x0 = 0 to allow the user to check whether they matched the pattern. In this
description, we allow the user to get out a key contained in gx0 when they are correct.

6

distributions hardness of both search and decision problems. Importantly, their analysis relies on the
adversary receiving only 2n dimensions and would not apply for our fuzzy extractor application.

Organization. The remainder of the paper is organized as follows, Section 2 covers definitions and
preliminaries, Section 3 presents our main theorem on hardness of decoding random linear codes in the
generic group model. Sections 4 and 5 describe our applications to fuzzy extractors and pattern matching
obfuscation respectively. Finally Section 6 shows hardness of decoding high entropy errors in the standard
model.

2 Preliminaries

For random variables Xi over some alphabet Z we denote the tuple by X = (X1, ..., Xn). For a set of
indices J , XJ denotes the restriction of X to the indices in J . For a vector v we denote the ith entry
vi. The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]). The average (conditional) min-entropy
of X given Y is H̃∞(X | Y) = − log(Ey∈Y maxx Pr[X = x | Y = y]) [DORS08, Section 2.4]. For a
metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius t, that
is, Bt(x) = {y | dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we denote
by Vol(t) the size of a ball of radius t. We consider the Hamming metric. Let Z be a finite set and
consider vectors in Zn, then dis(x, y) = |{i | xi 6= yi}|. For this metric, we denote volume as Vol(n, t, |Z|)
and Vol(n, t,Z) =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes the uniformly distributed random variable on {0, 1}n.

Unless otherwise noted logarithms are base 2. Usually, we use capitalized letters for random variables
and corresponding lowercase letters for their samples.

2.1 The Generic Group Model and the Simultaneous Oracle Game

Definition 1 (Generic Group Model (GGM) [Sho97]). An application in the generic group model is
defined as an interaction between a m-attacker A and a challenger C. For a cyclic group of order N with
fixed generator g, a uniformly random function σ : [N] → [M] is sampled, mapping group exponents in
ZN to a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx. We consider M large
enough that the probability of a collision between group elements under σ is negligible so we assume that
σ is injective.

Based on internal randomness, C initializes A with some set of labels {σ(xi)}i. It then implements
the group operation oracle OG(·, ·), which on inputs σ1, σ2 ∈ [M] does the following:

1. if either σ1 or σ2 are not in L, return ⊥.

2. Otherwise, set x = σ−1(σ1) and y = σ−1(σ2) compute x+ y ∈ ZN and return σ(x+ y).

A is allowed at most m queries to the oracle, after A outputs a bit which is sent to C which outputs a bit
indicating whether A was successful.

The above structure captures distinguishing games. Search games can be defined similarly. Bishop et. al.
formalized the simultaneous oracle game [BKM+18]. The formal structure is as follows.

Definition 2 (Simultaneous Oracle Game [BKM+18] definition 6). An adversary is given access to a
pair of oracles (OM ,O∗) where O∗ is drawn from the same distribution as OM with probability 1/2 (with
independent internal randomness) and is OS with probability 1/2. In each round, the adversary asks the
same query to both oracles. The adversary wins the game if they guess correctly the identity of O∗.

7

We note that even if the oracles are drawn from the same distribution their handle mapping functions
σ, using their independent internal randomness, will respond with distinct handles with overwhelming
probability even if their responses represent the same underlying group element. The distributions that
the oracles are drawn from represent any internal randomness that could be used to initialize the imple-
mentation of the oracle by the challenger in the definition of the generic group model.

In [BKM+18], Bishop et. al. also define two sets HtS and HtM which are the sets of handles returned
by the two oracles after t query rounds. They use these sets to define a function Φ : HtS → HtM . Initially

the adversary sets Φ(ht,iS) = ht,iM for each element indexed by i in the initial sets given by the oracles. As
stated in the introduction, the adversary can only distinguish if (i.) one oracle returns a new handle, while
the other is repeated or (ii.) the two oracles both return old handles that are not consistent under Φ.
Hardness of the simultaneous oracle game is sufficient to show that the two games cannot be distinguished.
We state a lemma from Bishop et al.:

Lemma 1 ([BKM+18] Lemma 7). Suppose there exists an algorithm A such that

|Pr[AGM(OGM) = 1]− Pr[AGS (OGS) = 1]| ≥ δ.

Then an adversary can win the simultaneous oracle game with probability at least 1
2 + δ

2 for any pair of
oracles (OM,O∗ = OM/OS).

In the above AGM(OGM) corresponds to an adversary being initialized with handles from GM and
having an oracle to GM. AGS (OGS) is defined similarly.

Remark 1. It is convenient for us to change the query capability of the adversary in the simultaneous
oracle game. Rather than single group operation queries we allow the adversary to make queries in the
form of a vector representing a linear combination of the initial set of handles given by the pair of oracles.
Specifically, a query X = (c0, . . . , ci) is given to both OM and O∗ where they compute and return their
responses. Each query to this interface can be simulated using a polynomial number of queries to the
traditional group oracle.

3 Hardness of Decoding in the Generic Group Model

In this section, we prove an upper bound for the probability that any generic adversary distinguish
random linear codes with error from uniform as long as the error is sampled from a Maximum Inner
Product Unpredictable over Random Subspace (MIPURS) distribution.

Definition 3. Let e be a random variable taking values in Fnq and let A : Fn−kq → Fnq denote uniform
random linear operator (drawn independently of e). We say that e is an (k, β)−MIPURS distribution if

E
A

[
min v ∈ Fn−kq \ 0,max

z
Pr[〈Av, e〉 = z]

]
≤ β .

Theorem 1. Let λ be a security parameter. Let q = q(λ) be a prime and n = n(λ), k = k(λ) be integers
with k ≤ n ≤ q. Let A ∈ (Fq)n×k and x ∈ (Fq)k be uniformly distributed. Let e be a (k, β) −MIPURS
distribution. Lastly, let U ∈ (Fq)n be uniformly distributed. Then for all generic adversaries D making
at most m queries

Pr[D(A,Ax + e) = 1]− Pr[D(A,U) = 1] < ((m+ 1)m)2

(
3

2q
+
β

2

)
.

In particular, if α = ω(log λ), q = ω(poly(λ)), n = poly(λ), and m = poly(λ) then the statistical distance
between the two cases is ngl(λ).

8

of Theorem 1. We begin the proof by describing the two oracles we use in the simultaneous oracle game
called the Code and Random Oracles.

Code Oracle. We define a code oracle that responds to queries faithfully. We denote this oracle Oc.
This oracle picks a message x, uses the generating matrix A and the error vector random variable e which
is a (k, β)−MIPURS distribution.

The oracle begins by calculating the noisy codeword b1, ...,bn as b = Ax+e. The oracle prepends b0 =
1 (to allow the adversary constant calculations) and sends (σc(b0), . . . , σc(bn)) to D. When queried with
a vector χ = (χ0, χ1, . . . , χn) ∈ Zn+1

q the oracle answers with an encoded group element σc(
∑n

i=0 χi · bi).

Random Oracle. We also define an oracle Or that creates n + 1 random initial encodings and re-
sponds to all distinct requests for linear combinations with distinct random elements. For a sequence of
indeterminates y = (y0, y1, . . . , yn), this oracle can be described as a table where the left side is a vector
representing a linear combination of the indeterminates and the right side is a handle associated with
each vector.

When presented a query, if the vector is in the oracle’s table, it responds with the handle on the
right side of the table. When the query is a new linear combination, it generates a distinct handle. The
adversary then stores the vector and the handle in the table and sends the handle to D. We denote the
handles τi to distinguish them from the encoded group elements of the code oracle.

Lemma 2. In a simultaneous oracle game, the probability that any adversary D, when interacting with
group oracles (Oc,O∗ = Oc/Or) succeeds after m queries is at most

|Pr[D(Oc) = 1]− Pr[D(O∗) = 1]| ≤
(

((m+ 1)m)2

2

)(
1

2q
+
β

2

)
.

Proof. We examine the simultaneous oracle game that the adversary plays between Oc and O∗. The
adversary maintains its function Φ as it makes queries. We also analyze the underlying structure of
Oc. Denote the adversary’s linear combination as λ||χ1, ..., χn. We distinguish the first element as it is
multiplied by 1 leading to an offset in the resulting product. We do this by noticing that for i ≥ 1, the
group element bi is Aix + ei (we use Ai to denote the ith row of a matrix A):

n∑
i=1

χibi + λ =
n∑
i=1

χi(Ai · x) +
n∑
i=1

χi(ei) + λ = 〈χ,Ax〉+ 〈χ, e〉 + λ.

Again, Or responds to each distinct query with a new handle. This means that there is exactly one
occasion to distinguish when O∗ = Oc or Or. This is when the handle returned by Oc is known and Or
is new. We divide our cases with respect to the linear combination query χ. If χ is not in the null space
of the code A, we call this case 1. If χ is in the null space of A we call this case 2.

Case 1. Initially, x is both uniform and private. We can write the product of χ and our noisy code
word b as χ(b) = χ(Ax + e) = (χA)x + χ(e). Since χ /∈ null(A) then for at least one index i there is a
χi ·Ai 6= 0. Since x has full entropy, then (χiAi)xi also has full entropy and the sum of the terms has full
entropy. After the first query, x is no longer uniform. With each query, the adversary learns a predicate
about the difference of all previous queries, simply that they do not produce the same element. After

9

m queries there are m(m + 1)/2 query differences, giving the same number of these equality predicates.
Note that the adversary wins if a single of these predicates is 1 meaning we can consider m(m + 1)/2
total values for the random variable, denoted EQ representing the equality predicate pattern. Then, using
a standard conditional min-entropy argument [DORS08, Lemma 2.2b]. Thus,

∀i, H̃∞(xi | EQ,A) ≥ log q − log
m(m+ 1)

2
.

Thus, it follows that after m queries,

H̃∞(χ(Ax) | A, EQ) ≥ log q − log
m(m+ 1)

2
.

Thus, the probability that this linear combination represents a known value (on average across A) is:

E
A,EQ

[
max
z

Pr[(χ(Ax) = z | A, EQ]
]
≤ m(m+ 1)

2q
.

Case 2. Decomposing the linear combination of the codeword into χ(Ax+e) we show that since χ is in
the null space of A then our linear combination is just 0+〈χ, e〉. Since e is a (k, β)−MIPURS distribution,
then an upper bound for the power of the adversary to predict the outcome of the linear combination
(and thus the outcome of 〈χ, e〉 + λ) is β. In this case we also lose entropy due to the linear predicates.

After m queries, we pay the same log((m+ 1)m/2) bits so the probability is reduced to (m+1)mβ
2

These two cases are mutually exclusive. Thus, to calculate the probability of either of these cases
occurring after m queries we take the sum. There are only q distinct group elements, and therefore
handles. Even a handle with full entropy will collide with a known handle with probability equal to the
number of known handles over the size of the group. Since each query can only produce one handle, we
have (m+ 1)m/2 distinct pairs of handles after m queries. So taking a union bound over each query, we
upper bound the distinguishing probability for the adversary by(

(m+ 1)m

2

)(
(m+ 1)m

2q
+

(m+ 1)mβ

2

)
=

(
((m+ 1)m)2

4

)(
1

q
+ β

)
.

This completes the proof of Lemma 2.

This lemma gives us the distinguishing power of an adversary interacting with our code oracle and
our random oracle. Our random oracle never has collisions because it creates fresh handles every time.
To create an oracle analogous to a uniform distribution as claimed in Theorem 1. Note that this oracle is
different Or which responded to all distinct queries with distinct handles. This third handle initializes n
random elements and faithfully represents the group operation. For a fresh query this oracle has 1/q of
returning a previously seen handle. We call this last oracle the uniform oracle and use it in our analysis
with the added probability of failure.

Taking the result of this technical lemma, we can prove Theorem 1 using Lemma 1 (and the modifi-
cation to the uniform oracle) where

δ/2 =

(
((m+ 1)m)2

2

)(
3

2q
+
β

2

)
.

Since the probability of an adversary winning the simultaneous oracle game is bounded above by

1/2 +

(
((m+ 1)m)2

4

)(
3

q
+ β

)
10

then

Pr[A(Oc) = 1]− Pr[A(Or) = 1] < 2

(
((m+ 1)m)2

2

)(
3

2q
+
β

2

)
= ((m+ 1)m)2

(
3

2q
+
β

2

)
.

Because Or represents the oracle for uniform randomness and Oc is the oracle for Ax + e, this gives us
the result for generic adversaries.

3.1 Characterizing MIPURS

The definition of a MIPURS distribution (Def 3) is admittedly unwieldily. It considers a property of a
vector e with respect to a random matrix. In this section we show that many natural sources satisfy this
property. We begin with distributions where each component of e is independent and contributes some
entropy.

Independent Sources In most versions of LWE, each error coordinate is independently distributed and
contributes some entropy. Examples include the discretized Gaussian introduced by Regev [Reg05, Reg10],
a uniform interval introduced by Döttling and Müller-Quade [DMQ13], and a uniform bit introduced by
Micciancio and Peikert [MP13].

Lemma 3. Let e = e1, ..., en ∈ Fq be a distribution where each ei is independently sampled and H∞(ei) =
Θ(1). Let ` ∈ Z+ be some free parameter. Then for any k = ω(log λ) then e is a (k − `, β) −MIPURS
distribution for

β =

(
1− 1

q

(
1−

(
n
k

)
q`

))
2−(k−`)H∞(ei) +

1

q

(
1−

(
n
k

)
q`

)
.

Proof. We use A ∈ Fn×n−kq to represent the random matrix from the definition of a MIPURS distribution

and let B ∈ Fn×kq represent its null space. Note that A is full rank with probability at least 1− 1/q.

Let ` be some parameter. With probability
(
n
k

)
/ql, there will exist a k × k minor of B with rank less

than k− `. As we will see this means that there is some v ∈ span(A) where wt(v) ≤ k− `−1. Otherwise,
with probability at least 1−

(
n
k

)
/ql all v ∈ span(A) have wt(v) ≥ k − `. In the case, when all minors of

B are full rank:
max
z
{Pr[〈v, e〉 = z|A]} ≤ 2−wt(v)H∞(ei) = 2−(k−`)H∞(ei).

The argument follows by assuming that there exists some v such that 〈v, e〉 is constant in the case when
A is not full rank or when B has minors of rank less than k − `.

Location Sources. The second family of error distributions we consider are e′ given by the coordinate-
wise product of a uniform vector e ∈ Fnq and a “selection vector” s ∈ {0, 1}n: that is, e′i = ei ·c si where
s is assumed to be unpredictable on all large enough subsets (here ·c is componentwise multiplication).
More formally, we introduce a notion called subset entropy:

Definition 4. Let a source S = S1, . . . , Sn consist of n-bit binary strings. For some parameters k, α we
say that the source S is has (α, k)-entropy subsets if H∞(Sj1 , . . . , Sjk) ≥ α for any 1 ≤ j1, . . . , jk ≤ n.

11

Lemma 4. Let ` ∈ Z+ and k ∈ Z+ be some free parameters. Let s ∈ {0, 1}n be a distribution with (α, k−`)
entropy subsets. Define the distribution e′ as product of a uniform vector e ∈ Fnq and a “selection vector”
s ∈ {0, 1}n: that is, e′i = ei ·c si. Then the distribution e is a MIPURS distribution for (k − `, β) for

β = 2−α +
1

q
(1− 2−α)

(
1−

(
n
k

)
q`

)
.

Proof. The proof follows the same basic structure as the proof of Lemma 3. Define A and B as above.

Let ` be a free parameter. With probability 1 − 1
q −

(nk)
q`+1 A is full rank and all k × k minors of B have

rank at least k − `. For some v in the span of A with weight at least k − ` (assumed due to the rank of
minors in B), consider the product 〈v, e′〉 =

∑n
i=1 vi · ei. Define I as the set of nonzero coordinates in

v. With probability at least 1 − 2−α there is some nonzero coordinate in eI . Conditioned on this fact
the inner product acts as a one time pad due to the inclusion of at least one coordinate of uniform vector
e.

Linear Sources The last set of sources we consider are what we call n− k+ 1-linear sources. Here we
consider some matrix E ∈ Fn×(n−k+1)

q and define the distribution e = Es for a uniformly random vector
s ∈ Fn−k+1

q . Note the only condition we place on E is its dimension (n− k + 1).

Lemma 5. Let e be defined by a n− k + 1-linear source. Then e is a (k, β)−MIPURS distribution for

β =

(
1− 1

q

)
1

q
+

1

q
=

(
2− 1

q

)
1

q
.

Proof. Consider a random A ∈ Fn×(n−k)
q . With probability at least 1− 1/q the dimension of A is n− k.

We start by bounding the probability that there exists some nonzero vector v where v is in both the span
of A and the null space of E. For each of the qn−k vectors v in the span of A we designate an event
determining if that vector is in a dimension k− 1 space (the dimension of the null space of E). We take a
union bound over these events. Since the probability that a random vector in a dimension n space, falls
within a dimension k − 1 subspace is qk−1/qn = qk−n−1 and we have qn−k such events, we upper bound
the probability of the null spaces having non-trivial intersection by qn−k/qk−n−1 = 1/q.

Consider only A with trivial intersections with the null space of E. Then for all v ∈ span(A) it holds
that vE is some nonzero vector and thus at least one uniform component of s contributes to the value of
vEs.

4 Application to Fuzzy Extractors - Code Offset in the Exponent

Our primary application is a new fuzzy extractor that performs error correction “in the exponent.” A
fuzzy extractor is a pair of algorithms designed to extract stable keys from a physical randomness source
that has entropy but is noisy. If repeated readings are taken from the source one expects these readings
to be close in an appropriate distance metric but not identical. Before introducing the construction we
review the definition. We consider a generic group version of security (computational security is defined
in [FMR13], information-theoretic security in [DORS08]).

Definition 5. Let W be a family of probability distributions over M. A pair of procedures (Gen :M→
{0, 1}κ × {0, 1}∗,Rep : M× {0, 1}∗ → {0, 1}κ) is an (M,W, κ, t)-computational fuzzy extractor that is
(εsec,m)-hard with error δ if Gen and Rep satisfy the following properties:

12

• Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w), then Pr[Rep(w′, pub) = r] ≥ 1− δ.

• Security: for any distribution W ∈ W, the string key is close to random conditioned on pub for all
generic A making at most m queries to the group oracle O, that is

Pr[AO(Key,Pub) = 1]− Pr[AO(U,Pub) = 1] ≤ εsec.

In the above, group elements in Key, U,Pub are represented by group handles, the adversary additionally
receives σ(1). Additionally, the errors are chosen before Pub: if the error pattern between w and w′

depends on the output of Gen, then there is no guarantee about the probability of correctness.

4.1 Construction

The “code-offset” construction is a conceptually simple fuzzy extractor [DORS08]. The idea is for p to be
a one time pad of w.3 That is, pub = c⊕ w. The Rep algorithm has pub and w′ as inputs and computes
c′ = pub ⊕ w′. Importantly, if dis(w,w′) ≤ t then dis(c, c′) ≤ t. If c is chosen from a suitable error
correcting code, then it is possible to decode to c and recover w.

Importantly, if c is chosen from a error correcting code, it cannot be a uniform point and thus the
one-time pad analysis does not apply. However, the conditional entropy of W given Pub or H̃∞(W | Pub)
reduces by at most the gap between the size of the uniform distribution and the error correction code.
That is, for code C ∈ {0, 1}n, H̃∞(W | Pub) ≥ H∞(W)− (n− log |C|).

The major problem with the code offset construction is the limited applicability to physical distri-
butions W . In particular, for many distributions W this analysis provides no guarantee on the strength
of the derived key (see discussion in [CFP+16]). To address this problem, Fuller et al. [FMR13] pro-
posed to replace a structured code with a random linear code and rely on the hardness of LWE. Sub-
sequent work adapted the construction to F2 [HRvD+16] and showed how to make the construction a
reusable fuzzy extractor [ACEK17]. These constructions are a code-offset construction with a random
code: pub = (A,Ax + w) where A and x are random. For a suitable w the value pub is pseudorandom.
The associated decoding procedure is a simple guess and check, finding subsets Ij and then computing
x = A−1

Ij pubIj − w′Ij = xA−1
Ij (w − w′)Ij . To achieve a hard LWE instance their correction capability

was only t = Θ(log |w|) which is inadequate for most physical sources. Achieving a higher error tolerance
could be achieved by reducing the dimension of the code |x| but this has a direct effect on the hardness
of the underlying lattice problem. Since our generic group proof shows hardness for traditional LWE dis-
tributions, we can immediately expand the number of distributions for which this construction is secure.
Thus, we move the code-offset to the exponent.

Before introducing the construction we observe it is possible to amplify the hardness of the distribution
W . Since decoding finds a subset without errors (it does not rely on the magnitude of errors) we can
augment errors into random errors. Consider a binary biometric W and a random vector E and multiply
them component wise to get a distribution E′. If subsets of W are unguessable then the distribution
formed E′ is MIPURS (see Section 3.1 and Definition 4).

However, this creates a problem with decoding. When bits of w are 1, denoted wj = 1 we cannot use
location j for decoding as it is a random value (even if w′j = 1 as well). Thus, we introduce an auxiliary
uniform random variable Y and check when Yi 6= Wi to indicate when to include a random error. Then in
reproduction the algorithm should restrict to locations where Yi = Wi. Using standard Chernoff bounds
one can show this subset is big enough and the error rate in this subset is not much higher than the
overall error rate (except with negligible probability).

3The cryptographic key is produced by applying a randomness extractor on w. [NZ93].

13

Construction 1. Let λ be a security parameter, t be a distance and let k = k(λ) be some parameter
where k = ω(log λ). Let α be a free parameter. Let q = q(λ) be an ensemble of primes. Let Fq be the field
with q elements. Let W ∈ Fnq be equipped with the Hamming metric and let k = ω(log λ) be a parameter.
Let τ = max(0.01, t/n). Define (Gen,Rep) as follows:

Gen

1. Input: w = w1, ..., wn

2. Sample random generator r of Z∗p.

3. Sample A← (Fq)n×(k+α),x← (Fq)k+α.

4. Sample y
$← {0, 1}n.

5. For i = 1, ..., n:

(i) If wi = yi, set ci = rAi·x.

(ii) Else set ci
$← Z∗p.

6. Set key = rx0...α−1.

7. Output (key, p),
p = (r,y,A, {ci}ni=1).

Rep

1. Input: (w′, p = (r,y,A, c1 . . . c`))

2. Let I = {i|w′i = yi}.
3. For i = 1, ..., `:

(i) Choose random Ji ⊆ I where |J | = k.

(ii) If A−1
Ji

does not exist go to 4.

(iii) Compute c′ = r
A(A−1

Ji
cJi).

(iv) If dis(cI , c
′
I) ≤ |cI |(1− 2τ), output

key = r
A−1
Ji

cJi
0...α−1 .

4. Output ⊥.

Reusability Reusability is the ability to support multiple independent enrollments of the same value,
allowing users to reuse the same biometric or PUF, for example, with multiple noncooperating providers.
More precisely, the algorithm Gen may be run multiple times on correlated readings w1, ..., wρ of a given
source. Each time, Gen will produce a different pair of values (key1, pub1), ..., (keyρ, pubρ). Security for
each extracted string keyi should hold even in the presence of all the helper strings pub1, . . . , pubρ (the
reproduction procedure Rep at the ith provider still obtains only a single w′ close to wi and uses a single
helper string pubi). Because providers may not trust each other each keyi should be secure even when all
keyj for j 6= i are also given to the adversary.

Definition 6 (Reusable Fuzzy Extractor [CFP+16]). Let W be a family of distributions over M. Let
(Gen,Rep) be a (M,W, κ, t)-computational fuzzy extractor that is (εsec,m)-hard with error δ. Let
(W 1,W 2, . . . ,W ρ) be ρ correlated random variables such that each W j ∈ W. Let D be an adversary.
Define the following game for all j = 1, ..., ρ:

• Sampling The challenger samples wj ←W j and u← {0, 1}κ.

• Generation The challenger computes (keyj , pubj)← Gen(wj).

• Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(key1, ..., keyj−1, keyj , keyj+1, ..., keyρ, pub1, ..., pubρ) = 1]

−Pr[D(key1, ..., keyj−1, u, keyj+1, ..., keyρ, pub1, ..., pubρ) = 1].

(Gen,Rep) is (ρ, εsec,m)-reusable if for all generic D making at most m queries and all j = 1, ..., ρ, the
advantage is at most εsec.

14

Theorem 2. Let all parameters be as in Construction 1. Let ` ∈ Z+ be a free parameter. Let W 1, ...,W ρ ∈
{0, 1}n be distributions and define the random variables

Ej def=

{
UZ∗p if Y j

i 6= W j
i ,

0 if Y j
i = W j

i .

Suppose that Ej are (k, β)−MIPURS distributions for 1 ≤ j ≤ ρ. Then (Gen,Rep) is a (ρ, εsec,m) reusable
fuzzy extractor for all generic adversaries making at most m queries where

εsec = ρ ((m+ 1)m)2

(
3

2q
+
β

2

)
.

For generic adversaries making m queries, Construction 1 is a reusable secure fuzzy extractor if β =
ngl(λ), q = ω(poly(λ)),m = poly(λ), and ρ = poly(λ) for some εsec = ngl(λ).

Proof. This argument requires a little understanding of the generic group proof from Section 3. This
argument showed that an adversary knowing A was unable to distinguish between Ax+e from U except
with negligible probability. Without loss of generality, we assume that the adversary is trying to learn
information about the first key. For the construction to be reusable for all distinguishers, it must be true
that:

|Pr[D(U, r1,A1,A1x1 + e1, {keyi, pubi}
ρ
i=2) = 1]

−Pr[D(rx0..α−1 , r1,A1,A1x1 + e1, {keyi, pubi}
ρ
i=2) = 1| ≤ εsec.

Crucially, in Theorem 1, we assume that handles are in a sufficient sparse space such that handles
from one oracle never represent a valid handle for another oracle. Rather than initializing a joint oracle
to answer all queries, one can separately initialize oracles for each application of the fuzzy extractor.
This is because each application of the fuzzy extractor works for a different group generator. Then the
ρ− 1 oracles corresponding to other enrollments wi are the same in both settings. Using a simple hybrid
argument on Theorem 1 we can replace these oracles with uniform values. Once replaced by uniform
values these oracles provide no information to the adversary. The theorem follows by a final application
of Theorem 1.

We show parameters where the construction is efficient and correct in Appendix A. If k + α is just
barely ω(log n) one can support error rates that are just barely o(n).

Comparison with sample-then-lock As mentioned in the introduction, Canetti et al. [CFP+16]
proposed a reusable fuzzy extractor based on digital lockers called sample-then-lock. Intuitively, a digital
locker is a symmetric encryption that is semantically secure even when instantiated with keys that are
correlated and only have entropy [CKVW10]. At a high level, their construction took multiple samples
wIj from the input biometric and use these as keys for different digital lockers, all of which contained
the same key. Our construction improves on the storage and use of confidence information over Canetti
et al. (see the Introduction). On the other hand the fact that all subsets are available to an adversary
does provide them with additional power. As mentioned in Section 3.1, our definition can handle a small
number of subsets with insufficient entropy, as long as they are unlikely to be in the null space of the
code. Canetti et al. were able to show security for all distributions where sampling produced entropy:

15

Definition 7 ([CFP+16] Sources with High Entropy Samples). Let the source W = W1, . . . ,Wn consist
of strings of length n over some arbitrary alphabet Z. We say that the source W is a source with a
(k, β)-entropy-samples if

E
j1,...,jk

$←[1,...,n]

(
max
z
{Pr[(Wj1 , . . . ,Wjk) = z | j1, . . . , jk]}

)
≤ β.

Our modification to this definition in Definition 4 is the natural one. Instead of j1, . . . , jk being a
uniform subset, it can be any subset of n.

5 Application to Pattern Matching Obfuscation

In this section we introduce a second application for our main theorem. This application is known as
pattern matching obfuscation. The goal is to obfuscate a string v of length n which consists of (0, 1,⊥)
where ⊥ is a wildcard. The obfuscated program on input x ∈ {0, 1}n should output 1 if and only
if ∀i, xi = vi ∨ vi =⊥. Roughly, the wildcard positions are matched automatically. We directly use
definitions and the construction from the recent work of Bishop et al. [BKM+18]. Our improvement is in
analysis, showing security for more distributions V . We start by introducing a definition of security:

Definition 8. Let C = Cn be a family of circuits where Cn takes inputs of length n and let O be a PPT
algorithm taking n ∈ N and C ∈ C outputting a new circuit C ′. Let D = Dn be an ensemble of distribution
families where each D ∈ Dn is a distribution over circuits in Cn. O is a distributional VBB obfuscator
for D over C if:

1. Functionality: For each n,C ∈ Cn and x ∈ {0, 1}n, PrO,C′ [C
′(x) = C(x)] ≥ 1− ngl(n).

2. Slowdown: For each n,C ∈ Cn, the resulting C ′ can be evaluated in time poly(|C|, n).

3. Security: For each generic adversary A making at most m queries, there is a polynomial time
simulator S such that ∀n ∈ N, and each D ∈ Dn and each predicate P∣∣∣∣∣∣∣ Pr

C←Dn,
OG ,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)]

∣∣∣∣∣∣∣ ≤ ngl(n).

Construction 2. We now reiterate the construction from Bishop et al. adapted to use a random linear
code for some prime q = q(n).
O:

1. Input v ∈ {0, 1,⊥}n, q, g where g is a generator of the group Z∗q.

2. Sample A ∈ (Zq)2n×n, x0 = 0, x1,...,n−1 ← (Zq)n−1.

3. Sample e ∈ Z2n
q uniformly.

4. For i = 0 to n− 1:

(a) If vi = 1 set e2i = 0.

(b) If vi = 0 set e2i+1 = 0.

16

(c) If vi =⊥ set e2i = 0, e2i+1 = 0.

5. Compute y = Ax + e.

6. Output gy,A.

Eval

1. Input gy,A, x ∈ {0, 1}n.

2. I = {i ∈ [1...2n] | xbi/2c = (i mod 2)}.

3. Compute A−1
I . If none exists output ⊥.

4. Output gA−1
I,1·y ?

= g.

To state our security theorem we need to consider the transform from strings v over {0, 1,⊥} to binary
strings.

Bin(v) = s where

si = 10 if vi = 1,

si = 01 if vi = 0,

si = 00 if vi =⊥ .

Lastly, define the distribution e′ = e ·c Bin(v)i.

Theorem 3. Let ` ∈ Z+ be a free parameter. Define D as the set of all distributions V such that
E′ = UnFq ·c Bin(V) is a distribution that is (n, β) − MIPURS. Then Construction 2 is VBB secure for
generic D making at most m queries with distinguishing probability at most

((m+ 1)m)2

(
3

2q
+
β

2

)
.

Proof. Like the work of Bishop et al. [BKM+18, Theorem 16] the VBB security of the theorem follows by
noting for any adversary A there exists a simulator S that initializes A, provides them with 2n random
handles (and simulates the interaction with Or) and outputs their output. By Theorem 1, the output of
this simulator differs from the adversary in the real game by at most the above probability.

6 Hardness of Decoding in the Standard Model

In this section, we consider whether decoding is hard for groups where the discrete logarithm problem
is believed to be hard. We first examine hardness of decoding random linear codes in the exponent. In
Appendix B we consider Reed-Solomon codes. Both results follow the same three part outline:

1. A theorem of Brands [Bra93] which says that if given a uniformly distributed gy one can find z
such that g〈y,z〉 = 1 or equivalently that a vector z such that 〈y, z〉 = 0 then one can solve discrete
log with the same probability. For a vector of length n and prime q, this problem is known as the
FIND− REP(n, q) problem.

2. A combinatorial lemma which shows conditions for a random gy to be within some distance param-
eter c of a codeword with noticeable probability. That is, ∃z ∈ C such that dis(gx, gz) ≤ c (for the
codeword space C).

17

3. Let O be an oracle for bounded distance decoding. That is, given gy, O returns some gz where
dis(gz, gy) ≤ c and z ∈ C. Recall that linear codes have known null spaces. Thus, if two vectors gz

and gy match in more positions than the dimension of the code it is possible to compute a vector λ
that is only nonzero in positions where gzi = gyi and 〈λ,x〉 = 〈λ,y〉 = 0. If O works on a random
point gy it is possible to compute a vector λ in the null space of y. This serves as an algorithm to
solve the FIND− REP and completes the connection to hardness of discrete log.

In this section we focus on a combinatorial lemma to establish point 2. In Appendix B, we present a
similar result for Reed-Solomon codes improving prior work of Peikert [Pei06].

An (n, k, q)- random linear code, denoted RL(n, k, q), is generated by a matrix A ∈ Zn×kq that is

independent and uniform elements of Zq. The code is the set of Ax for all vectors x ∈ Fkq . We will
consider noise vectors e ∈ Fq where the Hamming weight of e denoted wt(e) = t and the nonzero entries
of e are uniformly distributed. That is, we consider z = Ax + e.

Usually in coding theory the goal is unique decoding. That is, given some y, if there exists some z ∈ C
such that dis(y, z) ≤ t, the algorithm is guaranteed to return y and z is uniquely defined.

Our results consider algorithms that perform bounded distance decoding. Bounded distance decoding
is a relaxation of unique decoding. For a distance t and a point y ∈ Znq a bounded distance decoding
algorithm returns some z ∈ C such that dis(y, z) ≤ t. There is no guarantee that z is unique or is the
point in the code closest to y.

Problem BDDE− RL(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Random Linear
Codes codes.

Instance Known generator g of Z∗q . Define e as a random vector of weight c in Zq. Define gy = gAx+e

where A,x are uniformly distributed. Input is gy,A.

Output Any codeword gz where ∃x ∈ Zkq such that z = Ax and dis(x, z) ≤ c.

For a code C we define the distance between a point y and the code as the minimum distance between
y and any codeword c in C. Formally, dis(y,C) = min

c∈C
dis(y, c).

Our proofs use the notion of thickness of a point with respect to a codespace and a radius. Consider
some point y in the codespace and a radius r. The thickness of a point is the number of Hamming balls
(of radius r) inflated around all codewords that cover y. Specifically, define the set of points contained in
a Hamming ball of radius r as Φ(r, z) for each codeword z in the code C. Then define random variables
ϕ(r, z,y) for each Φ(r, z) where ϕ(r, z,y) = 1 if y ∈ Φ(r, i) and 0 otherwise. Then the thickness of y is
Thick(r,C,y) =

∑
z∈C

ϕ(r, z,y).

We now present the theorem of this section and our key technical lemma (Lemma 6), then prove the
lemma and finally the theorem.

Theorem 4. For positive integers n, k, c and q where k < n ≤ q and let g be a generator of Z∗q. If
an efficient algorithm exists to solve BDDE− RL(n, k, q, n − k − c, g) with probability ε, then an efficient
randomized algorithm exists to solve the discrete log problem in the same group with probability at least

ε′ = ε

(
1−

(
qn−k

Vol(n, n− k − c, q)
+

k

qn−k

))
.

In particular, using a volume bound Vol(n, r, q) ≥
(
n
k

)
qr(1− n/q), we get

ε′ = ε

(
1−

(
qc(

n
k+c

)
(1− n

q)
+

k

qn−k

))
.

18

Lemma 6. Let a Code RLA(n, k, q) be defined by matrix A ∈ Zn×kq , then

Pr
y∈Fnq ,A

[dis(y,RLA(n, k, q)) > n− k − c] ≤ qn−k

Vol(n, n− k − c, q)
+

1

qn−k
.

Proof of Lemma 6. A Random Linear Code RLA(n, k, q) has qk codewords in a qn sized codespace as
long as A is full rank. The probability of A being full rank is at least 1− k/qn−k [FMR13, Lemma A.3].
The expected thickness of a code or Ey Thick(r,A,y) is the average thickness over all points in the space.
Expected thickness is the ratio of the sum of the volume of the balls and the size of the space itself. Note
that this value can be greater than 1. A Hamming ball in this space can only be defined up to radius n.
We give denote the expected thickness of the code as follows:

Ey(Thick(r,A,y)) =
Vol(n, r, q) · qk

qn
= Vol(n, r, q) · qk−n

For r = n− k − c:
Ey(Thick(n− k − c,A,y)) ≥ Vol(n, n− k − c, q) · qk−n

For a point to be have Hamming distance from our code greater than n − k − c, its thickness must be
0. For the thickness of a point to be 0, it must deviate from the expected thickness by the expected
thickness. We use this fact to bound the probability that a point is distance at least n−k− c. We require
that each codeword is pairwise independent (that is, PrA[c ∈ A|c′ ∈ A] = PrA[c ∈ A]). In random
linear codes, only generating matrices with dimension 1 are not pairwise independent. We have already
restricted our discussion to full rank A. Define an indicator random variable that is 1 when a point c
is in the code. The pairwise independence of the code implies pairwise independence of these indicator
random variables. With pairwise independent codewords, we use Chebyshev’s Inequality to bound the
probability of a random point being remote from a random code. We upper bound the variance of Thick
by its expectation (since the random variable is nonnegative). In the below equations we only consider
A where Rank(A) = k but do not write this to simplify notation. Let t = n− k − c, then

E
A

Pr
y

[dis(y,RLA(n, k, q)) > t]

= E
A

Pr
y

[Thick(t,A,y) = 0]

≤ E
A

(
Pr
y

[|Thick(t,A,y)− E(Thick(t,A,y))| > E(Thick(t,A,y))]

)
≤ E

A

(
Vary(Thick(t,A,y))

Ey(Thick(t,A,y))2

)
≤ E

A

(
1

Ey(Thick(t,A,y))

)
=

qn−k

Vol(n, n− k − c, q)
.

Proof of Theorem 4. Suppose an algorithm F solves BDDE− RL(n, k, q, n−k−c, g) with probability ε. We
show that F can be used to construct an O that solves FIND− REP.
O works as follows:

1. Input y = (y1, . . . , yn) (where y is uniform over Znq).

19

2. Generate A← Zn×kq .

3. Run z← F(y,A).

4. If dis(y, z) > n− k − c output ⊥.

5. Let I = {i|yi = zi}.

6. Construct parity check matrix of AI , denoted HI .

7. Find some nonzero row of HI , denoted B = (b1, . . . , bk+c) with associated indices I.

8. Output λ where λi = Bi′ for i ∈ I where i′ represents the location of i in a sorted list with the
same elements as I and 0 otherwise.

By Lemma 6, (y,A) is a uniform instance of BDDE− RL(n, k, q, n − k − c, g) with probability at least
1− (qn−k/Vol(n, n− k − c, q) + k ∗ q−(n−k)). This means that I ≥ k + c. Note for z to be a codeword it
must be that there exists some x such that z = Ax and thus, the parity check matrix restricted to I is
defined and there is some nonzero row.

Acknowledgements

The authors are grateful to The authors give special thanks to reviewer comments and feedback. The
authors thank James Bartusek, Fermi Ma, and Mark Zhandry and their helpful discussions of their work.
The work of Benjamin Fuller is funded in part by NSF Grant No. 1849904. This material is based upon
work supported by the National Science Foundation under Grant No. 1801487.

References

[ACEK17] Daniel Apon, Chongwon Cho, Karim Eldefrawy, and Jonathan Katz. Efficient, reusable
fuzzy extractors from LWE. In International Conference on Cyber Security Cryptography
and Machine Learning, pages 1–18. Springer, 2017.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 403–415. Springer,
2011.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, Theory of Cryptography,
volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer Berlin Heidel-
berg, 2009.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Advances in Cryptology–CRYPTO 2010, pages 520–537. Springer, 2010.

[BCKP17] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. Algorithmica, 79(4):1014–1051, 2017.

20

[BKM+18] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova, and Kevin
Shi. A simple obfuscation scheme for pattern-matching with wildcards. In Annual Interna-
tional Cryptology Conference, pages 731–752. Springer, 2018.

[BLMZ18] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques for
obfuscating conjunctions. Cryptology ePrint Archive, Report 2018/936, 2018. https://

eprint.iacr.org/2018/936.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Proceedings of the 45th annual ACM symposium on
Symposium on theory of computing, pages 575–584. ACM, 2013.

[BMvT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory, 24(3):384 – 386, May
1978.

[BPM+92] Peter F Brown, Vincent J Della Pietra, Robert L Mercer, Stephen A Della Pietra, and
Jennifer C Lai. An estimate of an upper bound for the entropy of english. Computational
Linguistics, 18(1):31–40, 1992.

[Bra93] Stefan Brands. Untraceable off-line cash in wallet with observers. In Annual International
Cryptology Conference, pages 302–318. Springer, 1993.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing, 43(2):831–871, 2014.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In Advances in Cryptology–EUROCRYPT 2008, pages 489–508. Springer, 2008.

[CFP+16] Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam Smith. Reusable
fuzzy extractors for low-entropy distributions. In Advances in Cryptology – EUROCRYPT,
pages 117–146. Springer, 2016.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 90–106. Springer, 1999.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric encryption
and point obfuscation. In Theory of Cryptography, 7th Theory of Cryptography Conference,
TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 52–71, 2010.

[CW07] Qi Cheng and Daqing Wan. On the list and bounded distance decodability of reed–solomon
codes. SIAM Journal on Computing, 37(1):195–209, 2007.

[Dau04] John Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, January 2004.

[Des92] Yvo Desmedt. Threshold cryptosystems. In Advances in Cryptology – AUSCRYPT, pages
1–14. Springer, 1992.

21

https://eprint.iacr.org/2018/936
https://eprint.iacr.org/2018/936

[DMQ13] Nico Döttling and Jörn Müller-Quade. Lossy codes and a new variant of the learning-with-
errors problem. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume
7881 of Lecture Notes in Computer Science, pages 18–34. Springer, 2013.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[Eli57] Peter Elias. List decoding for noisy channels. 1957.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applica-
tions. In Advances in Cryptology – CRYPTO, pages 33–62. Springer, 2018.

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy extractors. In
Advances in Cryptology-ASIACRYPT 2013, pages 174–193. Springer, 2013.

[FRS16] Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy extractors possible?
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 277–306. Springer, 2016.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Sym-
posium on, pages 28–37. IEEE, 1998.

[Gur10] Venkatesan Guruswami. Introduction to coding theory - lecture 2: Gilbert-Varshamov bound.
University Lecture, 2010.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):45, 2015.

[HRvD+16] Charles Herder, Ling Ren, Marten van Dijk, Meng-Day Yu, and Srinivas Devadas. Trapdoor
computational fuzzy extractors and stateless cryptographically-secure physical unclonable
functions. IEEE Transactions on Dependable and Secure Computing, 2016.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Theory of Cryptography Conference, pages 294–314. Springer, 2009.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with Small Parameters. In
Advances in Cryptology - CRYPTO 2013, Lecture Notes in Computer Science. 2013.

[MZ11] Marcelo A Montemurro and Damián H Zanette. Universal entropy of word ordering across
linguistic families. PLoS One, 6(5):e19875, 2011.

[NZ93] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[Pei06] Chris Peikert. On error correction in the exponent. In Theory of Cryptography Conference,
pages 167–183. Springer, 2006.

22

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the thirty-seventh annual ACM Symposium on Theory of Computing, pages
84–93, New York, NY, USA, 2005. ACM.

[Reg10] Oded Regev. The learning with errors problem (invited survey). In Proceedings of the
2010 IEEE 25th Annual Conference on Computational Complexity, pages 191–204. IEEE
Computer Society, 2010.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

[Sha51] Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal,
30(1):50–64, 1951.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 256–266.
Springer, 1997.

[SSF18] Sailesh Simhadri, James Steel, and Benjamin Fuller. Reusable authentication from the iris.
2018.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, Decem-
ber 30 1986. US Patent 4,633,470.

[WCD+17] Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas Ristenpart.
A new distribution-sensitive secure sketch and popularity-proportional hashing. In Annual
International Cryptology Conference, pages 682–710. Springer, 2017.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under lwe.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
600–611. IEEE, 2017.

A Correctness of Fuzzy Extractor

Correctness and Efficiency We now show the construction is also correct and efficient. Our correct-

ness argument considers constant k′
def
= k + α = Θ(n) and t = Θ(n). For the fuzzy extractor application,

one would consider a smaller k′ and t. In particular, for t = o(n) the theorem applies with overwhelming

probability as long as k′ ≤ (1−Θ(1))
3 ∗ n. We use the q-ary entropy function which is a generalization of

the binary entropy function to larger fields. Hq(x) is the q-ary entropy function defined as

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Theorem 5. Let parameters be as in Construction 1. Define τ = t/n. Let 0 < δ < 1 − Hq(4τ) and
suppose that k′ ≤ (1/3)·d1−Hq(4τ)−δen. If Rep outputs a value other than ⊥ it is correct with probability
at least 1− e−Θ(n).

23

Proof of Theorem 5. We assume a fixed number of iterations in Rep denoted by `. Recall we assume that
dis(w,w′) ≤ t and that the value y is independent of both values (by Def 5, w′ does not depend on the
public value). We first consider the final check of whether dis(cI , c

′
I) ≤ |cI |(1− 2τ) will return correctly

if and only rx = r
A−1
Ji

cJi . We stress that this is property is independent of the chosen subset and only
depends on A,x, w, w′ and y. We refer to the values in the exponent, but our argument directly applies
to the generated group elements.

Define the matrix AI defined by the set I. By Chernoff bound,

Pr

[
|I| ≤

(
1− 1

3

)
E |I|

]
= Pr

[
|I| ≤

(
2

3

)
n

2

]
≤ e−

n
36 ≤ e−Θ(n).

Without loss of generality we assume that the size of I = n/3. Consider some fixed w,w′ such that
dis(w,w′) ≤ t and define the random variable Z of length n where a bit i of z that indicates when wi = w′i

and when w′i = yi. We consider the setting when t = Θ(n), if t = o(n) then τ
def
= t/n ≤ .01 and the

condition holds with high probability.Define S = {i|wi = yi = w′i}. We can lower bound of size of S by
a binomial distribution with n/3 flips and probability p ≥ 1 − τ . That is, E[S] ≥ (n/3)(1 − τ). By an
additive Chernoff bound,

Pr [S − E[S] ≥ τn] =≤ 2e−2τ2n ≤ e−Θ(n).

To show correctness it remains to show that x is unique. We again assume that I = n/3, all arguments
proceed similarly when I > n/3. To show uniqueness of x suppose that there exists two x1,x2 such that
dis(AIx1, cI) ≤ |cI |(1− 2τ) and dis(AIx2, cI) ≤ |cI |(1− 2τ). This means that AI(x1 − x2) contains at
most 4t/3 nonzero components. To complete the proof we use the following standard theorem:

Lemma 7. [Gur10, Theorem 8] For prime q, δ ∈ [0, 1− 1/q), 0 < ε < 1−Hq(δ) and sufficiently large n,
the following holds for k′ = d(1 − Hq(δ) − ε)ne . If A ∈ Zn×k′q is drawn uniformly at random, then the
linear code with A as a generator matrix has rate at least (1−Hq(δ)− ε) and relative distance at least δ
with probability at least 1− e−Ω(n).

Application of Lemma 7 completes the proof of Theorem 5.

Recovery Our analysis of running time is similar in spirit to that of Canetti et al. [CFP+16]. For any
given i, the probability that w′Ji = wJi is at least(

1− 2t

n− 3k′

)k′
.

This follows since d(wI , w
′
I) ≤ 2τ ∗ |I| and since we are sampling sets without replacement the number of

error less positions remains at least n/3−k′. We bound the probability of an error for each sample (without

replacement) by the probability of the last sample which is at most 2t/3
n/3−k′ = 2t

n−3k′ . The probability that
no iteration matches is at most (

1−
(

1− 2t

n− 3k′

)k′)`
.

We can use the approximation ex ≈ 1 + x to get(
1−

(
1− 2t

n− 3k′

)k′)`
≈ (1− e−

2tk′
n−3k′)` ≈ exp(−`e−

2tk′
n−3k′).

24

Suppose that correctness 1− δ ≥ 1− (δ′ + e−Θ(n)) is desired. (Here, the e−Θ(n) term is due to sampling
of a bad matrix A and failures of Chernoff bounds above.) Then if k′ = o(n) with tk′ = cn lnn for some
constant c, setting ` ≈ n2c+Θ(1) log 1

δ′ suffices as:

exp
(
−`e−

tk
n−3k

)
= exp

(
−n2c log

1

δ′
e
− 2tk′
n−3k′

)
≤ exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ e−(2c+o(1)) lnn

)
= exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ n−(2c+o(1))

)
≤ δ′

Thus, for k = ω(lnn), one can support error rates t = o(n) .

B Decoding Reed Solomon Codes in the Exponent

The Reed-Solomon family of error correcting codes [RS60] have extensive applications in cryptography.
For the field Fq of size q, a message length k, and code length n, such that k ≤ n ≤ q, define the
Vandermonde matrix V where the ith row, Vi = [i0, i1,, ik]. The Reed Solomon Code RS(n, k, q) is the
set of all points Vx where x ∈ Fkq . Reed-Solomon Codes have known efficient algorithms for correcting
errors. We note that for a particular vector x the generated vector Vx is a degree k polynomial with
coefficients x evaluated at points 1, ..., n.

The Berlekamp-Welch algorithm [WB86] corrects up to (n − k + 1)/2 errors in any codeword in
the code. List decoding provides a weaker guarantee. The algorithm instead vectors a list containing
codewords within a given distance to a point, the algorithm may return 0, 1 or many codewords [Eli57].
The list decoding algorithm of Guruswami and Sudan [GS98] can find all codewords within Hamming
distance n−

√
nk of a given word. Importantly, algorithms to correct errors in Reed-Solomon codes rely

on nonlinear operations. Like with Random Linear Codes we consider hardness of constructing an oracle
that performs bounded distance decoding.

Problem BDDE− RS(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Reed Solomon codes.

Instance A known generator g of Z∗q . Define e as a random vector of weight c in Z∗q . Define gy = gVx+e

where x is uniformly distributed. Input is gy.

Output Any codeword gz where z ∈ RS(n, k, q) such that dis(gy, gz) ≤ c.

Theorem 6. For any positive integers n, k, c, and q such that q ≥ n2/4, c ≤ n+k, k ≤ n and a generator
g of the group G, if an efficient algorithm exists to solve BDDE− RS(n, q, k, n− k − c, g) with probability ε
(over a uniform instance and the randomness of the algorithm), then an efficient randomized algorithm
exists to solve the discrete log problem in G with probability

ε′ ≥

ε

(
1− 2qc

(n
k+c)

)
n2

2 ≤ q

ε

(
1− cqc

(n
k+c)

)
n2

4 ≤ q <
n2

2

.

Proof. Like Theorem 4 the core of our theorem is a bound on the probability that a random point is close
to a Reed-Solomon code.

25

Lemma 8. For any positive integer c ≤ n− k, define α = 4q
n2 , and any Reed-Solomon Code RS(n, k, q),

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] ≤ qc(
n
k+c

)α−c c∑
c′=0

αc
′

where the probability is taken over the uniform choice of y from Gn.

Proof of Lemma 8. A vector y has distance at most n− k− c from a Reed-Solomon code if there is some
subset of indices of size k+ c whose distance from a polynomial is at most k− 1. To codify this notion we
define a predicate which we call low degree. A set S consisting of ordered pairs {αi, xi}i is low degree if the
points {(αi, logg xi)}i∈S lie on a polynomial of degree at most k − 1. Define S = {S ⊆ [n] : |S| = k + c}.
For every S ∈ S, define YS to be the indicator random variable for if S satisfies the low degree condition
taken over the random choice of y. Let Y =

∑
S∈S YS .

For all S ∈ S,Pr[YS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S define a unique polynomial
of degree at most k. The remaining c points independently lie on that polynomial with probability 1/q.
The size of S is |S| =

(
n
k+c

)
. Then by linearity of expectation, E[Y] =

(
n
k+c

)
/qc. Now we use Chebyshev’s

inequality,

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] = Pr[Y = 0]

≤ Pr[|Y − E[Y]| ≥ E[Y]]

≤ Var(Y)

E[Y]2
.

It remains to analyze Var(Y) = E[Y 2]−E[Y]2. To analyze this variance we split into cases where the
intersection of YS and YS′ is small and large. Consider two sets S and S′ and the corresponding indicator
random variables YS and YS′ . If |S ∩ S′| < k then E[YS |YS′ = E[YS] and E[YSYS′] = E[YS]E[YS′]. This
observation is crucial for security of Shamir’s secret sharing [Sha79]. For pairs S, S′ where |S ∩ S′| ≥ k,
we introduce a variable c′ between 0 and c to denote c′ = |S∩S′|−k. For such S, S′ instead of computing
E[Y 2] − E[Y]2 we just compute E[Y 2] and use this as a bound. For each c′ we calculate E[YSYS′] where
|S ∩ S| = k + c′. The number of pairs can be counted as follows:

(
n
k+c

)
choices for S, then

(
k+c
c−c′
)

choices
for the elements of S not in S′ which determines the k + c′ elements that are in both S and S′, and
finally

(
n−k−c
c−c′

)
to pick the remaining elements of S′ that are not in S. So the total number of pairs is(

n
k+c

)(
k+c
c−c′
)(
n−k−c
c−c′

)
. Using these observations, we can upper bound the variance Var(Y) for our random

variable Y :

Var(Y) =
∑

S,S′∈S
(E[YSYS′]− E[YS]E[YS′])

=

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′]− E[YS]E[YS′])

≤
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′]) =
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(
1

q2c−c′)

Here the last line follows by observing that for both YS and YS′ to be 1 they must both define the same
polynomial. Since S and S′ share k + c′ points, there are (k + c) + (k + c)− (k + c′) = k + 2c− c′ points

26

that must lie on the at most k − 1 degree polynomial, and any k points determine the polynomial, and
the remaining 2c−c′ points independently lie on the polynomial with probability 1/q then the probability
that this occurs is 1/q2c−c′ . Continuing one has that,

Var(Y) ≤ 1

q2c

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(qc
′
)

=
1

q2c

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
[(n

k + c

)
1

qc

] 1

qc

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
E[Y]

qc

c∑
c′=0

(
qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

))
We bound the size of

(
k+c
c−c′
)(
n−k−c
c−c′

)
by observing that the sum of the top terms of the choose functions

is n and the product of two values with a known sum is bounded by the product of their average, in this
case n/2. We also use the upper bound of the choose function where nk ≥

(
n
k

)
to arrive at the bound that

q−c
c∑

c′=0

(qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

)
) ≤

(
(n/2)2

q

)c c∑
c′=0

(q

(n/2)2

)c′
.

The proof then follows using our bound for variance by defining α = 4q/n2. This completes the proof
of Lemma 8.

The remainder of the proof is similar to the proof of Theorem 4. A works as follows: on input y where
y is uniform over Gn immediately run D(g,y). By Lemma 8, (g,v) is an instance of BDDE− RSq,E,k,n−k−c
with probability at least

1− qc(
n
k+c

)α−c c∑
c′=0

αc
′
.

Then conditioned on this event, the instance is uniform, and D (with probability ε) outputs some z where
dis(z,y) ≤ n − k − c. Take any k + 1 indices I ⊆ [n] such that yi = zi for i ∈ E. Then any k of the yi
interpolate to another one of the yi. We find the non-trivial Lagrange coefficients for the first k yi call
them λi such that

∏
i∈E

vλii = 1. Call the remaining point yk+1. let λi = 0 for i /∈ E and set λk+1 to −1.

Then (λ1, . . . , λn) is a solution to FIND− REP. The parameters in the Theorem follow when 1 ≤ α < 2 by
noting that

α−c
c∑

c′=0

αc
′ ≤ α−c(c · αc) = c.

Parameters in Theorem 6 follow in the case when α = 4q/n2 ≥ 2 by noting that:

α−c
c∑

c′=0

αc
′

= α−c
(αc+1 − 1

α− 1

)
=
(α− α−c
α− 1

)
≤ 2.

27

	Introduction
	Hardness of Decoding Random Linear Codes in the Exponent
	Applications

	Preliminaries
	The Generic Group Model and the Simultaneous Oracle Game

	Hardness of Decoding in the Generic Group Model
	Characterizing MIPURS

	Application to Fuzzy Extractors - Code Offset in the Exponent
	Construction

	Application to Pattern Matching Obfuscation
	Hardness of Decoding in the Standard Model
	Correctness of Fuzzy Extractor
	Decoding Reed Solomon Codes in the Exponent

