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Abstract

Fuzzy extractors derive stable keys from noisy sources. The standard construction is the code
offset: the noisy secret w is stored in a one-time pad which is sampled as a codeword from an error-
correcting code (Juels and Wattenberg, CCS 1999). Information-theoretic analysis of this construction
has weaknesses: 1) it leaks information about w and 2) does not allow reuse (Boyen, CCS 2004). Fuller,
Meng, and Reyzin (Asiacrypt 2013) substitute a random linear code and reduce to learning with errors
when the symbols of w are independent and uniform.

We introduce code offset in the exponent : a group generator is raised to the output of the code offset
(instantiated with a random linear code). If the resulting vector is indistinguishable from random group
elements, the construction 1) leaks nothing about w 2) is reusable and 3) corrects up to a subconstant
fraction of errors (in the Hamming metric).

We characterize what error distributions make code offset indistinguishable from random group
elements in the generic group model. This corresponds to error distributions that make learning with
errors hard in the generic group model. The construction and adversary are both provided with the
code description.

It suffices for all vectors in the null space of a random linear code to have an unpredictable inner
product with the noisy distribution. Our primary result is: the condition is satisfied by all distributions
with minentropy that is larger than log of the size of the nullspace of the code by any super logarithmic
amount. The condition is also satisfied by structured distributions including:

1. Distributions with independent symbols that have super logarithmic minentropy including the
discretized Gaussian and the uniform interval.

2. Binary distributions lifted by multiplying by a random vector. It suffices for subsets of the binary
string (whose size is the nullity of the code) to be unlikely to be all zero. Using this modification,
we improve decoding over Canetti et al. (Eurocrypt 2016).

Our construction also yields a more flexible construction of pattern matching obfuscation (Bishop et
al., Crypto 2018). Lastly, we provide standard model results, showing hardness of bounded distance
decoding of random linear codes with uniform input point, quantitatively improving prior bounds of
Peikert (TCC 2006).
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1 Introduction

Stable key generation from noisy physical sources enables effective authentication and access control.
Despite inherent noise, one needs to derive a stable key. Wyner [Wyn75] first asked when interactive
protocols exist for this task (followed by the seminal work of Bennett, Brassard, and Robert [BBR88]).
We focus on non-interactive protocols which are appropriate for a user authenticating to a device.

In the non-interactive case, the relevant cryptographic primitive is a fuzzy extractor [JW99, JS06,
DORS08]. A fuzzy extractor is two algorithms. The first algorithm generate, or Gen, takes in a value w,
producing a cryptographic key key and a helper value pub. The second algorithm reproduce, or Rep, takes
in a value w′ and the value pub. Correctness says that Rep should output key whenever w and w′ are
close enough, denoted by t, according to some distance, dis. Security says that key should appear random
to an adversary that knows pub.

Most fuzzy extractors use a variant of the code-offset construction [JW99] (and most variants are
equivalent [DGV+16]). For some linear error-correcting code A, Gen samples a random x and outputs
pub = (A,Ax + w). In Rep one computes Ax + (w −w′). If w and w′ are within distance t, this value
corresponds to a codeword with at most t errors. By decoding the error correcting code one can find x
and w. One can then use a randomness extractor [NZ93] on either x or w to get a uniform key. Suppose
that A ∈ Fn×kq , the security analysis states that the entropy of w decreases by at most (n− k) log q bits.1

This construction has two major security weaknesses:

1. Leakage it may leak sensitive attributes of the value w and

2. One-time a user cannot safely enroll a single value w multiple times, called a reusable fuzzy extrac-
tor [Boy04]. Reuse matters in practice as people have a limited number of usable biometrics.

Fuller et al. [FMR13] considered the same construction instantiated with a random code. When A is
random, the value pub = Ax + w is a learning with errors (LWE) instance if w is drawn from a LWE
error distribution [Reg10a]. LWE error distributions include the discretized Gaussian [Reg10b], uniform
interval [DMQ13], and a uniform bit [MP13] (when n is not much larger than k). These distributions
have independent and identically distributed symbols. Physical sources demonstrate dependence between
symbols [SSF18, HRvD+16].

Fuller et al. [FMR13] use a simple guess and check decoding algorithm. They sample many subsets
of size k hoping one subset has no errors; if a sampled subset has no errors one can find x by solving the
linear system restricted to the subset. This algorithm is computable using linear operations (assuming A
is public). Thus, correctness is not effected by embedding the vector Ax + w into a “hard” group. Let r
be a random generator of a prime order group, one could output

pub = (A, r, rAx+w).

We call this construction code-offset in the exponent. Peikert [Pei06] showed when A is a Reed-Solomon
code decoding is hard in the generic group model [Sho97] when w is distributed as t-nonzero values that
are uniformly and independently distributed. An adversary can repeatedly try to find subsets of size k
without any errors and perform a linear operation to recover the original codeword [CG99], succeeding
when tk = Θ(n log n). Peikert showed this is tight, that no attacker can distinguish when tk = ω(n log n).
However, this result still requires error symbols to be independent and uniform.

1This bound is tight for some distributions: Consider a distribution W with a single point from each coset of A, then the
coset of pub determines w.
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In this work, we instantiate code-offset in the exponent with a random linear code and ask for what
distributions is this construction secure? We primarily this question in the generic group model [Sho97].
Note this question is equivalent to asking what error distributions make LWE hard in the generic group
model. To the best of our knowledge this is first time this question has been considered.2

Caveat Achieving meaningful results in the generic group model requires a superpolynomial size group
and eliminates the ability to round. So most LWE based constructions cannot be easily instantiated in
the exponent. One notable exception is collision-resistant hashing [GGH11] (of course, there are collision
resistant hashes from much weaker group theoretic assumptions).

1.1 Our Contributions

In the generic group model, we establish that distinguishing code offset in the exponent from a random
vector of group elements (given A in the clear) is hard for a broad class of distributions W which
we call (k, β) − MIPURS or maximum inner product unpredictable over random subspace distributions
(Theorem 2). Specifically, a distribution W (taking values in Fnq ) is (k, β) − MIPURS if—with high

probability in selection of a random subspace B ∈ Fn×n−kq , every nonzero b ∈ B it is hard to predict the
inner product with w. That is,

∀g, Pr
w←W,B

[〈b,w〉) = g|b ∈ B] ≤ β.

This is formally defined in Definition 1. While the notation is unwieldy, the intuition is natural: the null
space of A is a random subspace, if a distribution is not MIPURS one can find a vector b in the null space

whose inner product with w is predictable, thus predicting 〈b,Ax + w〉 = 〈b,w〉 ?
= g. This is not the

case for a uniform distribution, the value 〈b,U〉 is uniform. Thus b serves as a way to distinguish Ax+w
from U . That is, if the error distribution is not MIPURS there is an information-theoretic distinguisher.
The only non-efficient part of the adversary is mapping a subspace B to the vector b and point z. Thus,
with respect to information-theoretic generic group adversaries the condition is necessary and sufficient.

The proof of Theorem 2 is relatively straightforward. We consider our primary contribution the
characterization of the MIPURS condition. Under appropriate parameterization of q the minentropy
of all predictable distributions is at most log(poly(n)qn−k). An informal version of the result follows
(Corollary 3):

Theorem 1 (Informal). Let n, k ∈ Z be parameters. Let q = q(n) be a large enough prime. For each
d = ω(poly(n)), for all W ∈ Znq whose minentropy is at least log(dqn−k), there exists some β = ngl(n)
for which W is (k, β)−MIPURS.

This result is tight, for any d = poly(n) we can build a distinguisher. Consider the following distri-
bution W with a two stage sampling procedure:

1. Pick i← {1, ..., d} for some polynomial size d.

2. Sample Wi which is a coset gi of some linear space of dimension n− k.

This distribution has support size log(dqn−k). For a random n− k dimensional B, with high probability
b ∈ B ∩Wi where b 6= 0 for each space Wi. The adversary can calculate this b. Then the adversary

2Dagdelan et al. [DGG15] consider a version of this problem where A is only provided in the group and show this problem
is hard assuming DDH. It is crucial in our applications that A is provided in the clear.
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then just predicts a random gi as the resulting inner-product. The construction requires superpolynomial
q and does not achieve decoding for t = Θ(n) (see Sec. 1.1.1), otherwise it is “tight” with respect to
providing computational security for general entropy.

Proof Idea It is well known how to measure the probability of intersection of subspaces if one subspace
is random. There are three ways our setting differs from measuring this intersection. First, the distribution
W is not linear, second the adversary doesn’t have to “nullify” the entire space B only a single vector,
and lastly, the adversary can predict any inner product not just 0.

Our proof is dedicated to removing these three obstacles in turn. First we try and place on a bound
on how large a set E can be while being predictable in the MIPURS game. We introduce a measure of E’s
likelihood of intersecting heavily with a low dimensional subspace. We then bound this quantity using
only the size of E (Lemma 4). This allows us to control how many vectors in E are mapped to 0 by every
vector in the worst subspace. In Lemma 5 we switch from measuring how linear E is with respect to the
worst case subspace to how linear E is with respect to the worst vector in an average case subspace. We
show the adversary can’t do much better on a single vector b as long as its chosen from a random B.

The above argument considers the adversary predicting an inner product of 0, this can be transformed
to an arbitrary inner product using standard techniques with a loss in parameters (Theorem 4). Once
we have a bound on how large a predictable E, another superlogarithmic factor guarantees that all
distributions W with enough minentropy are not predictable.

In addition to minentropy, we show other distributions are MIPURS. These distributions are important
for the connections to LWE and fuzzy extractors; the proofs are straightforward.

1. Independent Distributions where symbols are independent and contribute a super logarithmic
amount of entropy including the discretized Gaussian [Reg05] and uniform interval [DMQ13]. It fol-
lows that most previously considered variants of LWE are hard in the generic group model. These
results hold for an arbitrary polynomial number of samples. Interestingly, Micciancio and Peik-
ert [MP13] considered a uniform bit error for a restricted number of samples (n = k + Ω(1/ log k)).
They argued that this restriction is necessary due to an attack by Arora and Ge [AG11] which dis-
tinguishes when the error distribution has a constant number of values with a polynomial number
of samples (requiring n = Θ(k2) when wi ∈ {0, 1}). We observe this attack is fully generic relying
on linearization of polynomials and Gaussian elimination.

2. Location Distributions where errors are either zero or random. Critically for applications, the
location of zero errors may be correlated as long as it is unlikely for a subset (of appropriate size)
to have no errors. This setting is closer to decoding random linear codes [BMvT78] than traditional
LWE. Peikert’s result considered decoding random linear codes in the exponent where the position
of errors is uniformly distributed [Pei06]. While Peikert considered uniform locations, we show a
sufficient condition for security is that each subset of size k has an overwhelming probability of
including a nonzero error.

1.1.1 Implications for fuzzy extractors

When W is a (k, β)−MIPURS distribution for a code with dimension k and β = ngl(n) then code-offset
in the exponent is a secure fuzzy extractor for W in the generic group model. Showing this requires
one additional step of key extraction, we use result of Akavia, Goldwasser, and Vaikuntanathan [AGV09,
Lemma 2] which states that dimensions of x become hardcore once there are enough dimensions for LWE
to be indistinguishable. This reduction is entirely linear and holds in the generic group setting. If one uses
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a random generator in each invocation of Gen the construction is a reusable fuzzy extractor. Canetti and
Goldwasser’s result [CG99] says linear decoding is efficient when tk = O(n log n), for k that is just ω(log n)
this allows decoding for t = o(n). The adversary’s decoding is efficient if k = O(log n) so k = ω(log n) is
smallest safe setting for k.3 As k decreases fewer distributions are (k, β)−MIPURS for β = ngl.

Concurrent work of Galbraith and Zobernig [GZ19] introduces a new subset sum computational as-
sumption to build a secure sketch that is able to handle t = Θ(n) errors, they conjecture hardness for
all securable distributions. A secure sketch is the error correction component in most fuzzy extractors.
Their assumption is security of the cryptographic object and requires more study.

A unifying construction Our construction unifies multiple fuzzy extractor constructions that are
used for different distributions. (We omit discussion of recent interesting line of works [WL18, WLG19]
that use information-theoretic tools for error correction and computational tools to achieve additional
properties. Those constructions embed a variant of the code offset.) Code offset in the exponent mitigates
security weaknesses in the information-theoretic analysis of the code-offset construction. For all supported
distributions, the construction does not leak information about W and is reusable. Since we only require
an additional super logarithmic amount of entropy we are secure whenever the information-theoretic code
offset is secure (for large enough q).

Since we support Independent distributions, our construction is secure for common LWE admissible
distributions, and thus is secure when Fuller et al. [FMR13] is known to be secure.

Canetti et al. [CFP+16] presented a fuzzy extractor that explicitly places specific subsets in a digital
locker [CD08]. This construction explicitly writes each subset to be tested. To achieve meaningful error
tolerance for an actual biometric, millions of these lockers are required [SSF18]. Their construction is
secure when a random subset of bits is hard to predict (Definition 7).

A binary w ∈ {0, 1}n where subsets are hard to predict can be amplified into a Location source, whose
zero error positions may be correlated. If w has low weight, one can multiply w by a uniform random
vector e. However, if w often has high weight this transform requires modification; see the discussion at
the end of Section 4.

The code-offset in the exponent construction intentionally allows more flexibility in subset testing.
Our analysis requires all subsets of have entropy see Definition 2.4 The construction of Canetti et al.
required an average subset to have entropy, see Definition 7. The motivation for not explicitly specifying
subsets in Gen is that many physical sources are sampled along with correlated side information that
is called confidence. Confidence information is a secondary probability distribution Z (correlated with
the reading W) that can predict the error rate in a symbol Wi. When Zi is large this means a bit of
Wi is less likely to differ. Examples include the magnitude of a convolution in the iris [SSF18] and the
magnitude of the difference between two circuit delays in ring oscillator PUFs [HRvD+16].

Herder et al. [HRvD+16] report that by considering bits with high confidence it is possible to reduce
the effective error rate from t = .10 · n to t = 3 · 10−6 · n. Note that for a subset size of 128 and t = .1n
unlocking with 95% probability requires testing approximately 2∗106 subsets while t = 3 ·10−6 ·n requires
testing a single subset. This confidence information could not be used in Canetti et al’s work to guide
subset selection as it is correlated with W. Our construction can securely use confidence information
since it is only needed at reproduction time.

3Importantly, the adversary’s view of errors is different than the construction, the adversary sees Ax+w, the construction
sees Ax + (w −w′).

4Code offset in the exponent is secure if there are some low entropy subsets, the condition is that they should have
negligible probability of being in a null space vector has nonzero coordinates at just subset locations. However, the number
of such subsets is very low so we keep our condition as all subsets having entropy.
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1.1.2 Other Contributions

We present two secondary contributions: an application to pattern matching obfuscation and standard
model results that show hardness of decoding random linear codes in the exponent assuming the hardness
of discrete log.

Pattern Matching Obfuscation. In a recent work, Bishop et al. [BKM+18] show how to obfuscate
a pattern v where each vi ∈ {0, 1,⊥} indicating that the bit vi should match 0, 1 or either value. The goal
is to allow a user to check for input string y, if y and v are the same on all non-wildcard positions. Their
construction was stated for Reed-Solomon codes but works for any linear code. We state the construction
for a random linear code: Let |v| = n and assume A← (Fq)2n×n. Then for a random x the construction
outputs the following obfuscation (for a group Gq of prime order q):5

Ow =

oi =


(gA2ix, r2i+1), r2i+1 ← Gq vi = 1

(r2i, g
A2i+1x), r2i ← Gq vi = 0

(gA2ix, gA2i+1x) vi =⊥


|v|−1

i=0

.

Bishop et al. prove security of the scheme in the generic group model. Their analysis focuses on allowing a
large number of randomly placed wildcards with the uniform distribution for nonwildcard bits of v. Most
applications of string matching are on nonuniform and correlated values such as human language. We
show the same construction is secure for more distributions over v. First, we define an auxiliary variable
s of length 2n that describes the placement of errors as follows:

si =


10 if vi = 1,

01 if vi = 0,

00 if vi =⊥.

We show it is sufficient for probability distribution s to have entropy in all subsets of size n (see Defini-
tion 2). In human language, it seems subsets of bits do have this property [Sha51, BPM+92, MZ11].

In concurrent work Bartusek, Lepoint, Ma, and Zhandry [BLMZ19] present two contributions of
interest to this work. They consider the pattern matching obfuscation application. Their first contribution
raises the upper bound on the number of wildcards in [BKM+18] from 0.774n to n−ω(log n) using a new
dual form of analysis. Their analysis still considers the uniform distribution over nonwildcard positions.
Thus, our analysis expands the provably secure distributions over v. Their second contribution considers
random linear codes not in the exponent, they use a modified version of the Random Linear Code (RLC)
assumption defined in [IPS09]. They prove for some structured error distributions hardness of both search
and decision problems. Importantly, their analysis relies on the adversary receiving only 2n dimensions
and would not apply for our fuzzy extractor application.

Standard Model Results Peikert showed hardness of decoding Reed-Solomon codes in the standard
model [Pei06, Theorem 3.1]. We improve Peikert’s result, showing hardness of decoding for both random
linear codes (Theorem 7) and Reed-Solomon codes (Theorem 9).6 Both results provide a small improve-
ment of parameters over Peikert’s result [Pei06, Theorem 3.1]. These arguments require that a random
point lies close to a codeword with noticeable probability. As q increases this probability decreases but

5Bishop et al. state their construction where x0 = 0 to allow the user to check whether they matched the pattern. In this
description, we allow the user to get out a key contained in gx0 when they are correct.

6Both results require the error e to have independent symbols, with e possessing t randomly chosen nonzero positions.
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discrete log becomes harder, creating a tension between these parameters. Peikert’s result requires that
q ≤

(
n
k+1

)
/n2. In our application to the fuzzy extractors we consider small k for which k = ω(log n). This

means that the upper bound on q may be just superpolynomial. Our results allow q to grow more quickly,
improving the bound by a modest factor of n2 (requiring that q ≤

(
n
k+1

)
).

Theorems 7 and 9 consider an adversary that performs error correction: given gy it returns gz where
the distance between dis(y, z) ≤ t and gz is a codeword. Recently, Fuchsbauer et al. [FKL18] introduced
the algebraic group model which is weaker than the generic group model. From an input gy, an algebraic
adversary produces a solution gz along with a matrix Λ such that gz = gΛy. The model is weaker than
the generic group model as the adversary is allowed to see the elements gy before creating Λ. A standard
model adversary that decodes a linear code implies an algebraic adversary. One can find k indices where
gzi = gyi . One then uses the linear decoding (from these indices) and encoding procedures of the code to
find the coefficients such that gz = gΛy. Thus, decoding is a problem where the algebraic model appears
weaker than the generic group model.

We note the wide gap between error distributions we can show in the generic group model and assuming
discrete log. The main open question from this work is how much of a gap is necessary?

Organization. The remainder of the paper is organized as follows, Section 2 covers definitions and
preliminaries, Section 3 presents the MIPURS condition and characterizes distributions that satisfy this
condition. Sections 4 and 5 describe our applications to fuzzy extractors and pattern matching obfuscation
respectively. Finally Section 6 shows hardness of decoding high entropy errors in the standard model.

2 Preliminaries

For random variables Xi over some alphabet Z we denote the tuple by X = (X1, ..., Xn). For a set of
indices J , XJ denotes the restriction ofX to the indices in J . For a vector v we denote the ith entry vi. The
min-entropy of X is H∞(X) = − log(maxx Pr[X = x]). The average (conditional) min-entropy [DORS08,
Section 2.4] of X given Y is

H̃∞(X | Y ) = − log( E
y∈Y

max
x

Pr[X = x | Y = y]).

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y | dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x,
we denote by Vol(t) the size of a ball of radius t. We consider the Hamming metric. Let Z be a finite
set and consider vectors in Zn, then dis(x, y) = |{i | xi 6= yi}|. For this metric, we denote volume as
Vol(n, t, |Z|) and Vol(n, t,Z) =

∑t
i=0

(
n
i

)
(|Z| − 1)i. For a vector in x ∈ Znq let wt(x) = |{i|xi 6= 0}|. Un

denotes the uniformly distributed random variable on {0, 1}n. Logarithms are base 2. We let ·c denote
componentwise multiplication. Usually, we use capitalized letters for random variables and corresponding
lowercase letters for their samples. In our theorems we consider a security parameter λ, when we use
the term negligible and super polynomial, we assume other parameters are functions of λ. We elide this
notation the dependence of other parameters on λ.

3 When is code offset in the exponent hard?

In this section, we introduce the Maximum Inner Product Unpredictable over Random Subspace (MIPURS)
condition, show that code offset in the exponent is secure in the generic group model given this condition,
and show distributions of interest that satisfy MIPURS.
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Definition 1. Let e be a random variable taking values in Fnq and let B : Fn−kq → Fnq denote uniform
random linear operator (drawn independently of e). We say that e is an (k, β)−MIPURS distribution if

E
B

[
min b ∈ span(B) \ 0,max

z
Pr[〈b, e〉 = z]

]
≤ β .

Theorem 2. Let λ be a security parameter. Let q be a prime and n, k ∈ Z+ with k ≤ n ≤ q. Let
A ∈ (Fq)n×k and x ∈ (Fq)k be uniformly distributed. Let w be a (k, β) − MIPURS distribution. Let
U ∈ (Fq)n be uniformly distributed. Let Σ be a set of generic groups with domain of size q. Then for all
adversaries D making at most m queries

Pr
σ

$←Σ

[Dσ(A, σ(Ax + w)) = 1]− Pr[Dσ(A, σ(U)) = 1] < γ

(
2

q
+ β

)
for γ = ((m+ n+ 2)(m+ n+ 1))2 /2. In particular, if q = ω(poly(λ)), n,m = poly(λ), and β = ngl(λ)
then the statistical distance between the two cases is ngl(λ).

The proof of Theorem 2 is relatively straightforward and delayed until Appendix A. Our proof uses
the simultaneous oracle game introduced by Bishop et al. [BKM+18, Section 4]. The rest of this section
is dedicated to understanding what types of distributions are MIPURS.

3.1 Characterizing MIPURS

The definition of a MIPURS distribution (Def 1) is admittedly unwieldily. It considers a property of a
vector w with respect to a random matrix. In this section we distributions which satisfy this property.
Since the general entropy case is the most technically involved we introduce the distributions where the
analysis is straightforward first. We begin with distributions where each component of w is independent
and contributes some entropy. The general minentropy case follows in Section 3.2.

To codify notation, we work in a prime order group of size q, a random linear code A ∈ Fn×kq . Since
the code is generated uniformly and independently of other events, the null space can be represented by
a random matrix B ∈ Fn×n−kq . As long as the adversary chooses linear tests in span(A) that are not
identically 0 we can rely on the entropy in x to provide security. However, when b ∈ span(b), we can
only rely on the distribution of errors w to provide security.

Independent Sources In most versions of LWE, each error coordinate is independently distributed
and contributes some entropy. Examples include the discretized Gaussian introduced by Regev [Reg05,
Reg10a], and a uniform interval introduced by Döttling and Müller-Quade [DMQ13]. We show that these
common LWE distributions fit within our MIPURS characterization.

Lemma 1. Let w = w1, ...,wn ∈ Fq be a distribution where each wi is independently sampled. Let
α = mini H∞(wi). Let ` ∈ Z+ ∪ {0} be some free parameter. Then w is a (k, β) −MIPURS distribution
for

β =

(
1−

(
(k − l − 1)

(
n

k−`−1

)
q`+1

))
2−α +

(
(k − l − 1)

(
n

k−`−1

)
q`+1

)
.

Proof. We use A ∈ Fn×kq to represent the random matrix from the definition of a MIPURS distribution

and let B ∈ Fn×n−kq represent its null space. We start by computing the minimum distance of B. We
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consider the probability that there exists some b ∈ span(B) such that wt(b) < k − l. That single b 6= 0
is uniformly distributed thus

Pr
b,B

[wt(b) ≤ k − l − 1] =

∑k−l−1
j=0

(
n
j

)
qj

qn
≤

(k − l − 1)
(

n
k−`−1

)
qk−`−1

qn

=
(k − l − 1)

(
n

k−`−1

)
qn−k+`+1

.

Taking the union bound over all qn−k possible b the probability of one such b existing is at most

Pr
B

[∃b 6= 0 ∈ B ∧ wt(b) ≤ k − l] ≤
(k − l − 1)

(
n

k−`−1

)
q`+1

.

In the case, when all b 6= 0 of B have weight at least k − ` then :

max
z
{Pr

B
[〈b,w〉 = z|b 6= 0 ∧ b ∈ B]} ≤ 2−α.

In the above, we argue that since the components of w are independent, predicting 〈b,w〉 is at least
as hard as predicting wi for each i such that bi 6= 0. This can be seen by fixing b and wj for j 6= i and
noting that the value of wi then uniquely determines 〈b,w〉. Thus, for i such that bi 6= 0,

max
z

Pr[〈b,w〉 = z] ≤ max
z

Pr[wi = z].

We must take mini H∞(wi) as the adversary can choose b and thus the positions of w they are predicting.
Note independence is crucial in the above argument. The argument follows by assuming that there exists
some w such that 〈b,w〉 is constant in the case when there exist low weight vectors b.

Location Sources. The second family of error distributions we consider are e′ given by the coordinate-
wise product of a uniform vector e ∈ Fnq and a “selection vector” w ∈ {0, 1}n: that is, e′i = ei ·c wi where
w is assumed to be unpredictable on all large enough subsets (·c is componentwise multiplication). More
formally, we introduce a notion called subset entropy:

Definition 2. Let a source W = W1, . . . ,Wn consist of n-bit binary strings. For some parameters k, α we
say that the source W is has (α, k)-entropy subsets if H∞(Wj1 , . . . ,Wjk) ≥ α for any 1 ≤ j1, . . . , jk ≤
n.

Lemma 2. Let ` ∈ Z+ ∪ {0} and k ∈ Z+ be some free parameters. Let W ∈ {0, 1}n be a distribution
with (α, k − `) entropy subsets. Define the distribution e′ as product of a uniform vector e ∈ Fnq and W:
that is, e′i = ei ·c wi. Then the distribution e is a MIPURS distribution for (k − `, β) for

β =

(
1−

(
(k − l − 1)

(
n

k−`−1

)
q`+1

))
2−α +

(
(k − l − 1)

(
n

k−`−1

)
q`+1

)
.

Proof. The proof follows the same basic structure as the proof of Lemma 1. Define A and B as above.
Let ` be a free parameter. For some b in the span of B with weight at least k − `, consider the product
〈b, e′〉 =

∑n
i=1 bi · ei. Define I as the set of nonzero coordinates in b. With probability at least 1− 2−α

there is some nonzero coordinate in eI . Conditioned on this fact the inner product acts as a one time
pad due to the inclusion of at least one coordinate of uniform vector e.

9



Linear Sources We now consider (n − k + 1)-linear sources. Here we consider some matrix E ∈
Fn×(n−k+1)
q and define the distribution w = Es for a uniformly random vector s ∈ Fn−k+1

q . Note the only
condition we place on E is its dimension (n− k + 1). This distribution family follows from the intuition.
If the nullspace of the code and the nullspace of the linear source have a low probability of overlapping
then that is a secure distribution for our construction.

Lemma 3. Let w be defined by a n− k + 1-linear source. Then w is a (k, β)−MIPURS distribution for

β =

(
1− k

qn−k

)
1

q
+

k

qn−k
.

Proof. Consider a random A ∈ Fn×kq and let B represent its null space. A has full column rank with

probability at least 1− k/qn−k. Conditioned on this fact the null space contains qn−k vectors. We bound
the probability that there exists some nonzero vector b ∈ span(B) where b 6= 0 and b ∈ null(E).
For each of the qn−k vectors b in B we designate an event determining if that vector is in a dimension
k − 1 space (the dimension of the null space of E). We take a union bound over these events. Since
the probability that a random vector in a dimension n space, falls within a dimension k − 1 subspace
is qk−1/qn = qk−n−1 and we have qn−k such events, we upper bound the probability of the null spaces
having non-trivial intersection by qn−k/qk−n−1 = 1/q.

Consider only B where B ∩ null(E) = {0}. Then for all b ∈ B, b 6= 0 it holds that bE is some
nonzero vector and thus at least one uniform component of s contributes to the value of bEs.

3.2 Primary Contribution - MIPURS is hard for high entropy

We now turn to the general entropy condition: MIPURS is hard for all distribution where the min-entropy
exceeds log qn−k (by a super logarithmic amount). Note that Lemma 3 above is tight. If we consider
Linear sources of dimension n − k they have high probability of having an intersection with the null
space of A and this intersection is computable. So requiring min-entropy greater than qn−k is necessary.
Furthermore, for high enough correction capability, there is a distribution with min-entropy qn−k that is
wholly contained in a single Hamming ball where the ideal fuzzy extractor provides no security [FRS16].

The adversary in our setting is given a generating matrix of the code, A, and is tasked with finding a
linear combination that has the same outcome under the initial elements and the group operation. Our
proof is in three parts. First consider some set of possible error vectors E of bounded size.

1. Theorem 3: We show that the number of vectors e ∈ E that have 0 inner product with any vector
in the null space of A is small.

2. Theorem 4: We then build on this result showing if the adversary is allowed to choose the constant it
predicts, it cannot increase the size of predictable error vectors too much. That is, for each constant
g there are not many vectors w in the null space of A such that 〈w, e〉 = g.

3. Lemma 6: We show that any distribution W with sufficient entropy cannot lie in the set of predictable
error vectors E with high probability. This means that the first query of the adversary has high
entropy. This is the MIPURS condition.

We note that these results do not depend on the generic group setting, they only ask the probability
of predicting the result of some inner product from some high entropy distribution. As such, we do not
use generic group notation in these proofs. For simplicity of statements we introduce κ = n − k and
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consider the null space B ∈ Fn×κq . We codify the set of possible adversarial strategies in a definition we
called κ-induced random variables. For the moment, we assume that B has dimension of κ and remove
this restriction at the end of the proof (Corollary 3).

Definition 3. Let b be a random variable taking values in Fnp . Let B be a random variable that is
uniform on the collection of κ-dimensional subspaces of Fnq . We say that b is κ-induced if b ∈ span(B)
with certainty: Pr[b ∈ B] = 1. Note that unless κ = n the random variables B and b must be dependent.

The key concept we use is linear density. Since we don’t know that the set of possible error values, denoted
as E, acts linearly, we introduce linear density to measure how frequently a set overlaps with the best
subspace of dimension `:

Definition 4. The `-linear density of a set of vectors F = {f1, ..., fn} in Fnp is the maximum number of
vectors that are covered by a subspace of a fixed dimension. Formally,

∆`(f1, . . . , fm) = max
V,dim(V )=`

|V ∩ {f1, . . . , fm}|.

We now show that if the set E is large enough there is no strategy for b that allows prediction with high
probability if they have to obtain inner product 0. The next theorem (Thm. 4) will allow the adversary
to predict an arbitrary inner product. For a κ induced random variable b, first define

Eε,b =

{
e ∈ Fnp | Pr

b
[〈b, e〉 = 0] ≥ ε

}
.

and define Eε = maxb(Eε,b) where the maximum is over all κ induced random variables in Fnq .

Theorem 3. Let q be a prime and let d > 1, κ,m, λ, ` ∈ Z+ be parameters for which ` > κ > 0. Then if
|Eε| > d · qκ then

ε ≤
(
`+ λ

m

)
+

(
m

`

)((
m

λ

)(
1

d

)λ
+ qκ−`

)
.

Before proving Theorem 3, we introduce and prove two combinatorial lemmas (4 and 5). We then proceed
with the proof of Theorem 3.

Lemma 4. Let q be a prime, and let n ∈ Z+. Let d > 1, E ⊂ Fnq where |E| = dq` and let F =
{f1, . . . , fm} ⊂ E be uniformly and independently chosen in E (with replacement). Then for any ` > 0
and λ ≥ 0

Pr
F

[∆`(F ) ≥ `+ λ] ≤
(
m

`

)(
m− `
λ

)(
1

d

)λ
.

Proof. By definition of linear density, if ∆`(F ) ≥ `+ λ there must be at least one subset of `+ λ vectors
of E contained in a subspace of dimension `. Let F ′ ⊆ F denote one such subset of λ+` vectors. Towards
bounding the probability of such an F ′ existing, the formation of F ′ can be thought of as follows: `
linearly independent vectors from F are found and a subspace V of dimension ` is formed from these
linearly independent vectors. Then λ more unique vectors from F are found that are contained in V.

We can count the probability of F ′ existing by first upper bounding the number of linearly independent
subsets of ` vectors in F . We assume all subsets of ` vectors are linearly independent. There are

(
m
`

)
subsets of F of ` unique vectors so we give this as the bound of the number of linearly independent subsets.
Now, the probability that one of the remaining m−` vectors in α falls within V is |V|/|E| = q`/dq`. Each
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element of F is uniformly and independently sampled, we upper bound the probability that λ vectors fall
in V by (

m− `
λ

)(
q`

dq`

)λ
=

(
m− `
λ

)
d−λ.

We use this probability for each subspace to achieve the bound of the lemma.

Lemma 5. Let ` ∈ Z+, let q be a prime, let n ∈ Z+, and let κ < n. Let F = {f1, . . . , fm} ⊂ Fnq . Suppose

that |F | > ∆`(F ). Then, for any κ-induced random variable b taking values in Fnq ,

Pr
b

[
|{fi ∈ F | 〈b, fi〉 = 0}| ≥ ∆`(F )

]
≤
(
m

`

)
qκ−` .

Proof. For a set F , define β
def
= ∆`(F ). If ∆`(F ) = β we know that there is at least one subset F ′ ⊂ F

where |F ′| = β where F ′ is contained by a subspace of dimension `, call one such subspace V. Suppose
for the moment that there exists some vector b such that 〈b, f〉 = 0 for all f ∈ F ′. By the definition of
∆(F ) the dimension of span({f |f ∈ F ′}) must be ` otherwise one could add any arbitrary point F into
F ′ contradicting the maximality of F ′. One such point must exist otherwise |F | = ∆`(F ). Denote by V
one such ` dimensional subspace noting that there are at most

(
m
`

)
such subspaces. We now bound the

probability (over B) for a fixed V that B ∩ null(V) 6= 0. Note if some κ-induced random variable b it
is true that 〈b, f〉 = 0 for all f ∈ F ′ it must be true that b ∈ B ∩ null(V). Since B is uniform in the
space and has dimension κ the probability that B ∩ null(V) is at most qκqn−`/qn = qκ−`. We achieve
the result by taking a union bound over sets of size ` representing possible sets of linearly independent
vectors.

Proof of theorem 3. Now we analyze a game in order to understand the relationship between our two
paramenters of interest: ε and d. Fix some ε > 0. In this game, we can imagine there being two stages
of choice. The first is picking a set of m vectors uniformly from Eε, call this set F , and the second is
selecting a b vector from B, a dimension κ subspace of Fnq . We study the expectation of the number
of vectors in F that are orthogonal to the adversary’s choice of b. We first give a lower bound, by the
linearity of expectation and the definition of Eε:

E
w,F

[|{fi ∈ F | 〈b, fi〉 = 0}|] ≥ ε ·m.

We now seek to find an upper bound on this expectation using Lemmas 4 and 5. In the selection of
the sample F from Eε we classify samples as good and bad based on whether they satisfy the condition
of Lemma 4. That is, we call a selection F bad if ∆`(F ) ≥ `+ λ. For bad selections, we upperbound the
expectation by m, for good selections we further split the expectation based on the selection of B. We then
call these samples great or terrible based on whether the condition of lemma 5. So a sample is terrible if
for fixed f1, ..., fm the selected B means there exists some b such that |{fi ∈ F | 〈b, fi〉 = 0}| ≥ ∆`(F ). In
the case of a terrible selection of B, we upper bound the expectation by m again. Then if the experiment
is neither bad or terrible, then we upper bound the expectation by ` + λ from our lemmas. So, for any
` > k and λ > (m− `)/d we may apply the two lemmas above and find that

E
w,ai

[|{ai | 〈ai,w〉 = 0}|] ≤ (`+ λ) +m

((
m

`

)(
m− `
λ

)(
1

d

)λ
+

(
m

`

)
qk−`

)
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and hence that

ε ≤
(
`+ λ

m

)
+

(
m

`

)((
m

λ

)(
1

d

)λ
+ qk−`

)
.

Corollary 1. Let κ and n be parameters satisfying 4 < κ < n and let q be a prime such that q ≥
(k + 1)2(k+1). Then for ε ≥ 8eq−1/(2(k+2)) we have |Eε| ≤ 8eqκ/ε.

Proof. Set the parameters in Theorem 3 as:

d = q1/(2(κ+2)), m =
dλ

2e
, ` = κ+ 1, and λ = log q .

First note that κ+ 1 = ` ≤ λ = log q = log 2 + (κ+ 2) log d (as q = d2(κ+2)). Then, consider a set Eε. We
have

ε ≤
(
`+ λ

m

)
+

(
m

`

)((me
λd

)λ
+ qk−`

)
≤
(

2λ

m

)
+ 2

(
m

`

)
q−1

≤
(

4e

d

)
+ 2

(
dλ/2e

`

)
q−1

≤
(

4e

d

)
+ 2

(
dλ

`

)`
q−1 .

Since q ≥ max(d2(κ+2), (k + 1)2(k+1)) we have

2

(
dλ

`

)`
q−1 ≤ 2

dκ+1

√
q
·
(

log q

κ+ 1

)κ+1 1
√
q
≤ 2

d
·
(

2(κ+ 1) log(κ+ 1)

κ+ 1

)κ+1 1
√
q

≤ 2

d
· (2 log(κ+ 1))κ+1 1

√
q
≤ 2

d
· (κ+ 1)κ+1 1

√
q
≤ 2

d
≤
(

4e

d

)
where we have used the fact that 2 log(κ+ 1) ≤ (κ+ 1) for κ ≥ 4. We conclude that

ε ≤ 8e

d
or, equivalently, d ≤ 8e

ε
.

The largest ε for which we can apply this argument to yield the inequality is thus 8e/d.

Predicting Arbitrary Values We now show that the adversary cannot due much better than Theo-
rem 3 by predicting any value g ∈ Fq.

Theorem 4. Let b be a κ-induced random variable in Fnq and let g be a random variable over Fq (poten-
tially correlated with b). For ε > 0 define

E∗ε =

{
e ∈ Fnp | Pr

b,g
[〈b, e〉 = g] ≥ ε

}
Then |Eε2/8| ≥ ε2

8 |E
∗
ε |, where Eε is as defined in Theorem 3.
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Proof. For an element e ∈ E∗ε , define Fe = {(f , 〈f , e〉) | f ∈ Fnp}. Note that Prb,g[(b, g) ∈ Fe] ≥ ε by
assumption. For any δ < ε, there is a subset F ∗ ⊂ E∗ε for which (i.) |F ∗| ≤ 1/δ, and (ii.) for any e ∈ E∗ε ,

Pr
b,g

[
(b, g) ∈ Fe ∩

( ⋃
f ′∈F ′

Ff ′

)]
≥ ε− δ .

To see this, consider incrementally adding elements of E∗ε into F ′ in so as to greedily increase

Pr
b,g

(b, g) ∈
⋃

f ′∈f ′
F′

 .
If this is process is carried out until no e ∈ E∗ε increases the total probability by more than δ, then it
follows that every Fe intersects with the set with probability mass at least ε − δ, as desired. Note also
that this termination condition is achieved after including no more than 1/δ sets.

Then it follows that for any e ∈ E∗ε ,

E
f ′∈F ′

Pr
b,g

[〈b, e〉 = 〈e, f ′〉] ≥ (ε− δ)δ

and hence
E

f ′∈F ′
E

e∈E◦ε
Pr
b,g

[〈b, e〉 = 〈e, f ′〉] ≥ (ε− δ)δ .

Then there exists an f∗ for which

E
e∈E∗ε

Pr[〈b, e〉 = 〈b, f∗〉] ≥ (ε− δ)δ .

Setting δ = ε/2 and we see that

E
e∈E∗ε

Pr
b

[〈b, e〉 = 〈b, f∗〉] ≥ ε2

4
.

Using this expectation (of a probability), we bound the probability it is greater than 1/2 its mean. We
use the linear properties of inner product to achieve the homogenous case:

Pr
b

[
Pr

e∈E∗ε
[〈b, e− f∗〉 = 0] ≥ ε2

8

]
≥ ε2

8

This translates directly to the claim of our theorem, |Eε2/8| ≥ ε2

8 |E
∗
ε | .

Using Corollary 1, we have the following.

Corollary 2. Let κ and n be parameters satisfying 4 < κ < n and let q be a prime such that q ≥
(k + 1)2(k+1). Then any ε ≥ 14

q1/(4(k+2))
it holds that

|E∗ε | ≤
8

ε2
64eqk

ε2
=

512eqk

ε4
.

Using standard techniques we can now argue that this implies all high min-entropy distributions are
not predictable in the above game.
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Lemma 6. Let b be a κ-induced random variable in Fnq . Let g be an arbitrary random variable in Fq.
Let W be a random variable with H∞(W ) = s. Let E∗ε be as defined in Theorem 4. Then for ε > 0

Pr
w←W,b,g

[〈b, w〉 = g] ≤ 2−s|E∗ε |+ ε .

Proof. Our predictable set E◦ε gives us no guarantee on the instability of the inner product. If a ∈ A◦ε
then we upper bound the probability by 1. Because W has min-entropy s, we know that no element is
select with probability greater than 2−s, thus the probability of a lying inside a set of size |E∗ε | is at most
|E∗ε |/2s. Outside of our predictable set, we know that the probability of a stable inner product cannot
be greater than ε by definition of E∗ε . Therefore if w does not fall in the predictable set we bound the
probability by ε (for simplicity, we ignore the multiplicative term less than 1).

Corollary 3. Let k and n be parameters satisfying 4 < n − k < n and let q be a prime such that
q ≥ (n − k + 1)2(n−k+1). Let ε ≥ 14

q1/(4(2+n−k))
be a free parameter. Then for all distributions W ∈ Fnq

such that H∞(W) ≥ log(512eqn−kε−5), it holds that then Pr
b,g,w

[〈b,w〉 = g] ≤ 2ε+ k/qn−k and thus W is

(k, 2ε+ k/qn−k)−MIPURS.

In the above corollary the additional k/qn−k term is due to the probability that A many not be full
rank, all of the above analysis was conditioned on A being full rank. The corollary then follows by setting
κ = n− k.

4 Fuzzy Extractors

Our motivating application is a new fuzzy extractor that performs error correction “in the exponent.” A
fuzzy extractor is a pair of algorithms designed to extract stable keys from a physical randomness source
that has entropy but is noisy. If repeated readings are taken from the source one expects these readings
to be close in an appropriate distance metric but not identical. Before introducing the construction we
review the definition. We consider a generic group version of security (computational security is defined
in [FMR13], information-theoretic security in [DORS08]).

Definition 5. Let W be a family of probability distributions over M. A pair of procedures (Gen :M→
{0, 1}κ × {0, 1}∗,Rep : M× {0, 1}∗ → {0, 1}κ) is an (M,W, κ, t)-computational fuzzy extractor that is
(εsec,m)-hard with error δ if Gen and Rep satisfy the following properties:

• Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w), then Pr[Rep(w′, pub) = r] ≥ 1− δ.

• Security: for any distribution W ∈ W, the string key is close to random conditioned on pub for all
A making at most m queries to the group oracle σ, that is

Pr
σ

$←Σ

[Aσ(Key,Pub) = 1]− Pr[Aσ(U,Pub) = 1] ≤ εsec.

In the above, group elements in Key, U,Pub are represented by group handles, the adversary additionally
receives σ(1). The errors are chosen before Pub: if the error pattern between w and w′ depends on the
output of Gen, then there is no guarantee about the probability of correctness.

Construction 1. Let λ be a security parameter, t be a distance, k = ω(log λ), α ∈ Z+, ` ∈ Z+, let q be
a prime and let Gq be a cyclic group of order q. Let Fq be the field with q elements. Let W ∈ Fnq , and let
dis be the Hamming metric. Define (Gen,Rep) as follows:
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Gen (w = w1, ..., wn)

1. Sample random generator r of
Gq.

2. Sample A← (Fq)n×(k+α),
x← (Fq)k+α.

3. For i = 1, ..., n: set ci =
rAi·x+wi.

4. Set key = rx0 , ..., rxα−1.

5. Set pub = (r,A, {ci}ni=1).

6. Output (key, pub).

Rep (w′, pub = (r,A, c1 . . . cn))

1. For i = 1, ..., n, set ci = ci/r
wi.

2. For i = 1, ..., `:

(i) Sample Ji ⊆ {1, ..., n}
where |J | = k.

(ii) If A−1
Ji

does not exist go to 2.

(iii) Compute s = r
A−1
Ji

cJi .

(iv) Compute c′ = r
A(A−1

Ji
cJi ).

(v) If dis(c, c′) ≤ t, output s0, ..., sα.

3. Output ⊥.

Reusability Reusability is the ability to support multiple independent enrollments of the same value,
allowing users to reuse the same biometric or PUF, for example, with multiple noncooperating providers.
More precisely, the algorithm Gen may be run multiple times on correlated readings w1, ..., wρ of a given
source. Each time, Gen will produce a different pair of values (key1, pub1), ..., (keyρ, pubρ). Security for
each extracted string keyi should hold even in the presence of all the helper strings pub1, . . . , pubρ (the
reproduction procedure Rep at the ith provider still obtains only a single w′ close to wi and uses a single
helper string pubi). Because providers may not trust each other keyi should be secure even when all keyj
for j 6= i are also given to the adversary.

Definition 6 (Reusable Fuzzy Extractor [CFP+16]). Let W be a family of distributions over M. Let
(Gen,Rep) be a (M,W, κ, t)-computational fuzzy extractor that is (εsec,m)-hard with error δ. Let
(W 1,W 2, . . . ,W ρ) be ρ correlated random variables such that each W j ∈ W. Let D be an adversary.
Define the following game for all j = 1, ..., ρ:

• Sampling The challenger samples wj ←W j and u← Gα
q .

• Generation The challenger computes (keyj , pubj)← Gen(wj).

• Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(key1, ..., keyj−1, keyj , keyj+1, ..., keyρ, pub1, ..., pubρ) = 1]

−Pr[D(key1, ..., keyj−1, u, keyj+1, ..., keyρ, pub1, ..., pubρ) = 1].

(Gen,Rep) is (ρ, εsec,m)-reusable if for all D making at most m queries and all j = 1, ..., ρ, the advantage
is at most εsec. In our theorems we assume that D is provided with handles to all group elements and the
generic group oracle.

Theorem 5. Let all parameters be as in Construction 1. Let W 1, ...,W ρ ∈ Fnq be (k, β)-MIPURS distri-
butions. Then (Gen,Rep) is a (ρ, εsec,m)-reusable fuzzy extractor for all adversaries in the generic group
model making at most m queries where

εsec = ρ

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
2

q
+ β

)
.
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Proof. Our generic proof shows that an adversary that knows A is unable to distinguish between Ax + e
from U except with negligible probability. Without loss of generality, we assume that the adversary is
trying to learn information about the first key. For the construction to be reusable for all distinguishers,
it must be true that:

|Pr[D(U, r1,A1,A1x1 + e1, {keyi, pubi}
ρ
i=2) = 1]

−Pr[D(rx0..α−1 , r1,A1,A1x1 + e1, {keyi, pubi}
ρ
i=2) = 1| ≤ εsec.

Crucially, in Theorem 2, we assume that handles are in a sufficient sparse space such that handles
from one oracle never represent a valid handle for another oracle. Rather than initializing a joint oracle
to answer all queries, one can separately initialize oracles for each application of the fuzzy extractor.
This is because each application of the fuzzy extractor works for a different group generator. Then the
ρ− 1 oracles corresponding to other enrollments wi are the same in both settings. Using a simple hybrid
argument on Theorem 2 we can replace these oracles with uniform values. Once replaced by uniform
values these oracles provide no information to the adversary. The theorem follows by a final application
of Theorem 2.

Handling binary W As shown in Lemma 2 when W is binary and subsets of W are hard to predict
one can form a MIPURS distribution by multiplying by an auxiliary random and uniform random variable
e ∈ Fnq . This has the effect of placing random errors in the locations where Wi = 1. Since decoding finds
a subset without errors (it does not rely on the magnitude of errors) we can augment errors into random
errors.

However, this creates a problem with decoding. When bits of w are 1, denoted wj = 1 we cannot use
location j for decoding as it is a random value (even if w′j = 1 as well). When one amplifies a binary w,
we recommending using another uniform random variable y ∈ {0, 1}n and check when yi 6= wi to indicate
when to include a random error. Then in reproduction the algorithm should restrict to locations where
yi = wi. Using Chernoff bounds one can show this subset is big enough and the error rate in this subset
is not much higher than the overall error rate (except with negligible probability).

We analyze the correctness and efficiency of this more complicated construction in Appendix B and
show correctness and efficiency. If k + α is just barely ω(log n) one can support error rates that are just
barely o(n). These arguments are more complex than the fuzzy extractor presented in Construction 1.

Comparison with sample-then-lock As mentioned in the introduction, Canetti et al. [CFP+16]
proposed a reusable fuzzy extractor based on digital lockers called sample-then-lock. Intuitively, a digital
locker is a symmetric encryption that is semantically secure even when instantiated with keys that are
correlated and only have entropy [CKVW10]. At a high level, their construction took multiple samples
wIj from the input biometric and use these as keys for different digital lockers, all of which contained
the same key. Our construction improves on the storage and use of confidence information over Canetti
et al. (see the Introduction). On the other hand the fact that all subsets are available to an adversary
does provide them with additional power. As mentioned in the Introduction, our definition can handle a
small number of subsets with insufficient entropy, as long as they are unlikely to be in the null space of
the code. Canetti et al. were able to show security for all distributions where sampling produced entropy:

Definition 7 ([CFP+16] Sources with High Entropy Samples). Let the source W = W1, . . . ,Wn consist
of strings of length n over some arbitrary alphabet Z. We say that the source W is a source with a
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(k, β)-entropy-samples if

E
j1,...,jk

$←[1,...,n]

(
max
z
{Pr[(Wj1 , . . . ,Wjk) = z | j1, . . . , jk]}

)
≤ β.

Our construction requires all subsets to have high entropy (Definition 2) instead of an average subset.

5 Pattern Matching Obfuscation

In this section we introduce a second application for our main theorem. This application is known as
pattern matching obfuscation. The goal is to obfuscate a string v of length n which consists of (0, 1,⊥)
where ⊥ is a wildcard. The obfuscated program on input x ∈ {0, 1}n should output 1 if and only
if ∀i, xi = vi ∨ vi = ⊥. Roughly, the wildcard positions are matched automatically. We directly use
definitions and the construction from the recent work of Bishop et al. [BKM+18]. Our improvement is in
analysis, showing security for more distributions V . We start by introducing a definition of security:

Definition 8. Let Cn be a family of circuits that take inputs of length n and let O be a PPT algorithm
taking n ∈ N and C ∈ Cn outputting a new circuit C ′. Let Dn be an ensemble of distribution families
where each D ∈ Dn is a distribution over circuits in Cn. O is a distributional VBB obfuscator for Dn
over Cn if:

1. Functionality: For each n,C ∈ Cn and x ∈ {0, 1}n, PrO,C′ [C
′(x) = C(x)] ≥ 1− ngl(n).

2. Slowdown: For each n,C ∈ Cn, the resulting C ′ can be evaluated in time poly(|C|, n).

3. Security: For each generic adversary A making at most m queries, there is a polynomial time
simulator S such that ∀n ∈ N, and each D ∈ Dn and each predicate P∣∣∣∣∣∣∣ Pr

C←Dn,
OG ,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)]

∣∣∣∣∣∣∣ ≤ ngl(n).

Construction 2. We now reiterate the construction from Bishop et al. adapted to use a random linear
code for some prime q = q(n).

O(v ∈ {0, 1,⊥}n, q, g):
where g is a generator of a group Gq.

1. Sample A ∈ (Fq)2n×n,
x0 = 0, x1,...,n−1 ← (Fq)n−1.

2. Sample e ∈ Z2n
q uniformly.

3. For i = 0 to n− 1:

(a) If vi = 1 set e2i = 0.

(b) If vi = 0 set e2i+1 = 0.

(c) If vi =⊥ set e2i =
0, e2i+1 = 0.

4. Compute y = Ax + e.

5. Output gy,A.

Eval(gy,A, x ∈ {0, 1}n):

1. Define I as
{i ∈ [1...2n] | xbi/2c = (i mod 2)}.

2. Compute A−1
I .

If none exists output ⊥.

3. Output gA−1
I,1·y ?

= g.
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To state our security theorem we need to consider the transform from strings v over {0, 1,⊥} to binary
strings.

Bin(v) = s where


si = 10 if vi = 1,

si = 01 if vi = 0,

si = 00 if vi =⊥ .

Lastly, define the distribution e′ = e ·c Bin(v)i.

Theorem 6. Let ` ∈ Z+ be a free parameter. Define V as the set of all distributions V such that
E′ = UnFq ·c Bin(V ) is a distribution that is (n, β) − MIPURS. Then Construction 2 is VBB secure for
generic D making at most m queries with distinguishing probability at most

((m+ n+ 2)(m+ n+ 1))2

2

(
2

q
+ β

)
.

Proof. Like the work of Bishop et al. [BKM+18, Theorem 16] the VBB security of the theorem follows by
noting for any adversary A there exists a simulator S that initializes A, provides them with 2n random
handles (and simulates the interaction with Or) and outputs their output. By Theorem 2, the output of
this simulator differs from the adversary in the real game by at most the above probability.

6 Hardness of Decoding in the Standard Model

In this section we answer, “For what distributions can we prove security of the code offset construction
in the standard model only assuming the hardness of discrete log?” We use this as a comparison to the
distributions we can prove secure in the generic group model. We examine hardness of decoding random
linear codes in the exponent. In Appendix C we consider Reed-Solomon codes. Both results follow a
three part outline:

1. A theorem of Brands [Bra93] which says that if given a uniformly distributed gy one can find z
such that g〈y,z〉 = 1 or equivalently that a vector z such that 〈y, z〉 = 0 then one can solve discrete
log with the same probability. For a vector of length n and prime q, this problem is known as the
FIND− REP(n, q) problem.

2. A combinatorial lemma which shows conditions for a random gy to be within some distance param-
eter c of a codeword with noticeable probability. That is, ∃z ∈ C such that dis(gx, gz) ≤ c (for the
codeword space C).

3. Let O be an oracle for bounded distance decoding. That is, given gy, O returns some gz where
dis(gz, gy) ≤ c and z ∈ C. Recall that linear codes have known null spaces. Thus, if two vectors gz

and gy match in more positions than the dimension of the code it is possible to compute a vector λ
that is only nonzero in positions where gzi = gyi and 〈λ,x〉 = 〈λ,y〉 = 0. If O works on a random
point gy it is possible to compute a vector λ in the null space of y. This serves as an algorithm to
solve the FIND− REP and completes the connection to hardness of discrete log.

In this section we focus on a combinatorial lemma to establish point 2. In supplemental material (Ap-
pendix C), we present a similar result for Reed-Solomon codes improving prior work of Peikert [Pei06].

An (n, k, q)- random linear code, denoted RL(n, k, q), is generated by a matrix A ∈ Zn×kq that is

independent and uniform elements of Zq. The code is the set of Ax for all vectors x ∈ Fkq . We will
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consider noise vectors e ∈ Fq where the Hamming weight of e denoted wt(e) = t and the nonzero entries
of e are uniformly distributed. That is, we consider z = Ax + e.

Usually in coding theory the goal is unique decoding. That is, given some y, if there exists some z ∈ C
such that dis(y, z) ≤ t, the algorithm is guaranteed to return y and z is uniquely defined.

Our results consider algorithms that perform bounded distance decoding. Bounded distance decoding
is a relaxation of unique decoding. For a distance t and a point y ∈ Znq a bounded distance decoding
algorithm returns some z ∈ C such that dis(y, z) ≤ t. There is no guarantee that z is unique or is the
point in the code closest to y.

Problem BDDE− RL(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Random Linear
Codes codes.

Instance Known generator g of Z∗q . Define e as a random vector of weight c in Zq. Define gy = gAx+e

where A,x are uniformly distributed. Input is gy,A.

Output Any codeword gz where ∃x ∈ Zkq such that z = Ax and dis(x, z) ≤ c.

For a code C we define the distance between a point y and the code as the minimum distance between
y and any codeword c in C. Formally, dis(y,C) = min

c∈C
dis(y, c).

Our proofs use the notion of thickness of a point with respect to a codespace and a radius. Consider
some point y in the codespace and a radius r. The thickness of a point is the number of Hamming balls
(of radius r) inflated around all codewords that cover y. Specifically, define the set of points contained in
a Hamming ball of radius r as Φ(r, z) for each codeword z in the code C. Then define random variables
ϕ(r, z,y) for each Φ(r, z) where ϕ(r, z,y) = 1 if y ∈ Φ(r, i) and 0 otherwise. Then the thickness of y is
Thick(r,C,y) =

∑
z∈C

ϕ(r, z,y).

We now present the theorem of this section and our key technical lemma (Lemma 7), then prove the
lemma and finally the theorem.

Theorem 7. For positive integers n, k, c and q where k < n ≤ q and let g be a generator of Z∗q. If
an efficient algorithm exists to solve BDDE− RL(n, k, q, n − k − c, g) with probability ε, then an efficient
randomized algorithm exists to solve the discrete log problem in the same group with probability at least

ε′ = ε

(
1−

(
qn−k

Vol(n, n− k − c, q)
+

k

qn−k

))
.

In particular, using a volume bound Vol(n, r, q) ≥
(
n
k

)
qr(1− n/q), we get

ε′ = ε

(
1−

(
qc(

n
k+c

)
(1− n

q )
+

k

qn−k

))
.

Lemma 7. Let a Code RLA(n, k, q) be defined by matrix A ∈ Zn×kq , then

Pr
y∈Fnq ,A

[dis(y,RLA(n, k, q)) > n− k − c] ≤ qn−k

Vol(n, n− k − c, q)
+

1

qn−k
.

Proof of Lemma 7. A Random Linear Code RLA(n, k, q) has qk codewords in a qn sized codespace as
long as A is full rank. The probability of A being full rank is at least 1− k/qn−k [FMR13, Lemma A.3].
The expected thickness of a code or Ey Thick(r,A,y) is the average thickness over all points in the space.
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Expected thickness is the ratio of the sum of the volume of the balls and the size of the space itself. Note
that this value can be greater than 1. A Hamming ball in this space can only be defined up to radius n.
We give denote the expected thickness of the code as follows:

Ey(Thick(r,A,y)) =
Vol(n, r, q) · qk

qn
= Vol(n, r, q) · qk−n

For r = n− k − c:
Ey(Thick(n− k − c,A,y)) ≥ Vol(n, n− k − c, q) · qk−n

For a point to be have Hamming distance from our code greater than n − k − c, its thickness must be
0. For the thickness of a point to be 0, it must deviate from the expected thickness by the expected
thickness. We use this fact to bound the probability that a point is distance at least n−k− c. We require
that each codeword is pairwise independent (that is, PrA[c ∈ A|c′ ∈ A] = PrA[c ∈ A]). In random
linear codes, only generating matrices with dimension 1 are not pairwise independent. We have already
restricted our discussion to full rank A. Define an indicator random variable that is 1 when a point c
is in the code. The pairwise independence of the code implies pairwise independence of these indicator
random variables. With pairwise independent codewords, we use Chebyshev’s Inequality to bound the
probability of a random point being remote from a random code. We upper bound the variance of Thick
by its expectation (since the random variable is nonnegative). In the below equations we only consider
A where Rank(A) = k but do not write this to simplify notation. Let t = n− k − c, then

E
A

Pr
y

[dis(y,RLA(n, k, q)) > t] = E
A

Pr
y

[Thick(t,A,y) = 0]

≤ E
A

(
Pr
y

[|Thick(t,A,y)− E(Thick(t,A,y))| > E(Thick(t,A,y))]

)
≤ E

A

(
Vary(Thick(t,A,y))

Ey(Thick(t,A,y))2

)
≤ E

A

(
1

Ey(Thick(t,A,y))

)
=

qn−k

Vol(n, n− k − c, q)
.

Proof of Theorem 7. Suppose an algorithm F solves BDDE− RL(n, k, q, n−k−c, g) with probability ε. We
show that F can be used to construct an O that solves FIND− REP.
O works as follows:

1. Input y = (y1, . . . , yn) (where y is uniform over Znq ).

2. Generate A← Zn×kq .

3. Run z← F(y,A).

4. If dis(y, z) > n− k − c output ⊥.

5. Let I = {i|yi = zi}.

6. Construct parity check matrix of AI , denoted HI .

7. Find some nonzero row of HI , denoted B = (b1, . . . , bk+c) with associated indices I.
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8. Output λ where λi = Bi′ for i ∈ I where i′ represents the location of i in a sorted list with the
same elements as I and 0 otherwise.

By Lemma 7, (y,A) is a uniform instance of BDDE− RL(n, k, q, n − k − c, g) with probability at least
1− (qn−k/Vol(n, n− k − c, q) + k ∗ q−(n−k)). This means that I ≥ k + c. Note for z to be a codeword it
must be that there exists some x such that z = Ax and thus, the parity check matrix restricted to I is
defined and there is some nonzero row.
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A Generic Group Formalism and Analysis

A.1 The Generic Group Model and the Simultaneous Oracle Game

The focus of this section is on proving Theorem A. This proof is a relatively straightforward generic group
proof. Our proof uses the simultaneous oracle game introduced by Bishop et al. [BKM+18, Section 4].
In this game, the adversary is given two oracles O1 and a second oracle O∗ that is either O1 or O2 with
probability 1/2. If O∗ = O1 it is sampled with independent randomness from the first copy. Bishop et
al. show that if an adversary cannot distinguish in this game, they cannot distinguish the two oracles O1

and O2. Since the adversary has access to two oracles simultaneously it is easier to formalize when the
adversary can distinguish: The adversary’s distinguishing ability arises directly from repeated responses.
The adversary can only notice inconsistency when (i.) one oracle returns a new response and the other
does not or (ii.) if both responses are repeated but not consistent with the same prior query.

Definition 9 (Generic Group Model (GGM) [Sho97]). An application in the generic group model is
defined as an interaction between a m-attacker A and a challenger C. For a cyclic group of order N with
fixed generator g, a uniformly random function σ : [N ] → [M ] is sampled, mapping group exponents in
ZN to a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx. We consider M large
enough that the probability of a collision between group elements under σ is negligible so we assume that
σ is injective.

Based on internal randomness, C initializes A with some set of labels {σ(xi)}i. It then implements
the group operation oracle OG(·, ·), which on inputs σ1, σ2 ∈ [M ] does the following:

1. if either σ1 or σ2 are not in L, return ⊥.

2. Otherwise, set x = σ−1(σ1) and y = σ−1(σ2) compute x+ y ∈ ZN and return σ(x+ y).
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A is allowed at most m queries to the oracle, after A outputs a bit which is sent to C which outputs a bit
indicating whether A was successful.

The above structure captures distinguishing games. Search games can be defined similarly. Bishop et. al.
formalized the simultaneous oracle game [BKM+18]. The formal structure is as follows.

Definition 10 (Simultaneous Oracle Game [BKM+18] definition 6). An adversary is given access to a
pair of oracles (OM ,O∗) where O∗ is drawn from the same distribution as OM with probability 1/2 (with
independent internal randomness) and is OS with probability 1/2. In each round, the adversary asks the
same query to both oracles. The adversary wins the game if they guess correctly the identity of O∗.

We note that even if the oracles are drawn from the same distribution their handle mapping functions
σ, using their independent internal randomness, will respond with distinct handles with overwhelming
probability even if their responses represent the same underlying group element. The distributions that
the oracles are drawn from represent any internal randomness that could be used to initialize the imple-
mentation of the oracle by the challenger in the definition of the generic group model.

In [BKM+18], Bishop et. al. also define two sets HtS and HtM which are the sets of handles returned
by the two oracles after t query rounds. They use these sets to define a function Φ : HtS → HtM . Initially

the adversary sets Φ(ht,iS ) = ht,iM for each element indexed by i in the initial sets given by the oracles. The
adversary can only distinguish if (i.) one oracle returns a new handle, while the other is repeated or (ii.)
the two oracles both return old handles that are not consistent under Φ. Hardness of the simultaneous
oracle game is sufficient to show that the two games cannot be distinguished. We state a lemma from
Bishop et al.:

Lemma 8 ([BKM+18] Lemma 7). Suppose there exists an algorithm A such that

|Pr[AGM(OGM) = 1]− Pr[AGS (OGS ) = 1]| ≥ δ.

Then an adversary can win the simultaneous oracle game with probability at least 1
2 + δ

2 for any pair of
oracles (OM,O∗ = OM/OS).

In the above AGM(OGM) corresponds to an adversary being initialized with handles from GM and
having an oracle to GM. AGS (OGS ) is defined similarly.

Remark 1. It is convenient for us to change the query capability of the adversary in the simultaneous
oracle game. Rather than single group operation queries we allow the adversary to make queries in the
form of a vector representing a linear combination of the initial set of handles given by the pair of oracles.
Specifically, a query X = (c0, . . . , ci) is given to both OM and O∗ where they compute and return their
responses. Each query to this interface can be simulated using a polynomial number of queries to the
traditional group oracle.

Proof of Theorem 2. We begin the proof by describing the two oracles we use in the simultaneous oracle
game called the Code and Random Oracles.

Code Oracle. We define a code oracle that responds to queries faithfully. We denote this oracle Oc.
This oracle picks a message x, uses the generating matrix A and the error vector random variable e which
is a (k, β)−MIPURS distribution.

The oracle begins by calculating the noisy codeword b1, ...,bn as b = Ax+e. The oracle prepends b0 =
1 (to allow the adversary constant calculations) and sends (σc(b0), . . . , σc(bn)) to D. When queried with
a vector χ = (χ0, χ1, . . . , χn) ∈ Zn+1

q the oracle answers with an encoded group element σc(
∑n

i=0 χi · bi).
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Random Oracle. We also define an oracle Or that creates n + 1 random initial encodings and re-
sponds to all distinct requests for linear combinations with distinct random elements. For a sequence of
indeterminates y = (y0, y1, . . . , yn), this oracle can be described as a table where the left side is a vector
representing a linear combination of the indeterminates and the right side is a handle associated with
each vector.

When presented a query, if the vector is in the oracle’s table, it responds with the handle on the
right side of the table. When the query is a new linear combination, it generates a distinct handle. The
adversary then stores the vector and the handle in the table and sends the handle to D. We denote the
handles τi to distinguish them from the encoded group elements of the code oracle.

Lemma 9. In a simultaneous oracle game, the probability that any adversary D, when interacting with
group oracles (Oc,O∗ = Oc/Or) succeeds after m queries is at most

|Pr[D(Oc) = 1]− Pr[D(O∗) = 1]| ≤ γ
(

2

q
+ β

)
for γ = ((m+ n+ 2)(m+ n+ 1))2/8.

Proof. We examine the simultaneous oracle game that the adversary plays between Oc and O∗. The
adversary maintains its function Φ as it makes queries. We also analyze the underlying structure of
Oc. Denote the adversary’s linear combination as λ||χ1, ..., χn. We distinguish the first element as it is
multiplied by 1 leading to an offset in the resulting product. We do this by noticing that for i ≥ 1, the
group element bi is Aix + ei (we use Ai to denote the ith row of a matrix A):

n∑
i=1

χibi + λ =

n∑
i=1

χi(Ai · x) +

n∑
i=1

χi(ei) + λ = 〈χ,Ax〉+ 〈χ, e〉 + λ.

Again, Or responds to each distinct query with a new handle. This means that there is exactly one
occasion to distinguish when O∗ = Oc or Or. This is when the handle returned by Oc is known and Or
is new. We divide our cases with respect to the linear combination query χ. If χ is not in the null space
of the code A, we call this case 1. If χ is in the null space of A we call this case 2.

Case 1. Initially, x is both uniform and private. We can write the product of χ and our noisy code
word b as χ(b) = χ(Ax + e) = (χA)x + χ(e). Since χ /∈ null(A) then for at least one index i there is a
χi ·Ai 6= 0. Since x has full entropy, then (χiAi)xi also has full entropy and the sum of the terms has full
entropy. After the first query, x is no longer uniform. With each query, the adversary learns a predicate
about the difference of all previous queries, simply that they do not produce the same element. After m
queries (and n+ 1 starting handles) there are η = (m+ n+ 1)(m+ n+ 2)/2 query differences, giving the
same number of these equality predicates. Note that the adversary wins if a single of these predicates is
1 meaning we can consider η total values for the random variable, denoted EQ representing the equality
predicate pattern. Then, using a standard conditional min-entropy argument [DORS08, Lemma 2.2b].
Thus,

∀i, H̃∞(xi | EQ,A) ≥ log q − log η.

Thus, it follows that after m queries,

H̃∞(χ(Ax) | A, EQ) ≥ log q − log η.
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Thus, the probability that this linear combination represents a known value (on average across a) is:

E
A,EQ

[
max
z

Pr[(χ(Ax) = z | A, EQ]
]
≤ η

q
.

Case 2. Decomposing the linear combination of the codeword into χ(Ax+e) since χ is in the null space
of A then our linear combination is just 0 + 〈χ, e〉. Since e is a (k, β) −MIPURS distribution, then an
upper bound for the power of the adversary to predict the outcome of the linear combination (and thus
the outcome of 〈χ, e〉 + λ) is β. In this case we also lose entropy due to the linear predicates. After m
queries, we pay the same log η bits so the probability is increased to ηβ.

These two cases are mutually exclusive. Thus, to calculate the probability of either of these cases
occurring after m queries (and n+ 1 starting handles) we take the sum. There are only q distinct group
elements, and therefore handles. Even a handle with full entropy will collide with a known handle with
probability equal to the number of known handles over the size of the group. Since each query can only
produce one handle, we have η distinct pairs of handles after m queries. So taking a union bound over
each query, we upper bound the distinguishing probability for the adversary by

η

(
η

q
+ ηβ

)
= η2

(
1

q
+ β

)
.

This completes the proof of Lemma 9 by setting γ = η2.

This lemma gives us the distinguishing power of an adversary interacting with our code oracle and
our random oracle. Our random oracle never has collisions because it creates fresh handles every time.
To create an oracle analogous to a uniform distribution as claimed in Theorem 2. Note that this oracle
is different Or which responded to all distinct queries with distinct handles. This third handle initializes
n random elements and faithfully represents the group operation. For a fresh query this oracle has
probability 1/q of returning a previously seen handle. We call this last oracle the uniform oracle. In this
case the adversary only distinguishes by seeing a repeated query handle. This probability is at most η/q.
To simplify the final result we know this value is at most γ/q since γ = η2.

Taking the result of this Lemma 9, we can prove Theorem 2 using Lemma 8 (and the modification to
the uniform oracle) where

δ/2
def
= γ

(
2

q
+ β

)
.

Since the probability of an adversary winning the simultaneous oracle game is bounded above by

1/2 + δ/2 = 1/2 + γ

(
2

q
+ β

)
then

Pr[A(Oc) = 1]− Pr[A(Or) = 1] < 2γ

(
2

q
+ β

)
,

for γ = ((m + n + 1)(m + n + 2)/2)2. Because Or represents the oracle for uniform randomness and Oc
is the oracle for Ax + e, this gives us the result for generic adversaries.
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B Correctness of Fuzzy Extractor

In this section we present the more complex fuzzy extractor designed to handle binary w inputs (using
two auxiliary variables). Correctness in this case is more complicated, we analyze correctness of this
construction in place of Construction 1.

Construction 3. Let λ be a security parameter, t be a distance, k = ω(log λ), α ∈ Z+, q be a prime and
let Gq be some cycle group of order q. Let Fq be the field with q elements. Let W ∈ {0, 1}n and let dis be
the Hamming metric. Let τ = max(0.01, t/n). Define (Gen,Rep) as follows:

Gen(w = w1, ..., wn)

1. Sample random generator r of Gq.

2. Sample A ← (Fq)n×(k+α),x ←
(Fq)k+α.

3. Sample y
$← {0, 1}n.

4. For i = 1, ..., n:

(i) If wi = yi, set ci = rAi·x.

(ii) Else set ci
$← Gq.

5. Set key = rx0...α−1.

6. Set pub = (r,y,A, {ci}ni=1).

7. Output (key, pub).

Rep(w′, pub = (r,y,A, c1 . . . c`))

1. Let I = {i|w′i = yi}.
2. For i = 1, ..., `:

(i) Choose random Ji ⊆ I where |J | = k.

(ii) If A−1
Ji

does not exist go to 4.

(iii) Compute c′ = r
A(A−1

Ji
cJi ).

(iv) If dis(cI , c
′
I) ≤ |cI |(1− 2τ),

output r
A−1
Ji

cJi
0...α−1 .

3. Output ⊥.

We now show this construction is correct and efficient. Our correctness argument considers constant

k′
def
= k+α = Θ(n) and t = Θ(n). For the fuzzy extractor application, one would consider a smaller k′ and

t. In particular, for t = o(n) the theorem applies with overwhelming probability as long as k′ ≤ (1−Θ(1))
3 ∗n.

We use the q-ary entropy function which is a generalization of the binary entropy function to larger fields.
Hq(x) is the q-ary entropy function defined as

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Theorem 8. Let parameters be as in Construction 1. Define τ = t/n. Let 0 < δ < 1 − Hq(4τ) and
suppose that k′ ≤ (1/3)·d1−Hq(4τ)−δen. If Rep outputs a value other than ⊥ it is correct with probability
at least 1− e−Θ(n).

Proof of Theorem 8. We assume a fixed number of iterations in Rep denoted by `. Recall we assume that
dis(w,w′) ≤ t and that the value y is independent of both values (by Def 5, w′ does not depend on the
public value). We first consider the final check of whether dis(cI , c

′
I) ≤ |cI |(1− 2τ) will return correctly

if and only rx = r
A−1
Ji

cJi . We stress that this is property is independent of the chosen subset and only
depends on A,x, w, w′ and y. We refer to the values in the exponent, but our argument directly applies
to the generated group elements. Define the matrix AI defined by the set I. By Chernoff bound,

Pr

[
|I| ≤

(
1− 1

3

)
E |I|

]
= Pr

[
|I| ≤

(
2

3

)
n

2

]
≤ e−

n
36 ≤ e−Θ(n).
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Without loss of generality we assume that the size of I = n/3. Consider some fixed w,w′ such that
dis(w,w′) ≤ t and define the random variable Z of length n where a bit i of z that indicates when wi = w′i

and when w′i = yi. We consider the setting when t = Θ(n), if t = o(n) then τ
def
= t/n ≤ .01 and the

condition holds with high probability. Define S = {i|wi = yi = w′i}. We can lower bound of size of S by
a binomial distribution with n/3 flips and probability p ≥ 1 − τ . That is, E[S] ≥ (n/3)(1 − τ). By an
additive Chernoff bound,

Pr [S − E[S] ≥ τn] =≤ 2e−2τ2n ≤ e−Θ(n).

To show correctness it remains to show that x is unique. We again assume that I = n/3, all arguments
proceed similarly when I > n/3. To show uniqueness of x suppose that there exists two x1,x2 such that
dis(AIx1, cI) ≤ |cI |(1− 2τ) and dis(AIx2, cI) ≤ |cI |(1− 2τ). This means that AI(x1 − x2) contains at
most 4t/3 nonzero components. To complete the proof we use the following standard theorem:

Lemma 10. [Gur10, Theorem 8] For prime q, δ ∈ [0, 1 − 1/q), 0 < ε < 1 −Hq(δ) and sufficiently large
n, the following holds for k′ = d(1−Hq(δ)− ε)ne . If A ∈ Zn×k′q is drawn uniformly at random, then the
linear code with A as a generator matrix has rate at least (1−Hq(δ)− ε) and relative distance at least δ
with probability at least 1− e−Ω(n).

Application of Lemma 10 completes the proof of Theorem 8.

Recovery Our analysis of running time is similar in spirit to that of Canetti et al. [CFP+16]. For any
given i, the probability that w′Ji = wJi is at least(

1− 2t

n− 3k′

)k′
.

This follows since d(wI , w
′
I) ≤ 2τ ∗ |I| and since we are sampling sets without replacement the number of

error less positions remains at least n/3−k′. We bound the probability of an error for each sample (without

replacement) by the probability of the last sample which is at most 2t/3
n/3−k′ = 2t

n−3k′ . The probability that
no iteration matches is at most (

1−
(

1− 2t

n− 3k′

)k′)`
.

We can use the approximation ex ≈ 1 + x to get(
1−

(
1− 2t

n− 3k′

)k′)`
≈ (1− e−

2tk′
n−3k′ )` ≈ exp(−`e−

2tk′
n−3k′ ).

Suppose that correctness 1− δ ≥ 1− (δ′ + e−Θ(n)) is desired. (Here, the e−Θ(n) term is due to sampling
of a bad matrix A and failures of Chernoff bounds above.) Then if k′ = o(n) with tk′ = cn lnn for some
constant c, setting ` ≈ n2c+Θ(1) log 1

δ′ suffices as:

exp
(
−`e−

tk
n−3k

)
= exp

(
−n2c log

1

δ′
e
− 2tk′
n−3k′

)
≤ exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ e−(2c+o(1)) lnn

)
= exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ n−(2c+o(1))

)
≤ δ′
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Thus, for k = ω(lnn), one can support error rates t = o(n) .

C Decoding Reed Solomon Codes in the Exponent

The Reed-Solomon family of error correcting codes [RS60] have extensive applications in cryptography.
For the field Fq of size q, a message length k, and code length n, such that k ≤ n ≤ q, define the
Vandermonde matrix V where the ith row, Vi = [i0, i1, ...., ik]. The Reed Solomon Code RS(n, k, q) is the
set of all points Vx where x ∈ Fkq . Reed-Solomon Codes have known efficient algorithms for correcting
errors. We note that for a particular vector x the generated vector Vx is a degree k polynomial with
coefficients x evaluated at points 1, ..., n.

The Berlekamp-Welch algorithm [WB86] corrects up to (n − k + 1)/2 errors in any codeword in
the code. List decoding provides a weaker guarantee. The algorithm instead vectors a list containing
codewords within a given distance to a point, the algorithm may return 0, 1 or many codewords [Eli57].
The list decoding algorithm of Guruswami and Sudan [GS98] can find all codewords within Hamming
distance n−

√
nk of a given word. Importantly, algorithms to correct errors in Reed-Solomon codes rely

on nonlinear operations. Like with Random Linear Codes we consider hardness of constructing an oracle
that performs bounded distance decoding.

Problem BDDE− RS(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Reed Solomon codes.

Instance A known generator g of Z∗q . Define e as a random vector of weight c in Z∗q . Define gy = gVx+e

where x is uniformly distributed. Input is gy.

Output Any codeword gz where z ∈ RS(n, k, q) such that dis(gy, gz) ≤ c.

Theorem 9. For any positive integers n, k, c, and q such that q ≥ n2/4, c ≤ n+k, k ≤ n and a generator
g of the group G, if an efficient algorithm exists to solve BDDE− RS(n, q, k, n− k − c, g) with probability ε
(over a uniform instance and the randomness of the algorithm), then an efficient randomized algorithm
exists to solve the discrete log problem in G with probability

ε′ ≥


ε

(
1− 2qc

( n
k+c)

)
n2

2 ≤ q

ε

(
1− cqc

( n
k+c)

)
n2

4 ≤ q <
n2

2

.

Proof. Like Theorem 7 the core of our theorem is a bound on the probability that a random point is close
to a Reed-Solomon code.

Lemma 11. For any positive integer c ≤ n− k, define α = 4q
n2 , and any Reed-Solomon Code RS(n, k, q),

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] ≤ qc(
n
k+c

)α−c c∑
c′=0

αc
′

where the probability is taken over the uniform choice of y from Gn.

Proof of Lemma 11. A vector y has distance at most n−k− c from a Reed-Solomon code if there is some
subset of indices of size k+ c whose distance from a polynomial is at most k− 1. To codify this notion we
define a predicate which we call low degree. A set S consisting of ordered pairs {αi, xi}i is low degree if the
points {(αi, logg xi)}i∈S lie on a polynomial of degree at most k − 1. Define S = {S ⊆ [n] : |S| = k + c}.
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For every S ∈ S, define YS to be the indicator random variable for if S satisfies the low degree condition
taken over the random choice of y. Let Y =

∑
S∈S YS .

For all S ∈ S,Pr[YS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S define a unique polynomial
of degree at most k. The remaining c points independently lie on that polynomial with probability 1/q.
The size of S is |S| =

(
n
k+c

)
. Then by linearity of expectation, E[Y ] =

(
n
k+c

)
/qc. Now we use Chebyshev’s

inequality,

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] = Pr[Y = 0]

≤ Pr[|Y − E[Y ]| ≥ E[Y ]]

≤ Var(Y )

E[Y ]2
.

It remains to analyze Var(Y ) = E[Y 2]−E[Y ]2. To analyze this variance we split into cases where the
intersection of YS and YS′ is small and large. Consider two sets S and S′ and the corresponding indicator
random variables YS and YS′ . If |S ∩ S′| < k then E[YS |YS′ = E[YS ] and E[YSYS′ ] = E[YS ]E[YS′ ]. This
observation is crucial for security of Shamir’s secret sharing [Sha79]. For pairs S, S′ where |S ∩ S′| ≥ k,
we introduce a variable c′ between 0 and c to denote c′ = |S∩S′|−k. For such S, S′ instead of computing
E[Y 2] − E[Y ]2 we just compute E[Y 2] and use this as a bound. For each c′ we calculate E[YSYS′ ] where
|S ∩ S| = k + c′. The number of pairs can be counted as follows:

(
n
k+c

)
choices for S, then

(
k+c
c−c′
)

choices
for the elements of S not in S′ which determines the k + c′ elements that are in both S and S′, and
finally

(
n−k−c
c−c′

)
to pick the remaining elements of S′ that are not in S. So the total number of pairs is(

n
k+c

)(
k+c
c−c′
)(
n−k−c
c−c′

)
. Using these observations, we can upper bound the variance Var(Y ) for our random

variable Y :

Var(Y ) =
∑

S,S′∈S
(E[YSYS′ ]− E[YS ]E[YS′ ])

=
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]− E[YS ]E[YS′ ])

≤
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]) =

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(
1

q2c−c′ )

Here the last line follows by observing that for both YS and YS′ to be 1 they must both define the same
polynomial. Since S and S′ share k + c′ points, there are (k + c) + (k + c)− (k + c′) = k + 2c− c′ points
that must lie on the at most k − 1 degree polynomial, and any k points determine the polynomial, and
the remaining 2c−c′ points independently lie on the polynomial with probability 1/q then the probability
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that this occurs is 1/q2c−c′ . Continuing one has that,

Var(Y ) ≤ 1

q2c

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(qc
′
)

=
1

q2c

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
[( n

k + c

)
1

qc

] 1

qc

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
E[Y ]

qc

c∑
c′=0

(
qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

))
We are now ready to proceed to the proof.
We bound the size of

(
k+c
c−c′
)(
n−k−c
c−c′

)
by observing that the sum of the top terms of the choose functions

is n and the product of two values with a known sum is bounded by the product of their average, in this
case n/2. We also use the upper bound of the choose function where nk ≥

(
n
k

)
to arrive at the bound that

q−c
c∑

c′=0

(qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

)
) ≤

(
(n/2)2

q

)c c∑
c′=0

( q

(n/2)2

)c′
.

The proof then follows using our bound for variance by defining α = 4q/n2. This completes the proof
of Lemma 11.

The remainder of the proof is similar to the proof of Theorem 7. A works as follows: on input y where
y is uniform over Gn immediately run D(g,y). By Lemma 11, (g,v) is an instance of BDDE− RSq,E,k,n−k−c
with probability at least

1− qc(
n
k+c

)α−c c∑
c′=0

αc
′
.

Then conditioned on this event, the instance is uniform, and D (with probability ε) outputs some z where
dis(z,y) ≤ n − k − c. Take any k + 1 indices I ⊆ [n] such that yi = zi for i ∈ E. Then any k of the yi
interpolate to another one of the yi. We find the non-trivial Lagrange coefficients for the first k yi call
them λi such that

∏
i∈E

vλii = 1. Call the remaining point yk+1. let λi = 0 for i /∈ E and set λk+1 to −1.

Then (λ1, . . . , λn) is a solution to FIND− REP. The parameters in the Theorem follow when 1 ≤ α < 2 by
noting that

α−c
c∑

c′=0

αc
′ ≤ α−c(c · αc) = c.

Parameters in Theorem 9 follow in the case when α = 4q/n2 ≥ 2 by noting that:

α−c
c∑

c′=0

αc
′

= α−c
(αc+1 − 1

α− 1

)
=
(α− α−c
α− 1

)
≤ 2.
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