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Abstract. Masking is the best-researched countermeasure against side-
channel analysis attacks. Even though masking was invented almost 20
years ago, research on the efficient implementation of masking continues
to be an active research topic. Many of the existing works focus on the re-
duction of randomness requirements since the production of fresh random
bits with high entropy is very costly in practice. Most of these works rely
on the assumption that only so-called online randomness results in addi-
tional costs. In practice, however, it shows that the distinction between
randomness costs to produce the initial masking and the randomness
to maintain security during computation (online) is not meaningful. In
this work, we thus study the question of minimum randomness require-
ments for first-order Boolean masking when taking the costs for initial
randomness into account. We demonstrate that first-order masking can
always be performed by just using two fresh random bits and without
requiring online randomness. We first show that two random bits are
enough to mask linear transformations and then discuss prerequisites
under which nonlinear transformations are securely performed likewise.
Subsequently, we introduce a new masked AND gate that fulfills these
requirements which form the basis for our synthesis tool that automat-
ically transforms an unmasked circuit into a first-order secure masked
circuit. We demonstrate the feasibility of this approach by implementing
an AES circuit with only two bits of randomness.

Keywords: masking · AES · first-order masking · hardware security ·
side-channel analysis

1 Introduction

Ever since the findings of Kocher et al. [24] and Quisquater [27] on differential
power analysis and electromagnetic emanation analysis, respectively, the efficient
protection against so-called side-channel analysis attacks has been eagerly stud-
ied. Masking has been proven over the years to be a countermeasure with high
and formally well-understood security guarantees [23, 17] as well as good scala-
bility [13]. Despite its popularity, the research on more efficient approaches to
mask security-critical implementations does not seem to come to an end soon [6,
19, 20, 22, 26, 28].



2 Hannes Gross, Lauren De Meyer, Martin Krenn, and Stefan Mangard

One drawback of masking, however, is its implementation costs not least
because of its high demand for fresh randomness. Since the creation of large
amounts of fresh randomness requires additional time, chip area, energy, et
cetera., a lot of research has been spent on more randomness efficient mask-
ing [3–5, 9, 18, 21, 22]. Most of the existing work, however, focuses on the ran-
domness optimization for specific masking gadgets, like masked AND gates, and
do not consider the minimization of the overall randomness costs. Even more of
the masking implementation papers only consider the so-called online random-
ness costs spent on producing fresh randomness to secure the computation once
the initial sharing of the input data, e.g., plaintext ciphertext or data and key
material, has been performed. There is, to the best of our knowledge, no paper
that considers the minimization of randomness costs when taking the masking
of the input data into account or tries to minimize the overall randomness costs.
Furthermore, no work states a lower bound for the minimal randomness costs
for masking apart from specific masked gates [5].

Our contribution. We start of this work in Section 2 by taking a step away
from the modern sharing-based perspective of masking back to the classical
Boolean masking perspective. From this masking point of view, we then demon-
strate that first-order masking is theoretically possible by just using two random
one-bit masks on the basis of linear transformations. We then discuss what prop-
erties need to be fulfilled such that this approach also works for masked nonlinear
transformations and show that existing approaches of masked AND gates do not
fulfill these criteria. As a first practical contribution, we design a masked AND
gate that allows reusing randomness from its inputs safely.

Based on our findings we introduce in Section 3 a simple rule-based system.
These rules can be encoded in SMT2 statements and then used to automatically
check whether the masking approach is directly applicable to an unprotected
circuit or if modifications (mask changes) are required. Upon acceptance, our
tool synthesizes a securely masked circuit for a given set of additional constraints
like the used mask encoding.

We then show how our approach can be applied on larger circuits (Section 4)
and demonstrate its feasibility and its impact on software and hardware on a
full AES-128 encryption-only implementation in Section 5. It shows that our
approach has a comparable hardware footprint (when neglecting pipelining reg-
isters) than state-of-the-art AES S-box designs our approach generates more
latency. Nevertheless, with our approach, we successfully designed the first for-
mally verified AES S-box design that requires only two random bits for the initial
sharing of its inputs and requires no online randomness to achieve first-order se-
curity in the probing model. Even when going for a full AES implementation
the randomness requirements do not increase further. However, since existing
formal tools are not yet efficient enough to digest a full round unrolled AES
implementation, we instead verified each building block of our design using the
maskVerif tool of Barthe et al. [2] for a predefined mask encoding of its inputs
and outputs. Ensuring the same masks encoding for each input and output al-
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lows us to argue the security when putting the components together in the full
AES implementation. Details on the formal verification are given in Section 6.

2 Masking without Online Randomness

The goal of masking is to make the power consumption (and other side-channels
that depend on the power consumption) independent from security-sensitive
information. For this purpose, the security-sensitive information is first combined
with a uniformly random sampled data in an invertible masking function, such
that the representation of the data itself becomes uniformly random distributed.
In the case of Boolean masking, the sensitive information s, for instance, is
combined with a random mask m by using the Boolean exclusive-or (XOR)
operation. The resulting masking value s0 = s ⊕m0 thus becomes statistically
independent from s, i.e., the mutual information between s and s0 becomes zero.
For this reason, any computation on s0 trivially results in power consumption
that is statistically independent of s as long as m0 is not recombined with s0.
For convenience reasons, the security is often expressed in the so-called t-probing
model [23] which assumes that an attacker can make up to t observations in the
circuit (place up to t probe on the circuit). It has been verified in the past that
this formal model accurately models the abilities of a differential side-channel
analysis attacker that has access to noisy side-channel leakage traces [17]. We
assume in the following a first-order attacker, i.e., an attacker that can place a
single probe on the circuit.

Often in the present literature, the relation between the masked data s0 and
the mask(s) m0 is expressed by using a sharing-based notation for convenience
reasons. For first-order masking (i.e., only one mask is used to protect s) the
information is assumed to be split into two shares (e.g., s0 and s1) such that
again the additive relation s = s0 ⊕ s1 is fulfilled. While it is trivial to convert
from a masking representation to a sharing representation by setting s0 = s⊕m
and s1 = m, the sharing representation inherently hides the relation between
secret information and masks.

For brevity reasons, we use the sharing based representation in most parts of
the paper. Since in the following we are sometimes particularly interested in the
relation between secrets (or shares) and masks we often switch to the masking
form. To make the used notation clearer, we always use the prefix m for masks
followed by a number in the subscript. Any other variable name with a suffix
subscript number denotes a specific share of the variable. Most of the time we
just use 0 or 1 in the subscript (e.g., a0 or a1) to refer to the first or second share
of a first-order masked variable a, respectively. Without any subscript notation
we always refer to the plain secret variable (a, b, q . . . ).

Computation on masked data. To realize computations that are not only
secure against side-channel analysis but also correct, the computed masked func-
tion needs to take the mask into account but without demasking the data. For ex-
ample, when calculating the XOR of two masked sensitive variables as q = a⊕b,
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where a is shared in the two shares a0 and a1 and b is shared as b0 and b1, the
correct and securely masked realization is very simple.

q0 = a0 ⊕ b0

q1 = a1 ⊕ b1
(1)

When observing the masked representation of this equation with a0 = a⊕m0,
a1 = m0 and b0 = b⊕m1, b1 = m1 the correctness can be easily observed when
considering the addition of the shares of q, because both shares added together
result in the desired operation in the sensitive variables a and b.

q = q0 ⊕ q1

= (a⊕m0)⊕ (b⊕m1)⊕m0 ⊕m1

= a⊕ b

To demonstrate the security of the masked realization of the XOR in Equa-
tion 1 it needs to be shown that each intermediate product is statistically in-
dependent of a and b which in this case are only the output shares q0 and q1.
Statistical independence is given because we assume that each of the two masks
m0 and m1 is uniformly random and statistically independent from each other.
By looking on the truth table for both shares of q in Table 1, one can observe
that when subdividing the truth table into the four possible combinations of
values for a and b, the count of 1 appearances (Hamming weight) for q0 and q1
in each case are equal.

This equal distribution for each possible combination of secrets results in
power consumption that is in average equal for all cases of a and b. We note
that an attacker with the ability to probe more signals could observe differences
by combining multiple probed signals. Higher-order leakages, however, are more
difficult to exploit than the average power consumption (exponentially more
observations are required [13]) and are not considered in this paper.

The situation changes when assuming that both masked variables use the
same mask m0 = m1, which trivially reveals a and b in the equation of q0.

q0 = a0 ⊕ b0 = (a⊕m0)⊕ (b⊕m0) = a⊕ b

Most state-of-the-art masking works assume that shares are produced using
independent random masks which helps to avoid such situations. So when mul-
tiple XOR operations are chained together (e.g., a ⊕ b ⊕ c ⊕ · · · ⊕ z) a lot of
random masks are accumulated.

q0 = a0 ⊕ b0 ⊕ c0 ⊕ · · · ⊕ z0 = (a⊕m0)⊕ (b⊕m1)⊕ (c⊕m2)⊕ . . . (z ⊕m25)

q1 = a1 ⊕ b1 ⊕ c1 ⊕ · · · ⊕ z1 = m0 ⊕m1 ⊕m2 ⊕ · · · ⊕m25

Please note that we assume here and in the remainder of the paper that
the masked equations are evaluated from left to right, and parentheses indicate



5

Table 1. Truth table and security of the masked XOR from Equation 1

Shares Secrets Hamming weights
a0 a1 b0 b1 a b a⊕ b q0 q1

0 0 0 0

0 0 0 2 2
0 0 1 1
1 1 0 0
1 1 1 1

0 0 0 1

0 1 1 2 2
0 0 1 0
1 1 0 1
1 1 1 0

0 1 0 0

1 0 1 2 2
0 1 1 1
1 0 0 0
1 0 1 1

0 1 0 1

1 1 0 2 2
0 1 1 0
1 0 0 1
1 0 1 0

atomic operations that do not produce further intermediate results (often to
indicate the result of the evaluation of a sharing function or initial sharings). Our
first and admittedly rather trivial observation is that the amount of accumulated
randomness is unnecessarily high. To realize the same function in a secure and
correct shared way, two random masks m0 and m1 can be simply alternately used
in such a way that at no time any intermediate result is formed that consists
without a mask. One possible realization is thus that to use m0 to mask a and
use m1 for the remaining variables.

q0 = a⊕m0 ⊕ b⊕m1 ⊕ c⊕m1 ⊕ . . . z ⊕m1

= (a⊕ b⊕ c⊕ · · · ⊕ z ⊕m0 ⊕m1)

q1 = m0 ⊕m1 ⊕m1 ⊕ · · · ⊕m1

= (m0 ⊕m1)

There exist also many other possible and secure realizations for this function.
Depending on the order of the mask appliance, the resulting mask can be either
m0 or m1 or their combination m0 ⊕ m1. With these findings, we can secure
any linear function likewise. However, there is no straight-forward extension to
nonlinear functions.

Application to nonlinear gates. There exists a vast variety of first-order
masked AND gates in the literature which form the simplest class of nonlinear
functions and are used to form more complex functions. These realizations of
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masked AND gates usually vary regarding online randomness requirements and
the numbers of used input and output shares. The underlying functionality is of
course always the same and in the case of a realization with two shares requires
the secure evaluation of the following four multiplication terms.

q = a ∧ b = (a0 ⊕ a1)(b0 ⊕ b1) = a0 ∧ b0 ⊕ a0 ∧ b1 ⊕ a1 ∧ b0 ⊕ a1 ∧ b1 (2)

Any direct combination of either two multiplications terms (e.g., a0b0⊕a0b1)
is insecure because it leads to a function that statistically depends on the secret
a or b. Most of the existing masked AND gadgets thus use fresh random masks
to realize the secure evaluation like m2 is used in the following example.

q0 = a0 ∧ b0 ⊕m2 ⊕ a0 ∧ b1

q1 = a1 ∧ b0 ⊕m2 ⊕ a1 ∧ b1
(3)

This masked AND gate is indeed secure as long as the order of execution
is from left to right and the masks including the one used for sharing a and b
are statistically independent and uniformly distributed. Another advantage of
this realization is that it inherently refreshes the sharing which makes the result
independent of a and b. Any linear or nonlinear combination of q with the sharing
of a or b is thus still possible, as long as the transformation itself is secure under
the assumption of independently shared inputs.

There also exist realizations of a masked AND gate that does not require
any fresh randomness. As an example, we consider the following equations from
Biryukov et al. [9].

q0 = a0 ∧ b0 ⊕ (a0 ∨ ¬b1)

q1 = a1 ∧ b0 ⊕ (a1 ∨ ¬b1)
(4)

A closer look on the properties of this realization from Biryukov et al. in
Table 2 reveals that while the masking itself is secure, a further (linear) combi-
nation with shares or combinations of shares from a and b (except for a0 and
a1) can make the sharing insecure again. Because this masked AND gate is in-
sensitive to combinations with a single share from a masked by m0 (cf. column
q0 ⊕ a0 in Table 2), one could assume that q is similarly protected as an XOR
gate protected by the mask of m1 of b. The problem is that this masked AND
gate behaves entirely different than the masked XOR gate from Equation 1 or
the masked AND from Equation 3. For the output of a masked XOR gate where
q0 = a⊕b⊕m1, we would assume that an XOR with m0 followed by the addition
of m1 would result in a secure sharing masked by m0, since (a⊕b⊕m1)⊕m0⊕m1

results in a⊕ b⊕m0. However, for the output q0 of the masked AND gate, the
combination of with m0 followed by m1 results in an insecure sharing (different
Hamming weights for different cases of b). Chaining of masked AND operations
by carefully selecting (or changing) between two different masks is thus not
possible with this masked AND gate.
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Table 2. Truth table for q0 of Biryukov et al.’s masked AND (or for q1 if a0 is replaced
by a1)

Shares Secrets Hamming weights
a0 b0 b1 b q0 q0 ⊕ a0 (q0 ⊕ a0)⊕ b0

0 0 0

0 2 2 2
0 1 1
1 0 0
1 1 1

0 0 1

1 2 2 0
0 1 0
1 0 1
1 1 0

Construction of a new masked AND. The design idea to ensure that the
resulting sharing behaves similarly to the masked XOR gate is to first securely
combine all multiplication terms (Equation 2) in a single share of q and then
add a single mask. For this reason, we first transform the secure equations of
Biryukov et al. such that we can directly observe what happens to the multipli-
cation terms.

q0 = a0 ∧ b0 ⊕ (a0 ∨ ¬b1)

= a0 ∧ b0 ⊕ ¬(¬a0 ∧ b1)

= a0 ∧ b0 ⊕ (a0 ∧ b1 ⊕ b1)⊕ 1

q1 = a1 ∧ b0 ⊕ (a1 ∨ ¬b1)

= a1 ∧ b0 ⊕ ¬(¬a1 ∧ b1)

= a1 ∧ b0 ⊕ (a1 ∧ b1 ⊕ b1)⊕ 1

From this transformation, we can see that the terms a0∧b0⊕(a0∧b1⊕b1) from
q0 and a1∧ b0⊕ (a1∧ b1⊕ b1) from q1, considered separately are securely masked
by b1 (= m1, in the masking representation). Adding them directly together,
however, is insecure because this results in a ∧ b. By adding q1 (= m0) to the
second term, both terms can be added without leaking information. The result
is only masked with a single mask from m0. To achieve correctness the second
share is set to m0 or a1, respectively.

q0 =

t3︷ ︸︸ ︷
(a0 ∧ b0︸ ︷︷ ︸

t1

⊕ (a0 ∧ b1 ⊕ b1)︸ ︷︷ ︸
t2

)⊕ (

t6︷ ︸︸ ︷
(a1 ∧ b0︸ ︷︷ ︸

t4

⊕ (a1 ∧ b1 ⊕ b1)︸ ︷︷ ︸
t5

)⊕a1)

︸ ︷︷ ︸
t7

= (a ∧ b)⊕m0

q1 = a1 = m0

(5)
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Table 3. Security of the masked AND from Equation 5

Shares Secrets Hamming weights
a0 a1 b0 b1 a b a ∧ b t1 t2 t3 t4 t5 t6 t7 q0

0 0 0 0

0 0 0 1 1 1 1 2 2 2 2
0 0 1 1
1 1 0 0
1 1 1 1

0 0 0 1

0 1 0 1 1 1 1 2 2 2 2
0 0 1 0
1 1 0 1
1 1 1 0

0 1 0 0

1 0 0 1 1 1 1 2 2 2 2
0 1 1 1
1 0 0 0
1 0 1 1

0 1 0 1

1 1 1 1 1 1 1 2 2 2 2
0 1 1 0
1 0 0 1
1 0 1 0

The security of the masked AND gate can be easily verified by hand as
shown in Table 3 where t values denote intermediate results. Therefore, we again
denote all possible input share combinations in a truth table and sort them by
the unshared secrets a and b. For each possible intermediate (t1 to t7, and q)
we sum up the number of ones in the intermediates corresponding to the same
value for a and b. Since for all intermediate value combinations, the number of
ones is equal; a first-order attacker does not gain any sensitive information by
probing either one of the intermediates. In addition to the manual inspection
of the masked AND gate, we also performed a formal verification by using the
tools from Bloem et al. [10] and Barthe et al. [2] which gave us the same results.

By combining the findings for the XOR and the AND gates we can mask
arbitrary circuits, and as we will show in the next section, also derive simple
rules to synthesize securely masked circuits from unprotected ones.

3 Synthesis of First-Order Secure Circuits

Manually tracking the masks as they propagate through the circuits soon be-
comes a very complex task as the circuit size increases. We thus decided on
creating an automated approach to create a masked circuit when possible, or
otherwise, indicate which signals need to be changed. As a first step, the tool
reads the description of a Boolean circuit in static single assignment (SSA) form
in Verilog syntax such that each instruction is either a one-bit signal assignment
or a two-bit XOR, XNOR or AND gate. The Boolean circuit is then represented
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as an SMT problem which is fed to the Z3 [16] theorem prover The Z3 searches
for a possible solution for the mask encoding of the input signals so that for
each gate the inputs have different masks. Furthermore, it allows ensuring the
desired input and output signal mask encoding. A more detailed description of
how the circuit is encoded in SMT2 in which steps are necessary is given in the
following.

Input mask encoding. Each circuit is fed with two masks m0 and m1. As
a result there are three possible mask combinations for each signal and thus
three possible encodings for the input signals: 1 = m0, 2 = m1, 3 = m0 ⊕m1.
Depending on whether we target a specific encoding or we let the theorem prover
decide on the encoding we adjust the assertions accordingly. With the following
SMT2 code snippet the input signal a is mapped to either of the three masking
combinations.

; Input encoding d e f i n i t i o n and con s t r a i n t s
(declare−const a Int )
( assert (> a 0) )
( assert (< a 4) )

The same rules are also applied to every output of a gate to restrict the mask
encoding two the three possibilities.

Gate connections and encoding rules. For each of the four possible instruc-
tion classes (assignment, XOR, XNOR, and AND) of the SSA encoded input file
we create specific rules according to which masks appear on the output q for
the given input combination. In the example encoding it is always assumed that
the signals a and optionally b form the operands. The encoding of the signal
assignment q = a just results in a copy of the mask encoding in the SMT2 rules.

# S igna l ass ignment r u l e
( assert (= q a ) )

To encode the output of the XOR (and XNOR) instructions we utilize the
fact that for different input encoding for a and b the third encoding is always
calculated for the output.

m0 ⊕m1 = (m0 ⊕m1)

m0 ⊕ (m0 ⊕m1) = m1

m1 ⊕ (m0 ⊕m1) = m0

. . .

When neglecting the case that both inputs could have the same mask en-
coding, which is covered by the safety rules for the gates in the next step which
ensure the security of the circuit, the following SMT2 encoding can be used.
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; XOR/XNOR gate ru l e
( assert (not (or (= q a ) (= q b ) ) ) )

Note that the negation of the output in case of the XNOR has no influence
on the encoding because it is a simple addition of a constant value 1.

Finally, for the AND gate, the mask encoding can be the same as either
operand since the operands can be simply swapped. We thus let the theorem
prover decide which signal is used as the first operand which defines the mask
encoding of the output (see Equation 5). The information which masks appear
on the output is later on taken into account when the masked circuit is created
to decide on the first operand.

; AND gate ru l e
( assert (or (= q a ) (= q b ) ) )

Again the AND gate rule does no cover the cases of both operands having
the same mask encoding.

Safety rules. For each two-input gate we additionally define that both
operands are required to have a different mask encoding which otherwise would
create a flaw in the masked circuit.

; Sa f e t y r u l e or two input ga t e s
( assert (not (= a b ) ) ) )

Output constraints (optional). To make the design and verification of sepa-
rate modules easier we decide on using the same input and output mask encoding
on byte-level for all our modules. We can restrict the output encoding by setting
the input and output signals equal.

; Equal input and output byte−encoding
( assert (= o0 i 0 ) ) ) ;
( assert (= o1 i 1 ) ) ) ;
( assert (= o2 i 2 ) ) ) ;
. . .
( assert (= o7 i 7 ) ) ) ;

Checking of the model and creating the masked circuit. When the Z3
theorem solver finds a secure model that fulfills our constraints the tool receives
a model containing all mask assignments. The translation of the unprotected
circuit to a secure masked circuit is then rather straightforward. At first, we
duplicate all input and output ports of the module and additionally add the two
masks m0 and m1 as input signals. For each instruction of the SSA input file we
replace the original code by its masked variant according to the masked gates
introduced in Section 2. As a further optimization, the second share of each
instruction is (optionally) replaced by the resulting mask of the output signal
which helps to save unnecessary instructions that would result in one of the three
mask encodings anyway. We do not give a more detailed description of the tool
at this point since the rest of the functionality follows from the description of
the masked gates above and is mostly engineering work.
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4 Masking the AES

To demonstrate the practicality of our approach, we decided on targeting the
AES-128 (encryption-only) variant as an example. Since none of the existing
formal verification tools are yet powerful enough to verify a full AES encryption,
we decide on using a module wise implementation and verification approach. To
justify the security of the overall design when bringing the modules together, we
restricted the mask encoding for each input and output byte of every function
to be equal. The starting point of our iterative design approach is the S-box
construction used in the SubBytes transformation of the AES.

SubBytes. The most complicated part of the AES is its S-box layer which
is implemented as 16 instances of SubByte modules. Most of the masked AES
designs published over the last years are based on the S-box construction of
Canright [12]. A more suitable design for our approach, however, is the design of
Boyar and Peralta [11] which targets on minimizing the logic depth and is already
constructed in SSA form. The original code of the forward S-box consists of 128
SSA instructions. In total there are 34 AND, 90 XOR, and 4 XNOR instructions
for the unmasked circuit. Each instruction takes two one-bit variables as input.

After running our synthesis tool without any further optimizations of the
resulting circuit, the masked design consisted of 136 AND gates, 353 XOR gates,
and 4 NOT gates (because XNORs are decomposed to one XOR followed by a not
gate in Yosys’ ILANG). The 136 AND gates result from the fact that the masked
AND quadruples the number of AND gates compared to the unmasked design.
Also, each masked AND gate introduces 6 XOR gates which in total results in
204 additional XOR gates. The masking of the XOR and XNOR gates, on the
other hand, do not introduces additional circuitry sine we already replaced the
second share of each masked XOR output with its mask. The majority of the
remaining 55 XOR gates result from the fact that at 38 occasions we use the
combination of m0⊕m1 which are mapped to 38 individual gates. The rest of the
XOR gates are required because at some points we needed to change the masking
of a signal by introducing additional XOR instructions to receive a satisfiable
Z3 model and thus a securely synthesizable circuit, and to ensure that the input
and output mask encoding is equal.

After running an optimization pass in Yosys which only maps gates which
implement the same function to a single gate, the number of gates could be
reduced to 97 AND gates, 284 XOR gates and 4 NOT gates. We rerun the
verification after this optimization to ensure that the circuit remains secure.
The total overhead for the masking of the S-box is thus about a factor 2.92
regarding instructions.

From the design of the S-box, we also gathered the byte encoding that is
used for the rest of the AES modules to ensure security and correctness of the
code. The byte encoding is set to be {2, 3, 3, 1, 1, 2, 1, 2} in the SMT encoding
which corresponds to {m1,m0 ⊕m1,m0 ⊕m1,m0,m0,m1,m0,m1} in the mask
encoding for the inputs from i0 to i7.
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ShiftRows. Since the ShiftRows transformation only changes the order of the
bytes in the state rows, no special modifications are required for the round trans-
formation compared to an unprotected design. Furthermore, all of the masked
AES modules (in the final design) do not explicitly carry the second share of
each signal but instead just assume the byte mask encoding as used by the S-box
for inputs and outputs as the second share. The ShiftRows transformation thus
just consists of rewiring (or readdressing) of the state byte and can be implicitly
combined with the MixColumns transformation without adding any overhead.

MixColumns. For the MixColumns module, we again used the synthesis tool
for converting the unprotected circuit of a single-column transformation (Mix-
Column) to a masked circuit, and also to ensure the byte mask encoding of the
inputs and outputs. One MixColumn module operates on a four-byte state col-
umn. The unprotected module requires 140 XOR gates. Because at some point
remasking of some signals is required to ensure security, the number of XOR
gates increases to 176 in the final design. However, compared to other first-order
masked designs this number quite low because for sharing based designs one
would expect that the number of linear gates scale with the number of shares.
One would thus expect 280 XOR gates for first-order protection. Note that this
saving is only possible because at no point we carry secret variables in the second
share of any signal.

AddRoundKey. In AddRoundKey the state or the plaintext is added byte-wise
to the round key (AddByte module). Since we enforce the same byte encoding for
all bytes in our design, the key byte first needs to be remasked before it can be
added to the state or plaintext byte and the result the again require remasking.
Instead of 8 XOR gates as in the unprotected design, we thus require 24 XOR
gates. The number of XOR gates could be reduced to only eight again if the
state and key bytes are shared such that their sum again results in the assumed
byte sharing for the S-box. Due to the lack of the possibility to formally verify
the whole circuit, we decide on keeping the byte encoding for both key and state
bytes the same. This makes arguing of the security of the overall implementation
for individually verified modules easier because there are fewer issues to oversee.

Key schedule. In the calculation of the round keys, we reused the masked
SubByte and AddByte modules from the round transformation of the state. For
the SubWord transformation, the same masked S-box design as for the state is
used since the key has the same byte encoding, and also for the addition of the
state columns, the same AddByte function as for AddRoundKey is used. The
remaining key schedule components are the addition of the round constant which
does not require masking of the publicly known constants, and the RotWord
transformation which is just rewiring or readdressing of the key bytes and can
thus be combined with the SubWord transformation.

Table 4 summarizes the costs for the individual transformations that are
required to implement the full AES. More implementation details are given in
the next section for the full AES implementation.
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Table 4. Summary of the costs for the AES transformations

Module Instances AND XOR NOT

SubBytes 1,552 4,544 64
I SubByte 4 97 284 4

ShiftRows - - -

AddRoundKey - 384 -
I AddByte 16 - 24 -

MixColumns - 704 -
I MixColumn 4 - 176 -

Key schedule 388 1,528 16
I RotWord 1 - - -
I SubWord 1 388 1,136 16
I AddRcon 1 - 8 -
I AddWords 1 - 384 -

5 Implementation Results and Discussion

Table 5 provides an overview of the implementation costs for a full AES-128 en-
cryption regarding required one-bit AND, XOR and NOT operations. Depending
on whether pre-computed keys or an on-the-fly key scheduling is assumed the
total amount of instructions is between 72 and 91.5 thousand single-bit instruc-
tions. Since these are the counts for one-bit instructions, the required number of
instructions for different architecture sizes can be easily estimated for a bit-slice
software implementation by dividing these numbers by the data width. Accord-
ingly, on an 8-bit machine, the instruction count is between 9 and 11.4 thousand
instruction, for a 16-bit machine between 4.5 and 5.7 thousand instruction, for
a 32-bit machine between 2.3 and 2.9 thousand instructions, and for a 64-bit
machine between 1.1 and 1.4 thousand instruction depending on which round
key strategy is performed. We also note that these numbers should be only con-
sidered as rough estimates for comparison with the state-of-the-art. The actual
number of instructions highly depends on the target platform specifics, e.g., to
ensure no leakage is caused by register overwrites.

The most time is spent on the S-box calculations with 84.2% or 85.4%, re-
spectively. The secure byte addition, as used for they AddRoundKey and the
AddWords functions, consumes between 5.85% and 8.82% of the overall time.
The remaining time is mostly spent on the MixColumns transformation with
about 6.93% to 8.78%.

Comparison with masked software implementations. Unfortunately, there does
not exist many openly available masked software implementations. There is,
however, some great work by Schwabe et al. [29] which implemented various
variants of the AES for a 32-bit ARM Cortex M3 and M4. The only masked
variant, however, is an AES-128 CTR mode bit-sliced implementation on the
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M4. This work also includes performance figures for the generation of random
bits using an onboard random number generator (RNG).

Schwabe et al.’s implementation requires in average 7,423 cycles for the en-
cryption of one plaintext block. 2,133 cycles of which are spent on generating
the required 10.5 thousand random bits which are almost 29% percent of the
overall instruction count. The remaining 5,290 cycles are required for the actual
encryption.

For a fairer comparison, it has to be kept in mind that Schwabe et al.’s
masked implementation calculates two AES encryptions in parallel. This is pos-
sible without a notable performance loss over a single encryption since it is a
bit-sliced design and the registers fit in more data than would be required by one
AES encryption. The performance numbers are then calculated over an average
of 256 blocks. The same technique, however, is also applicable to our design but
is not yet reflected by the pure count of instructions in our result tables for
which we could about half these numbers. In the following, we consider both
the original instruction count numbers and the corrected estimates for parallel
execution of encryptions.

We also note that our instruction counts so far do not consider cycles spent on
additional loading and storing data operations. We thus estimate this overhead
by looking at the ratio between logic operations and the loading-and-storing op-
erations for the S-box in [29] which adds about 58.6% overhead to the pure logic
operations. Assuming the same overhead for the whole implementation gives an
estimate of 4,601 cycles when not taking two parallel encryptions into account
which is still only 62% of the 7,423 cycles of Schwabe et al.’s implementation.
When correction our numbers to also reflect the two parallel encryptions, the
cycle count changes to about 2,301 cycles per encryption which is then just 31%
percent of Schwabe et al.’s implementation.

Please note that this is just a rough estimation and we do not claim that our
approach automatically leads to faster software implementations than related
work, for which a more detailed comparison on the same platform with the same
assumptions would be required. Our main goal is to show the feasibility of our
approach to lower the randomness costs and argue that this has the potential to
pay-off in practice.

5.1 Discussion and Comparison for Hardware

For the side-channel analysis resistant implementation in hardware, security in
the probing model with glitches needs to be ensured. Our approaches security
critically depends on the correct order in which the signals are combined. For this
reason, registers are required after every XOR gate. Registers are not required
after the AND gates (see Equation 5) and also are in general not required for
NOT gates since they do not provide more information than probing a single
wire. To estimate the size of the implementation in hardware the UMC 90 nm
from Faraday serves as the basis. Accordingly an AND gate corresponds to 1.25
gate equivalents (GE), and XOR gate to 2.5 GE, a NOT gate to 0.5 GE, and a
D-FF with asynchronous reset to 4.5 GE.
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Table 5. AES-128 Implementations results, parentheses indicate gate counts including
the key schedule (cf. Table 4)

Module Instances AND XOR NOT

AES 15,520 (19,400) 56,000 (71,280) 640 (800)

PreRound 1 - (388) 384 (1,912) - (16)
I AddRoundKey 1 - 384 -

Round 9 1,552 (1,940) 5,632 ( 7,160) 64 (80)
I SubBytes 1 1,552 4,544 64
I ShiftRows 1 - - -
I MixColumns 1 - 704 -
I AddRoundKey 1 - 384 -

LastRound 1 1,552 4,928 64
I SubBytes 1 1,552 4,544 64
I ShiftRows 1 - - -
I AddRoundKey 1 - 384 -

S-box. Without the registers, the size of a single S-box (consisting of 97 ANDs,
284 XORs, and 4 NOTs) would be 833.25 GE. Due to the required amount of
registers (284 D-FFs) to resist glitches, the size increases to 2.1 kGE which is
about the same size as of related work when neglecting pipe-lining registers (cf.
Table 6). Our S-box implementation is, however, the only variant that requires
no online randomness when using two shares. Furthermore, instead of requiring
each input bit to be independently shared (which requires at least 8 · (t − 1)
random bits, where t is the number of shares), our inputs are shared with only
two random bits in total. The cost for the randomness reduction is paid by
the increased amount of latency. The unmasked Boyar-Peralata S-box has a
maximum logic depth of 16 and an AND depth of 4. Every masked AND gate
requires four cycles to securely calculate the result. Accordingly, the total latency
of the S-box is 12 cycles (16 − 4) plus 16 (4 · 4) which in total amounts to 28
cycles.

Full AES estimates. For the overall AES implementation in hardware the
implementation of a round-unrolled variant, even though the production of fresh
random bits would not become the bottleneck in our design, is probably not the
first choice. Even when considering a precomputation of the keys, the size would
be more than 411 kGE. With an on-the-fly key scheduling the AES would have
a total size of 524 kGE.

A bit more practical choice would be to implement one full round and perform
iterative encryption over ten rounds. One full round requires 41.4 kGE or 52.6
kGE, respectively (depending on the key management).

The more common approach in the literature of masked AES implementa-
tions is to also calculate the SubBytes transform in a serialized way by using
online one S-box instance. This reduces the costs for one full round transforma-
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Table 6. AES S-box results of related hardware implementations

Design Size Cycles Randomness Shares
[kGE] /S-box [bits] (online) [Input/Output]

[7] 3.71 3 44 4/3
[8] 2.84 3 32 3/3
[14] 1.98 6 54 2/2
[15] 1.69 2-5 19 2/2
[18] 4.61 4 0 4/4
[18] 3.63 4 68 3/3
[18] 3.8 4 34 3/3
[18] 3.34 3 24 3/3
[18] 2.91 3 20 3/3
[22] 2.2 8 18 2/2
[25] 4.24 4 48 3/3

tion to about 9.7 kGE and 11.8 kGE (also iterative SubWord transformation for
key schedule), respectively.

Discussion on the randomness costs. Independent from the targeted im-
plementation variant, our design requires no online randomness and only two
random bits for the initial sharing. For other implementations in the litera-
ture at least 128 bits for the sharing of the key and 128 bits for the sharing of
the plaintext are required for a two-share implementation, or 2 · 256 bits for a
three-share threshold implementation, respectively. From this perspective, our
implementation saves at least 254 random bits for the initial sharing.

Regarding online randomness, the most randomness efficient first-order two-
share implementation is reported for the DOM AES design by Gross et al. [22]
which requires 18 bits of fresh randomness for each S-box. One SubBytes trans-
formation thus requires at least 288 random bits, and one round with key schedul-
ing requires 360 bits. The total amount of online randomness for one AES-128
encryption is thus between 2.88 kbits and 3.6 kbits of fresh randomness.

For the sake of completeness, we note that there exist more online randomness
efficient S-box implementations which, however, require an increased amount of
input shares for the S-box (e.g., the four-share S-box of Ghoshal et al. [18]).
Since there is no full AES implementation or estimation given in [18], one has
to decide whether to use multiple shares for each masked input signal or to
dynamically scale the number of shares before and after the S-box. The first
case results in an increased number of randomness for the initial sharing (e.g.,
768 bits for four shares of plaintext and key as in [18]), and requires a lot of
additional registers and logic for storing and calculating on these four shares.
For the dynamic conversion from two to multiple shares, on the other hand, the
area overhead would mainly result from the larger size of the S-box (4.7 kGE)
and the logic required for expansion and compression of the shares. Regarding
randomness, at least the same amount of online randomness as for the initial
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sharing would be required in each round for the expansion and compression from
two to four shares.

Summary. Comparing our design with others is quite difficult because most
of the existing implementations do not consider the amount of required initial
randomness for sharing the key and plaintext data. Nevertheless, as our hard-
ware comparison shows the size of our AES (S-box) is similar to state-of-the-art
Boolean masked designs while not only saving online randomness but also saving
randomness required for the initial sharing. Requiring only two bits of random-
ness for each masked encryption could thus make the difference in practice be-
tween deciding on requiring an additional PRNG or using an already on-board
TRNG, and could thus make first-order masking cheap enough to be used for
highly constraint devices like low-cost RFID tags.

6 Formal Verification of the SCA Resistance

For the verification of the side-channel security of our approach, we used the
formal verification tool maskVerif of Barthe et al. [2] on the synthesized mod-
ules. Since maskVerif is originally designed to verify sharing-based circuits, the
outcome of our synthesis tool creates a verification wrapper that is later on mod-
ified to represent the correct masking for the input signals of the actual masked
circuit. The verification wrapper thus takes two shares per input of the masked
module and creates the correct masking by first adding the mask as defined by
the mask encoding and subsequently the second share of the input. The input
bits {i0, i1, . . . i7} of the masked AES S-box module for example, uses the same
SMT mask encoding {2, 3, 3, 1, 1, 2, 1, 2} (where 1 denotes m0, 2 denotes m1, and
3 denotes m0 ⊕m1) as any other module for both inputs and outputs. We take
the input shares of the wrapper (indicated by the suffix “ 0” for the first share
or “ 1” for the second share) and create the actual masking as follows.

Table 7. SCA resistance verification results

M odule Number of tuples V erification time Result

AddByte 95 16 ms probing secure
MixColumns 315 108 ms probing secure
SubByte 429 22 s probing secure



18 Hannes Gross, Lauren De Meyer, Martin Krenn, and Stefan Mangard

module v e r i f i c a t i o n w r a p p e r (
input i 0 0 , i 1 0 , . . . , i 7 0 ,
input i 0 1 , i 1 1 , . . . , i 7 1 ,
input m0, m1,
output o0 , o1 , . . . , o7 ) ;

// Mask encoding
assign i 0 = ( i 0 0 ˆ m1) ˆ i 0 1 ; // 2
assign i 1 = ( i 1 0 ˆ m0 ˆ m1) ˆ i 1 1 ; // 3
assign i 2 = ( i 2 0 ˆ m0 ˆ m1) ˆ i 2 1 ; // 3
assign i 3 = ( i 3 0 ˆ m0) ˆ i 3 1 ; // 1
assign i 4 = ( i 4 0 ˆ m0) ˆ i 4 1 ; // 1
assign i 5 = ( i 5 0 ˆ m1) ˆ i 5 1 ; // 2
assign i 6 = ( i 6 0 ˆ m0) ˆ i 6 1 ; // 1
assign i 7 = ( i 7 0 ˆ m1) ˆ i 7 1 ; // 2

// DUV
aes sbox s b o x i n s t ( i0 , i1 , i2 , . . . , i7 , . . . ) ;

endmodule

For the input in the maskVerif tool, the circuit is read by the Yosys [30] open
synthesis tool. The circuit is then mapped to Yosys’ internal gate representation
(ILANG) and subsequently flattened such that a single module is created that
contains all gates of the circuits. The resulting circuit is then returned in ILANG
format for which input, output and mask signals are annotated before the circuit
is fed into maskVerif. The circuits are validated for the probing model of Ishai et
al. [23].

As the results show, all of the modules on which our entire AES-128 encryp-
tion relies on is probing secure as intended. The remaining parts of our AES
circuit are only rewiring (readdressing) which does not influence the probing
security. With the input and output constraints for our synthesis tool, we also
ensured that the mask encoding for each byte is the same, and we can thus
safely compose these modules without creating flaws in the probing model for
first-orders. However, we note that this composition argument is only true for
first-order circuits for which a probing attacker is restricted to a single probe.

7 Conclusions

In this paper, we have demonstrated that first-order masking does not require
more than two bits of randomness in both software and hardware. These two
bits of randomness include the initial randomness for masking of secret data as
well as the so-called online randomness that is usually required by other masking
approaches to keep the first-order probing security. In practice, the differentiation
of randomness spend on masking the input data and the randomness spent on
keeping this independence during the computation is not very meaningful for
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most applications. We have also shown that our approach not only leads to first-
order probing secure circuits (which we verified using formal tools as well as
manual verification) but also that this approach can be automated easily. The
downside of our approach, which is more noticeable in hardware, is an increased
latency behavior due to the required control of the order in which operations
are performed. However, we want to emphasize that the main idea of this work
was to demonstrate that two bits of randomness not only pose the intuitive
theoretical lower bound for first-order masking but that this bound is achievable
in practical circuits.

Future Work Our findings not only give answers to intriguing research ques-
tions but also lead the way to some follow-up questions.

– We demonstrated that when sacrificing latency, a lot of random bits can be
saved and therefore the costs involved with the production of randomness.
At the same time, there exists work like the low-latency masking approach
of Gross et al. [19], that show that arbitrary circuits can be calculated in a
securely masked way and in a single cycle when randomness considerations
are not taken into account. A consequent next step is thus to research con-
cepts to design masked circuits which achieve a better trade-off regarding
latency and area for a give randomness budget.

– Another open question is if and how the introduced concepts can be extended
to higher-order masking. While for first-order masking, where an attacker is
bound to a single observation, masks can be reused in the same form and
combination at different points in the circuit. For higher-order masking, the
same combination of masks at different positions automatically lead to a
violation of the probing security. This does not mean that mask reuse is not
possible but only that more aspects need to be taken into account like the
encoding of the masks at multiple positions.

– While two random bits are enough to achieve first-order probing security, it
does not mean that its actual security level (e.g., in terms of required leakage
traces to extract a secret) is the same as for an implementation that uses a lot
of randomness on mask refreshing of intermediate values. Using less random-
ness clearly provide a larger attack surface to horizontal attacks and most
likely also increases the signal-to-noise ratio for an DPA attacker. However,
what is less obvious is the question whether or not the saved randomness
could be more effectively used, e.g., for an additional hiding countermeasures
that lowers the signal-to-noise ration by a higher extend then by spending
more randomness on masking itself.

– Currently, there exist two strong trends in the masking community: 1) there
exist more and more work on how to make the formal analysis of masked
implementations faster and easier for general circuits, 2) there is a lot of
research published on making masking more randomness efficient and to
provide better trade-offs. These two trends are diverging, since faster formal
verification for general masked circuits seems to require stronger randomness
requirements and more circuitry to achieve these easier verifiable security no-
tions like NI and SNI [1]. However, we think that by more careful analysis
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of the properties of masked gates and masking schemes, faster (formal) ver-
ification methods can be designed that are tailored for a specific masking
approach.
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alyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive, 2018:562, 2018.

3. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and P. Strub. Parallel
implementations of masking schemes and the bounded moment leakage model. In
EUROCRYPT (1), volume 10210 of Lecture Notes in Computer Science, pages
535–566, 2017.
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