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Abstract. Lattice based cryptography is one of the leading candidates
of the post quantum cryptography. A major obstacle of deployment,
though, is that its payload is relatively larger than the classical solutions,
such as elliptic curve Diffie-Hellman. In this paper, we investigate the
approach of reducing the key size and ciphertext size by decreasing the
size of the modulus, and propose the first instantiation to the family
of ring learning with error based solutions where the modulus is at a
byte level. The main technical contributions of this paper are around the
implementation side of the algorithms. With the use of large-block error
correction code, we are able to propose parameter sets with small moduli
while achieving a negligible decryption error rate. We investigate best
known attacks, and give a concrete security estimation of the proposed
parameter sets. Since our parameter sets are no longer compatible with
number theoretic transform (NTT), we also present optimizations for
ring multiplications. As a result, our scheme is more compact and nearly
as efficient as popular solutions in this domain, such as NewHope and
Kyber.

Keywords: lattice based cryptography, learning with errors, error cor-
rection, NIST post-quantum cryptography standardization.

1 Introduction

Due to the rapid advances of quantum computing, the construction of crypto-
graphic schemes secure against quantum attacks (a.k.a post-quantum cryptog-
raphy) becomes an important mission in the field of cryptology. Lattice based
cryptography is one of the most promising and mature candidates for the post-
quantum migration plan of the National Institute of Standards and Technology

? LAC is one of 69 submissions that are under Round 1 evaluation of NIST-PQC [1].
The work was partially done when Zhenfei Zhang was at OnBoard Security Inc.



(NIST) [25,1]. However, a major obstacle of deploying lattice based solutions,
other than to understand the concrete security of the scheme, is that the payload
sizes (for example, the public key and ciphertext) are much larger than a classi-
cal solution. For instance, in a TLS handshake, it is desirable to have the public
key and ciphertext size to be less than 1 KB so that the whole hello message fits
in a maximum traffic unit.

The Learning With Errors (LWE) problem was initially proposed by Regev
[57], and became extremely versatile in constructing public key encryption schemes
[56,52,44,49,15], identity based encryption schemes [37,21,2,3] and fully homo-
morphic encryption schemes [19,18,38]. Despite of all those ground breaking ap-
plications, the main drawback remains that they have key size at least quadratic
in the main security parameter. Inspired by the NTRU cryptosystem [40] and
the ring-based short integer solution problem [48,45], Lyubashevsky, Peikert and
Regev [46,47,55] resolved this problem by introducing an algebraic variant of
LWE, namely, Ring-LWE; and showed that its security can be reduced to worst-
case problems on ideal lattices. It is worth noting that in a concurrent and
independent work, Stehlé et al. [64] also proposed a special case of Ring-LWE
over power-of-two cyclotomic polynomials; in [55], it was shown that Ring-LWE
problem is hard for any ring with appropriate error distribution.

For almost all LWE based constructions, there exists an instantiation with
Ring-LWE where the size of the public key and the ciphertext can be reduced by
a factor of n, where n is the dimension of the polynomial ring. Depending on the
choice of the ring, one may also carry out the ring multiplications in O(n log q) by
using the fast Fourier transform (FFT) or number theoretic transform (NTT),
where q is the modulus. Due to its great security, utility and efficiency, Ring-
LWE and its variants become the most popular building-blocks in the design of
practical cryptosystems [16,10,9,17,42,61,11].

To date, the (Ring-)LWE based public key encryption schemes have arrived
at a mature state that is almost ready for deployment, except for the afore-
mentioned size problem. For the public key encryption schemes, they all follow
a similar framework by Regev [57] and Lyubashevsky et al. [46]. For the key
exchange protocols, one may use the reconciliation method, first put forth by
Ding [29], and then refined by Peikert [53], to improve efficiency.

Subsequent works, such as [16,10,17,61,11], have contributed to a large por-
tion of the NIST post-quantum cryptography standardization process (NIST-
PQC) [1]. As one has seen from those work, further improvement of the band-
width efficiency has become one of the main missions in the design of practical
lattice based cryptographic schemes.

1.1 Our Contributions

Motivation. Before presenting our contributions, let us briefly present our
motivation. For the sake of simplicity and efficiency, we will use the ring R =
Zq[x]/(xn + 1) with a power-of-two n, a favorable choice by many Ring-LWE
based schemes [30,10], to illustrate our idea, although we must remark that it is
shown by Peikert et al. in [55] that Ring-LWE is hard for any ring of integers.



Intuitively, the hardness of Ring-LWE problem is mainly determined by the
error rate α (the ratio of the noise magnitude to the modulus q) and the dimen-
sion n. According to the concrete hardness analysis1 in [8,10,7], suitable choices
of the dimension n are 29 = 512 and 210 = 1024. For these choices, q = 12289 is
the smallest prime for which q ≡ 1 mod 2n. In other words, to enable the super
efficient NTT multiplications, we have a constraint that q is at least 12289. As a
result, q = 12289 is now the most widely used modulus for the Ring-LWE based
schemes2.

On the other hand, this constraint is a bit artificial, in that it is purely decided
by NTT, and not regulated by any security requirement. To be more specific,
the security level grows with the error rate, which is the ratio between the error
and the modulus, rather than the modulus itself. Therefore, to achieve a great
compactness with an acceptable level of security, it makes sense to choose the
modulus as small as possible, while keeping the ratio somewhat a constant.

In this paper, we investigate the approach of reducing the key size and ci-
phertext size of Ring-LWE based schemes by decreasing the size of the modulus.
We consider “byte” level modulus. Byte is the smallest data type that modern
processors handle. It seems to be a sweet spot to balance performance, size and
security. We also remark that for moduli that are significantly smaller than 256,
the performance gain will be minimal (since processors will treat the data type
as a byte anyway) while it becomes infeasible to find error distributions that can
maintain a same error/modulus ratio.

Parameter Derivation. There have been a sequence of work on the theoretical
worst-case hardness of Ring-LWE problems [64,46,55,59]. However, they give no
guidance on the choice of concrete parameters. Parameter derivation is an active
research topic for lattice based cryptography, for both cryptography and crypt-
analysis [26,54,5]. Arguably, most lattice based submissions to NIST-PQC follow
a similar design [46,44,29,53], and a major differentiator among the schemes is
the choices of parameters.

As mentioned earlier, we consider the family of “byte” level modulus that
breaks the constraint of NTT modulus. Specifically, we consider three types of
byte-level moduli, namely “power-of-two modulus”, “max-split modulus” and
“min-split modulus”. We then select proper secret and error distribution to
match the proposed modulus. Since the concrete security partially relies on the
error rates, to be able to sample errors efficiently becomes crucial to the overall
design. For provable security one requires discrete Gaussian samples; however,
in practice it is sufficient to sample from distributions that are close enough to
a Gaussian. We observe that centered binomial distribution with the standard
deviation of σ = 1/

√
2 is a sweet spot for security, correctness and efficiency.

1 As opposite to the provable security, this is a method to obtain the bit-complexity
by looking at the cost of best known attacks, such as BKZ with quantum sieving.

2 Note that, Kyber [17], a Module-LWE based scheme, uses a smaller polynomial ring
of degree n = 256. NTT over this ring is possible with a smaller modulus q = 7681.



To show the concrete security of our scheme, similar to other works in this
field, we perform a concrete analysis of best known attacks, using both the
popular and generic BKZ analysis with (quantum) sieving [8,10,7], as well as
dedicated attacks, such as the subfield attacks and hamming weight attacks
[51].

Error Corrections. In most lattice based schemes, dated back from one of
the first lattice based encryption schemes, NTRU [40], there exists a (tunable)
decryption error probability. One may choose a zero decryption error probability,
at the cost of a larger modulus (and hence larger keys and ciphertexts); or
a negligible one, with a moderate size modulus. See, for example [34], for a
comparison of different error correction codes for lattice based cryptography.
Our byte level modulus incurs a very high decryption error rate by design; and
simple error correction techniques, such as D2 or D4 codes [10], do not work well
in our use case.

To cope with this noise growth, as well as the byte level modulus, we encode
the plaintext message with an error correction code that supports very large
block size. Generally speaking, with the great power comes great cost: error
correction code for large block sizes brings severe efficiency penalty. We propose
to use binary BCH error correction code, which is particularly efficient, in both
encoding and decoding, when the code size is smaller than 1023 and the number
of error bits does not exceed 50. With BCH code we are able to decrease the
decryption error rate to a desirable level.

Note that, the choice of error correction code will not affect the security of
the scheme (see Section 4.4 for more details). Our scheme in principle supports
any error correction code with required error correction ability.

Implementation. Recall that we have switched to a byte level modulus, we can
no longer resort to NTT for efficient ring multiplications. Popular alternatives
are Karatsuba/Toom-Cook algorithms, such as [13,27] and index based multipli-
cations algorithms, such as [11]. We adopt the index based solutions since they
work particularly well with ternary secret and noise that can be sampled effi-
ciently from binomial distribution with σ = 1/

√
2. In addition, with byte level

moduli and bit-level noises, mod operation may be called less often: it is not
essential to call it after every arithmetic operations; it can be called only when
necessary.

Byte-level modulus also brings more parallelization. We implement polyno-
mial multiplication with the vector instructions, for example, AVX2 over the
Intel64 platform. As a result, our optimized implementation over this platform
is nearly as efficient as popular schemes with NTT [10,17], despite of the heavy
penalty from error correction codes.

Comparison. To highlight the compactness and efficiency of our scheme, we
briefly compare the performance of our scheme with NewHope [9] and Kyber



[17]. We compare the chosen ciphertext secure version of the schemes. Note that,
there are several versions of parameter sets for both NewHope and Kyber. Here,
we use their recommended parameter submitted to NIST-PQC [1]. Cycle counts
of NewHope and Kyber were obtained on an Intel Core i7-4770K (Haswell) with
Turbo Boost and Hyperthreading disabled. Cycle counts of LAC was obtained
on an Intel Core i7-4770S (Haswell) with Turbo Boost and Hyperthreading dis-
abled. In terms of security, NewHope and Kyber [9,17] uses BKZ with (quantum)
sieving to estimate their security. We follow a same method, and our estimation
is independently confirmed in [5].

Scheme
Size (in Bytes) AVX2 Cycles

Security
sk pk ct gen enc dec

NewHope512 1888 928 1120 68,080 109,836 114,176 101

Kyber512 1632 736 800 55,160 75,680 74,428 102

LAC-128v2 1056 544 736 53,062 72,382 92,203 133

Kyber768 2400 1088 1152 85,472 112,660 108,904 161

LAC-192v2 2080 1056 1248 108,900 171,042 244,043 259

NewHope1024 3680 1824 2208 129,670 210,092 220,864 233

Kyber1024 3168 1440 1504 121,056 157,964 154,952 218

LAC-256v2 2080 1056 1472 97,464 174,512 323,207 290

sk secret key pk public key
ct ciphertext gen key generation
enc encryption or encapsulation dec decryption or decapsulation

Table 1. Comparison of NewHope, Kyber and LAC

To the best of our knowledge, our new scheme is the first Ring-LWE based
public key encryption scheme with byte-level modulus. A previous version of our
scheme named “LAC” was submitted to NIST-PQC, and is one of 69 submissions
that are under Round 1 evaluation [1]. In this paper, we revise the proposed
parameter sets. Looking ahead, our proposed parameter sets, namely LAC-128v2,
LAC-192v2 and LAC-256v2 are identical to previous version, except for a different
message length and consequently a different error correction parameter. This
modification allows for even lower decryption error rates, and better addresses
the high Hamming weight attacks [51].

1.2 Outline

In section 2 we describe basic definitions and notations. In section 3 we describe
our Ring-LWE based public key encryption scheme. In section 4 we describe
the selection of parameters. In section 5 we give the security evaluation of our
new scheme. In section 6 describe the optimized implementation of our scheme.
Finally, we give the conclusion in section 7.



2 Preliminaries

In this section we first define several mathematical notations, the definitions of
Ring-LWE and public key encryption schemes.

2.1 Basic Notations

Vectors are denoted by bold lower-case characters, such as a. at denotes the
transposition of a. Matrices are denoted by upper-case characters, such as A. At

denotes the transposition of A. For an m-dimensional vector a = (a1, a2, ..., am),
the l2-norm, also known as the Euclidean norm, is defined as ‖a‖ :=

√∑m
i=1 a

2
i .

The length of a matrix is the norm of its longest column vector, e.g., ‖A‖ :=
max ‖ai‖. For an m-dimensional vector a = (a0, · · · , am−1) and a non-negative
integer l ≤ m, define (a)l := (a0, · · · , al−1).

For a set S, x
$← S denotes that an element x is chosen from S uniformly

at random. For a distribution D, x
$← D denotes that a random variable x is

sampled according to D. For a randomized algorithm A, y
$← A(x) denotes that

y is assigned randomly from the set of output of A with input x; if the algorithm
A is deterministic, we simplify it as y ← A(x).

For an integer q ≥ 1, let Zq be the residue class ring modulo q, define the
ring of integer polynomials modulo xn + 1 as R := Z[x]/(xn + 1) for an integer
n ≥ 1, and the ring Rq := Zq[x]/(xn + 1) denotes the polynomial ring modulo
xn + 1 where the coefficients are from Zq.

2.2 Distributions and Random Sampling

The Uniform Distribution. The uniform distribution over a set X is defined
as U(X). For example, the uniform distribution over Rq is U(Rq).

The Centered Binomial Distribution. The idea to simulate a Gaussian
distribution with binomial distribution was firstly introduced in [10], in order to
mitigate the heavy cost of Gaussian sampling. In the design of LAC we also use
centered binomial distribution with parameter 1 and 1

2 (denoted by Ψ1 and Ψ 1
2
,

respectively) as follows:

Definition 1 (Ψ1). Sample (a, b)
$← {0, 1}2, and output a − b. It picks 0 with

probability 1
2 , and ±1 with probability 1

4 according to the distribution Ψ1. The
mean value of Ψ1 is 0 and the variance is 1

2 .

Definition 2 (Ψ 1
2
). Sample (a, b)

$← Ψ1, and output a ∗ b. It picks 0 with prob-

ability 3
4 , and ±1 with probability 1

8 according to the distribution Ψ 1
2
. The mean

value of Ψ 1
2
is 0 and the variance is 1

4 .



Random Sampling. Denote by Samp an abstract algorithm that samples a
random variable according to a distribution with a given seed:

x← Samp(D; seed),

where D is a distribution, and seed is the random seed used to sample x. For an

empty seed = ⊥, the process is randomized, and equivalent to x
$← D. When a

seed is present, the sampling of x will be deterministic.
We extend the definition to a multiple dimension setting. We use

(x1, x2, · · · , xt)← Samp(D1, D2, · · · , Dt; seed)

to denote the process of sampling random variables xi-s from distributions Di-s
for 1 ≤ i ≤ t.

2.3 Learning with Errors (over Rings)

We refer the readers to [57,58,64,46,55] for a concrete background of the defini-
tions and reductions.

Definition 3 (Search LWE). Let n,m, q be positive integers, and χs, χe be
(bounded) distributions over Z. Given (A, b = As + e), recover the secret s,

where A
$← Zm×nq , the secret s

$← χns and the error e
$← χme .

Definition 4 (Decisional LWE). Let n,m, q be positive integers, and χs, χe

be (bounded) distributions over Z. Distinguish the two distributions of (A, b) and

(A,u), where b = As + e for A
$← Zm×nq , s

$← χns , e
$← χme , u

$← Zmq .

Definition 5 (Search Ring-LWE). Let n, q be positive integers, and χs, χe

be (bounded) distributions over R. Given (a, b = as + e), recover the secret s,

where a
$← Rq, the secret s

$← χs and the error e
$← χe.

Definition 6 (Decisional Ring-LWE). Let n, q be positive integers, and χs, χe

be (bounded) distributions over R. Distinguish two distributions of (a, b) and

(a,u), where b = as + e for a
$← Rq, s

$← χs, e
$← χe, u

$← Rq.

2.4 Public Key Encryption

A public key encryption scheme PKE=(Gen,Enc,Dec) with message space M
consists of three polynomial-time algorithms.

– KG(l): A probabilistic polynomial-time key generation algorithm takes as
input the security parameter l and outputs a public key pk and a private
key sk. We write (pk, sk)← KG(l).

– Enc(pk,m): A probabilistic polynomial-time encryption algorithm takes as
inputs a public key pk, a plaintext m and outputs a ciphertext c. We write
c← Epk(m).



– Dec(sk, c): A decryption algorithm takes as inputs a ciphertext c and a
private key sk, and outputs a plaintext m. We write m← Dsk(c).

A public key encryption scheme is IND-CCA2 (indistinguishable against
adaptive chosen ciphertexts attacks) secure if the advantage of any adversary
A defined in the following is negligible in the security parameter l:

Advcca
A (l) =

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

(pk, sk)← Gen(l),
(m0,m1)← ADsk(·)(pk),

b
R← {0, 1},

c∗ ← Epk(mb),
b′ ← ADsk(·)(pk, c∗).

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

where A is restricted not to query Dsk(·) with c∗.

3 The LAC scheme

In this section we describe our Ring-LWE based public key encryption scheme
“LAC”. LAC is a concrete instantiation of the Ring-LWE based scheme proposed
in [46], and the main deviation at an algorithmic level is that the plaintext
message is encoded with a large-block error correction code.

3.1 The scheme

The algorithm LAC.KG randomly generates a pair of public key and secret key
(pk, sk).

Algorithm 1 LAC.KG()

Ensure: A pair of public key and secret key (pk, sk).

1: seeda
$← S

2: a← Samp(U(Rq); seeda) ∈ Rq
3: s

$← Ψnσ

4: e
$← Ψnσ

5: b← as + e ∈ Rq
6: return (pk := (seeda, b), sk := s)

The algorithm LAC.Enc on input pk and a message m, encrypts m with
the randomness seed. The subroutine ECCEnc converts the message m into a
codeword.



Algorithm 2 LAC.Enc(pk = (seeda, b),m ∈M; seed ∈ S)

Ensure: A ciphertext c.
1: a← Samp(U(Rq); seeda) ∈ Rq
2: m̂← ECCEnc(m) ∈ {0, 1}lv
3: (r, e1, e2)← Samp(Ψnσ , Ψ

n
σ , Ψ

lv
σ ; seed)

4: c1 ← ar + e1 ∈ Rq
5: c2 ← (br)lv + e2 + b q

2
e · m̂ ∈ Zlvq

6: return c := (c1, c2) ∈ Rq × Zlvq

The algorithm LAC.Dec on input sk and a ciphertext c, recovers the corre-
sponding message m. The subroutine ECCDec on input an encoding m̂, decoding
the codeword in it. Usually, a message m ∈M is recovered.

Algorithm 3 LAC.Dec(sk = s, c = (c1, c2))

Ensure: A plaintext m.
1: u← c1s ∈ Rq
2: m̃←c2 − (u)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if b q

4
e ≤ m̃i < b 3q4 e then

5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m← ECCDec(m̂)
11: return m

3.2 Security proof

Here we mainly consider the formal security, i.e. the security reduction from
LAC to the underlying Ring-LWE assumption and the reduction from Ring-LWE
problem to basic problems over ideal lattices. Security with regard to concrete
parameters shall be presented in Section 5.

Following the result of [44], the chosen plaintext security of LAC can be easily
reduced to the Ring-LWE assumption. Then, with Fujisaki-Okamoto transfor-
mation, we obtain the chosen ciphertext security version of LAC in both classical
random oracle model [35,36] and quantum random oracle model [41]. It is easy
to verify that the embedded error correction code will not affect the security
reduction and these security proofs can be directly extended to the case of LAC.
Therefore, we omit the details for both reductions.

With regard to the second reduction, there has been a few variants of Ring-
LWE problems, such as primal-Ring-LWE [31,32,23,24,22,54], dual-Ring-LWE
[46,47,55], and Poly-LWE [29,53,16,10,9,17,42,61]. Recently, Rosca et al. [59]
showed reductions among all of above variants with limited parameter losses.



Thus, it is sufficient to build our scheme from Ring-LWE while enjoying a re-
duction to the hard problems over ideal lattices, asymptotically speaking.

Remark 1. In practice, it is desirable to sample secrets s and noise e from small
distributions, such as a binary or a ternary distribution. Although in [50] is has
been shown that plain LWE problem with such choices can be provably secure
when the number of samples are limited, their result does not apply to Ring-
LWE. It is still an open problem to prove the hardness of Ring-LWE for small
parameters and practical number of samples.

4 Parameter Selection

Almost all lattice based key exchanges and public key encryptions, except for
NTRU based ones, follow a similar framework from [29,53,16,9]. We have a set of
theoretical results on the choice of rings, moduli, errors, etc [55,54,59] that ensure
the framework stems from a provable secure design. However, those theoretical
results do not give any guidance on selecting concrete parameters. Choosing
parameters for (Ring-)LWE based schemes becomes one of a main research di-
rection in subsequent works [16,9,54,17,42,61], and a main differentiator in most
NIST-PQC submissions [1]. In this section, we present our choice of parameters,
and give our design rational over common choices.

4.1 Modulus

Our first and foremost priority is to reduce the modulus. As mentioned earlier,
the payload sizes are governed mainly by the dimension and the modulus. The
choice of power-of-2 cyclotomic polynomial does not allow much freedom in the
choice of n. Hence we focus on a small modulus to reduce the payload size. Note
that the modulus cannot be too small; it needs to be large enough to tolerant
the errors during decryption which will be scaled by a factor of

√
2n. A common

choice was q = 12289. We take a more aggressive approach by using “byte level
modulus”.

A byte is the basic operating unit for most processors. Such a choice makes
the public keys and ciphertexts compact, and is also optimal for implementations.
The downside is that decryption errors increase when modulus is smaller. We
will give more details in Section 4.3.

Depending on the structure of the polynomial ring, we consider three types
of byte-level modulus.

– Power of Two Modulus: From the view of implementation, the most
suitable byte-level modulus is q = 256, for which the modulus operation can
be efficiently realized by ignoring the carrier data. However, since q = 256 is
not a prime, Z256[x]/(xn + 1) does not yield a field for our choice of n. For
conservative purpose we do not use this ring to avoid any potential weakness
of the underlying structure.



– Max-Split Modulus: The reason to choose q ≡ 1 mod 2n is that xn + 1 ∈
Zq[x] can be completely factorized. For byte-level modulus, this is no longer
the case. However, we notice that when q = 257, xn + 1 ∈ Z257[x] has
maximum number of factors:

x512 + 1 =

128∏
i=1

(x4 + τi), x1024 + 1 =

128∏
i=1

(x8 + τi),

where τi ∈ Zq. We call this type of modulus “Max-Split Modulus”, for which
xn+1 can be maximally factorized into polynomials with very small degrees.

– Min-Split Modulus: Unlike q = 257, for some other modulus, xn + 1 ∈
Zq[x] may have minimum number of factors. Concretely, we notice that for
q = 251, which is the largest prime smaller than 28, xn + 1 ∈ Z257[x] can be
minimally factorized as:

xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

We call this type of modulus “Min-Split Modulus”, for which xn + 1 can
only be factorized into two polynomials with the degree of n/2.

It has been argued that less algebraic structure reduces the attacking surface
[13]. In that spirit, and also for the sake of simplicity, we choose the min-split
modulus q = 251 for our scheme.

Remark 2. Our selection principle is simply to minimize algebraic structures.
Nonetheless, we do not see any weakness of the power of two modulus or the
max-split modulus. In fact, it has been shown in theory [55] that Ring-LWE
is hard for any ring of integers, which implies that Z2`/(x

n + 1) is as hard as
any other choices, asymptotically speaking. Further, one can convert instances
over one ring to another via modulus switching [6,8], at a cost of increased
secrets and/or errors. In the meantime, from the implementation point of view,
the modulus 257 and 256 may deliver better efficiency. We leave the concrete
security of those types of modulus to future research.

4.2 Error Distribution.

In literatures, there are mainly two families of distributions that satisfy the aver-
age/worst case reduction theorem [57,46], namely, discrete Gaussian distribution
[46,10] and centered binomial distribution [17]. Gaussian distribution consumes
lots of entropy, is hard to implement (in constant time), and is also vulnerable to
memory based side channel attacks [20] when implemented with look-up tables
[30]. Therefore, we opt to use the centered binomial distribution for our scheme.

The next step is to determine the right parameters for the centered binomial
distribution. Recall that the hardness of Ring-LWE problem is mainly deter-
mined by the dimension n and the error-modulus-ratio. When a byte-level mod-
ulus is used, the error-modulus-ratio becomes large enough even for small error



distributions. This allow us to use the simplest centered binomial distribution
with λ = 1 as our basic error distribution.

In the implementation, as described in [10], a centered binomial distribution

with the standard deviation of
√
λ/2 can be generated as

∑λ
i=1(bi − b̂i), where

bi, b̂i ∈ {0, 1} are uniformly random bits. That is, in order to get a centered
binomial distribution with λ = 1, each element of the error vector is generated by
b− b̂, where b, b̂ are uniformly random bits. More specifically, it will be a ternary
distribution with Pr[x = −1] = 1/4, Pr[x = 0] = 1/2 and Pr[x = 1] = 1/4. Note
that, this distribution is formally defined as Ψ1 in Section 2.2.

Remark 3. We wish to stress again that for such a small error distribution, the
worst-case hardness of the Ring-LWE problem [46,55] will no longer hold. While
this is a common approach in almost all lattice based cryptography [1], we still
need to take a deep dive into the concrete security of the proposed parameters.
The details will be presented in Section 5.

4.3 Decryption Errors

As shown in the decryption algorithm, the message is recovered via two steps.
First, the error correction code word m̂ is recovered from the ciphertext. Then,
the message m is recovered from the code word. It is easy to verify that:

m̃ = c2 − (c1s)lv
= (br)lv + e2 + b q2em̂− (c1s)lv
= ((as + e)r)lv + e2 + b q2em̂− ((ar + e1)s)lv
= (er − e1s)lv + e2 + b q2em̂

(1)

Let w = (er − e1s)lv + e2, we have that the error rate of each m̃i is
δ = 1 − Pr[−b q4e < wi < b q4e]. If s, e, r, e1, e2 are all randomly chosen from
a small distribution with a standard deviation of σ and an expectation of 0,
then according to the central limit theory, wi follows a distribution that is very
close to a discrete Gaussian distribution with a standard deviation of σ2

√
2n and

an expectation of 0. Thus, the error rate for the each bit can be approximated

by the Gaussian error function as δ ≈ 1 − erf
(

bq/4e√
2(σ2
√
2n)

)
. For example, For

n = 512, q = 251, and a distribution of Ψ1 with a standard deviation σ = 1/
√

2,
the error rate of each bit is estimated by:

δ ≈ 1− erf

(
b251/4e√

2((1/
√

2)2
√

2× 512)

)
≈ 2−13.195.

Remark 4. This analysis assumes that each coefficient is linearly independent
from another. Looking ahead, we will be applying error correction codes to reduce
error rates. This functionality requires that the original codes are independent.
From an information theoretical point of view this is not the case. It is easy to
see that the coefficients are weakly correlated. Quantify the corrolations after
ring multiplications has been an open problem for NTRU for many years [40].
As pointed out in [39,60], since the correlation is so weak, it is safe to treat the
coefficients as if they were independent from each other.



Suppose the BCH code can correct lt errors at most and the code word length
is ln = lv, and assume the coefficients of w are independent from each other, we
have the decryption error rate for a message m:

∆ ≈
lv∑

j=lt+1

((
lv
j

)
δj(1− δ)lv−j

)
(2)

Two factors influence the exact decryption error rate. First, the compress
operation in the implementation will bring new errors. Briefly, in order to achieve
best compactness, some bits of c are not included in the final ciphertext. This
introduces errors that are computational indistinguishable from uniform, under
the Ring-LWE assumption. Secondly, looking ahead, we will be relying on D2
error correction code [10] (in conjunction with BCH code) to minimize decryption
fail rate for LAC-256v2. The message will be D2 encoded after going through the
BCH process. Detailed estimation will be presented in Section 4.5.

4.4 Error Correction Code.

Our byte level modulus incurs a very high decryption error rate by design. Trivial
or light error correction methods such as D2 or D4 code [10] are not capable of
handling such a situation. Heavy error correction methods ought to be used for
our use case. In the field of code theory, there are many powerful codes such as
BCH, Goppa, LDPC, Turbo and Polar. In principle, any code with enough error
correcting capability can be used in our scheme. For the sake of simplicity and
efficiency we choose BCH code for implementation and benchmarking.

For BCH code with a code length ln and a designed distance ld < ln, we use
“codes.BCHCode(GF(2), ln, ld)” from SageMath [62] to obtain the concrete
parameters. For example, for ln = 511, ld = 41, and a message size of lm = 340,
we get the parameter [511, 340, 41] which says that the message can tolerant
lt = (ld − 1)/2 = 20 errors at most. When δ = 2−13, we achieve a decryption
error rate of ∆ = 2−154 using equation (2).

Remark 5. Since the encoded message is encrypted as a Ring-LWE error element,
an attacker does not see the structure of the code without breaking the Ring-
LWE scheme in the first place. Therefore, the code structure will not affect
the theoretical security of our scheme. Nonetheless, some code may not have a
constant time implementation, and it is possible that error correction information
may be partially leaked via side channels. To the best of our knowledge, we are
not aware of any attack that quantifies or exploits such leakages.

4.5 Recommended Parameter Categories.

Having presented our design principles, we are ready to proceed with concrete
parameter choices. We recommend the following parameter sets in Table 2, with
respect to three categories of NIST post-quantum standardization project [1],
namely, the equivalent security level of AES128, AES192 and AES256.



Concretely, dimensions n = 512 and n = 1024 with a basic error distribution
Ψ1 discussed as above are for the low security level LAC-128v2 and the high
security level LAC-256v2, respectively. To get the middle security level LAC-
192v2, we use a smaller secret and noise distribution Ψ1/2 (defined in 2.2) and
dimension 1024.

Note that it is sufficient to set the message size according to the security level,
since in practice, public key encryption schemes are mainly used to encrypt
session keys for symmetric encryption scheme. For the sake of simplicity, we
set the message size to 256 for all security levels. In the previous version of
LAC parameter sets that are submitted to NIST, the message size was twice as
the security level.

The parameters of BCH code are selected to achieve a suitable decryption
error rate and a high efficiency while defeating the high Hamming weight attacks
(See section 5.2 for detail). We have lm = 256 + 8 = 264 in our setting. The first
256 bits are used to store the message. In case where message is less than 256
bits we will utilize padding mechanism. This requires us to reserve an additional
8 bits to store the (real) message length. Next, for lm = 264, the minimum
available BCH code length ln is 511. Lastly, we choose ld = 41 which allows
us to correct 20 bits of errors at most. The redundant data due to this error
correction code is 23 bytes. To have a unified design across three parameter sets,
we choose the same parameter, [511, 264, 41], for all three security levels.

Note that the error rate for each coefficient is estimated by a convolution
of all the error terms. In order to minimize the size of the ciphertext, in our
implementation the lower 4 bits for each coefficient in c2 are rounded. This
brings an additional uniformly random (under Ring-LWE assumption) error over
[−7, 7].

A public key consists of a 32 bytes seed seeda, and an n bytes vector b. A
secret key is an n bytes vector3. In the case where Fujisaki-Okamoto transfor-
mation is used to achieve chosen ciphertext security, a secret key also contains
a copy of the corresponding public key, so that the decryption algorithm can
re-encrypt to check the validity of the ciphertext. Thus the size of a secret key
becomes 2n + 32 as shown in Table 1. Finally, a ciphertext contains both an n
bytes vector c1, and lv number of “half-byte” from c2 (since the lower 4 bits
of each coefficient in c2 are rounded). For both LAC-128v2 and LAC-192v2 pa-
rameter sets, lv = lm + 23 × 8, where 23 is the size of the redundant data. For
LAC-256v2, lv = (lm + 23× 8)× 2 due to the use of D2 encoding.

5 Concrete Security

We consider the best known generic attacks against Ring-LWE with our parame-
ters, which treat the Ring-LWE problems as plain LWE problems. Those attacks
are well-known by the community; their costs are well understood.

3 One may simply store a 32 bytes seed for the secret key to minimize storage, at a
cost of slightly slower decryption.



Categories n q dis ecc ml pk sk ct bit-er dec-er

LAC-128v2 512 251 Ψ1 [511, 264, 41] 256 544 512 736 2−12.42 2−146

LAC-192v2 1024 251 Ψ 1
2

[511, 264, 41] 256 1056 1024 1248 2−21.91 2−352

LAC-256v2 1024 251 Ψ1 [511,264,41]+D2 256 1056 1024 1472 2−12.96 2−157

dis secret and noise distributions ecc error correction code
ml message length sk secret key
pk public key ct ciphertext
bit-er single bit error rate without BCH dec-er decryption error rate.

Table 2. Recommended parameter of LAC

We also consider dedicated attacks that target specific designs of our scheme,
namely the subfield attacks and the high Hamming weight attacks. Those attacks
are firstly reported as comments to LAC submission to NIST-PQC. We will show
that none of those dedicated attack works better than generic attacks for our
(revised) parameter sets. Therefore, it is sufficient to use common methods (e.g.
BKZ with (quantum) sieving) to evaluate the security of our scheme.

5.1 Generic Attacks

There are many generic algorithms to solve the LWE problem, see [8,63] for a
survey of known techniques. It has been shown that lattice reduction attack-
s utilizing the BKZ algorithm [26] are more powerful than exhaustive search,
combinational and algebraic algorithms. For simplicity, following the analysis of
[9], we focus primly on two embedding attacks that are commonly referred to
as primal attack and dual attack. We summarize the security estimates of both
attacks in Table 3.

Algorithm
Primal Attack Dual Attack

Classic Quantum Block Size Classic Quantum Block Size

LAC-128v2 148 135 509 147 133 505

LAC-192v2 288 261 986 286 259 978

LAC-256v2 323 293 1105 320 290 1095

Classic: Classical complexity Quantum: Quantum complexity
Table 3. Concrete security of LAC

Primal attack. In a primal attack, one builds a lattice with a unique-SVP
instance from the LWE samples; then, uses BKZ algorithm to recover this unique
shortest vector. In a nutshell, given an LWE instance (A, b = As + e), A ∈
Zm×nq , the target lattice of dimension d = m+ n+ 1 is constructed as

ΛA = {x ∈ Zm+n+1 : (A|Im| − b)x = 0 mod q}.



It is easy to verify that, v = (s, e, 1) is the unique-SVP solution when both s
and e are reasonably short. For exmaple, as shown in [9], the attack is successful
if and only if σ

√
b ≤ δ2b−d−1 × qm/d, where σ is the standard deviation of the

errors and secrets, δ = ((πb)1/bb/2πe)1/(2(b−1)).
BKZ algorithm progressively processes the lattice basis by calling polynomial

times a subroutine, such as the (quantum) sieving algorithm, to solve the exact
shortest vector problem for sub-lattices with dimension (i.e. blocksize) b. This
method is known as BKZ-core-(Q)Sieving, and its complexity depends solely on
the block dimension b that is required for the BKZ algorithm to find the unique

solution. According to [9], the best complexity of the SVP oracle is
√

3/2
b+o(b)

≈
20.292b for classical sieving algorithms, and

√
13/9

b+o(b)
≈ 20.265b for quantum

sieving algorithms.

Dual attack. In a dual attack, one firstly tries to build a dual lattice of the
aforementioned primal lattice, and then uses the dual lattice to solve the deci-
sional LWE problem. At a high level, given the LWE instance (A, b = As + e),
A ∈ Zm×nq , the target lattice of dimension d = m+ n is constructed as

Λ⊥A = {(x,y) ∈ Zm × Zn : Atx = y mod q}.

Again, [9] showed that BKZ is capable of finding a vector v = (x,y) of length
l = δd−1qn/d, where the distance between vtb and the uniform distribution will
be bounded by ε = 4 exp (−2π2τ2) for τ = lσ/q. This breaks the decisional LWE
problem with an advantage ε.

Similar to primal attacks, the concrete security of dual attack also depends
on the complexity of BKZ algorithm. There is a slight caveat when BKZ-core-
QSieving is used: the attacker is able to amplify ε to 1/2 by repeating the sieving
algorithm for R = max(1, 1/(γε2)) times. This operation is almost free to the
attacker, since sieving algorithm will produce γ = 20.2075b vectors which far
exceed the required number of short vectors 1/ε2 for repeating.

Security Estimates. We use BKZ simulator with core-(Q)sieving model to
estimate the security for our scheme. The required blocksize to achieve our tar-
get root Hermite factor is shown in Table 3. The corresponding security is then
estimated for the obtained blocksize. Note that in [5], Albrecht et al. indepen-
dently evaluated the security for all (Ring-)LWE candidates, and their estimation
matches ours for LAC.

5.2 Dedicated Attacks

We stress again that the two attacks we are about to discuss does not perform
better than generic attacks. Specifically, although we revised the parameters
partially due to the threat of high Hamming weight attack, such a revision is
only for conservative purpose and the attack itself does not work on both the
original parameter sets and the revised ones.



Subfield Attacks. The idea of exploiting subfields is known to the lattice
community for years [12,4,14,43], and to use this idea to analyze LAC was firstly
proposed by Alperin-Sheriff [51] during the first round evaluation of NIST-PQC.
Recall that xn + 1 has two factors modulo q = 251:

xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

In other words, there exist two subfields defined by two polynomials g and
h where g = xn/2 + 91xn/4 + 250 and h = xn/2 + 160xn/4 + 250.

Given (a, b = as+ e), one may recover (s, e) by looking at the samples over
the subfields. It may be sufficient to recover (sg := s mod g, eg := e mod g) from
(a mod g, b mod g), and (sh, eh, respectively). Next, it becomes straightforward
to recover (s, e) via Chinese remainder theorem.

Analysis. In the rest, we give a full analysis of this attack. The key point of
the attack is that by moving to the subfield, the lattice dimension is practically
halved. Therefore, the BKZ complexity may be reduced for the new sub-lattices.
Note that this is not necessarily always the case under core-(Q)Sieving model
where only the cost of subroutine counts; and the cost of the subroutine depends
only on the root Hermite factor. Nonetheless, to have a meaningful analysis, we
assume that this is not an obstacle: the attacker may access an SVP oracle for
BKZ subroutines solely for this attack.

Our analysis will show that the corresponding vectors in the subfields, (sg, eg),
will be larger than the Gaussian heuristic length. In other words, even if one were
able to perform lattice reduction over the dimension-halved lattices, they will
not be able to recover the desired vectors.

The attack reduces the dimension, in the meantime, the modulo operation
increases the size of (sg, eg) (similarly, (sh, eh)). To be precise, when (s, e) are
small polynomials with the coefficients in {−1, 0, 1}, the coefficients of (sg, eg)
will lie in {0,±1,±2,±91}. Coefficients of ±91 will be too large. Alperin-Sheriff
also pointed out that by multiplying s and e by 11, all the coefficients of (sg, eg)
will be within the interval of [−25, 25].

Let A = [Ag|I|11× bg], where Ag denotes the matrix generated by ag, if
z = [11× sg|11× eg| − 1] is the shortest solution of Az = 0 mod q, we can
recover z with the primal attack. Note that, the dimension of a primal attack
is reduced from d = 2n + 1 to d = n + 1 via the subfield attack. Since A is a
random matrix, the q-ary lattice Λ⊥q (A) will behave as a random lattice [28],
and therefore it is sufficient to use Gaussian heuristic to estimate the length of
shortest vectors in this lattice:

λ1(Λ⊥q ) ≈ qm/d
√

d

2πe
.

In the case of n = 512 and n = 1024, the lengths of the shortest vector is
expected at 86.36 and 122.4, respectively.

On the other hand, we also need to estimate the length of z. Central limit
theory says that the length of z approximately follows a discrete Gaussian distri-
bution. Our implementation shows that z closely follows a Gaussian distribution



with a mean and deviation pair of (253.59, 6.9) for LAC-128v2, (253.26, 6.29) for
LAC-192v2 and (358.42, 6.86) for LAC-256v24.

It is easy to verify that, the length of z will be larger than the solution of
Az = 0 mod q except for negligible probability. Hence z will not be a short
vector in this lattice. In other words, if one were to use subfield attack, and
assuming that they have free access to SVP oracles simply for the sub-lattices,
they will not be able to locate the vector.

To sum up, the subfield attack described above will not affect the security of
LAC for either original parameter sets or the revised version.

High Hamming Weight Attack. This is a chosen ciphertext attack that
exploits the fact that the secrets and errors (r, e1) in some ciphertexts (with
certain probability) may have higher-than-usual Hamming weight. It is feasible
since (r, e1) are randomly selected from Ψ1 or Ψ 1

2
. It is easy to see that the

decryption error rate is influenced by the Hamming weight. Therefore, with
enough number of random samples, an attacker may obtain sufficient number of
samples whose secrets and errors have very higher Hamming weight, and then
invoke the decryption oracle to extract information of the private key.

Analysis. It has been shown that chosen plaintext secure version of (Ring-)LWE
based schemes suffer from an reaction attack [33]. To address this vulnerabili-
ty, most schemes rely on Fujisaki-Okamoto transformation [35,36,41] to achieve
chosen ciphertext security. We also adopt the same approach. Via this transfor-
mation, the randomness vectors (r, e1) are generated from the plaintext message
by a pseudorandom generator. Thus the vectors (r, e1) are randomly distributed
from the view of the adversary.

In a comment to LAC [1], Alperin-Sheriff showed that, for the LAC-256v1
parameter set, the probability that a pair of valid (r, e1) with a Hamming weight
of at least 1024 + 310 = 1334 is greater than(

2048

1334

)
/22048 = 2−143.

Therefore, with 2207 pre-computations (assuming each access to the pseu-
dorandom generator incurs a cost of 1), the adversary will obtain 264 messages
for which the corresponding (r, e1) have Hamming weight exceeding 1334. It is
worth noting that the adversary only needs to access the decryption oracle for
264 times in this setting. Next, for samples with such high Hamming weights,
the decryption error rate for each bit of m̃i is expected at

δhigh ≈ 1− erf

(
b251/4e√

2((1/
√

2)
√

(1024 + 310)/2048
√

2× 1024)

)
≈ 2−5.9,

4 The data is obtained over 100,000 random samples for each parameter set using
SageMath. The experiment is not mean to extensive to show any proof of statistical
distances; the mean is obviously much higher than Gaussian heuristic length.



This yields a decryption error rate for the message m:

∆high =

1023∑
j=55+1

((
1023

j

)
δjhigh(1− δhigh)1023−j

)
≈ 2−44.4.

As a result, with 2207 pre-computations and 264 decryption oracle queries, the
adversary can get about 219.6 decryption failures. We remark that, 1334 is a
lower bound of the Hamming weight for decryption errors. Decryption errors
may occur for any Hamming weight above 1334, and therefore the adversary
may get (a little) more than 219.6 decryption failures if they were to perform all
above (pre-)computations.

Remark 6. We argue that, as also pointed by D’Anvers [1], it is difficult to
get any information about the private key from these decryption failures. All
the information that an adversary may learn is whether there are more than
lt errors in the code word; they cannot determine which coefficients are failing
as in a reaction attack [33]. Nevertheless, we do recognize this as a leakage of
information and present our counter-measures.

Counter-measures. Our objective is to make LAC completely immune to such
attack by decreasing the decryption error rate. Our method, at a high level, is to
reduce the message length from 512 bits (as in the original parameter sets LAC-
256v1 submitted to NIST-PQC) to 256 bits. In doing so, we allow more space
for error corrections and therefore achieve an even smaller decryption error rate.

Following the above example, with a message size of 256, the BCH code
can correct up to lt = 100 errors for the code length of 1023. Consequently, the
decryption error rate for high Hamming weight random vectors r, e1 is estimated
as:

∆high =

1023∑
j=100+1

((
1023

j

)
δjhigh(1− δhigh)1023−j

)
≈ 2−147.

As a result, with 264 message queries, the probability that the adversary gets
one decryption failure is around 2−83. In other words, it will take the adversary
over 2256 operations to get a single decryption error.

However, we notice that, when lt is greater than 50 the decoding efficiency
decreases drastically. To resolve this problem, for LAC-256v2 we use the D2 error
correction code [16,9] together with the BCH code. That is, the message is firstly
encoded with BCH, then the code word is encoded with D2. As a result, the BCH
code only need to correct less than 20 errors.

The upper bound of the decryption error rate of our recommended parame-
ters in the case of high Hamming weight attack is presented as follow. We give
the upper bound the Hamming weight that the adversary can obtain after 2l

operations of pre-computation, where l is the security level. Then we estimate
the bit error rate and decryption error rate according to this upper bound of
Hamming weight. It is clear that, for each parameter set, the decryption failure
occurs with a negligible probability in the security parameter.



Categories Ham(r, e1) Prob Bit Error Rate Error Rate

LAC-128v2 512+206 2−128 2−9.59 2−87

LAC-192v2 512+333 2−192 2−14.75 2−201

LAC-256v2 1024+416 2−256 2−9.77 2−90

Ham(r, e1) denotes the Hamming weight of (r, e1), Prob denotes the probability that
the adversary obtains (r, e1) with target Hamming weight in pre-computation.

Table 4. Decryption error rate of high Hamming attack

6 Implementation

As mentioned earlier, an important difference between LAC and previous Ring-
LWE based public key encryption schemes is that our parameters do not sup-
port NTT. In this section, we present some highlights of our customized im-
plementation, including a generalized polynomial multiplication method (as per
NIST-PQC’s request) and an optimized version based on AVX2 instructions. The
source code of our scheme is available at https://github.com/luxianhui007/LAC.

6.1 Polynomial Multiplication

Polynomial multiplication is the most time consuming operation in the imple-
mentation of LAC. In addition to a reference implementation, we provide two
optimized versions as follows:

– General Optimized Version: Our main observation is that, since s and r
are selected from {−1, 0, 1}, the multiplication operation can be implemented
by bitwise logical AND operation as ai × 1 = ai&0xff and ai × 0 = ai&0x00.
Further more, we can pack 4 items into one uint64 t data type. Then,
polynomial multiplication becomes simply as =

∑
si=1 ai −

∑
si=−1 ai.

Remark 7. With q < 256, it is possible to pack 8 coefficients into a single
uint64 t unit, in theory. We choose to hold 4 coefficients at a time, and
use the free space as a buffer for the carriers, so that we are not obliged to
perform mod reductions after every arithmetic operation. This yields better
performance in practice.

– AVX2 Based Version: AVX2 allows us to handle 256 bits data type. We
are able to store 32 coefficients in a single mm256 data type, and utilize
mm256 maddubs epi16 instruction which does 32 multiplications and adja-

cent addition operation in a single operation. We obtain approximately 30x
acceleration with this optimization.

6.2 Benchmark

In this section we present benchmark results of the chosen plaintext secure ver-
sion of LAC. The test bed sits on an ubuntu 16.04 operation system with an



Intel Core-i7-4770S (Haswell) @ 3.10GHz processor and 7.6GB of memory, with
Turbo Boost and Hyperthreading disabled.

Categories
Key generation Encryption Decryption

CPU Cycles Times(µs) CPU Cycles Times(µs) CPU Cycles Times(µs)

LAC-128v2 105,193 37 192,777 58 81,539 29

LAC-192v2 354,313 114 498,461 162 293,976 93

LAC-256v2 325,752 106 604,737 199 292,497 95
Table 5. Performance of general optimized version of LAC

Categories
Key generation Encryption Decryption

CPU Cycles Times(µs) CPU Cycles Times(µs) CPU Cycles Times(µs)

LAC-128v2 42,506 13 64,819 20 24,654 7

LAC-192v2 110,199 36 178,961 46 68,637 21

LAC-256v2 99,516 31 164,560 52 72,888 22
Table 6. Performance of AVX2 version of LAC

7 Conclusion and future work

We propose the first instantiation of Ring-LWE based public key encryption
scheme with byte-level modulus. Our main contributions include the selection
of suitable byte-level modulus, security evaluations of special attacks according
to the our concrete parameters, and efficient implementations without NTT.
Compared with existing schemes, our new scheme is more compact and nearly
as efficient as NewHope and Kyber.

Side Channel Resistance. Side channel resistance is an important notion for
implementations. The common side channels are timing leakage and memory
leakage. Most NIST-PQC candidates provides constant time implementation.
The current LAC implementation is not constant time since the number of none-
zero coefficients in the secret is not a constant; the Hamming weight of the secret
is leaked through the timing data. To achieve a constant time multiplication, one
may either use a fixed Hamming weight ternary distribution, or replace the index
based algorithm with Karatsuba or Toom-Cook algorithms. The first modifica-
tion requires a full review of parameters, and the secret distributions align less
with theoretical reductions; while the second one decreases performances. We
leave this research to future work.

Power-of-two Modulus. Power-of-two modulus offers the same security from
a theoretical point of view. They are even more efficient than our current choice



in practice since modulus reduction is simply omitting the higher bits. We leave
it as a future work to better understand the underlying structure and its impact
to concrete security.
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