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1 Introduction

Block ciphers are among the most important cryptographic primitives as they are at the
core responsible for a large fraction of all our data that is encrypted. Depending on the
mode of operation (or used construction), a block cipher can be turned into an encryption
function, a hash-function, a message authentication code or an authenticated encryption
function.

Due to their importance, it is not surprising that block ciphers are also among the best
understood primitives. In particular the Advanced Encryption Standard (AES) [Fip] has
been scrutinized by cryptanalysts ever since its development in 1998 [DR98] without any
significant security threat discovered for the full cipher (see e. g. [BK09; Bir+09; Der+13;
Dun+10; Fer+01; GM00; Gra+16; Gra+17; Røn+17]).

The overall structure of AES, being built on several (round)-permutations interleaved
with a (binary) addition of round keys is often referred to as key-alternating cipher and is
depicted in Figure 1.

The first cipher following this approach was, to the best of our knowledge, the cipher
MMB [Dae+93], while the name key-alternating cipher first appears in [DR01] and in the
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Figure 1: Key-alternating construction for r rounds, using unkeyed round permutations R1
to Rr . In practical instantiations, the round keys ki are typically derived from a master key
by some key schedule.

mailto:anne.canteaut@inria.fr,virginie.lallemand@rub.de,gregor.leander@rub.de,friedrich.wiemer@rub.de
mailto:anne.canteaut@inria.fr,virginie.lallemand@rub.de,gregor.leander@rub.de,friedrich.wiemer@rub.de


2 bison – Instantiating the Whitened Swap-Or-Not Construction

book describing the design of the AES [DR02]. Nowadays many secure ciphers follow this
construction.

Interestingly, besides its overwhelming use in practice and the intense cryptanalytic
efforts spent to understand its practical security, the generic (or idealized) security of key-
alternating ciphers has not been investigated until 2012. Here, generic or idealized security
refers to the setting where the round functions Ri are modeled as random permutations.
An (computational unbounded) attacker is given access to those round functions via oracle
queries and additional oracle access to either the block cipher or a random permutation. The
goal of the attacker is to tell apart those two cases. As any attack in this setting is obviously
independent of any particular structure of the round function, those attacks are generic
for all key-alternating ciphers. In this setting, the construction behind key-alternating
ciphers is referred to as the iterated Even-Mansour construction. Indeed, the Even-Mansour
cipher [EM97] can be seen as a one-round version of the key-alternating cipher where the
round function is a random permutation.

The first result on the iterated Even-Mansour construction (basically focusing on the
two-round version) was given in [Bog+12]. Since then, quite a lot of follow-up papers,
e. g. [And+13; GL15; HT16; LS15], managed to improve and generalize this initial result
significantly. In particular, [CS14] managed to give a tight security bound for any number
of rounds. Informally, for breaking the r-round Even-Mansour construction, any attacker
needs to make roughly 2

r
r+1 n oracle queries.

While this bound can be proven tight for the iterated Even-Mansour construction, it is
unsatisfactory for two reasons. First, one might hope to get better security bounds with
different constructions and second one might hope to lower the requirement of relying on r
random permutations.

Motivated by this theoretical defect and the importance of encrypting small domains
with full security (see e. g. [MY17]), researchers started to investigate alternative ways to
construct block ciphers with the highest possible security level under minimal assumptions
in ideal models. The most interesting result along those lines is the construction by Tes-
saro [Tes15b]. His construction is based on the Swap-or-Not construction by [Hoa+12],
which was designed for the setting where the component functions are secret. Instead
of being based on random permutations, this construction requires only a set of random
(Boolean) functions. Tessaro’s construction, coined Whitened Swap-Or-Not (WSN for short),
requires only two public random (Boolean) functions fi with n-bit input, and can be proven
to achieve full security, see Section 2 for more details.

However, and this is the main motivation for our work, no instance of this construction
is known. This situation is in sharp contrast to the case of the iterated Even-Mansour
construction, where many secure instances are known for a long time already, as discussed
above.

Without such a concrete instance, the framework of [Tes15b] remains of no avail. As
soon as one wants to use the framework in any way, one fundamentally has to instantiate
the Boolean functions modeled as ideal functionalities by efficiently computable functions.
Clearly, the above mentioned bound in the ideal model does not say anything about any
concrete instance. Tessaro phrases this situation as follows:

Heuristically, however, one hopes for even more: Namely, that under a careful
implementation of the underlying component, the construction retains the
promised security level. [Tes15b]

There has actually been one instance of the previous construction [Hoa+12], but this
has been broken almost instantaneously and completely, as parts of the encryption function
were actually linear, see [Vau12]. This failure to securely instantiate the construction points
to an important hurdle. Namely, proving the generic bounds and analyzing the security of
an instance are technically very different tasks. The security of any block cipher is, with the
current state of knowledge, always the security against known attacks. In particular, when
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designing any concrete block cipher, one has to argue why linear and differential attacks
do not threaten the construction.

Our Contribution

Consequently, in this paper we investigate the important, but so far overlooked, aspect
of instantiating the WSN construction with a practical secure instance. Practical secure
meaning, just like in the case of AES, that the block cipher resists all known attacks. We
denote this instance as bison (for Bent whItened Swap Or Not). Our insights presented
here are twofold.

First, we derive some inherent restrictions on the choice of the round function fi. In
a nutshell, we show that fi has to be rather strong, in the sense that its output bit has to
basically depend on all input bits. Moreover, we show that using less than n rounds will
always result in an insecure construction. Those, from a cryptanalytic perspective rather
obvious, results are presented in Section 3. Again, but from a different angle, this situation
is in sharp contrast to key-alternating ciphers. In the case of key-alternating ciphers, even
with a rather small number of rounds (e. g. ten in the case of AES-128) and rather weak
round functions (in case of the AES round function any output bit depends on 32 input
bits only and the whole round function decomposes into four parallel functions on 32 bits
each) we get ciphers that provide, to the best of our knowledge today and after a significant
amount of cryptanalysis, full security.

Second, despite those restrictions of the WSN construction, that have significant impact
on the performance of any instance, there are very positive aspects of the WSN construction
as well. In Section 4, we first define a family of WSN instances which fulfill our initial
restrictions.

As we will show in detail, this allows to argue very convincingly that our instance is
secure against differential attacks. Indeed, under standard assumptions, we can show that
the probability of any (non-trivial) differential is upper bounded by 2−n+1 where n is the block
size, a value that is close to the ideal case. This significantly improves upon what is the state
of the art for key-alternating ciphers. Deriving useful bounds on differentials is notoriously
hard and normally one therefore has to restrict to bounding the probability of differential
characteristics only. Our results for differential cryptanalysis can be of independent interest in
the analysis of maximally unbalanced Feistel networks or nonlinear feedback shift registers.

We specify our concrete instance as a family of block ciphers for varying input length in
Section 5. In our instance, we attach importance to simplicity and mathematical clarity. It is
making use of bent functions, i. e. maximally non-linear Boolean functions, for instantiating
f and linear feedback shift registers (lfsrs) for generating the round keys. Another
advantage of bison is that it defines a whole family of block ciphers, one for any odd block
size. In particular it allows the straightforward definition of small scale variants to be used
for experiments.

Finally we discuss various other attacks and argue why they do not pose a threat for
bison in Section 6. Particularly the discussion on algebraic attacks might be of independent
interest. For this we analyse the growth of the algebraic degree over the rounds. In contrast
to what we intuitively expect – an exponential growth (until a certain threshold) as in
the case for SPNs [Bou+11] – the degree of the WSN construction grows linearly in the
degree of the round function fi . This result can also be applied in the analysis of maximally
unbalanced Feistel networks or nonlinear feedback shift registers.

Related Work

The first cipher, a Feistel structure, that allowed similarly strong arguments against differ-
ential attacks was presented by Nyberg and Knudsen [NK95], see also [Nyb12] for a nice
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survey on the topic. This cipher was named CRADIC, as Cipher Resistant Against DIfferential
Cryptanalysis but is often simply referenced as the KN cipher. However, the cipher has been
broken quickly afterwards, with the invention of interpolation attacks [JK97]. Another,
technically very different approach to get strong results on resistance against attacks we
would like to mention is the decorrelation theory [Vau98]. Interestingly, both previous
approaches rely rather on one strong component, i. e. round function, to ensure security,
while the WSN approach, and in particular bison, gains its resistance against differential
attacks step by step.

Regarding the analysis of differentials, extensive efforts have been expended to evaluate
the MEDP/MELP of SPN ciphers, and in particular of the AES. Some remarkable results were
published by [Par+03] and then subsequently improved by [KS07] with a sophisticated
pruning algorithm. Interestingly, further work by [DR06] and later by [CR15] revealed
that such bounds are not invariant under affine transformations – an equivalence notion
often exploited for classification of S-boxes when studying their strength against differential
cryptanalysis. All these works stress out how difficult it is to evaluate the MEDP/MELP of
SPNs, even for a small number of rounds. On the contrary, and as we are going to elaborate
in the remaining of this paper, computing the MEDP of bison is rather straightforward and
independent of the exact details of the components. This can be compared to the wide
trail strategy that, making use of the branch number and the superbox argument, allows
bounding the probability of any differential characteristic for a large class of SPNs. Our
arguments allow to bound the differential probability for a large class of WSN instances.

2 Preliminaries

We briefly recall the Whitened Swap-or-Not construction, recapitulate properties of Boolean
functions and shortly cover differential and linear cryptanalysis. We denote by F2 the finite
field with two elements and by Fn

2 the n-dimensional vector space over F2, i. e. the set of all
n-bit vectors with a bitwise xor as the addition.

2.1 Whitened Swap-or-Not

The WSN is defined as follows. Given two round keys ki , wi , the ith round Rki ,wi
computes

Rki ,wi
: Fn

2 → F
n
2

Rki ,wi
(x) := x + fb(i)(wi +max {x , x + ki}) · ki

where f0,1 : Fn
2 → F2 are modeled as two ideal random functions, the max function returns

the lexicographic biggest value in the input set, and + denotes the addition in F2 (the
bitwise xor). The index b(i) equals zero for the first half of the rounds and one for the
second half (see Figure 2 for a graphical overview of the encryption process).

In the remainder of the paper, we denote by E r
k,w(x) the application of r rounds of the

construction to the input x with round keys ki and wi derived from the master key (k, w).
Every round is involutory, thus for decryption one only has to reverse the order of the round
keys.

Note that the usage of the maximum function is not decisive but that it can be replaced
by any function Φk that returns a unique representative of the set {x , x + k}, see [Tes15b].
In other words it can be replaced by any function such that Φk(x) = Φk(y) if and only if
y ∈ {x , x + k}.

The main result given by Tessaro on the security of the WSN is the following:

Proposition 1 (Security of the WSN (Informal) [Tes15b]). The WSN construction with O (n)
rounds is (2n−O (log n), 2n−O (1))-secure.
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Figure 2: Schematic view of the WSN construction.

Thus, any adversary trying to distinguish the WSN construction from a random per-
mutation and making at most 2n−O (log n) queries to the block cipher and 2n−O (1) queries to
the underlying function has negligible advantage. Here, the round keys are modeled as
independent and uniformly distributed random variables.

2.2 Boolean Functions

A Boolean function is defined as a function f mapping n bits to one bit. Any Boolean function

f : Fn
2 → F2

can be uniquely expressed by its algebraic normal form (ANF), i. e. as a (reduced) multi-
variate polynomial with n variables x0, . . . , xn−1. For u ∈ Fn

2 we denote

xu =
n−1
∏

i=0

xui
i .

The ANF of f can be expressed as

f (x) =
∑

u∈Fn
2

λu xu

for suitable choices of λu ∈ F2. The degree of f , denoted by deg( f ) is defined as the maximal
weight of a monomial present in the ANF of f . That is

deg( f ) =max
�

wt(u)
�

� u ∈ Fn
2 such that λu 6= 0

	

.

In the context of symmetric cryptography, the differential and linear behavior of a
Boolean function play an important role.

The derivative of a function f in direction α is defined as ∆α( f )(x) := f (x) + f (x +α).
Informally, studying the behavior of this derivative is at the core of differential cryptanalysis.
If we generalize to the derivative of a vectorial Boolean function F : Fn

2 → F
n
2, we can

additionally specify an output difference β . The differential distribution table (ddt) captures
the distribution of all possible derivatives; its entries are

ddtF [α,β] :=
�

�

�

x ∈ Fn
2

�

�∆α(F)(x) = β
	�

�,

where we leave out the subscript, if it is clear from the context. Note that α is usually
referred to as the input difference and β as the output difference.

In a similar way, we can approach the linear behavior of a Boolean function, that is its
similarity to any linear function. The Fourier coefficient of a function f : Fn

2 → F2, which is
defined as

bf (α) :=
∑

x∈Fn
2

(−1)〈α,x〉+ f (x),
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is a very useful way to measure this similarity. Here, the notation 〈a, b〉 denotes the inner
product, defined as 〈a, b〉 :=

∑n
i=1 ai bi. Recall that any affine Boolean function can be

written as x 7→ 〈α, x〉 + c for some fixed α ∈ Fn
2 and a constant c ∈ F2. In particular,

it follows that any such affine function has one Fourier coefficient equal to ±2n. More
generally, the nonlinearity of f , defined as NL( f ) := 2n−maxα |bf (α)|, measures the minimal
Hamming-distance of f to the set of all affine functions.

Analogously to the ddt, for a vectorial Boolean function F : Fn
2 → F

n
2, we define

bF(α,β) =
∑

x∈Fn
2

(−1)〈α,x〉+〈β ,F(x)〉,

and the linear approximation table (lat) contains the Fourier coefficients

latF [α,β] := bF(α,β).

Again we leave out the subscript, if it is clear from the context. Here α is usually referred
to as the input mask and β as the output mask. Another representation that is sometimes
preferred is the correlation matrix that in a similar way contains the correlation values for
all possible linear approximations, see [Dae+95]. The correlation values are simply scaled
versions of the Fourier coefficients, i. e.

Pr [〈α, x〉+ 〈β , F(x)〉= 0] =
1
2
+

corF (α,β)
2

=
1
2
+
bF(α,β)

2n+1
.

The advantage of the correlation matrix notation is that the correlation matrix of a compo-
sition of functions is nothing but the product of the corresponding matrices. For the linear
approximation table, additional scaling is required.

2.2.1 Bent Functions.

As they will play an important role in our design of bison, we recall the basic facts of bent
functions. Boolean functions on an even number n of input bits that achieve the highest
possible nonlinearity of 2n − 2

n
2 are called bent. Bent functions have been introduced by

Rothaus [Rot76] and studied ever since, see also [Car07, Section 8.6]. Even so bent functions
achieve the highest possible nonlinearity, their direct use in symmetric cryptography is so
far very limited. This is mainly due to the fact that bent functions are not balanced, i. e. the
distribution of zeros and ones is (slightly) biased.

Using Parseval’s equality, it is easy to see that a function is bent if and only if all its Fourier
coefficients are ±2

n
2 . Moreover, an alternative classification that will be of importance for

bison, is that a function is bent if and only if all (non-trivial) derivatives∆α( f ) are balanced
Boolean functions [MS90].

While there are many different primary and secondary constructions1 of bent functions
known, for simplicity and for the sake of ease of implementation, we decided to focus on
the simplest known bent functions which we recall next, see also [Car07, Section 6.2].

Lemma 1 ([Dil72]). Let n= 2m be an even integer. The function

f : Fm
2 × F

m
2 → F2

f (x , y) := 〈x , y〉

is a quadratic bent function. Moreover, any quadratic bent function is affine equivalent to f .
1Primary constructions give bent functions from scratch, while secondary constructions build new bent functions

from previously defined ones.
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2.3 Differential and Linear Cryptanalysis

The two most important attacks on symmetric primitives are differential and linear crypt-
analysis, respectively developed by Biham and Shamir [BS91] and by Matsui [Mat95]
for the analysis of the Data Encryption Standard. The general idea for both is to find a
non-random characteristic in the differential, resp. linear, behavior of the scheme under
inspection. Such a property can then be used as a distinguisher between the cipher and a
random permutation and in many cases leads to key-recovery attacks.

It is inherently hard to compute these properties for the whole function, thus one
typically exploits the special structure of the cipher. For round-based block ciphers one
usually makes use of linear and differential characteristics that specify not only the input
and output masks (resp. differences) but also all intermediate masks after the single rounds.

In the case of differential cryptanalysis, an r-round characteristic δ is defined by (r + 1)
differences

δ = (δ0, . . . ,δr) ∈ F
(r+1)n
2 .

For so-called Markov ciphers and assuming the independence of round keys, we can compute
the probability of a characteristic averaged over all round-key sequences:

EP(δ) =
r−1
∏

i=0

Pr [F(x) + F(x +δi) = δi+1] =
r−1
∏

i=0

ddtF [δi ,δi+1]
2n

,

where the encryption iterates the round function F for r rounds. Moreover we usually
assume the hypothesis of stochastic equivalence introduced by Lai et al. [Lai+91], stating
that the actual probability for any fixed round key equals the average.

In contrast to the normal characteristic that defines the exact differences before and after
each round, a differential takes every possible intermediate differences into account and
fixes only the overall input and output differences (which are the two values an attacker
can typically control).

However, while bounding the average probability of a differential characteristic is
easily possible for many ciphers (using in particular the wide-trail strategy introduced
in [Dae95]), bounding the average probability of a differential, which is denoted as the
expected differential probability (EDP), is not. Nevertheless, some effort was spent to prove
bounds on themaximum EDP (MEDP) for two rounds of some key-alternating ciphers [CR15;
DR02; Hon+01; Par+03].

Similarly, for linear cryptanalysis, an r-round characteristic (also called trail or path)
for a round function F is defined by (r + 1) masks

θ = (θ0, . . . ,θr) ∈ F
(r+1)n
2

and its correlation is defined as

corF (θ ) :=
r−1
∏

i=0

corF (θi ,θi+1) =
r−1
∏

i=0

bF(θi ,θi+1)
2n

and it can be shown that the correlation of a composition can be computed as the sum over
the trail correlations. More precisely,

corE r
k
(α,β) =

∑

θ
θ0=α,θr=β

corF (θ ), (1)

where the encryption E r
k iterates the round function F for r rounds.

This is referred to as the linear hull (see [Nyb95]). While not visible in order to simplify
notation, the terms in Eq. (1) are actually key dependent and thus for some keys they
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either could cancel out or amplify the overall correlation. For more background, we refer
to e. g. [BN16] and [Kra+17]. For a key-alternating cipher with independent round keys,
the average over all round-key sequences of the correlation corE r

k
(α,β) is zero for any pair

of nonzero masks (α,β) (see e.g. [DR02, Section 7.9]). Then, the most relevant parameter
of the distribution is its variance, which corresponds to the average square correlation, and
is called the expected linear potential. Again, bounding the ELP is out of reach for virtually
any practical cipher, while for bounding the correlation of a single trail, one can again use
the wide-trail strategy mentioned above. Upper bounds for the MELP of two rounds of AES
are also given in [CR15; Hon+01; Par+03].

Finally we would like to note that the round keys in an actual block cipher instance
are basically never independent and identically distributed over the full key space, but
instead derived from a key schedule, rendering the above assumption plain wrong. While
the influence of key schedules is a crucially understudied topic and for specific instances
strange effects can occur, see [Abd+12; Kra+17], the above assumption are seen as valid
heuristics for most block ciphers.

3 Inherent Restrictions

In this section we point out two inherent restrictions on any practical secure instance, i. e.
generic for the WSN construction. Those restrictions result in general conditions on both
the minimal number of rounds to be used and general properties of the round functions
fb(i). In particular, those insights are taken into account for bison. While these restrictions
are rather obvious from a cryptanalytic point of view, they have a severe impact on the
performance of any concrete instance. We discuss performance in more detail in Section 7.

3.1 Number of Rounds

As in every round of the cipher, we simply add (or not) the current round key ki , the cipher-
text can always be expressed as the addition of the plaintext and a (message dependent)
linear combination of all round keys ki . The simple but important observation to be made
here is that, as long as the round keys do not span the full space, the block cipher is easily
attackable.

Phrased in terms of linear cryptanalysis we start with the following lemma.

Lemma 2. For any number of rounds r < n there exists an element u ∈ Fn
2 \ {0} such that

ÔE r
k,w(u, u) = 2n,

that is the equation
〈u, x〉=

¬

u, E r
k,w(x)

¶

holds for all x ∈ Fn
2.

Proof. Let k1, . . . , kr be the round keys derived from k and denote by

U = span {k1, . . . , kr}
⊥

the dual space of the space spanned by the round keys, i. e.

∀u ∈ U ,∀1¶ i ¶ r it holds that 〈u, ki〉= 0.

As r < n by assumption, the dimension of span {k1, . . . , kr} is smaller than n and thus U 6= {0}.
Therefore, U contains a non-zero element

u ∈ span {k1, . . . , kr}
⊥
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and it holds that

¬

u, E r
k,w(x)

¶

= 〈u, x +
r
∑

i=1

λiki〉= 〈u, x〉+ 〈u,
r
∑

i=1

λiki〉= 〈u, x〉. (2)

Even more importantly, this observation leads directly to a known plaintext attack with
very low data-complexity. Given a set of t plaintext/ciphertext (pi , ci) pairs, an attacker
simply computes

V = span {pi + ci | 1¶ i ¶ t} ⊆ span
�

k j

�

� 1¶ j ¶ r
	

.

Given t > r slightly more pairs than rounds, and assuming that pi+ci is uniformly distributed
in span

�

k j

	

(otherwise the attack only gets even stronger)2 implies that

V = span
�

k j

	

with high probability and V can be efficiently computed. Furthermore, as above dim(span
�

k j

	

)
is at most r, we have V⊥ 6= {0}. Given any u 6= 0 in V⊥ allows to compute one bit of infor-
mation on the plaintext given only the ciphertext and particularly distinguish the cipher
from a random permutation in a chosen-plaintext setting efficiently.

A similar argument shows the following:

Lemma 3. For any number of rounds r smaller than 2n−3 there exist nonzero α and β , such
that

ÔE r
k,w(α,β) = 0

Proof. We restrict to the case r ¾ n as otherwise the statement follows directly from the
lemma above. Indeed, from Parseval equality, the fact that ÔE r

k,w(α,α) = 2n implies that
ÔE r

k,w(α,β) = 0 for all β 6= α. Let k1, . . . , kr be the round keys derived from k and choose
non-zero elements α 6= β such that

α ∈ span {k1, . . . , kn−2}
⊥ and β ∈ span {kn−1, . . . , kr}

⊥.

Note that, as r ≤ 2n − 3 by assumption such elements always exist. Next, we split the
encryption function in two parts, the first n−2 rounds E1 and the remaining r − (n−2)< n
rounds E2, i.e.

E r
k,w = E2 ◦ E1.

We can compute the Fourier coefficient of E r
k,w as

ÔE r
k,w(α,β) =

∑

γ∈Fn
2

cE1(α,γ)
2n

·
cE2(γ,β)

2n
.

Now, the above lemma and the choices of α and β imply that cE1(α,γ) = 0 for γ 6= α and
cE2(γ,β) = 0 for γ 6= β . Recalling that α 6= β by construction concludes the proof.

However, as the masks α and β depend on the key, and unlike above there does not seem
to be an efficient way to compute those, we do not see a direct way to use this observation
for an attack.

Summarizing the observations above, we get the following conclusion:

2E. g. if, with high probability, the pi + ci do not depend on one or more k j ’s, the described attack can be
extended to one or more rounds with high probability.
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Rationale 1. Any practical instance must iterate at least n rounds. Furthermore, it is beneficial
if any set of n consecutive round keys are linearly independent.3

After having derived basic bounds on the number of rounds for any secure instance, we
move on to criteria on the round function itself.

3.2 Round Function

Here, we investigate a very basic criterion on the round function, namely dependency on
all input bits, when the round function of E r

k,w is defined by

Rki ,wi
(x) = x + fb(i)(wi +max {x , x + ki}) · ki .

Given the Boolean functions fb(i) : Fn
2 → F2, the question we would like to discuss is, if it

is necessary that the output bit of fb(i) has to depend on all input bits. The function fb(i)
depends on an input bit j if there are two inputs x , x ′ differing only in the jth bit such that
fb(i)(x) 6= fb(i)(x ′). Otherwise the function is independent of the jth bit and we get

fb(i)(x) = fb(i)(x + e j)

for all x where e j is the jth canonical basis vector, i. e. e j has a single one at position j.
We denote by N(x) := {i | x[i] = 1} the index set of 1-bits in x , and by ν(x) :=max N(x)

the index of the highest 1-bit in x , in other words ν(x) =
�

log2(x)
�

, when interpreting
δ ∈ Fn

2 as an integer. For the main observation on this criterion, we first need the following
lemma.

Lemma 4. Let x ,δ ∈ Fn
2 and k uniformly randomly drawn from Fn

2. Then

Pr [max{x +δ, x +δ+ k}=max{x , x + k}+δ]¾ 1− 2ν(δ)−n.

Proof. The equality depends on the highest bit of δ where x and x + k differ, which is
basically ν(k). We have

Pr [max{x +δ, x +δ+ k}=max{x , x + k}+δ] = Pr [δ[ν(k)] = 0],

which can also be written as

Pr [δ[ν(k)] = 0] = 1− Pr [ν(k) ∈ N(δ)] = 1−
∑

i∈N(δ)

Pr [ν(k) = i].

Further we have Pr [ν(k) = i] = 2i−n−1 and thus

1−
∑

i∈N(δ)

Pr [ν(k) = i] = 1−
∑

i∈N(δ)

2i−n−1 ¾ 1− 2ν(δ)−n,

which concludes the proof.

As we will see next, the functions fb(i) have to depend virtually on all linear combinations
of bits. In other words, it is required that the functions fb(i) have no (non-trivial) derivative
equal to the all-zero function.

Lemma 5. If there exists a δ ∈ Fn
2 such that

fb(i)(x) = fb(i)(x +δ)

for all x and i ∈ {0,1} then

Pr
�

E r
k,w(x) + E r

k,w(x +δ) = δ
�

¾
�

1− 2ν(δ)−n
�r

and the probability is over the input x and the keys k and w.
3If (some) round keys are linearly dependent, Lemma 3 can easily be extended to more rounds.
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Proof. From Lemma 4 we have that

Pr [max{x +δ, x +δ+ k}=max{x , x + k}+δ]¾ 1− 2ν(δ)−n.

Now, we get for one round

Rki ,wi
(x) = x + fb(i)(wi +max {x , x + ki}) · ki

by the assumption that fb(i)(x) = fb(i)(x +δ) for all x

Rki ,wi
(x +δ) = Rki ,wi

(x) +δ

with the same probability. Thus, for r rounds and uniformly chosen keys, we get

Pr
�

E r
k,w(x) + E r

k,w(x +δ) = δ
�

¾
�

1− 2ν(δ)−n
�r

by induction.

As an example, considering the case n= 128, r rounds, and both f0 and f1 that do not
depend on the most significant byte. Thus, we can choose δ as a unit vector with ν(δ) = 121
and get a differential probability of

Pr
�

E r
k,w(x) + E r

k,w(x +δ) = δ
�

¾
�

1− 2121−128
�r ≈ (0.36)r/n

which would completely compromise the scheme for a reasonable number of rounds. In
general this shows that as long as both fb(i) do not depend on almost all bits, the scheme
is immediately broken by differential cryptanalysis. Now, one might hope that one could
craft functions f0 and f1 where, e. g. f0 depends only on the first n

2 bits and f1 on the last
n
2 bits to overcome this restriction. However, while such a construction might be secure
against basic differential cryptanalysis, it would still be completely broken by boomerang
attacks [Wag99]. The main idea of boomerang attacks is to split the whole block cipher in
two parts such that one has a high probable differential for the first part and a second high
probable differential for the second part, which is exactly the situation one would end up
here.

Thus, both functions independently have to virtually depend on all input bits, and we
deduce the following.

Rationale 2. For a practical instance, the functions fb(i) has to depend on all bits. Even more,
for any δ ∈ Fn

2 the probability of

fb(i)(x) = fb(i)(x +δ)

should be close to 1
2 .

It is worth noticing that the analysis leading to this rationale applies to the original
round function. However, as pointed out in [Tes15a, Section 3.1], in the definition of the
round function, we can replace the function

x 7→max {x , x + k}

by any function Φk such that Φk(x) = Φk(x + k) for all x . While the following sections will
focus on the case when Φk is linear, we proved that Rationale 2 is also valid in this other
setting.

Again, this should be compared to key-alternating ciphers, where usually not all output
bits of a single round function depend on all input bits. For example for AES any output
bit after one round depends only on 32 input bits and for Present any output bit only
depends on 4 input bits. However, while for key-alternating ciphers this does not seem to
be problematic, and indeed allows rather weak round functions to result in a secure scheme,
for the WSN construction the situation is very different.

Before specifying our exact instance, we want to discuss differential cryptanalysis of a
broader family of instances.
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4 Differential Cryptanalysis of bison-like instances

We coin an instance of the WSN construction “bison-like”, if it iterates at least n rounds with
linearly independent round keys k1, . . . , kn and applies Boolean functions fb(i). As explained
in [Tes15a, Section 3.1], in order to enable decryption it is required that the Boolean
functions fb(i) return the same result for both x and x + k. In the original proposition by
Tessaro, this is achieved by using the max function in the definition of the round function.
Using this technique reduces the number of possible inputs for the fb(i) to 2n−1. To simplify
the analysis and to ease notation, we replace the max function with a linear function
Φk : Fn

2 → F
n−1
2 with ker(Φk) = {0, k}. From now on, we assume that any bison-like instance

uses such a Φk instead of the max function. The corresponding round function has then the
following form

Rki ,wi
(x) := x + fb(i)

�

wi +Φki
(x)
�

ki . (3)

With the above conditions, any bison-like instance of the WSN construction is resistant
to differential cryptanalysis, as we show in the remainder of this section.

For our analysis, we make two standard assumptions in symmetric cryptanalysis as
mentioned above: the independence of whitening round keys wi and the hypothesis of stochastic
equivalence with respect to these round keys. That is, we assume round keys wi to be
independently uniformly drawn and the resulting EDP to equal the differential probabilities
averaged over all w. In the following sections, we will argue why these assumptions
do fit to our design and back up the results by practical experiments (see Section 6.3.7
and Appendix B). For the round keys ki we do not have to make such assumptions.

We first discuss the simple case of differential behaviour for one round only and then
move up to an arbitrary number of rounds and devise the number of possible output
differences and their probabilities.

4.1 From One-Round Differential Characteristics

Looking only at one round, we can compute the ddt explicitly:

Proposition 2. Let Rki ,wi
: Fn

2 → F
n
2 be the WSN round function as in Eq. (3). Then its ddt

consists of the entries

ddtR[α,β] =











2n−1 + Û∆Φk(α)( f )(0) if β = α

2n−1 − Û∆Φk(α)( f )(0) if β = α+ k

0 otherwise.

. (4)

Most notably, if f is bent, we have

ddtR[α,β] =







2n if α= β = k or α= β = 0

2n−1 if β ∈ {α,α+ k} and α 6∈ {0, k}
0 otherwise.

.

Proof. We have to count the number of solutions of R(x) + R(x +α) = β:

ddtR[α,β] =
�

�

�

x ∈ Fn
2

�

� R(x) + R(x +α) = β
	�

�

=
�

�

�

x ∈ Fn
2

�

� α+ [ f (w+Φk(x)) + f (w+Φk(x +α))] · k = β
	�

�

Since f takes its values in F2, the only output differences β such that ddtR[α,β] may differ
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from 0 are β = α and β = α+ k. When β = α, we have

ddtR[α,α] =
�

�

�

x ∈ Fn
2

�

� f (w+Φk(x)) + f (w+Φk(x +α)) = 0
	�

�

=
�

�

�

x ∈ Fn
2

�

� f (w+Φk(x)) + f (w+Φk(x) +Φk(α)) = 0
	�

�

= 2 ·
�

�

�

x ′ ∈ Fn−1
2

�

� f (x ′) + f (x ′ +Φk(α)) = 0
	�

�

= 2
�

2n−2 +
1
2
Û∆Φk(α)( f )(0)

�

.

Similarly,

ddtR[α,α+ k] =
�

�

�

x ∈ Fn
2

�

� f (w+Φk(x)) + f (w+Φk(x +α)) = 1
	�

�

= 2
�

2n−2 −
1
2
Û∆Φk(α)( f )(0)

�

.

Most notably, whenα ∈ {0, k}, Û∆Φk(α)( f )(0) = 2n−1. Moreover, when f is bent, Û∆Φk(α)( f )(0) =
2n−2 for all other values of α.

4.2 To Differentials over more Rounds

As previously explained, it is possible to estimate the probability of a differential charac-
teristic over several rounds, averaged over the round keys, when the cipher is a Markov
cipher. We now show that this assumption holds for any bison-like instance of the WSN
construction.

Lemma 6. Let Rk,w : Fn
2 → F

n
2 be the WSN round function as in Eq. (3). For any fixed k ∈ Fn

2
and any differential (α,β) ∈ Fn

2 × F
n
2, we have that

Prw

�

Rk,w(x +α) + Rk,w(x) = β
�

is independent of x . More precisely

Prw

�

Rk,w(x +α) + Rk,w(x) = β
�

= Prx

�

Rk,w(x +α) + Rk,w(x) = β
�

.

Proof. We have
�

w ∈ Fn−1
2

�

�∆α(Rk,w)(x) = β
	

=
�

w ∈ Fn−1
2

�

�

�

∆Φk(α)( f )(w+Φk(x))
�

· k = α+ β
	

=











; if β 6∈ {α,α+ k}

Φk(x) + Supp
�

∆Φk(α)( f )
�

if β = α+ k

Φk(x) +
�

Fn−1
2 \ Supp

�

∆Φk(α)( f )
��

if β = α,

where Supp(g) denotes the support of a Boolean function g, i. e., the values x for which
g(x) = 1. Clearly, the cardinality of this set does not depend on x . Moreover, this cardinality,
divided by 2n−1, corresponds to the value of

Prx

�

Rk,w(x +α) + Rk,w(x) = β
�

computed in the previous proposition.

By induction on the number of rounds, we then directly deduce that any bison-like
instance of the WSN construction is a Markov cipher in the sense of the following corollary.
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Corollary 1. Let E i
k,w denote i rounds of a bison-like instance of the WSN construction with

round function Rki ,wi
. For any number of rounds r and any round keys (k1, . . . , kr), the

probability of an r-round characteristic δ satisfies

Prw

�

E i
k,w(x) + E i

k,w(x +δ0) = δi ,∀1¶ i ¶ r
�

=
r
∏

i=1

Prx

�

Rki ,wi
(x) + Rki ,wi

(x +δi−1) = δi

�

.

For many ciphers several differential characteristics can cluster in a differential over
more rounds. This is the main reason why bounding the probability of differentials is
usually very difficult if possible at all. For bison-like instances the situation is much nicer;
we can actually compute the EDP, i. e., the probabilities of the differentials averaged over
all whitening key sequences (w1, . . . , wr). This comes from the fact that any differential for
less than n rounds contains at most one differential characteristic with non-zero probability.
To understand this behavior, let us start by analyzing the EDP (averaged over the wi) and
by determining the number of possible output differences.

In the following, we assume that the input difference α is fixed, and we calculate the
number of possible output differences. We show that this quantity depends on the relation
between α and the ki .

Lemma 7. Let us consider r rounds of a bison-like instance of the WSN construction with round
function involving Boolean functions fb(i) having no (non-trivial) constant derivative. Assume
that the first n round keys k1, . . . , kn are linearly independent, and that kn+1 = k1 +

∑n
i=2 γiki

for γi ∈ F2. For any non-zero input difference α, the number of possible output differences β
such that

Prw,x

�

E r
k,w(x +α) + E r

k,w(x) = β
�

6= 0

is










2r if α /∈ span {ki} and r < n,

2r − 2r−` if α= k` +
∑`−1

i=1 λ
α
i ki and r ¶ n,

2n − 1 if r > n.

Proof. By combining Corollary 1 and Proposition 2, we obtain that the average probability
of a characteristic (δ0,δ1, . . . ,δr−1,δr) can be non-zero only if δi ∈ {δi−1,δi−1 + ki} for all
1 ¶ i ¶ r. Therefore, the output difference δr must be of the form δr = δ0 +

∑r
i=1λiki

with λi ∈ F2. Moreover, for those characteristics, the average probability is non-zero unless
there exists 1 ¶ i < r such that | Û∆Φki

(δi)( fb(i))(0)| = 2n−1, i. e. ∆Φki
(δi)( fb(i)) is constant. By

hypothesis, this only occurs when δi ∈ {0, ki}, and the impossible characteristics correspond
to the case when either δi = 0 or δi+1 = 0. It follows that the valid characteristics are
exactly the characteristics of the form

δi = δ0 +
i
∑

j=1

λ jk j

where none of the δi vanishes.

• When the input difference α 6∈ span {ki}, for any given output difference β = α +
∑r

i=1λiki , the r-round characteristic

(α,α+λ1k1,α+λ1k1 +λ2k2, . . . ,α+
r
∑

i=1

λiki)

is valid since none of the intermediate differences vanishes.
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• When r ¶ n and α = k` +
∑`−1

i=1 λ
α
i ki, the only possible characteristic from α to

β = α+
∑r

i=1λiki satisfies

δ j =

(
∑ j

i=1(λi +λαi )ki +
∑`

i= j+1λ
α
i ki if j ¶ `

∑`

i=1(λi +λαi )ki +
∑ j

i=`+1λiki if j > ` .

Since the involved round keys are linearly independent, we deduce that δ j = 0 only
when j = ` and λi = λαi for all 1 ¶ i ¶ `. It then follows that there exists a valid
characteristic from α to β unless λi = λαi for all 1 ¶ i ¶ `. The number of possible
outputs β is then

(2` − 1)2r−` = 2r − 2r−`.

• If we increase the number of rounds to more than n, we have α= k` +
∑`−1

i=1 λ
α
i ki for

some ` ¶ n. If β = α+
∑n

i=1λiki with
∑`

i=1λiki 6= α, then we can obviously extend
the previous n-round characteristic to

(α,α+λ1k1, . . . ,α+
n−1
∑

i=1

λiki ,β ,β , . . . ,β).

If
∑`

i=1λiki = α, β cannot be the output difference of an n-round characteristic.
However, the following (n+ 1)-round characteristic starting from δ0 = α is valid:

δ j =











k1 +
∑ j

i=2 γiki +
∑`

i= j+1λ
α
i ki if j ¶ `

k1 +
∑ j

i=2 γiki +
∑ j

i=`+1λiki if ` < j ¶ n

β if j = n+ 1

Indeed, δn = β+kn implying that the last transition is valid. Moreover, it can be easily
checked that none of these δ j vanishes, unless β = 0. This implies that all non-zero
output differences β are valid.

The last case in the above lemma is remarkable, as it states any output difference is
possible after n+ 1 rounds. To highlight this, we restate it as the following corollary.

Corollary 2. For bison-like instances with more than n rounds whose round keys k1, . . . , kn+1
satisfy the hypothesis of Lemma 7, and for any non-zero input difference, every non-zero output
difference is possible.

We now focus on a reduced version of the cipher limited to exactly n rounds and look
at the probabilities for every possible output difference. Most notably, we exhibit in the
following lemma an upper-bound on the MEDP which is minimized when n is odd and
the involved Boolean functions fb(i) are bent. In other words, Rationale 2 which was
initially motivated by the analysis in Section 3 for the original round function based on
x 7→max(x , x + k) [Tes15b] is also valid when a linear function Φk is used.

Lemma 8. Let us consider n rounds of a bison-like instance of the WSN construction with
round function involving Boolean functions fb(i). Let k1, . . . , kn be any linearly independent
round keys. Then, for any input difference α 6= 0 and any β , we have

EDP(α,β) = Prw,x

�

Ek,w(x +α) + Ek,w(x) = β
�

¶
�

1
2
+ 2−n max

1¶i¶n
max
δ 6=0

�

�

�

Û∆δ( fb(i))(0)
�

�

�

�n−1

.
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α

α

α
α

α+ k3

α+ k2
α+ k2

α+ k2 + k3

α+ k1

α+ k1
α+ k1

α+ k1 + k3

α+ k1 + k2
α+ k1 + k2

α+ k1 + k2 + k3

1
2

1
2 1

0 Eq. (5)

Eq. (6)

Eq. (7)

Figure 3: Probabilities of output differences for three rounds and the cases of the input
difference α= k1 + k2, thus `= 2. Dotted transitions are impossible.

More precisely, if all fb(i) are bent,

EDP(α,β) =































0 if β =
n
∑

i=`+1

λiki ,

2−n+1 if β = k` +
n
∑

i=`+1

λiki ,

2−n otherwise,

(5)

(6)

(7)

where ` denotes as previously the latest round key that appears in the decomposition of α into
the basis (k1, . . . , kn), that is α= k` +

∑`−1
i=1 λiki .

The case of bent functions is visualized in Figure 3, where we give an example of the
three possibilities for three rounds.

Proof. As proved in Lemma 7, (α,β) is an impossible differential if and only if β =
∑n

i=`+1λiki . For all other values of β = α+
∑n

i=1λiki , we have

EDP(α,β) =
n
∏

i=1

�

1
2
+ (−1)λi 2−n

Û∆Φki
(δi)( fb(i))(0)

�

where δi = α+
∑i

j=1λ jk j . The i-th term in the product is upper-bounded by

1
2
+ 2−n max

1¶i¶n
max
δ 6=0

�

�

�

Û∆δ( fb(i))(0)
�

�

�

except if Φki
(δi) = 0, i. e., δi ∈ {0, ki}. As seen in Lemma 7, the case δi = 0 cannot occur in

a valid characteristic. The case δi = ki occurs if and only if i = ` and β = k` +
∑n

j=`+1λ jk j .
In this situation, the `-th term in the product equals 1. In the tree of differences this is
visible as the collapsing of the two branches from two possible succeeding differences into
only one, which then of course occurs with probability one, see upper branch of Figure 3.

Most notably, all fb(i) are bent if and only if

max
1¶i¶n

max
δ 6=0

�

�

�

Û∆δ( fb(i))(0)
�

�

�= 0 ,
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leading to the result.
This can be seen on Figure 3: the 2n−` possible differences coming from the collapsed

branch have a transition of probability one in that round, resulting in an overall probability
of 2−n+1, see Eq. (6). For the lower part of Figure 3, all the other differences are not affected
by this effect and have a probability of 2−n, see Eq. (7).

Because they allow us to minimize the MEDP, we now concentrate on the case of bent
functions for the sake of simplicity, which implies that the block size is odd. However, if
an even block size is more appropriate for implementation reasons, we could also define
bison-like instances based on maximally nonlinear functions.

It would be convenient to assume in differential cryptanalysis that the EDP of a differ-
ential does not increase when adding more rounds, while this does not hold in general.
However, this argument can easily be justified for bison-like instances using bent functions,
when averaging over the whitening keys w.

Proposition 3. Let us consider r ¾ n rounds of a bison-like instance of the WSN construction
with bent functions fb(i). Let k1, . . . , kn be any linearly independent round keys. Then the
probability of any non-trivial differential, averaged over all whitening key sequences w is upper
bounded by 2−n+1.

In other words, the MEDP of bison-like instances with bent fb(i) for r ¾ n rounds is 2−n+1.

Proof. By induction over r. The base case for r = n rounds comes from Lemma 8. In the
induction step, we first consider the case when the output difference β after r rounds
differs from kr . Then the output difference δr = β can be reached if and only if the output
difference after (r − 1) rounds δr−1 belongs to {β ,β + kr}. Then,

EDPr(α,β) = Prwr

�

Rkr ,wr
(x r) + Rkr ,wr

(x r + β) = β
�

EDPr−1(α,β)

+Prwr

�

Rkr ,wr
(x r) + Rkr ,wr

(x r + β + kr) = β
�

EDPr−1(α,β + kr)

=
1
2

�

EDPr−1(α,β) + EDPr−1(α,β + kr)
�

¶ 2−n+1 .

When the output difference β after r rounds equals kr , it results from δr−1 = kr with
probability 1. In this case

EDPr(α,β) = EDPr−1(α,β)¶ 2−n+1 .

This bound is close to the ideal case, in which each differential has probability 1/(2n−1).
We now give a detailed description of our instance bison.

5 Specification of bison

As bison-like instances should obviously generalise bison, this concrete instance inherits
the already specified parts. Thus bison uses two bent functions fb(i), replaces the max
function by Φk, and uses a key schedule that generates round keys, where all n consecutive
round keys are linearly independent. The resulting instance for n bits iterates the WSN
round function as defined below over 3 · n rounds. The chosen number of rounds mainly
stems from the analysis of the algebraic degree that we discuss in Section 6.

Security Claim. We claim n-bit security for bison in the single-key model. We emphasize that
we do not claim any security in the related-key, chosen-key or known-key model.



18 bison – Instantiating the Whitened Swap-Or-Not Construction

5.1 Round function

For any nonzero round key k, we define Φk : Fn
2 → F

n−1
2 as

Φk(x) := (x i(k) · k+ x)[1, . . . , i(k)− 1, i(k) + 1, . . . , n], (8)

where i(k) denotes the index of the lowest bit set to 1 in k, and the notation x[1, . . . , j −
1, j + 1, . . . , n] returns the (n− 1)-bit vector, consisting of the bits of x except the jth bit.

Lemma 9. The function Φk : Fn
2 → F

n−1
2 is linear and satisfies

ker(Φk) = {0, k}.

The proof can be done by simply computing both outputs for x and x + k.
For the preimage of y ∈ Fn−1

2 and j = i(k) we have

Φ−1
k (y) ∈

�

(y[1: j − 1], 0, y[ j : n− 1]) + k[1: n],
(y[1: j − 1], 0, y[ j : n− 1])

�

. (9)

Due to the requirement for the fb(i) being bent, we are limited to functions taking an
even number of bits as input. The simplest example of a bent function is the inner product.

Eventually we end up with the following instance of the WSN round.

bison’s Round Function

For round keys ki ∈ Fn
2 and wi ∈ Fn−1

2 the round function computes

Rki ,wi
(x) := x + fb(i)

�

wi +Φki
(x)
�

ki . (10)

where

• Φki
is defined as in Eq. (8),

• fb(i) is defined as

fb(i) : Fn−1
2 → F2

fb(i)(x) := 〈x[1 : (n− 1)/2], x[(n+ 1)/2 : n]〉+ b(i),

• and b(i) is 0 if i ¶ r
2 and 1 otherwise.

5.2 Key schedule

In the ith round, the key schedule has to compute two round keys: ki ∈ Fn
2 and wi ∈ Fn−1

2 .
We compute those round keys as the states of lfsrs after i clocks, where the initial states
are given by a master key K. The master key consists of two parts of n and n− 1 bits, i.e.

K = (k, w) ∈ Fn
2 × F

n−1
2 .

As the all-zero state is a fixed point for any lfsr, we exclude the zero key for both k and w.
In particular k = 0 is obviously a weak key that would result in a ciphertext equal to the
plaintext p = E r

0,w(p) for all p, independently of w or of the number of rounds r.
It is well-known that choosing a feedback polynomial of an lfsr to be primitive results

in an lfsr of maximal period. Clocking the lfsr then corresponds to multiplication of its
state with the companion matrix of this polynomial. Interpreted as elements from the finite
field, this is the same as multiplying with a primitive element.
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In order to avoid structural attacks, e. g. invariant attacks [Gra+16; Lea+11; Tod+16],
as well as the propagation of low-weight inputs, we add round constants ci to the round
key wi .

These round constants are also derived from the state of an lfsr with the same feedback
polynomial as the wi lfsr, initialized to the unit vector with the least significant bit set. To
avoid synchronization with the wi lfsr, the ci lfsr clocks backwards.

bison’s Key Schedule

For two primitive polynomials pw(x), pk(x) ∈ F2[x] with degrees deg(pw) = n− 1
and deg(pk) = n and the master key K = (k, w) ∈ Fn

2 × F
n−1
2 , k, w 6= 0 the key

schedule computes the ith round keys as

KSi : Fn
2 × F

n−1
2 → Fn

2 × F
n−1
2

KSi(k, w) := (C(pk)
ik, C(pw)

−ie1 + C(pw)
iw) = (ki , ci +wi)

where C(·) is the companion matrix of the corresponding polynomial, and 0¶ i < r.
In Appendix A we give concrete polynomials for 5¶ n¶ 129-bit block sizes.

As discussed above, this key schedule has the following property, see also Rationale 1.

Lemma 10. For bison’s key schedule, the following property holds: Any set of n consecutive
round keys ki are linearly independent. Moreover there exist coefficients λi such that

kn+i = ki +
n+i−1
∑

j=i+1

λ jk j .

Proof. To prove this, we start by showing that the above holds for the first n round keys,
the general case then follows from a similar argumentation. We need to show that there
exists no non-trivial ci ∈ F2 so that

∑n
i=1 ciC(pk)

ik = 0, which is equivalent to showing that
there exists no non-trivial ci ∈ F2 so that

∑n−1
i=0 ciC(pk)

ik = 0. In this regard, we recall the
notion of minimal polynomial of k with respect to C(pk), defined as the monic polynomial
of smallest degree QL(k)(x) =

∑d
i=0 qi x

i ∈ F2[x] such that
∑d

i=0 qiC(pk)
ik = 0. Referring

to a discussion that has been done for instance in [Bei+17], we know that the minimal
polynomial of k is a divisor of the minimal polynomial of C(pk). Since in our case our
construction has been made so that this later is equal to pk which is a primitive polynomial,
we deduce that the minimal polynomial of k 6= 0 is pk itself. Since the degree of pk is equal
to n, this prove that the first n keys are linearly independent.

The equation holds, since pk(0) = 1.

6 Security Analysis

As we have already seen, bison is resistant to differential cryptanalysis. In this section, we
argue why bison is also resistant to other known attacks.

6.1 Linear Cryptanalysis

For linear cryptanalysis, given the fact that bison is based on a bent function, i. e. a
maximally non-linear function, arguing that no linear characteristic with high correlation
exist is rather easy. Again, we start by looking at the Fourier coefficients for one round.
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6.1.1 From one Round.

Using the properties of f being bent, we get the following.

Proposition 4. Let Rk,w : Fn
2 → F

n
2 be the round function as defined in Eq. (10). Then, its lat

consists of the entries

ÔRk,w(α,β) =











2n if α= β and 〈β , k〉= 0

±2
n+1

2 if 〈α, k〉= 1 and 〈β , k〉= 1

0 if 〈α+ β , k〉= 1 or (α 6= β and 〈β , k〉= 0)

. (11)

Proof. First, we show the upper part, that is the values of the diagonal. Then

ÔRk,w(α,β) =
∑

x∈Fn
2

(−1)〈α+β ,x〉+〈β ,k〉· f (w+Φk(x))

=
∑

y∈Fn−1
2

Φ−1
k (y)∈{x0,x1}

(−1)〈α+β ,x0〉+〈β ,k〉· f (w+y) + (−1)〈α+β ,x1〉+〈β ,k〉· f (w+y)

As we look at the diagonal elements, α= β , we have

ÔRk,w(α,α) = 2 ·
∑

y

(−1)〈β ,k〉· f (w+y) = 2 ·
∑

y ′∈Fn−1
2

(−1)〈β ,k〉· f (y ′) .

Two possibilities remain: If 〈β , k〉= 0, the exponent is always zero and thus ÔRk,w(α,α) = 2n.
In the other case, 〈β , k〉= 1 and

ÔRk,w(α,α) = 2 ·
∑

y ′∈Fn−1
2

(−1) f (y
′) = ±2 · 2

n−1
2 ,

since Parseval’s relation implies that all Fourier coefficients of an (n − 1)-variable bent
function have the same magnitude, namely 2

n−1
2 .

Now for the second part we have α 6= β .

ÔRk,w(α,β)

=
∑

y∈Fn−1
2

Φ−1
k (y)∈{x0,x1}

(−1)〈α+β ,x0〉+〈β ,k〉· f (w+y) + (−1)〈α+β ,x1〉+〈β ,k〉· f (w+y)

By definition of Φk, we saw in Eq. (9) that the preimages x0, and x1 are equal to y ′ and
y ′ + k, where y ′ is the same as y with an additional bit set to zero injected at position i(k).
Thus, using the bilinearity of the scalar product,

ÔRk,w(α,β) =
�

1+ (−1)〈α+β ,k〉�
∑

y

(−1)〈α+β ,y ′〉+〈β ,k〉· f (w+y)

and this is equal to zero, if 〈α+ β , k〉= 1 or 〈β , k〉= 0. In the other case, 〈α+ β , k〉= 0 and
〈β , k〉= 1, we have

ÔRk,w(α,β) = 2 ·
∑

y

(−1)〈α+β ,y ′〉+ f (w+y) = 2 ·
∑

x

(−1)〈α+β ,x ′+w′〉+ f (x)

= 2 · (−1)〈α+β ,w′〉 ·
∑

x

(−1)〈α+β ,x ′〉+ f (x)

= 2 · (−1)〈α+β ,w′〉 · bf (α′′ + β ′′)
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where we denote by ·′′ the corresponding value, where the bit in position i(k) has been
removed. Finally, again because f is bent, we get

ÔRk,w(α,β) = 2 · (−1)〈α+β ,w′〉 · (±2
n−1

2 ) = ±2
n+1

2 .

Note that the sign of the LAT entries is uniformly distributed and thus, when averaging
over the w’s, the non-diagonal entries cancel out.

6.1.2 To more Rounds.

When we look at more than one round, we try to approximate the linear hull by looking at
the strongest linear trail. As already discussed in Lemma 2, for r < n there are trails with
probability one. We now show that any trail’s correlation for r ¾ n rounds is actually upper
bounded by 2−

n+1
2 :

Proposition 5. For r ¾ n rounds, the correlation of any non-trivial linear trail for bison is
upper bounded by 2−

n+1
2 .

Proof. It is enough to show the above for any n-round trail. By contradiction, assume there
exists a non-trivial trail θ = (θ0, . . . ,θn) with correlation one. Following Proposition 4, for
every round i the intermediate mask θi has to fulfill 〈θi , ki〉 = 0. Further θi = θi+1 for
0¶ i < n. Because all n round keys are linearly independent, this implies that θi = 0, which
contradicts our assumption. Thus, in at least one round the second or third case of Eq. (11)
has to apply.

It would be nice to be able to saymore about the linear hull, analogously to the differential
case. However, for the linear cryptanalysis this looks much harder, due to the denser lat.
In our opinion developing a framework where bounding linear hulls is similarly easy as it is
for bison with respect to differentials is a fruitful future research topic.

6.2 Higher-Order Differentials and Algebraic Attacks.

High-order differential attacks, cube attacks, algebraic attacks and integral attacks all make
use of non-random behaviour of the ANF of parts of the encryption function. In all these
attacks the algebraic degree of (parts of) the encryption function is of particular interest. In
this section, we argue that those attacks do not pose a threat to bison.

We next elaborate in more detail on the algebraic degree of the WSN construction. In
particular, we are going to show that the algebraic degree increases at most linearly with
the number of rounds. More precisely, if the round function is of degree d, the algebraic
degree after r rounds is upper bounded by r(d − 1) + 1.

Actually, we are going to consider a slight generalization of the WSN construction and
prove the above statement for this generalization.

6.2.1 General Setting

Consider an initial state of n bits given as x = (x0, . . . , xn−1) and a sequence of Boolean
functions

fi : Fn+i
2 → F2

for 0¶ i < r. We define a sequence of values yi by setting y0 = f0(x) and

yi = fi(x0, . . . , xn−1, y0, . . . , yi−1),

for 1¶ i < r. Independently of the exact choice of fi the degree of any y`, as a function of
x can be upper bounded as stated in the next proposition.
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Proposition 6. Let fi be a sequence of functions as defined above, such that deg( fi)¶ d. The
degree of y` at step ` seen as a function of the bits of the initial state x0, . . . , xn−1 satisfies

deg(y`)¶ (d − 1)(`+ 1) + 1.

Moreover, for any I ⊆ {0, . . . ,`},

deg(
∏

i∈I

yi)¶ (d − 1)(`+ 1) + |I |.

Proof. The first assertion is of course a special case of the second one, but we add it for the
sake of clarity. We prove the second, more general, statement by induction on `.

Starting with `= 0, we have to prove that deg(y0)¶ d, which is obvious, as

y0 = f0(x0, . . . , xn−1)

and deg( f0)≤ d.
Now, we consider some I ⊆ {0, . . . ,`} and show that

deg(
∏

i∈I

yi)¶ (d − 1)(`+ 1) + |I | .

We assume that ` ∈ I , otherwise the result directly follows the induction hypothesis.
Since f` depends both on y0, . . . , y`−1 and x , we decompose it as follows:

y` = f`(y0, . . . , y`−1, x) =
∑

J ⊆ {0, . . . ,`− 1}
0¶ |J |¶min(d,`)

 

∏

j∈J

y j

!

gJ (x)

with deg(gJ )¶ d − |J | for all J since deg( f`)¶ d.
Then, for I = {`} ∪ I ′, we look at

y`

�

∏

i∈I ′
yi

�

=
∑

J ⊆ {0, . . . ,`− 1}
0¶ |J |¶min(d,`)

 

∏

j∈J∪I ′
y j

!

gJ (x) .

From the induction hypothesis, the term of index J in the sum has degree at most

(d − 1)`+ |J ∪ I ′|+ deg(gJ ) = (d − 1)`+ |J ∪ I ′|+ d − |J |
¶ (d − 1)(`+ 1) + |J ∪ I ′| − |J |+ 1

¶ (d − 1)(`+ 1) + |J |+ |I ′| − |J |+ 1

¶ (d − 1)(`+ 1) + |I | .

6.2.2 Special case of bison.

In the case of bison, we make use of quadratic functions, and thus Proposition 6 implies
that after r rounds the degree is upper bounded by r + 1 only. Thus, it will take at least
n− 2 rounds before the degree reaches the maximal possible degree of n− 1. Moreover,
due to the construction of WSN, if all component functions of E r

k,w are of degree at most d,
there will be at least one component function of E r+n−1

k,w of degree at most d. That is, there
exist a vector β ∈ Fn

2 such that
〈β , E r+n−1

k,w (x)〉
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Figure 4: Number of rounds more than n needed to achieve full degree. Solid lines for
random round keys, dashed lines for round keys derived from bison’s key schedule.

has degree at most d. Namely, for

β ∈ span {kr , . . . , kr+s}
⊥

it holds that

deg
�

〈β , E r+s
k,w (x)〉

�

= deg

�

〈β , E r
k,w(x)〉+

r+s
∑

i=r

λi〈β , ki〉

�

= deg
�

〈β , E r
k,w(x)〉

�

.

We conclude there exists a component function of E r+s
k,w of non-maximal degree, as long

as 0 ¶ r ¶ n− 2 and 0 ¶ s ¶ n− 1. Thus for bison there will be at least one component
function of degree less than n − 1 for any number of rounds 0 ¶ r ¶ 2n − 3. However,
similarly to the case of zero-correlation properties as described in Lemma 3, the vector β is
key dependent and thus this property does not directly lead to an attack.

Finally, so far we only discussed upper bounds on the degree, while for arguing security,
lower bounds on the degree are more relevant. As it seems very hard (just like for any cipher)
to prove such lower bounds, we investigated experimentally how the degree increases in
concrete cases. As can be seen in Figure 4 the maximum degree is reached for almost any
instance for n+ 5 rounds. Most importantly, the fraction of instances where it takes more
than n+ 2 rounds decreases with increasing block length n. Moreover, the round function
in bison experimentally behaves with this respect as a random function, as can be seen on
Figure 5. Thus, as the number of rounds is 3n, we are confident that attacks exploiting the
algebraic degree do not pose a threat for bison.

Besides the WSN construction, a special case of the above proposition worth mentioning
is a non linear feedback generator (NLFSR).

6.2.3 Degree of NLFSR.

One well-known special case of the above general setting is an NLFSR or, equivalently a
maximally unbalanced Feistel cipher, depicted below.

fi �
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Figure 5: Behaviour of bison’s f function (red thick solid) versus random f (gray solid)
with algebraic degree 2 for n= 17.

Proposition 6 implies that the degree of any NLFSR increases linearly with the number of
rounds. To the best of our knowledge, this is the first time this have been observed in this
generality. We like to add that this is in sharp contrast to how the degree increases for
SPN ciphers. For SPN ciphers the degree usually increases exponentially until a certain
threshold is reached [Bou+11].

6.3 Other attacks

We briefly discuss other cryptanalytic attacks.

6.3.1 Impossible Differentials.

In Lemma 7 and Corollary 2, we discuss that every output difference is possible after more
than n rounds. Consequently, there are no impossible differentials for bison.

6.3.2 Truncated Differentials.

Due to our strong bounds on differentials it seems very unlikely that any strong truncated
differential exists.

6.3.3 Zero Correlation Linear Cryptanalysis.

In Lemma 3 we already discussed generic zero correlation linear hulls for the WSN construc-
tion. Depending on the actual key used, this technique may be used to construct a one-round-
longer zero-correlation trail. For this, we need two distinct elements α ∈ 〈k1, . . . , kn−1〉

⊥,
β ∈ 〈kn, . . . , k2n−2〉

⊥, and construct the trail analogously to Lemma 3 (which may not exist,
due to the key dependency).

6.3.4 Invariant Attacks.

For an invariant attack, we need a Boolean function g, s. t. g(x) + g(E r
k,w(x)) is constant for

all x and some weak keys (k, w). As the encryption of any message is basically this message
with some of the round keys added, key addition is the only operation which is performed.
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It has been shown in [Bei+17, Proposition 1] that any g which is invariant for a linear
layer followed by the addition of the round key ki as well as for the same up to addition of
a different k j , has a linear space containing ki + k j . In the case of the linear layer being the
identity, the linear space actually contains also the ki and k j (by definition).

Thus, the linear space of any invariant for our construction has to contain span {k1, . . . , k3n}
which is obviously the full space Fn

2. Following the results of [Bei+17], there are thus no
invariant subspace or nonlinear invariant attack on bison.

6.3.5 Related-Key Attacks.

In generic related-key attacks, the attacker is also allowed to exploit encryptions under a
related, that is k′ = f (k), key – in the following, we restrict our analysis to the case where
f is the addition with a constant. That is, the attacker cannot only request Ek,w(x), and
Ek,w(x + α), but also Ek+β ,w+β ′(x) or Ek+β ,w+β ′(x + α), for α (difference in the input x), β
(difference in the key k) and β ′ (difference in the key w) of her choice. As β = β ′ = 0
would result in the standard differential scenario, we exclude it for the remainder of this
discussion. Similar, β = k results in Φk+β = Φ0, which we did not define, thus we also skip
this case and refer to the fact that if an attacker chooses β = k, she basically already has
guessed the secret key correctly.

First note that, for any input difference (α,β ,β ′), the possible output differences after
one round are

α if (u, v) = (0, 0),
α+ β + k if (u, v) = (0, 1),
α + k if (u, v) = (1, 0), and
α+ β if (u, v) = (1, 1),

where

u= f (w+Φk(x)), (12)

v = f (w+ β ′ +Φk+β (x +α)). (13)

Our aim is to bound both the probability that u+ v = 0 and that u+ v = 1 by 3/4. This
implies that the probability for any related-key differential for one round is at most 3/4.
Thus the probability for any r-round related-key differential is bounded by (3/4)r . For this,
we need the following lemma.

Lemma 11. Let us consider the linear function Φk defined by Eq. (8). Given k and β /∈ {0, k}.
Then the dimension of the image of the linear function x 7→ Φk(x) +Φk+β (x) is either one or
two.

Proof. For the sake of simplicity, we instead consider Φ′k(x)+Φ
′
k+β (x), where Φ

′ is the same
as Φ but does not truncate its output. Basically the same argumentation then holds for Φ as
well. This function can also be written as

Φ′k(x) +Φ
′
k+β (x) = x + x i(k)k+ x + x i(k+β)(k+ β)

= (x i(k) + x i(k+β))k+ x i(k+β)β .

Thus
Φ′k(x) +Φ

′
k+β (x) ∈ span {k,β}

for all x , which upper bounds the dimension of the image by two. As e. g. x = ei(k+β) is not
mapped to zero, the dimension of the image is at least one, completing the proof.
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By the rank-nullity theorem, this implies that

dim
�

ker
�

Φk +Φk+β

��

∈ {n− 1, n− 2}.

We can now show the following proposition.

Proposition 7. For r rounds, the probability of any related-key differential characteristic for
bison, averaged over all whieting key sequences (w1, . . . , wr), is upper bounded by

�

3
4

�r
.

Proof. First, let us introduce the set Aα,β ,β ′

x ,k defined as:

Aα,β ,β ′

x ,k :=
�

w ∈ Fn−1
2

�

� f (w+Φk(x)) + f (w+ β ′ +Φk+β (x +α)) = 0
	

,

that is the set of all round keys w, for which x , k, α, β , and β ′ result in u+ v = 0 (where u
and v are as at the beginning of this section). In case that

Φk(x) = β
′ +Φk+β (x +α),

the size of Aα,β ,β ′

x ,k is 2n−1, while if the equality does not hold the set is of size 2n−2 since f is
bent.

For k, α, β and β ′ fixed, the number of x s. t. the size of Aα,β ,β ′

x ,k is 2n−1, is just the size of
the preimage of Φk+β (α) + β ′ under the linear mapping x 7→ Φk(x) +Φk+β (x). The size of
this preimage is either 0 or

�

�ker
�

Φk +Φk+β

��

�. Denote by

B =
�

�ker
�

Φk +Φk+β

��

�,

which, by Lemma 11, is bounded by 2n−1.
Then, the probability over x and w for having an output difference of α or α+ β is:

Prx ,w[u+ v = 0 for fixed k, α, β , β ′]

¶
B
2n
+

2n−2

2n−1
·

2n − B
2n
¶

B
2n
+

1
2

�

1−
B
2n

�

¶
1
2
+

B
2n+1

¶
1
2
+

1
4
=

3
4

.

The other case, u+v = 1, follows with the same argument. Thus, the probability for each
of the four possible cases (u, v) ∈ F2 × F2 can be upper bounded by (3/4), which concludes
the proof.

6.3.6 Further Observations.

During the design process, we observed the following interesting point: For sparse master
keys k and w and message m, e. g. k = w= m= 1, in the first few rounds, nothing happens.
This is mainly due to the choice of sparse key schedule polynomials pw and pk and the fact
that f0 outputs 0 if only one bit in its input is set (as 〈0, x〉= 0 for any x).

To the best of our knowledge, this observation cannot be exploited in an attack.

6.3.7 Experimental Results.

We conducted experiments on small-scale versions of bison with n= 5. The ddts and lats,
depicted using the “Jackson Pollock representation” [BP15], for one to ten rounds are listed
in Appendix B. In Appendix B.1 one can see that the two cases of averaging over all possible
wi and choosing a fixed wi results in very similar differential behaviors. Additionally, after
5= n rounds, the plots do not change much.
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Table 1: Performance of our 129-bit implementation on an Intel Core i7-8700 cpu,
running at 3.7 GHz. Cycles per byte are measured for 1 000 000 runs, Hyper-Threading
and Turbo-Boost were disabled.

Block size Code size Cycles per byte
(bit) (byte) median mean σ

129 701 3 021 3 064.08 102.56

The results in the linear case, see Appendix B.2, are quite similar. The major difference
here, is the comparable bigger entries for a fixed wi. Nonetheless, most important is that
there are no high entries in the average latwhich would imply a strong linear approximation
for many keys. Additionally one also expects for a random permutation not too small lat
entries. Note that one can well observe the probability-one approximation for 4 = n− 1
rounds (lower right corner of the corresponding plot).

7 Implementation

As the round function is involutory, we do not need to implement a separate decryption,
but instead can just use the encryption implementation with reversed round keys.

To implement the two lfsrs for the key schedule, we need two primitive polynomials
of degree n and n− 1. Clocking an lfsr with feedback polynomial p(x) corresponds to
multiplying the state by x ∈ F2[x]/p(x). This can be implemented by a simple left shift
and a conditional addition of the polynomial, if a modulo reduction is necessary. To keep
this addition as efficient as possible it is advantageous to have all non-leading monomials
of the polynomial of degree less then the word size of the implementation’s underlying
cpu, since in this case, we only need to add a term to the least significant word of the state.
Appropriate polynomials can easily be found by enumerating possible candidates and test if
the candidate is primitive. See Appendix A for possible, good-to-implement, choices for
pw(x) and pk(x).

For comparison and test reasons we also provide testvectors in Appendix C and a
sage implementation, see Appendix D. We implemented the 129-bit instance in c on a
64-bit Intel Core i7-8700 cpu (Coffee Lake architecture) running at 3.7 GHz. The
corresponding source code can be found in Appendix E.

Utilizing the cpu’s popcount instruction, this implementation consumes a size of
701 bytes when compiled with -Os. The same implementation needs a bit more then
3000 cycles per byte for the encryption of one 129-bit block.4 Table 1 summarizes these
results. While this might be obvious, we nevertheless want to note that it is important for
reliable benchmarks to turn off advanced performance capabilities of modern cpus.

Regarding cycles per byte, this is three orders of magnitude slower than optimized
implementations of AES. Even if the reference implementation is not optimized, we do
not believe to come close to a competitive speed. Another point which can be seen in
Table 1 is the deviating runtime of our implementation. The reference implementation
is clearly not constant time, see e. g. Lines 65 to 116 or Line 130 in Appendix E. For any
secure implementation this and other side channels have of course to be taken into account.
Nevertheless, a side channel-resistant implementation is out of scope of this work but is
certainly an interesting research direction. We expect the simplicity of our design to support
side-channel countermeasures.

4For comparison: exploiting AES-NI instructions on modern cpus results in 4.375 cycles per byte for encrypting
one AES-128 block, excluding the key-schedule. When parallelism can be exploited, the speed can be even
further increased, eventually tending to one cycle per byte. Implementing a full AES-128 encryption with AES-NI
instructions including the key schedule uses 394 bytes.
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8 Conclusion

Efficiency of symmetric ciphers have been significantly improved further and further, in
particular within the trend of lightweight cryptography. However, when it comes to arguing
about the security of ciphers, the progress is rather limited and the arguments basically
did not get easier nor stronger since the development of the AES. In our opinion it might
be worth shifting the focus to improving security arguments for new designs rather than
(incrementally) improving efficiency. We see bison as a first step in this direction.

With our instance for the WSN construction and its strong resistance to differential
cryptanalysis, this framework emerges as an interesting possibility to design block ciphers.
Unfortunately, we are not able to give better then normal arguments for the resistance to
linear cryptanalysis. It is thus an interesting question, if one can find a similar instance
of the WSN construction for which comparable strong arguments for the later type of
cryptanalysis exist.

Alternative designs might also be worth looking at. For example many constructions for
bent functions are known and could thus be examined as alternatives for the scalar product
used in bison. One might also look for a less algebraic design – but we do not yet see how
this would improve or ease the analysis or implementation of an instance.

Another line of future work is the in-depth analysis of implementation optimizations
and side channel-resistance of bison.
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A Polynomials for the key schedule

n pk(x) n pw(x)

129 x129 + x5 + 1 128 x128 + x7 + x2 + x + 1
127 x127 + x + 1 126 x126 + x7 + x4 + x2 + 1
125 x125 + x7 + x5 + x3 + x2 + x + 1 124 x124 + x7 + x6 + x5 + 1
123 x123 + x2 + 1 122 x122 + x6 + x2 + x + 1
121 x121 + x18 + 1 120 x120 + x7 + x6 + x5 + x2 + x + 1
119 x119 + x21 + x19 + x17 + 1 118 x118 + x6 + x5 + x2 + 1
117 x117 + x5 + x2 + x + 1 116 x116 + x6 + x5 + x2 + 1
115 x115 + x7 + x5 + x3 + x2 + x + 1 114 x114 + x19 + x17 + x16 + 1
113 x113 + x5 + x3 + x2 + 1 112 x112 + x21 + x20 + x18 + x17 + x16 + 1
111 x111 + x7 + x4 + x2 + 1 110 x110 + x6 + x4 + x + 1
109 x109 + x5 + x4 + x2 + 1 108 x108 + x22 + x20 + x19 + 1
107 x107 + x7 + x5 + x3 + x2 + x + 1 106 x106 + x6 + x5 + x + 1
105 x105 + x6 + x5 + x4 + x2 + x + 1 104 x104 + x23 + x22 + x18 + x17 + x16 + 1
103 x103 + x7 + x5 + x4 + x3 + x2 + 1 102 x102 + x6 + x5 + x3 + 1
101 x101 + x7 + x6 + x + 1 100 x100 + x22 + x20 + x17 + 1
99 x99 + x7 + x5 + x4 + 1 98 x98 + x7 + x4 + x3 + x2 + x + 1
97 x97 + x6 + 1 96 x96 + x7 + x6 + x4 + x3 + x2 + 1
95 x95 + x6 + x5 + x4 + x2 + x + 1 94 x94 + x6 + x5 + x + 1
93 x93 + x2 + 1 92 x92 + x6 + x5 + x2 + 1
91 x91 + x7 + x6 + x5 + x3 + x2 + 1 90 x90 + x5 + x3 + x2 + 1
89 x89 + x6 + x5 + x3 + 1 88 x88 + x23 + x22 + x19 + x18 + x17 + 1
87 x87 + x7 + x5 + x + 1 86 x86 + x6 + x5 + x2 + 1
85 x85 + x20 + x19 + x18 + 1 84 x84 + x22 + x19 + x16 + 1
83 x83 + x7 + x4 + x2 + 1 82 x82 + x19 + x18 + x17 + 1
81 x81 + x4 + 1 80 x80 + x7 + x5 + x3 + x2 + x + 1
79 x79 + x4 + x3 + x2 + 1 78 x78 + x7 + x2 + x + 1
77 x77 + x6 + x5 + x2 + 1 76 x76 + x5 + x4 + x2 + 1
75 x75 + x6 + x3 + x + 1 74 x74 + x7 + x4 + x3 + 1
73 x73 + x4 + x3 + x2 + 1 72 x72 + x6 + x4 + x3 + x2 + x + 1
71 x71 + x5 + x3 + x + 1 70 x70 + x5 + x3 + x + 1
69 x69 + x6 + x5 + x2 + 1 68 x68 + x7 + x5 + x + 1
67 x67 + x5 + x2 + x + 1 66 x66 + x22 + x20 + x19 + x18 + x17 + 1
65 x65 + x4 + x3 + x + 1 64 x64 + x4 + x3 + x + 1
63 x63 + x + 1 62 x62 + x6 + x5 + x3 + 1
61 x61 + x5 + x2 + x + 1 60 x60 + x + 1
59 x59 + x6 + x5 + x4 + x3 + x + 1 58 x58 + x6 + x5 + x + 1
57 x57 + x5 + x3 + x2 + 1 56 x56 + x7 + x4 + x2 + 1
55 x55 + x6 + x2 + x + 1 54 x54 + x6 + x5 + x4 + x3 + x2 + 1
53 x53 + x6 + x2 + x + 1 52 x52 + x3 + 1
51 x51 + x6 + x3 + x + 1 50 x50 + x4 + x3 + x2 + 1
49 x49 + x6 + x5 + x4 + 1 48 x48 + x7 + x5 + x4 + x2 + x + 1
47 x47 + x5 + 1 46 x46 + x20 + x19 + x18 + x17 + x16 + 1
45 x45 + x4 + x3 + x + 1 44 x44 + x6 + x5 + x2 + 1
43 x43 + x6 + x4 + x3 + 1 42 x42 + x5 + x4 + x3 + x2 + x + 1
41 x41 + x3 + 1 40 x40 + x5 + x4 + x3 + 1
39 x39 + x4 + 1 38 x38 + x6 + x5 + x + 1
37 x37 + x5 + x4 + x3 + x2 + x + 1 36 x36 + x6 + x5 + x4 + x2 + x + 1
35 x35 + x2 + 1 34 x34 + x7 + x6 + x5 + x2 + x + 1
33 x33 + x6 + x4 + x + 1 32 x32 + x7 + x5 + x3 + x2 + x + 1
31 x31 + x3 + 1 30 x30 + x6 + x4 + x + 1
29 x29 + x2 + 1 28 x28 + x3 + 1
27 x27 + x5 + x2 + x + 1 26 x26 + x6 + x2 + x + 1
25 x25 + x3 + 1 24 x24 + x4 + x3 + x + 1
23 x23 + x5 + 1 22 x22 + x + 1
21 x21 + x2 + 1 20 x20 + x3 + 1
19 x19 + x5 + x2 + x + 1 18 x18 + x5 + x2 + x + 1
17 x17 + x3 + 1 16 x16 + x5 + x3 + x2 + 1
15 x15 + x + 1 14 x14 + x5 + x3 + x + 1
13 x13 + x4 + x3 + x + 1 12 x12 + x6 + x4 + x + 1
11 x11 + x2 + 1 10 x10 + x3 + 1
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9 x9 + x4 + 1 8 x8 + x4 + x3 + x2 + 1
7 x7 + x + 1 6 x6 + x + 1
5 x5 + x2 + 1 4 x4 + x + 1

B ddt and lat Figures

B.1 ddt for k = 13 averaged over w (left) resp. fixed w = k (right)
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B.2 lat for k = 13 averaged over w (left) resp. fixed w = k (right)
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C Testvectors

Testvectors for n = 129, k0 = w0 = k, and r = 387 rounds, p plaintext, and c ciphertext.
The polynomials used are pk(x) = x129 + x5 + 1, and pw(x) = x128 + x7 + x2 + x + 1.

1. p = 0x000000000000000000000000000000000

k = 0x000000000000000000000000000000001

c = 0x181cc4852868b2821895e250f296401d6
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2. p = 0x000000000000000000000000000000001

k = 0x000000000000000000000000000000001

c = 0x031fe824e9ca7792006399496a1cf9252

3. p = 0x0deadbeefdeadbeefdeadbeefdeadbeef

k = 0x000000000000000000000000000000001

c = 0x1d3f48720538f0a3a0e2ca7b4491ae587

4. p = 0x000000000000000000000000000000000

k = 0x0deadbeefdeadbeefdeadbeefdeadbeef

c = 0x1c4100a60bf60e6b777b62f7b0c1ab5c2

5. p = 0x000000000000000000000000000000001

k = 0x0deadbeefdeadbeefdeadbeefdeadbeef

c = 0x156b4215ca4587d821c9681761d6da1be

6. p = 0x0deadbeefdeadbeefdeadbeefdeadbeef

k = 0x0deadbeefdeadbeefdeadbeefdeadbeef

c = 0x03c5cbfb9ce0bd2ee33890aaed0a676f3

7. p = 0x0730b82b57fa8c9213a0305e2042d1198

k = 0x000000000000000000000000000000001

c = 0x0deadbeefdeadbeefdeadbeefdeadbeef

8. p = 0x14e95b7c90aa803d1209c040aa05ab335

k = 0x0deadbeefdeadbeefdeadbeefdeadbeef

c = 0x0deadbeefdeadbeefdeadbeefdeadbeef

Additional intermediate results are listed in Table 3.
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Table 3: Testvectors with intermediate results for n= 129, k0 = w0 = 0x0deadbeefdeadbeefdeadbeefdeadbeef, p = x0 = 1. The used polynomials
are pk(x) = x129 + x5 + 1, and pw(x) = x128 + x7 + x2 + x + 1.

i xi ki wi ci xi+1

0 0x000000000000000000000000000000001 0x0deadbeefdeadbeefdeadbeefdeadbeef 0xdeadbeefdeadbeefdeadbeefdeadbeef 0x00000000000000000000000000000001 0x000000000000000000000000000000001
1 0x000000000000000000000000000000001 0x1bd5b7ddfbd5b7ddfbd5b7ddfbd5b7dde 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d59 0x80000000000000000000000000000043 0x000000000000000000000000000000001
2 0x000000000000000000000000000000001 0x17ab6fbbf7ab6fbbf7ab6fbbf7ab6fb9d 0x7ab6fbbf7ab6fbbf7ab6fbbf7ab6fa35 0xc0000000000000000000000000000062 0x000000000000000000000000000000001
3 0x000000000000000000000000000000001 0x0f56df77ef56df77ef56df77ef56df71b 0xf56df77ef56df77ef56df77ef56df46a 0x60000000000000000000000000000031 0x0f56df77ef56df77ef56df77ef56df71a
4 0x0f56df77ef56df77ef56df77ef56df71a 0x1eadbeefdeadbeefdeadbeefdeadbee36 0xeadbeefdeadbeefdeadbeefdeadbe853 0xb000000000000000000000000000005b 0x11fb619831fb619831fb619831fb6192c
5 0x11fb619831fb619831fb619831fb6192c 0x1d5b7ddfbd5b7ddfbd5b7ddfbd5b7dc4d 0xd5b7ddfbd5b7ddfbd5b7ddfbd5b7d021 0xd800000000000000000000000000006e 0x11fb619831fb619831fb619831fb6192c
6 0x11fb619831fb619831fb619831fb6192c 0x1ab6fbbf7ab6fbbf7ab6fbbf7ab6fb8bb 0xab6fbbf7ab6fbbf7ab6fbbf7ab6fa0c5 0x6c000000000000000000000000000037 0x0b4d9a274b4d9a274b4d9a274b4d9a197
7 0x0b4d9a274b4d9a274b4d9a274b4d9a197 0x156df77ef56df77ef56df77ef56df7157 0x56df77ef56df77ef56df77ef56df410d 0xb6000000000000000000000000000058 0x1e206d59be206d59be206d59be206d0c0
8 0x1e206d59be206d59be206d59be206d0c0 0x0adbeefdeadbeefdeadbeefdeadbee28f 0xadbeefdeadbeefdeadbeefdeadbe821a 0x5b00000000000000000000000000002c 0x1e206d59be206d59be206d59be206d0c0
9 0x1e206d59be206d59be206d59be206d0c0 0x15b7ddfbd5b7ddfbd5b7ddfbd5b7dc51e 0x5b7ddfbd5b7ddfbd5b7ddfbd5b7d04b3 0x2d800000000000000000000000000016 0x0b97b0a26b97b0a26b97b0a26b97b15de

10 0x0b97b0a26b97b0a26b97b0a26b97b15de 0x0b6fbbf7ab6fbbf7ab6fbbf7ab6fb8a1d 0xb6fbbf7ab6fbbf7ab6fbbf7ab6fa0966 0x16c0000000000000000000000000000b 0x00f80b55c0f80b55c0f80b55c0f809fc3
11 0x00f80b55c0f80b55c0f80b55c0f809fc3 0x16df77ef56df77ef56df77ef56df7143a 0x6df77ef56df77ef56df77ef56df4124b 0x8b600000000000000000000000000046 0x16277cba96277cba96277cba962778bf9
12 0x16277cba96277cba96277cba962778bf9 0x0dbeefdeadbeefdeadbeefdeadbee2855 0xdbeefdeadbeefdeadbeefdeadbe82496 0x45b00000000000000000000000000023 0x1b9993643b9993643b9993643b999a3ac
13 0x1b9993643b9993643b9993643b999a3ac 0x1b7ddfbd5b7ddfbd5b7ddfbd5b7dc50aa 0xb7ddfbd5b7ddfbd5b7ddfbd5b7d049ab 0xa2d80000000000000000000000000052 0x00e44cd960e44cd960e44cd960e45f306
14 0x00e44cd960e44cd960e44cd960e45f306 0x16fbbf7ab6fbbf7ab6fbbf7ab6fb8a175 0x6fbbf7ab6fbbf7ab6fbbf7ab6fa093d1 0x516c0000000000000000000000000029 0x00e44cd960e44cd960e44cd960e45f306
15 0x00e44cd960e44cd960e44cd960e45f306 0x0df77ef56df77ef56df77ef56df7142cb 0xdf77ef56df77ef56df77ef56df4127a2 0xa8b60000000000000000000000000057 0x00e44cd960e44cd960e44cd960e45f306
16 0x00e44cd960e44cd960e44cd960e45f306 0x1beefdeadbeefdeadbeefdeadbee28596 0xbeefdeadbeefdeadbeefdeadbe824fc3 0xd45b0000000000000000000000000068 0x1b0ab133bb0ab133bb0ab133bb0a77690
17 0x1b0ab133bb0ab133bb0ab133bb0a77690 0x17ddfbd5b7ddfbd5b7ddfbd5b7dc50b0d 0x7ddfbd5b7ddfbd5b7ddfbd5b7d049f01 0x6a2d8000000000000000000000000034 0x0cd74ae60cd74ae60cd74ae60cd627d9d
18 0x0cd74ae60cd74ae60cd74ae60cd627d9d 0x0fbbf7ab6fbbf7ab6fbbf7ab6fb8a163b 0xfbbf7ab6fbbf7ab6fbbf7ab6fa093e02 0x3516c00000000000000000000000001a 0x0cd74ae60cd74ae60cd74ae60cd627d9d

371 0x0a7364698b4eb1a460c25e6b20dde3f47 0x069e96296333862963338629633386296 0xfa42de74b812de74b812de74b812b187 0xd49e324034f56778ec4681a6eaf3d243 0x0cedf240e87d378d03f1d84243ee65dd1
372 0x0cedf240e87d378d03f1d84243ee65dd1 0x0d3d2c52c6670c52c6670c52c6670c52c 0xf485bce97025bce97025bce970256389 0xea4f19201a7ab3bc762340d37579e962 0x0cedf240e87d378d03f1d84243ee65dd1
373 0x0cedf240e87d378d03f1d84243ee65dd1 0x1a7a58a58cce18a58cce18a58cce18a58 0xe90b79d2e04b79d2e04b79d2e04ac795 0x75278c900d3d59de3b11a069babcf4b1 0x0cedf240e87d378d03f1d84243ee65dd1
374 0x0cedf240e87d378d03f1d84243ee65dd1 0x14f4b14b199c314b199c314b199c31491 0xd216f3a5c096f3a5c096f3a5c0958fad 0xba93c648069eacef1d88d034dd5e7a1b 0x0cedf240e87d378d03f1d84243ee65dd1
375 0x0cedf240e87d378d03f1d84243ee65dd1 0x09e962963338629633386296333862903 0xa42de74b812de74b812de74b812b1fdd 0xdd49e324034f56778ec4681a6eaf3d4e 0x0cedf240e87d378d03f1d84243ee65dd1
376 0x0cedf240e87d378d03f1d84243ee65dd1 0x13d2c52c6670c52c6670c52c6670c5206 0x485bce97025bce97025bce9702563f3d 0x6ea4f19201a7ab3bc762340d37579ea7 0x1f3f376c8e0df2a165811d6e259ea0fd7
377 0x1f3f376c8e0df2a165811d6e259ea0fd7 0x07a58a58cce18a58cce18a58cce18a42d 0x90b79d2e04b79d2e04b79d2e04ac7e7a 0xb75278c900d3d59de3b11a069babcf10 0x189abd3442ec78f9a9609736e97f2abfa
378 0x189abd3442ec78f9a9609736e97f2abfa 0x0f4b14b199c314b199c314b199c31485a 0x216f3a5c096f3a5c096f3a5c0958fc73 0x5ba93c648069eacef1d88d034dd5e788 0x17d1a985db2f6c4830a3838770bc3e3a0
379 0x17d1a985db2f6c4830a3838770bc3e3a0 0x1e96296333862963338629633386290b4 0x42de74b812de74b812de74b812b1f8e6 0x2dd49e324034f56778ec4681a6eaf3c4 0x094780e6e8a9452b0325aae4433a17314
380 0x094780e6e8a9452b0325aae4433a17314 0x1d2c52c6670c52c6670c52c6670c52149 0x85bce97025bce97025bce9702563f1cc 0x16ea4f19201a7ab3bc762340d37579e2 0x094780e6e8a9452b0325aae4433a17314
381 0x094780e6e8a9452b0325aae4433a17314 0x1a58a58cce18a58cce18a58cce18a42b3 0x0b79d2e04b79d2e04b79d2e04ac7e31f 0x0b75278c900d3d59de3b11a069babcf1 0x131f256a26b1e0a7cd3d0f688d22b31a7
382 0x131f256a26b1e0a7cd3d0f688d22b31a7 0x14b14b199c314b199c314b199c3148547 0x16f3a5c096f3a5c096f3a5c0958fc63e 0x85ba93c648069eacef1d88d034dd5e3b 0x07ae6e73ba80abbe510c44711113fb4e0
383 0x07ae6e73ba80abbe510c44711113fb4e0 0x096296333862963338629633386290aaf 0x2de74b812de74b812de74b812b1f8c7c 0xc2dd49e324034f56778ec4681a6eaf5e 0x07ae6e73ba80abbe510c44711113fb4e0
384 0x07ae6e73ba80abbe510c44711113fb4e0 0x12c52c6670c52c6670c52c6670c52155e 0x5bce97025bce97025bce9702563f18f8 0x616ea4f19201a7ab3bc762340d3757af 0x156b4215ca4587d821c9681761d6da1be
385 0x156b4215ca4587d821c9681761d6da1be 0x058a58cce18a58cce18a58cce18a42a9d 0xb79d2e04b79d2e04b79d2e04ac7e31f0 0xb0b75278c900d3d59de3b11a069bab94 0x156b4215ca4587d821c9681761d6da1be
386 0x156b4215ca4587d821c9681761d6da1be 0x0b14b199c314b199c314b199c3148553a 0x6f3a5c096f3a5c096f3a5c0958fc6367 0x585ba93c648069eacef1d88d034dd5ca 0x156b4215ca4587d821c9681761d6da1be
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D sage Implementation

1 Fx = GF (2)["x"]
2 polys = {129: Fx("x^129 + x^5 + 1"),
3 128: Fx("x^128 + x^7 + x^2 + x + 1"),
4 127: Fx("x^127 + x + 1"),
5 126: Fx("x^126 + x^7 + x^4 + x^2 + 1"),
6 # [...]
7 81: Fx("x^81 + x^4 + 1"),
8 80: Fx("x^80 + x^7 + x^5 + x^3 + x^2 + x + 1"),
9 # [...]

10 65: Fx("x^65 + x^4 + x^3 + x + 1"),
11 64: Fx("x^64 + x^4 + x^3 + x + 1"),
12 63: Fx("x^63 + x + 1"),
13 62: Fx("x^62 + x^6 + x^5 + x^3 + 1"),
14 # [...]
15 33: Fx("x^33 + x^6 + x^4 + x + 1"),
16 32: Fx("x^32 + x^7 + x^5 + x^3 + x^2 + x + 1"),
17 31: Fx("x^31 + x^3 + 1"),
18 # [...]
19 5: Fx("x^5 + x^2 + 1"),
20 4: Fx("x^4 + x + 1"),
21 }
22

23 c l a s s BISON :
24 _n = 0
25 _r = 0
26 _kp = None
27 _wp = None
28 _cp = None
29

30 def __init__ (self , n_bits , r_rounds =None ):
31 self._n = n_bits
32 i f r_rounds is None:
33 self._r = 3* self._n
34 e l s e :
35 self._r = r_rounds
36

37 a s s e r t n_bits in polys .keys () and n_bits % 2 == 1
38 kp = polys [self._n]
39 wp = polys [self._n -1]
40 a s s e r t kp. is_primitive (), wp. is_primitive ()
41 self._kp = companion_matrix (kp)
42 self._wp = companion_matrix (wp)
43 self._cp = companion_matrix (wp ). inverse ()
44

45 def _bits_to_int (self , bits ):
46 """
47 converts a list/ vector of bits to the corresponding
48 integer . the lsb is at index 0
49 """
50 re turn reduce ( lambda acc , x: acc *2 + Integer (x),
51 bits [:: -1] , 0)
52

53 def _int_to_bits (self , x, n):
54 """
55 converts an integer x to a vector in GF (2) of at
56 most n bit. if the binary representation of the
57 integer needs more then n bits , the vector is
58 truncated and the most significant bits are
59 discarded .
60 """
61 bits = Integer (x). digits (base =2, padto =n)[:n]
62 re turn vector (GF (2) , bits)
63
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64 def keyschedule (self , key_k , key_w , i):
65 """
66 one possible keyschedule for the whitened swap or
67 not construction . computes K_i , W_i as x^i K,W
68 modulo kp(x)/ wp(x)
69 """
70 ki = (self._kp^i) * key_k
71 wi = (self._wp^i) * key_w
72 ci = (self._cp^i) * vector (GF (2) , [1] + [0]*( self._n -2))
73 re turn ki , wi , ci
74

75 def f_i(self , vec ):
76 """
77 one possible f function for the whitened swap or
78 not construction f(x,y) := <x, y>
79 """
80 x = vec [:( self._n -1)/2]
81 y = vec [( self._n -1)/2:]
82 re turn x * y
83

84 def phi(self , k, x):
85 """
86 replacement of max (.)
87 """
88 a s s e r t k != 0
89

90 i = list (k). index (1)
91 re turn matrix (GF (2) ,
92 x[i]*k + x). delete_columns ([i]). row (0)
93

94 def round (self , x, key_k , key_w , i):
95 """
96 computes the i’th round of the whitened swap or
97 not construction
98 """
99 f_bit = 0 i f i <= self._r / 2 e l s e 1

100

101 ki , wi , ci = self. keyschedule (key_k , key_w , i)
102

103 i f self.f_i(wi + ci + self.phi(ki , x)) == (1+ f_bit ):
104 x = x + ki
105 e l s e :
106 x = x
107

108 re turn x
109

110 def encrypt (self , plain , key_k , key_w ):
111 """
112 encrypts the input plain under key , assuming n bit
113 input length and number of rounds many iteration .
114

115 TESTS :
116 sage: cipher = BISON (5, 10)
117 sage: p = randint (1, (1 < <5) -1) ,
118 sage: k = randint (1, (1 < <5) -1) ,
119 sage: w = randint (1, (1 < <4) -1) ,
120 sage: assert p == \
121 ....: cipher . decrypt ( cipher . encrypt ( \
122 ....: p, k, w), k, w)
123 """
124 a s s e r t key_k != 0
125

126 state = self. _int_to_bits (plain , self._n)
127 kvec = self. _int_to_bits (key_k , self._n)
128 wvec = self. _int_to_bits (key_w , self._n -1)
129 f o r i in range (self._r ):
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130 state = self. round (state , kvec , wvec , i)
131 re turn self. _bits_to_int ( state )
132

133 def decrypt (self , cipher , key_k , key_w ):
134 """
135 decrypts the input cipher under key , assuming n bit
136 input length and number of rounds many iteration .
137 """
138 state = self. _int_to_bits (cipher , self._n)
139 kvec = self. _int_to_bits (key_k , self._n)
140 wvec = self. _int_to_bits (key_w , self._n -1)
141 f o r i in range (self._r -1, -1, -1):
142 state = self. round (state , kvec , wvec , i)
143 re turn self. _bits_to_int ( state )
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E c Implementation

1 # include <stdbool .h>
2 # include <stdint .h>
3 # include <string .h>
4

5 # define N_BITS_DEFINE 129 lu
6 # define N_ROUNDS (3* N_BITS_DEFINE )
7 # define W_DEFINE 0x87
8 # define K_DEFINE 0x21
9 # define C_DEFINE 0x43

10

11 struct key_w { uint64_t words [2]; };
12 struct key_k { uint64_t words [2]; bool msb; };
13 typedef struct key_w key_w ;
14 typedef struct key_w key_c ;
15 typedef struct key_k key_k ;
16 typedef struct key_k state ;
17

18 inline void copy( struct key_k * lhs ,
19 const struct key_k * rhs) {
20 lhs -> words [0] = rhs -> words [0];
21 lhs -> words [1] = rhs -> words [1];
22 lhs ->msb = rhs ->msb;
23 }
24

25 inline void add_w ( struct key_k * lhs ,
26 const key_w * rhs) {
27 lhs -> words [0] ^= rhs -> words [0];
28 lhs -> words [1] ^= rhs -> words [1];
29 }
30

31 inline void add( struct key_k * lhs ,
32 const struct key_k * rhs) {
33 lhs -> words [0] ^= rhs -> words [0];
34 lhs -> words [1] ^= rhs -> words [1];
35 lhs ->msb ^= rhs ->msb;
36 }
37

38 void ks( key_c * c, key_w * w, key_k * k) {
39 bool test_bit0 = 0;
40 bool test_bit1 = 0;
41 test_bit0 = w-> words [0] >> 63;
42 test_bit1 = w-> words [1] >> 63;
43 w-> words [0] = (w-> words [0] << 1) ^ ( test_bit1 * W_DEFINE );
44 w-> words [1] = (w-> words [1] << 1) ^ test_bit0 ;
45

46 test_bit0 = c-> words [0] & 1;
47 test_bit1 = c-> words [1] & 1;
48 c-> words [0] = (c-> words [0] >> 1) ^ (( uint64_t ) test_bit1 << 63) \
49 ^ ( test_bit0 * C_DEFINE );
50 c-> words [1] = (c-> words [1] >> 1) ^ (( uint64_t ) test_bit0 << 63);
51

52 test_bit0 = k-> words [0] >> 63;
53 test_bit1 = k-> words [1] >> 63;
54 k-> words [0] = (k-> words [0] << 1) ^ (k->msb * K_DEFINE );
55 k-> words [1] = (k-> words [1] << 1) ^ test_bit0 ;
56 k->msb = test_bit1 ;
57 }
58

59 bool f_i( const state * x) {
60 uint64_t and = x-> words [0] & x-> words [1];
61 uint8_t output = __builtin_popcount (and & 0 xffffffff );
62 return ( output + __builtin_popcount (and >> 32)) % 2;
63 }
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64

65 void phi( state * x, const key_k * k) {
66 uint8_t idx = 0;
67 uint8_t word_idx = 0;
68

69 // find index of lowest set bit in k
70 while (true) {
71 word_idx = 0;
72 if (idx == 128) {
73 if (k->msb == 1) {
74 break ;
75 }
76 } else if (idx >= 64) {
77 word_idx = 1;
78 }
79

80 if (((k-> words [ word_idx ] >> (idx - word_idx *64)) & 1) == 1) {
81 break ;
82 }
83

84 idx += 1;
85 }
86

87 // test that bit in x and if it is set add
88 // key k to state x
89 bool bit_set = false ;
90 if (idx == 128) {
91 bit_set = x->msb == 1;
92 } else {
93 bit_set = (((x-> words [ word_idx ] >> (idx - word_idx *64)) & 1) == 1);
94 }
95

96 if ( bit_set ) {
97 add(x, k);
98 }
99

100 // delete the bit from x by shifting everything
101 // higher than that bit one to the right
102 if (idx == 128) {
103 return ;
104 } else if (idx >= 64) {
105 uint64_t constant = x-> words [1] % (1 lu << (idx -64));
106 x-> words [1] = (( uint64_t )x->msb << 63) ^ ((x-> words [1]^ constant ) >> 1) \
107 ^ constant ;
108 } else {
109 uint8_t bit = x-> words [1] & 1;
110 x-> words [1] = (( uint64_t )x->msb << 63) ^ (x-> words [1] >> 1);
111 uint64_t constant = x-> words [0] % (1 lu << idx );
112 x-> words [0] = ((( uint64_t )bit) << 63) ^ ((x-> words [0]^ constant ) >> 1) \
113 ^ constant ;
114 }
115 x->msb = 0;
116 }
117

118 /**
119 * return the output after one round of the swap or
120 * not construction under the keys w and k, where
121 * fi_bit is either 0 or 1 and fi is f_i(x) xor fi_bit
122 */
123 void swap_or_not_round ( state * x, state * tmp_x ,
124 const key_c * c, const key_w * w,
125 const key_k * k, int i) {
126 copy(tmp_x , x);
127 phi(tmp_x , k);
128 add_w (tmp_x , w);
129 add_w (tmp_x , c);
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130 if (f_i( tmp_x ) == (1^i))
131 add(x, k);
132 }
133

134 /**
135 * inplace encrypts x under the keys w and k over
136 * N=3* nroudns rounds
137 */
138 void encrypt ( state * x, key_w * w, key_k * k) {
139 state tmp_x ;
140 key_c c = {{1 ,0}};
141 for ( size_t i = 0; i < N_ROUNDS ; i++) {
142 swap_or_not_round (x, &tmp_x , &c, w, k,
143 i <= N_ROUNDS /2 ? 0 : 1);
144 ks (&c, w, k);
145 }
146 }
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