
1

E3: A Framework for Compiling C++

Programs with Encrypted Operands
Eduardo Chielle, Oleg Mazonka, Nektarios Georgios Tsoutsos and Michail Maniatakos

Abstract

The dramatic increase of data breaches in modern computing platforms has emphasized that access

control is not sufficient to protect sensitive user data. Even in the case of honest parties, unknown

software/hardware vulnerabilities and side-channels can enable data leakage, leading to the conclusion

that as long as data exists decrypted, it can be leaked. Fortunately, recent advances on cryptographic

schemes allow end-to-end processing of encrypted data, without any need for decryption. However,

besides the reported impractical overheads, such schemes are particularly hard to use by non-crypto-

savvy users, which further inhibits their applicability. In this work, we propose the first usability-oriented

framework that enables programmers to incorporate comprehensive privacy protections in their programs,

by automatically protecting user-annotated variables using encryption. As a proof of concept and without

loss of generality, our E3 framework incorporates three state-of-the-art FHE libraries. In our evaluation,

we validate the usability of E3 by employing various benchmarks written in C++, and directly compare

the overhead of the core FHE libraries in terms of runtime performance, as well as memory and storage

requirements. While FHE is used as a base study, E3 can be used as the base for performance comparison

of any encrypted computation methodology.

Index Terms

Data Privacy, Fully Homomorphic Encryption, General-purpose computation, Privacy-preserving

computation

I. INTRODUCTION

The recent disclosure of the Meltdown and Spectre side-channel vulnerabilities is yet another painful

reminder of the insecurity of modern computing platforms [1], [2]. With the potential to affect billions

E. Chielle, O. Mazonka and M. Maniatakos are with the Center for Cyber Security, New York University Abu Dhabi, UAE.

E-mail: {eduardo.chielle, om22, michail.maniatakos}@nyu.edu

N. G. Tsoutsos is with the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE.

E-mail: tsoutsos@udel.edu

2

of devices, from smartphones to cloud servers, these critical flaws could be exploited remotely (e.g.,

via JavaScript) and leak sensitive information from privileged memory locations by judiciously probing

the cache memory. Equally, the numerous compromises on cloud platforms such as LastPass, Amazon

EC2/S3 and Dropbox [3], as well as subtle attacks described is the academic literature (e.g., [4]–[7]),

contribute to the lack of trust on behalf of end users, and highlight the shortcomings of contemporary

access control mechanisms, even if the information custodians are honest parties.

At the same time, the assumption that the hardware is the ultimate root-of-trust for the software stack

continues to be questioned, as attack trends move closer to the silicon itself. For example, stealthy

modifications on hardware designs (i.e., hardware Trojans [8]–[11]), can cause substantial security risks,

including privilege escalation, denial of service, information leakage or downgraded performance [12],

[13]. Likewise, a hardware Trojan at the sub-transistor level, which is capable of extracting information

directly from the CPU pipeline, has also been reported in the literature [14]. Evidently, the lack of

hardware-level trust goes beyond academic threat models: There exist folklore reports about a hardware

Trojan kill-switch in military air defenses, in the context of electronic warfare [15], [16].

In many contexts, the need for data privacy can be addressed using encryption, which provides implicit

access controls to authorized entities with knowledge of a private key. Nevertheless, in light of the security

threats mentioned in the previous paragraphs, without end-to-end encryption the privacy risks are merely

reduced, but not eliminated. For example, Intel’s software guard extensions (SGX) [17] allow programmers

to protect sensitive data within enclaves by encrypting all memory traffic in and out of the processor

package; however, since the data are eventually decrypted before entering the processor pipeline, leakage

is still possible, as recently reported [18]. Thus, even though encryption can protect data at rest and in

transit, protecting data in use remains a challenge.

All is not lost, however: Gentry’s remarkable discovery of the first fully homomorphic encryption (FHE)

scheme in 2009 allows evaluation of arbitrary-degree polynomials over encrypted variables [19], which is

rightly dubbed as cryptography’s holy grail [20]. Specifically, given that combinational Boolean circuits

can be directly mapped into polynomials, and because Boolean circuits are fundamentally equivalent to

Turing Machines [21], FHE has the potential to support computation over encrypted values. The latter

could be a candidate solution to protecting the privacy of data in use, by mitigating information leakage

risks in light of system vulnerabilities and side-channel attacks.

Problem Statement. Despite the countless applications and the versatility of modern FHE schemes, an

important drawback remains their high complexity and low efficiency [22]. Even though recent advances

in FHE research have improved the ciphertext sizes and function evaluation efficiency, the practicality

of state-of-the-art schemes remains limited: For example, the FHE evaluation of an AES-128 operation

3

requires about four minutes [23], while ciphertext sizes can be several hundred kilobytes [24]. Moreover,

the complexity of expressing real-life applications as FHE-compatible functions remains another important

factor that limits the usability for wide deployments. In fact, converting a high-level program into an

FHE-compatible form is laborious, as it entails implementing a functionally equivalent circuit. Thus,

writing real-life programs that operate on FHE ciphertexts sacrifices the familiar experience of writing

program statements in a standard language (e.g., C/C++), which could be increasingly challenging for

non-crypto-savvy (but otherwise skillful) programmers.

Our Solution. In this work, we address the usability gap of FHE schemes by allowing programmers to

effortlessly incorporate end-to-end privacy guarantees in their programs. Towards that end, we present

Encrypt-Everything-Everywhere (E3): a user-friendly framework that simplifies and accelerates the con-

version of standard C++ programs into secure versions that operate over ciphertexts. In our approach,

end users annotate their sensitive variables using our novel data types, and our framework automatically

compiles each program assignment statement into the corresponding FHE-compatible circuit. Our easily-

extensible framework currently offers a selection of three state-of-the-art FHE libraries, namely TFHE

[25], FHEW [26], and HElib [27], which allow seamless evaluation of the FHE circuits corresponding to

each C++ statement. To the best of our knowledge, E3 is the first comprehensive framework integrating

the manipulation of FHE ciphertexts into standard C++ programs, which can significantly increase the us-

ability of FHE without any expectation regarding cryptography knowledge on behalf of the programmers.

In addition to protecting the privacy of actual C++ applications with FHE-based end-to-end encryption,

E3 enables direct comparisons of existing FHE libraries in terms of performance, memory and storage

overheads, using the same C++ benchmarks. Furthermore, E3 can be used with any other methodology

for manipulating encrypting data, such as partially homomorphic encryption.

Contributions. In this work, we claim the following contributions:

1) A novel framework for seamlessly incorporating FHE evaluation in C++ programs, in order to

provide end-to-end privacy to the users. The framework is open-sourced to also serve as the basis

for objective comparisons of existing and new encrypted computation libraries.

2) A performance comparison and efficiency analysis of three state-of-the-art FHE libraries, namely

TFHE, FHEW, and HElib, using C++ benchmarks compiled with E3.

While the presented framework is developed for C++, the methodology is applicable to any imperative

programming language. Also, open sourcing the framework enables repeatability and verification of the

presented experiments.

Paper Roadmap. The rest of the paper is organized as follows: In Section II we provide a preliminary

discussion on Learning with Errors (LWE) and the three FHE libraries incorporated in our framework,

4

while Section III discusses the usability of our secure data types for FHE ciphertexts from the perspective

of the C++ programmer. In Section IV we expand on the internals of our E3 framework and provide an

overview of how regular programs can be compiled after FHE operations and variables are instantiated,

while in Section V we elaborate on the critical step of integrating our framework with existing FHE

libraries. Our evaluation and FHE library comparisons using oblivious benchmarks are presented in

Section VI. Section VII summarizes our analysis findings, a brief discussion on related work is provided

in Section VIII, and our concluding remarks are presented in Section IX.

II. PRELIMINARIES

The goal of this work is to provide an accurate and fair comparison of the different FHE libraries.

Therefore, the first step is to understand the underlying cryptographic schemes employed by the various

FHE libraries, in order to use them appropriately. Moreover, a fair comparison requires further under-

standing of the security levels offered by the FHE libraries under different configurations, allowing us to

draw performance comparisons for comparable security levels.

A. Learning with Errors

The Learning with Errors (LWE) problem, which was formally defined in Regev’s seminal paper [28],

has been the centerpiece in many lattice-based constructions in modern cryptography. As a generalization

to the learning with parity problem [29], LWE can be proven to be as hard as the worst lattice problems

[28], which offers extraordinary versatility for the design of cryptographic schemes. Moreover, given

that the shortest vector problem in lattices (for the average case) is hard [30], and since there are no

efficient quantum algorithms to solve lattice problems, LWE-based cryptography does not suffer from

post-quantum threats, as is the case with factoring and the discrete logarithm problems.

The LWE problem can be defined in two basic variants: as a decision and a search problem [31].

Specifically, if n and p are positive integers, s ∈ Znp is a secret vector, and χ : Zp → R+ is some

probability distribution on Zp, we can define a new probability distribution As,χ on Znp ×Zp as follows:

we choose a vector a ∈ Znp uniformly at random and e ∈ Zp according to χ, and output (a, b) =

(a, 〈a, s〉 + e) ∈ Znp × Zp, (where 〈·, ·〉 denotes a dot product of two vectors). The decision problem

entails deciding whether the pairs (a, b) are sampled according to As,χ or according to the uniform

distribution on Znp × Zp. On the other hand, the search problem entails recovering s from (a, b) pairs

sampled according to As,χ.

Likewise, if Φm(x) = xn + 1 ∈ Z[x] is an irreducible (cyclotomic) polynomial of degree n = φ(m) =

m/2, where m = 2k for a positive integer k, then R = Z[z]/〈Φm(x)〉 is the ring of integer polynomials

5

modulo Φm(x) [32]. Moreover, if n is a power of 2 and p = 1 mod m is a prime modulus, then

Rp = R/〈p〉 = Zp[x]/〈xn+1〉 is the ring of integer polynomials modulo both Φm(x) and p. In this case,

if s ∈ Rp is secret, a ∈ Rp is chosen uniformly at random, χ is a distribution over Rp and e is chosen

according to χ, the decision ring-LWE problem entails distinguishing (a, b) = (a, a · s + e) ∈ Rp × Rp
from uniformly random (a, b) ∈ Rp ×Rp, while the search ring-LWE problem entails finding the secret

s ∈ Rp with high probability [32].

Instances of the LWE problem can be characterized based on the probability distribution χ used for

sampling e; if χ is a discrete Gaussian distribution with center 0 and width parameter αp, an instance

of LWE could be specified using the dimension n, the modulus p and the scaling parameter α [33].1

Typically, α ∈ (0, 1) and αp > 2
√
n (e.g., p ≈ n2), which allows to reduce the decision shortest vector

problem (GapSVP) to LWE [31].

B. Estimating the hardness of LWE

Typically, solving the LWE problem entails running a lattice-basis reduction algorithm (such as LLL

[35], BKZ [36], or BKZ 2.0 [37]) to find a reduced basis of a lattice [33]. If b0 is the shortest non-zero

vector in the reduced basis of lattice Λ, the quality of the reduction can be estimated using the root-

Hermite factor δ0 ≥ 1; in particular, for an n-dimension lattice Λ it holds that ‖b0‖ = δn0 · det(Λ)1/n

[38]. Since smaller δ0 values are better, the runtime of the underlying lattice-basis reduction algorithm

is a function of the desired δ0 (which restricts how small is ‖b0‖).

For example, solving the decision LWE problem requires finding a short vector v that satisfies v ·a =

0 mod p [38] (this is essentially an instance of the Short Integer Solutions problem [30]). In this case,

the distinguishing advantage is approximately exp(−π(‖v‖ ·α)2) (i.e., it is a function of the norm ‖v‖)

[33]. Thus, to achieve a certain advantage, the lattice-basis reduction algorithm should ensure a minimum

δ0 by running for a sufficiently long time. Likewise, solving the search LWE problem entails solving a

Bounded Distance Decoding problem using the Nearest Plane algorithm [38]; in this case, the probability

of finding the secret s is also determined by the reduction quality and δ0. Hence, the security level of

LWE-based cryptosystems depends on the effort required by lattice-basis reduction algorithms to achieve

a target δ0 for a specified advantage.2

1In case of binary-secret LWE, the secret s is in {0, 1}n log p (increased dimension) [34], and the LWE instance is characterized

using an additional parameter ψ corresponding to the distribution of the components of s [33].
2A security-level estimator for LWE instances is available in [39].

6

C. LWE-based cryptographic schemes

One prominent application of LWE-based cryptography is fully homomorphic encryption (FHE). In

fact, modern FHE cryptosystems, such as the BGV scheme [40], which corresponds to second generation

FHE, as well as the GSW scheme [41], which corresponds to third generation FHE, are based on (ring-

)LWE. These FHE schemes are implemented in state-of-the-art C/C++ libraries, such as TFHE, FHEW

and HElib.

TFHE [42] implements a variant of the GSW scheme, as described in [25], [43], and supports the

evaluation of any Boolean circuit on encrypted values. Specifically, TFHE supports circuits of unrestricted

size that are composed using different binary gates (such as AND, OR, NAND, NOR, XOR, XNOR),

as well as the unary NOT gate and a multiplexer (MUX) gate. Unrestricted circuit sizes are possible

by incorporating bootstrapping [44] in the evaluation of each gate; gate-by-gate bootstrapping reduces

the noise of FHE ciphertexts after each operation and allows applying an arbitrary function after the

data are already encrypted (i.e., it is not necessary to know the target function during encryption). As

noted by the TFHE authors, gate-bootstrapping enables the evaluation of manually defined, as well as

automatically generated Boolean circuits without size restrictions. Moreover, the default parameters of

TFHE provide a security level λ > 100 bits for intrinsic lattice reduction quality δ0 = 1.0058 and BKZ

2.0 lattice-basis reductions [25].

FHEW [45] is a predecessor of TFHE and the first FHE library supporting per-gate bootstrapping using

a homomorphic accumulator based on a variant of the GSW scheme [26]. The latest version of FHEW

implements a functionally-complete set of bitwise operations (i.e., NAND, NOR, AND, OR, NOT) on

the encryptions of bits, and each ciphertext output is refreshed using bootstrapping to reduce its noise

to similar levels as the corresponding inputs. Thus, FHEW enables the homomorphic evaluation of any

Boolean circuit on encrypted bits. Moreover, using the default parameters, FHEW achieves a security

level λ > 100 bits for root-Hermite factor δ0 = 1.0065, assuming BKZ 2.0 lattice-basis reductions [26].

HElib [46] implements a ring-LWE variant of the BGV scheme (second generation FHE) with the GHS

optimizations (detailed in [47]). Implemented in C/C++ with multi-threading support, the library provides

bootstrapping (dubbed recryption) operations to reduce ciphertext noise [27], as well as batching (using

the SV technique [48]) to pack multiple plaintexts within the same ciphertext and enable SIMD-style

operations. For a given LWE modulus to noise standard deviation ratio (q/σ), HElib’s security level λ

depends on the cyclotomic ring parameter m that bounds the LWE dimension n = φ(m): for example,

if n ≥ 29.1 · log (q/σ) then λ > 100 bits [47, Eq. 8], based on the LWE security estimates from [38].

HElib’s programming interface offers routines for homomorphic addition and multiplication of FHE

7

ciphertexts, which are internally represented as vectors over a polynomial ring [47]. For the native

plaintext space of binary polynomials R2, HElib’s homomorphic operations can be mapped to addition

and multiplication in GF (2) (i.e., bitwise XOR and AND operations). In this case, finite field arithmetic

of characteristic 2 is convenient for composing binary circuits of higher-level (compound) functions, such

as equality, division, modulo, bitwise manipulations and comparison operations. Nevertheless, HElib also

supports a plaintext space of polynomials Rp, where p can be an odd prime, which enables addition and

multiplication in GF (p).

Remark: As discussed on Section V-A3, this work evaluates HElib in two different ways: (a) using the

native plaintext space of binary polynomials R2 that enables addition and multiplication in GF (2), we

compose higher-level functions on multi-bit inputs as circuits (specifically, we implement multi-bit adders

and multipliers), and (b) using a plaintext space of ring polynomials R127, we evaluate integer addition

and multiplication in GF (127) directly, using multi-bit inputs as coefficients of polynomials.

III. ENCRYPTING C++ VARIABLES: PROGRAMMER’S VIEW

A. A sample program - Assumptions

In order to put the usability dimension into perspective, we need to outline our assumptions for

the programmer skills, as well as our framework design requirements. Specifically, we assume that the

programmer:

1) Does not need to understand how cryptography works;

2) Can annotate which variables should be encrypted, understanding that the performance impact is

related to the amount of operations performed on encrypted variables;

3) Can optimize performance by setting maximum sizes to variables, understanding that such upper

limits can make a significant different in performance;

4) Can develop/adapt the C++ source code to refrain from branching based on encrypted data, under-

standing that this will leak information and should be avoided.

The last assumption is a direct outcome of the termination problem in the program’s control flow: If

the program is allowed to branch on encrypted values, then information about the encrypted value itself

is leaked. Because of the nature of homomorphic operations, even one leakage instance could allow the

attacker to decrypt all data in the program. To address this problem, the algorithm needs to execute for a

predetermined, upper-bounded amount of iterations (i.e., obliviously), which would ensure that a correct

result will be reached. An example of this algorithm transformation is presented in Listing 1, presenting a

variation of the Fibonacci algorithm. In this example, variables to be protected have been annotated with

the SecureInt keyword. The main loop calculating the final output iterates MAX_NUM times, which is

8

1 # i n c l u d e <iostream>
2 # i n c l u d e "secureint.h"
3 # d e f i n e MAX_NUM 10
4
5 i n t main()
6 {
7 using Secure = SecureInt <8>;
8 Secure num = _7_E;
9 Secure f1 = _0_E;

10 Secure f2 = _1_E;
11 Secure fi = _0_E;
12 Secure i = _1_E;
13 Secure res = _0_E;
14
15 f o r(i n t cntr=0; cntr<MAX_NUM; cntr++)
16 {
17 res += (i == num) * fi;
18 fi = f1 + f2;
19 f1 = f2;
20 f2 = fi;
21 i++;
22 }
23 std::cout << "fib: " << res << "\n";
24 }

Listing 1. C++ Programming Example.

the upper bound of the computation. In the example of Listing 1, the programmer is requesting the value

in location 7 of the Fibonacci sequence defined in Line 8: num=_7_E, where the user-defined suffix

_E indicates an encrypted constant. Therefore, the correct output is selected by the i==num comparison

in Line 17: When i reaches encrypted 7, then fi is added to res, as the i==num expression will

return an encrypted 1. In any other case, an encrypted 0 is added to res, not affecting the final output.

Independent of the input, the above algorithm will always run for 10 iterations (Line 3), therefore not

leaking any context about the user input.

In C++ terms, the termination problem means that a SecureInt cannot be implicitly cast to a

bool, and the compiler will return an error. Thus, the expression ‘if (x>y) {}’, with x,y defined as

SecureInt, will fail to compile. This affects usability, as existing algorithms may need modifications

to be converted to a data-oblivious version. Moreover, it affects practicality too, as a fixed upper bound

will cause further performance degradation.

With regards to the framework design, we outline the following requirements:

1) The framework needs to maintain an accurate state after the execution of each statement, which is a

requirement of imperative programming languages. In other words, if the program stops at any time

and its encrypted variables are to be decrypted, the decryption needs to exactly match the value of

the unencrypted version.

2) Everything should compile using a standard conforming C++ compiler (e.g., GCC), and should be

9

TABLE I

STANDARD C++ OPERATORS AND THEIR USE WITH ENCRYPTED DATA.

Non-applicable Unchanged

Overloaded

Using circuits
Implemented in C++

Direct Indirect

:: a()

. -> .*

->* *a

&a sizeof new

delete new[]

delete[]

throw a,b

alignof

typeid

a++ a-- ++a --a

-a !a ˜a a*b a/b

a%b a+b a-b a>>b

a<<b a>b a<b a>=b

a<=b a==b a!=b a|b

aˆb a&b a&&b a||b

a?b:c1

a*=b a/=b

a%=b a+=b

a-=b a>>=b

a<<=b

a|=b aˆ=b

a&=b

(type)2 +a

a=b "a"_b

a<<i3 a>>i

a<<=i a>>=i

a[]4

1 The ternary operator cannot be overloaded in C++, therefore we implement it as a function (MUX).
2 Explicit conversion between SecureInt and SecureBool, and between SecureInt of different sizes.
3 Shift by unencrypted number.
4 Access to individually encrypted bits.

loaded and executed in the exact same way as standard executables.

3) As long as the program compiles, it should work as expected. Encrypted processing caveats (such

as branching on encrypted data) should be caught and reported during compilation.

These design requirements aim to enhance usability. An alternative approach would be to extract and

separate the private computation from the main program and treat it as a separate computational block;

While this would potentially improve performance, it severely affects usability as it impacts the familiar

software development environment of imperative programming languages. The programmer cannot debug

line-by-line, and unexpected control flow variations (low-level interrupts, inter-process communication

signals, debugging breakpoints, etc.) would leave the programmer with non-understandable memory

contents.

Therefore, in this work, we treat the C++ statements as atomic computational blocks which would

yield the same results as their unencrypted counterparts. In essence, this implies that a) lazy evaluation

is not allowed, and b) arithmetic needs to strictly be in power-of-2 ring, e.g., 256 (8-bit), 512 (9-bit),

etc., otherwise bitwise manipulations and arithmetic overflows would yield unexpected or counter-intuitive

(unsound) results. Moreover, we provide the option to explicitly set the exact value of bit size per variable.

This slightly deviates from standard C++ and its predefined variable bit sizes char, short, int, long.

10

In modern computers, using a 32-bit int instead of a 16-bit short does not incur overhead. In encrypted

computation, however, doubling the number of bits of the plaintext can lead to a dramatic increase in

performance overhead. As experimental results demonstrate, even 1 bit can make a big difference in

performance, affecting the practicality dimension. Explicit size declaration can be found in functional

programming languages, so the programmer may already be familiar with this practice. In the example

of Listing 1, all variables are 8 bits (Line 7).

As discussed in Section II, modern FHE libraries encrypt single bits. Therefore, SecureInt is

essentially an array of independent encrypted bits. Processing SecureInts is similar to processing

data using Boolean circuits. For example, in case of addition, the + operator maps to an adder of the

appropriate bit size. Every gate of the adder, however, is evaluated using the underlying FHE library.

B. Supported C++ operators

The usability requirement implies that all standard operators are available to the programmer when

using encrypted variables. Table I summarizes the C++14 operators, classified into 5 groups:

Non-applicable: This groups consists of member and structure reference/dereference operators, as well

as function call and scope resolution. These operators are not intended to be defined for SecureInt.

Unchanged: These operators retain their native default semantics.

Overloaded: These operators are overloaded for SecureInt. The class defines these operators, which

in turn call the appropriate functions corresponding to the semantics of unencrypted data. Some class

operations do not require manipulation on encrypted data; for example, copy, or expanding/shrinking

the number of bits. These operators are implemented purely at a high-level without calling circuit

functions, and appear in the ‘Implemented in C++’ category. All the other overloaded operations (e.g.,

a+b) require calls to functions implementing Boolean circuits using FHE-evaluated gates (dubbed “FHE

circuits”). These operators can be further classified into two categories: ‘Direct’, which actually call FHE

circuit functions, and ‘Indirect’, which do not call such functions directly but are expressed using Direct

operators. Usually in C++, compound assignment operators (such as a+=b) serve as building blocks for

their counterpart operators. For example, the operator a+b is expressed as t=a;t+=b. In other words,

the semantics of a binary operator (not bitwise) are defined by the corresponding compound assignment

operator. Nevertheless, when processing encrypted variables, we have the opposite case: the compound

assignment operators have to be defined via their binary counterparts, since each FHE circuit function

defines a referentially transparent function with its output being distinct from any of its inputs.

11

C. Mechanics of the SecureInt class

Our SecureInt class is built on top of a uniform FHE API we have developed. This FHE API

consists of the following components:

• Bit - a class representing one bit. The class defines constructors, assignment operators (copy

and move) along with export and import to and from a string in encrypted form.

• Secret and evaluation keys generation with loading and saving capabilities.

• Functions to encrypt and decrypt one bit using FHE.

• List of logic gates - referentially transparent functions taking one or more Bits as arguments and

returning one Bit;

• a Bit instance for encrypted bit zero and a Bit instance for encrypted bit one, if the evaluation

key is available.

The motivation for our FHE API is to abstract the different APIs of existing FHE libraries, so that the

C++ source code becomes oblivious to the underlying FHE library. The advantage of this approach is

that a new FHE library can be plugged-in without any change to the implementation of the SecureInt

class, so the programmers simply need to link their compiled binary with the corresponding FHE library

and the newly generated ‘Framework API .cpp file’. In this work, we have developed adapters to all three

FHE libraries in our scope.

The data representation of SecureInt is an array of Bits sized to the template parameter of the class.

For different N, each template specialization SecureInt<N> realizes an independent class. Therefore,

binary operators, including multiplication, between SecureInt<N1> and SecureInt<N2> of different

sizes are not defined.

However, SecureInt can be promoted or downcast using the explicit cast operator to enable

incompatible binary operations. For example, in order to convert SecureInt<8> to SecureInt<16>,

the cast operator pads the 8 most significant bits with Bit instances of encrypted zero provided by

the FHE API. Downcasting is done by discarding Bits from the array. Every overloaded operator in

SecureInt is a method of the class that is templated by the size N (i.e., the number of bits). If the

operator is from the “Direct” group (Table I), the corresponding FHE circuit function is called; these

circuit functions are static noexcept private members of SecureInt, but are still templates

of the parameter N.

In C++, logical operators on int result in bool type. In case of SecureInt, a logical operator

must produce an encrypted 0 or 1, so it cannot be of the bool type. Therefore, another SecureInt

should hold the encrypted result. Nevertheless, this approach is suboptimal as SecureInt is defined to

12

hold multiple bits. Hence, similar to how C++ produces bool type out of logical expressions, we intro-

duce a new class SecureBool, which is derived from SecureInt<1> and inherits its functionality.

Additionally, SecureBool defines multiplication and conditional operators between SecureBool and

SecureInt<N>, so, even though multiplication between SecureInt<1> and SecureInt<N> is for-

bidden, the latter is allowed between SecureBool and SecureInt<N>, resulting in SecureInt<N>

type.

Using the SecureBool class provides substantial performance improvements to the selector opera-

tions, without any burden to the programmer. Consider the following expression: (a<b)*c. If only the

SecureInt class was available, this expression would invoke an FHE circuit function for comparisons,

followed by a circuit function for multiplication. The latter is a complex operation, and in case of multi-bit

inputs, it is quite expensive. On the other hand, if (a<b) results in SecureBool, the multiplication can

be defined as an operator between SecureBool and SecureInt invoking only a Boolean multiplexer

FHE circuit function, which is significantly simpler and faster to evaluate. In both cases, the expression

evaluates to the same result and has the same SecureInt type. We remark that this happens obliviously,

without the user being aware that SecureBool exists. Still, the programmer can use SecureBool

class explicitly in the program. In summary, our SecureInt class has the following properties:

• Exposes an internal type Bit aliased to FHE API’s Bit, and provides access to individual Bits

by overloading the [] operator.

• Exports and imports its encrypted representation into a string.

• Offers functions for FHE encryption and decryption.3

• Defines all “Overloaded” C++ operators of Table I.

• Defines an explicit cast operator between SecureInt of different sizes.

• Defines an explicit cast operator to SecureBool (which is different from a SecureInt<1> cast,

as it entails reducing all encrypted bits using an FHE OR circuit, following the C++ convention that

any non-zero value is Boolean true).

IV. BUILDING FHE-ENCRYPTED EXECUTABLE: FRAMEWORK’S VIEW

As discussed in the previous section, the programmer should be completely oblivious to the mechanics

of instantiating FHE schemes. This section discusses the process taking place behind the scenes, after

the programmer compiles the source code. The process diagram for the compilation and execution of a

C++ program using our framework appears in Fig. 1.

3These functions work obviously only when a secret key is defined, which is true during pre-processing the user’s program,

post-processing the results, or during debugging.

13

Fig. 1. Process diagram presenting the components required to compile and execute a C++ program operating on FHE encrypted

data. The shaded parts can be outsourced to a third party.

The process starts with the ‘User program’, which is C++ code (for example, the source code in

Listing 1). The ‘User program’ needs to #include the ‘Framework API .h file’ of our framework (i.e.,

secureint.h), to have access to the new secure data types. Furthermore, encrypted constants have to be

appropriately annotated (e.g., 7_E).

A. Compilation process

Before the programmer compiles for the first time, the framework needs to generate the appropriate

set of secret/evaluation keys. This process is required once per program. The programmer has the option

to re-use the same keys for different programs by setting the configuration file parameters accordingly,

given that the keys are stored in a file. Generating keys can take up to a few minutes, as shown in Table

II, therefore the first compilation will take much longer compared to the subsequent ones. Generation

of keys is required before the first compilation, since the secret key is needed to encrypt the constants

in the source code. Therefore, our developed ‘Build tool’ is generating the appropriate ‘Secret key’ and

‘Eval key’, for a given ‘Config file’ delineating the FHE scheme to be instantiated, and generates the

‘Framework API .cpp file’.

The latter, besides the instantiation of our overloaded operators, also contains encryptions of program

constants. In our framework, we use the _E suffix to: 1) allow the building tool to extract the list

14

of constants used in the program; 2) encrypt these constants into string literals; and 3) update the

string literal operator (std::string operator ""_E(unsigned long long x)) defined in

the SecureInt implementation file with the returns of string literals representing the encrypted con-

stants. Without this automated process, the programmer would have to manually instantiate the FHE

cryptosystem, generate the secret key, and use it once per encrypted constant, replacing the user-defined

literal (e.g., 7_E) with the corresponding encrypted value. This value would expand over numerous

lines of code, since every ciphertext is in the order of 2KB-10MB, severely affecting usability. Notably,

the compilation time is also affected by the introduction of new encrypted constants: Every time the

programmer declares a new constant (not currently in the pool of already encrypted ones), the ‘Build

tool’ needs to encrypt it and make it available to the compiler.

One of the requirements outlined in the previous Section is that if the program compiles, it works as

expected. Thus, meaningful compiler errors are very important in the process. The most critical one is

the implicit conversion of SecureInt or SecureBool to bool: For example, consider the statement

if(x>y){}, where x and y are SecureInt. In C++, if the arguments were integer, the > operator

returns a bool. In our framework, the > operator returns a SecureBool, which cannot be used in an if

statement. Typically, C++ implicitly converts any data type to bool, with the common convention that

zero values convert to false and non-zero values convert to true. Nevertheless, this convention would

be wrong and misleading here, therefore the compiler needs to stop the compilation and highlight the

error. Fig. 2 presents an error message from our framework. In this case, the SecureBool class defines

the cast-to-bool operator, which uses templates –along with static_assert C++ mechanisms– to

produce a meaningful error message to the user.

The last part of the building process is to instantiate the group of ‘Direct’ operators which, as discussed

in Section III, are directly mapped to FHE circuits. The ‘Circuit instantiation’ database (input in Fig. 1

and output in Fig. 3) is a collection of explicit template specializations of all possible combinations of

FHE circuit functions and possible numbers of bits, where the bit size is the template argument. In our

work, this collection is generated separately for each FHE library, because the evaluation of the FHE

gates has different performance; hence, the optimal function for evaluating each FHE circuit is different

as well. The optimizer of a standard conforming C++ compiler must remove the specializations (the

FHE circuit functions) that are not used in the program (i.e., those not implicitly instantiated). The other

groups of the overloaded operators (namely, “Indirect” and “Implemented in C++”) are implemented as

non-specialized template members without calls to FHE circuit functions.

15

Fig. 2. Compilation fails due to implicit conversion of SecureBool to bool (SZ=1 because SecureBool is derived from

SecureInt<1>).

B. Encrypted binary execution

In order to execute a compiled binary, the evaluation key needs to be loaded. Table II indicates that

the evaluation key size ranges from 78MBs to 2.5GB, impacting the loading and execution overhead of

a given binary. As expected, this may cause a significant increase in memory usage during execution,

while certain ciphertext properties could further impact the execution time. In HElib, for instance, each

bit requires 10MBs of storage. Hence, depending on the FHE ciphertexts incorporated in the binary, the

execution times and the memory consumption overheads are impacted accordingly.

In outsourced computation scenarios, the user/programmer would need to transmit the binary and the

evaluation key to the third party, and receive the encrypted output. In this case, the third party needs

to have the appropriate execution environment, which includes the corresponding FHE library and its

prerequisites. We remark that the FHE library can be statically linked into the binary: This would increase

the binary size by ≈4MBs for TFHE and FHEW, or by 32MBs for HElib. The computation host also

needs to have FFTw3 installed for TFHE and FHEW, while HElib requires GMP and NTL. Apparently,

the fundamental bottleneck in outsourced computation scenarios is the transmission of the evaluation key

and the FHE ciphertexts. For the Fibonacci code of Listing 1, the final binary+evaluation key size is

82MB, 2.5GB, 1GB for TFHE, FHEW, and HElib respectively.

Finally, as soon as the execution terminates, the end user runs our decryption tool that loads the secret

16

TABLE II

FHE LIBRARY OVERHEADS (KGT/ENCT/DECT - KEY GENERATION/ENCRYPTION/DECRYPTION TIME (MS),

SKSZ/EVSZ/CTXTSZ - SECRET KEY/EVALUATION KEY/CIPHERTEXT SIZE).

Lib KGT EncT DecT SkSz EkSz CtxtSz

TFHE 317 0.024 0.00024 78MB 78MB 2KB

FHEW 11,066 0.004 0.0005 1.13KB 2.5GB 2KB

HElib 53,659 175 78 1GB 1GB ≈10MB

key and decrypts the results. For TFHE and HElib, the secret key has the same size as the evaluation key,

while for FHEW the secret key is significantly smaller. The time for decrypting a ciphertext is reported

in Table II. We observe that all libraries have practical decryption times.

V. ADDING FHE LIBRARIES: INTEGRATOR’S VIEW

The function body for the overloaded C++ operators is retrieved from a ‘Circuit Instantiations’ database,

which is different for every FHE library and for every SecureInt size. In order to generate this

database, ‘Verilog prototypes’, which are Verilog modules with equivalent functionality to the required

C++ functions, are synthesized into gate-level netlists using the Synopsys Design Compiler against a

‘Standard Cell Library’. The latter is a collection of building block cells (i.e., logic gates) with their

corresponding properties (e.g., area, timing, etc.). The process of adding an FHE library to our framework

is summarized in Fig. 3.

A. Building a custom Standard Cell Library

Each FHE library exposes different functions to the user. The first step towards building our custom

‘Standard Cell Library’ is to execute these functions and benchmark the performance of each FHE gate

operation. Afterwards, based on our performance evaluation, we can assign values to the area property

of each logic gate in the ‘Standard Cell Library’ that are proportional to the runtime performance of the

corresponding FHE gate. This process informs the Synopsys Design Compiler to optimize a gate-level

netlist for area, which ultimately allows prioritizing the faster FHE circuit functions in the final ‘Circuit

Instantiation’ file.

1) TFHE: The TFHE API provides the following FHE gates (building blocks): NOT, AND, NAND,

OR, NOR, XOR, XNOR, and MUX. This set is functionally complete and allows us to build any

compound FHE circuit. In Table III, we summarize the performance evaluation of TFHE’s building

17

Fig. 3. Process diagram describing the addition of an FHE library to the framework.

blocks; we observe that NOT gate evaluation is practically free, while all the remaining FHE gates have

comparable performance (around 13ms). One exception is MUX, which takes twice as long to evaluate.

2) FHEW: The FHEW API provides the NOT, AND, NAND, OR, and NOR gates. Similar to TFHE,

the supported set of FHE gates is universal, NOT is practically free, and all other gates exhibit similar

performance (although slower compared to TFHE). Since XOR, XNOR, and MUX are not directly

provided, we compose them using the other supported gates. An important concern with FHEW is

that it does not support gate operations on dependent ciphertexts – evaluation halts with the message

“ERROR: Please only use independant ciphertexts as inputs.” (sic). Unfortunately, there is no workaround

to this, since the library does not provide a function that can check for such dependencies. Therefore,

the usability of FHEW is impacted due to this limitation, as the library may not be able to support all

possible user programs in its current version. For example, a SecureInt expression (a+a) generates

the error mentioned above.

3) HElib: HElib is fundamentally different, compared to TFHE and FHEW, as it exposes arithmetic

operators instead of Boolean gates. Therefore, we need to compose other FHE gates using the available

+,* operators, which correspond to XOR and AND in GF (2):

AND(a, b) = a · b mod 2

OR(a, b) = a+ b+ (a · b) mod 2

NOT(a) = 1 + a mod 2

18

NAND(a, b) = 1 + (a · b) mod 2

NOR(a, b) = (1 + a) · (1 + b) mod 2

XNOR(a, b) = 1 + a+ b mod 2

XOR(a, b) = a+ b mod 2

MUX(a, b, c) = a · (b+ c) + c mod 2

Based on these composed Boolean gates, in Table III we compare the overhead of HElib versus TFHE

and FHEW. In all benchmarks, we configure each FHE library with a matching security level λ ≥ 100

bits. As illustrated in Table III, HElib is several orders of magnitude slower compared to TFHE and

FHEW, which limits its practicality.

Unlike TFHE and FHEW, bootstrapping in HElib has to be explicitly invoked to decrease noise. In

fact, noise accumulation is the reason why the NAND gate operation is significantly slower compared to a

sequence of AND and NOT operations with independent operands. At the end of each FHE gate operation,

we check the noise of the ciphertext before returning: If the noise passes the defined noise threshold,

we invoke the bootstrapping (recryption) process. In this work, the noise threshold was determined

heuristically to optimize for performance, given hundreds of evaluations: Higher noise thresholds ensure

that bootstrapping is invoked less frequently, which improves the overall runtime performance. In all

cases, for all the presented results in this work, we always verify the correctness of HElib calculations

at the end of every program execution to validate that the selected noise threshold is appropriate.

Remark 1: The results in Table III for HElib are generated using dependent ciphertexts, which accumu-

late noise faster so that more frequent bootstrapping is necessary. This allows us to determine worst-case

situations, given that real-life programs exhibit multiple dependencies among variables. As soon as the

bootstrapping noise thresholds across different gates are estimated, we are able to determine the area size

parameter of each FHE gate in our Standard Cell Library accordingly.

Fig. 4 presents the time required for FHE evaluation of the various gates as ciphertext noise accumulates

over time, for HElib. Since bootstrapping needs to be invoked explicitly, it is necessary to perform enough

experiments to determine the asymptotic performance of the gate over time. Fig. 4 indicates that the

average time needed to evaluate the various gates converges after approximately 100 iterations.4

Remark 2: The selection of parameter p in HElib (i.e., the characteristic prime) limits the different

values in each Rp polynomial coefficient. Using the native plaintext space where p=2, each coefficient

can be either 0 or 1, so all the above arithmetic operations are modulo 2. Evidently, simulating bit-level

4For TFHE and FHEW, since bootstrapping occurs during each gate evaluation, the convergence is almost instant.

19

TABLE III

TIME (MS) TO EVALUATE A GATE (NON-NATIVE GATES ARE MARKED WITH ITALIC).

Gate TFHE FHEW HElib

NOT 5.97·10−4 3.69·10−4 44.15

AND 13.0 73.7 53,328

NAND 12.8 73.8 73,250

OR 13.3 72.9 59,838

NOR 15.7 74.0 76,520

XOR 12.7 224 3.45

XNOR 13.0 221 37.57

MUX 24.4 217 104,396

gate operations by allocating distinct ciphertexts for each individual plaintext bit would be inefficient

and such gate constructions would be affecting performance, since HElib is designed to naturally support

vectors over large plaintext spaces in each ciphertext.

To illustrate the performance overhead when HElib is used to simulate Boolean circuit operations

(so that each individual bit is encrypted as a separate ciphertext), we benchmark 7-bit addition and 7-

bit multiplication under two use scenarios: In the first scenario (dubbed “Circuit” for convenience) we

instantiate a 7-bit adder and a 7-bit multiplier using the simulated Boolean gates presented above, so that

each input bit is encoded in a different ciphertext and p=2. In the second scenario (dubbed “Polynomial”

for convenience), we use p=127 so that HElib can add and multiply polynomial coefficients directly

(i.e., without simulating adder and multiplier circuits). Table IV summarizes our comparison results: we

observe that “Circuit” addition is approximately 153 times slower than “Polynomial” addition, while

multiplication is about 15 times slower. For completeness, the Table also reports performance results for

TFHE and FHEW (corresponding only to the “Circuit” scenario). We observe that “Polynomial” addition

in HElib is faster than “Circuit” addition in FHEW, while TFHE is the fastest.

B. Generating Circuit Instantiations

Following the process outlined above, we create a Standard Cell Library for each FHE cryptosystem in

scope. Unlike actual hardware circuits that evaluate their inputs in parallel, software evaluation of circuit

gates is not inherently parallelized, since the host processor evaluates each gate sequentially. Therefore, by

optimizing our automatically generated circuits for area, we achieve better performance during evaluation.

In this work, the area of each gate is set according to our benchmark results reported in Table III.

20

Fig. 4. Average time of one evaluation of HElib gates over sequential evaluations accumulating noise.

TABLE IV

OVERHEAD OF 7-BIT ADDITION AND MULTIPLICATION IN HELIB (“CIRCUIT” AND “POLYNOMIALS”), TFHE AND FHEW

(IN MS).

Op HElib (Poly) HElib (Circ) TFHE FHEW

+ 2,430 372,432 357 3,480

* 51,770 767,998 1,257 10,416

Equipped with our Standard Cell Libraries, we generate FHE circuit instances for each overloaded

C++ operator and all supported sizes, for all three FHE libraries in scope. Our approach is to describe

each Boolean circuit as a register-transfer-level (RTL) abstraction using the Verilog hardware description

language. In this work, we have developed a comprehensive database of RTL Verilog implementations for

all circuits corresponding to all possible overloaded C++ operators, where the size of each SecureInt

operand is parameterizable. Notably, most of these C++ operators have an exact syntactic and semantic

match in RTL Verilog; only the ++, -- operators are not supported, and they are synthesized with

appropriate Verilog expressions. Another exception is that the ternary operator in Verilog expects a bit

value as the control signal, therefore a SecureInt control value needs to be OR-reducted in Verilog.

Our framework offers an automated process that constructs all RTL Verilog files for all desired operators

and sizes. These operator descriptions are sent to the Synopsys Design Compiler, which processes Verilog

sources and optimizes circuit designs, together with a corresponding Standard Cell Library that informs

the “cost” of each Boolean gate. The Design Compiler translates the RTL Verilog input into structural

21

Verilog (i.e., a netlist of logic gates) and optimizes the resulting Boolean circuit for each Standard Cell

Library according to the area cost of each gate. Finally, we developed a custom parser which converts

each circuit description from the structural Verilog netlist of logic gates into C++ specialization template

functions that evaluate a corresponding FHE gate. In our database, these functions are sorted/indexed

based on the underlying FHE cryptosystem and bit size.

VI. EVALUATION RESULTS

A. Experimental setup

All results in this section were collected using a computer equipped with an Intel i7 processor and 8 GBs

of RAM, running Ubuntu 16.04.1 and GCC version 5.4.0. For our experiments, we used TFHE version

1.0, FHEW version 2.0b, and HElib commit ID 65ef24c on GitHub. With regards to dependencies, we

used GMP version 2.6.1, NTL version 11.0.0, and FFTw3 version 3.3.4.

As discussed in Section V-A3, instantiating HElib with a security level λ ≥ 100 bits offers limited

practicality. Therefore, in order to understand how HElib performance scales when introducing different

bit sizes and benchmarks, we include a configuration offering 0 bits of security (based on the formula

in [47, Eq. 8]), also used by the authors of HElib in [49]. The version offering 0 bits of security is

dubbed ‘HElib-0’, while the version of HElib offering a security level comparable to TFHE and FHEW

is dubbed ‘HElib-1’.

B. Performance of C++ operators

In our experiments, we focus on the evaluation of the overloaded ‘Direct’ operators category of Table I,

since the overhead of the ‘Implemented using C++’ category is negligible, and the ‘Indirect’ category

operator performance reduces to the corresponding ‘Direct’ operator. To avoid unnecessary clutter in

the results, we first group operators by comparable performance, as shown in Table V. This grouping

is natural, as operators within each group are performing similar operations. It should be noted that

this grouping was performed with respect to performance consistency across all three FHE libraries;

the grouping would be simpler if we consider only one library. For example, groups {eq} and {and},

as well as groups {bit} and {xor} could be merged as one for the TFHE library, since the results are

consistent across different bit sizes. We note that this set of experiments presents 4-bit plaintexts, as

runtime becomes prohibitive for larger bitsizes for HElib-1.

Fig. 5 shows the performance across our operator groups. Given the results, we can make the following

observations:

22

TABLE V

GROUPING OF OPERATORS. VARIABLES a, b, c ARE SecureInt; z IS SecureBool.

Name Operators

{inc} a++ a-- ++a --a -a

{mul} a*b

{add} a+b a-b

{gt} a>b a<b a>=b a<=b

{and} a&&b a||b

{xor} aˆb

{bmx} z?a:b

{neg} ˜a

{not} !a (SecureBool)a

{div} a/b a%b

{sh} a>>b a<<b

{eq} a==b a!=b

{bit} a|b a&b

{mux} z*a

{smx} a?b:c

• The bitwise negation operator {neg} is fast across all libraries. The execution time for FHEW and

TFHE are fractions of a millisecond, and HElib time is fractions of a second.

• Division is the most costly operation across all the libraries, followed by multiplication. HElib-

1 division ({div}) has the worst performance among all operations, with a 20 minute overhead.

Division support for encrypted variables is a serious impediment to achieving practicality.

• An optimization offered by our framework is the presence of the SecureBool class, which can

multiplex expressions much faster compared to the multiplication of SecureInts (such as Line

17 of Listing 1). The results corroborate that using the Boolean multiplexer {mux} (z*a) instead

of multiplication ({mul}) leads to an efficiency improvement of 5x for TFHE, 10x for FHEW, 20x

for HElib-0, and 130x for HElib-1.

• The binary bitwise XOR operator ({xor}) is fast in HElib. Helib-0 XOR is 100x faster than TFHE

XOR, and 40x faster than HElib-1 XOR. TFHE XOR is 15x faster than FHEW XOR.

• With regards to results consistency across operator performances, indicated by the average and the

variance of the results, we identify that TFHE exhibits the most consistent behavior, followed by

23

Fig. 5. Time required to execute the operators for SecureInt<4>. The gray horizontal line corresponds to 1 second.

FHEW, HElib-0, and HElib-1, in order. Average values and variance of logarithms for TFHE, FHEW,

HElib-0, HElib-1 are {150, 1100, 2700, 130000} and {0.57, 0.67, 8.2, 8.8}, respectively.

The second set of results, presented in Fig. 6, provides insight on how performance degrades when

increasing the effective plaintext size. We explore 2-, 4-, 8-, 16-, and 32-bit plaintexts. We only present

results for the most general groups of programming operations: two arithmetic groups: {add} and {mul},

comparison {gt}, and the {not} group, which consists of the cast to SecureBool and the logical !

operators. As mentioned above, HElib-1 does not scale above 4-bit plaintexts, so results are not shown.

Similarly, only TFHE was able to provide results for 32-bit plaintexts in reasonable time. We further

observe that:

• TFHE and FHEW demonstrate roughly linear performance degradation as the effective plaintext

size increases. The results are consistent across different operators. HElib-0, on the other hand,

degrades much faster for {add} and {gt} as the bitsize increases from 4 to 8 bits, due to extensive

bootstrapping.

• TFHE is faster compared to the other two libraries. Moreover, TFHE on 32-bit plaitexts consistently

outperforms FHEW on 16-bit plaintexts. Still, a 32-bit multiplication using TFHE takes 29.4 seconds,

limitig its practicality in real programs operating on standard 32-bit integers.

C. Comparisons using benchmarks

In order to evaluate real programs, we use eight data-oblivious benchmarks from the TERMinator Suite

[50]. These benchmarks manipulate sets of encrypted variables (i.e., the equivalent of SecureInts)

using predetermined execution paths, i.e., without branches, to prevent leaking information about the

ciphertexts. The provided algorithms are classified into three categories: 1) encoder benchmarks, such

24

Fig. 6. Time required to evaluate selected groups of operators: {add}, {mul}, {gt}, and {not}, for different effective plaintext

sizes and FHE libraries.

as Jenkins (JEN) and the Speck Cipher (SC), which implement real-life bitwise-intensive cryptographic

and hash applications, 2) kernel benchmarks, such as Bubble Sort (BS), Matrix Multiplication (MM),

Insertion Sort (IS), and Sieve of Eratosthenes (SoE), which stress arithmetic and logical operators,

and 3) microbenchmarks, such as the multiplication-intensive Factorial (FAC) and the addition-intensive

Fibonacci (FIB).

For this set of results, Fig. 7 presents the performance overhead of encrypted variables using 16-bit

and 32-bit (only for TFHE) effective plaintext sizes, as our usability objective requires having sufficient

variable bitsizes (we remark that only TFHE can practically scale to 32-bit plaintexts). Also, since HElib-

1 does not practically scale over 4 bits, we only report results for HElib-0. The performance degradation

is measured as the ratio of the execution time using SecureInts over the time of using unencrypted

int types. We immediately observe that, following our discussion in Section VI-B, TFHE is the fastest

library, followed by FHEW and HElib.

With regards to the benchmarks performance, Jenkins exhibits the worst degradation, due to its rich set

of operation, including additions, XORs, and bit shifts. Conversely, the Sieve of Erathosthenes instantiates

25

Fig. 7. Impact of using state-of-the-art FHE libraries to encrypt the variables in real applications, for effective plaintext sizes

of 16-bits (all FHE libraries) and 32-bits (TFHE only).

TABLE VI

MEMORY CONSUMPTION (IN MB) WHILE EXECUTING FIBONACCI, FOR DIFFERENT EFFECTIVE PLAINTEXT SIZES.

Lib Gate 2-bit 4-bit 8-bit 16-bit 32-bit

TFHE 375 375 375 375 375 375

FHEW 2500 2500 2500 2500 2500 -

HElib-0 38 38 44 51 64 -

HElib-1 1100 1200 1600 - - -

only copying and Boolean multiplexer operators, which are significantly faster compared to other operator

classes.

We note that all the eight benchmarks are returning the expected and correct output, suggesting that the

design requirements of our framework are met, and that encrypted processing works correctly and obliv-

iously to the programmer. Moreover, the benchmark implementations did not trigger the aforementioned

exception in FHEW regarding operations on dependent variables (Section V-A2).

The final set of results discusses the memory consumption of our benchmarks. Since the memory

usage is consistent across benchmarks, Table VI presents the result only for the Fibonacci benchmark. In

the first column of the table we also report the overhead of each library while evaluating a single FHE

gate. Our results indicate that both TFHE and FHEW have constant memory overheads, independent of

the effective plaintext size. Conversely, in HElib the amount of required memory grows as the effective

plaintext size increases.

26

VII. ANALYSIS FINDINGS

Integrating the three FHE libraries under a unified framework was an extremely challenging task, due

to vast differences in approaches, implementation, and documentation.

TFHE, besides being the fastest library, it provides a sufficiently simple interface. The user of the library

does not need to worry about incorrect data due to noise since it is handled automatically by the library.

TFHE offers easy functions to load/save keys and ciphertexts. Furthermore, TFHE provides a toy example

demonstrating how to use the library, implementing a real scenario. Memory management of ciphertexts,

however, is problematic as they do not exist as classes.

FHEW is also simple to use, albeit it is slower and provides fewer FHE gates. The major problem of

FHEW is that is cannot operate on dependent variables, as discussed earlier, affecting usability. Another

major technical issue is the lack of export/import keys and ciphertexts functions. The lack of such

functions prevents FHEW from being used in a privacy-outsourcing scenario, since users cannot deploy

their program along with the evaluation key while excluding the secret key. In the context of this work,

we analyzed the implementation of the library at the source level, understanding the internal structure of

the keys in order to develop custom functions for storing and loading the keys and ciphertexts to/from a

file.

HElib has proven to be the most challenging to integrate. It appears to be more of a collection of

functions to be used by cryptographers. It has a very complex process to generate keys, requiring several

parameters which are subject to careful adjustment, otherwise security may collapse. The library tests

provide representative security parameters for various security levels. A major open problem with HElib

is estimating the need for bootstrapping, as this has to be handled manually by the user. Also, HElib

does not provide a sufficiently documented API, and understanding the library functions reduces to source

code analysis.

Another technical issue we encountered is that initializing HElib outside main and subsequently using

it after main starts executing causes a segmentation fault. This scenario can happen when a C++ class

is using an FHE library and a variable of this class is declared globally and used inside any function.

The latter may trigger initialization of the FHE library before main starts. The practice of complex

initialization in global scope is not recommended by the programming community; still, the programmer

expects the program to work properly. A probable cause of this bug is that HElib or one of its dependent

libraries initializes static data and the order of initialization causes inconsistent usage of such data. Both

TFHE and FHEW, however, do not have this problem. Given that a natural C++ requirement is the ability

to declare encrypted variables in global scope, this problem appears to be a usability limitation, yet it is

27

an engineering problem that could be solved through proper debugging.

Our developed framework provides a standardized and simple interface for new FHE libraries working

at the bit level. It can be used as a baseline for performance comparisons across newer versions of existing

or new libraries.

VIII. RELATED WORK

The potential of homomorphic manipulation of encrypted values without decrypting them was first

observed by Rivest, Adleman and Dertouzos in their 1978 work on privacy homomorphisms [51]. Before

2009, partially homomorphic encryption (PHE) remained the only viable option of data manipulation in

the encrypted domain, although it enabled only limited (i.e., functionally incomplete) manipulation of

encrypted values. Notable PHE schemes include Paillier [52], Goldwasser–Micali [53], and Damgård-Jurik

[54] that are additive homomorphic, El Gamal [55] and RSA [56] that are multiplicative homomorphic, as

well as Boneh-Goh-Nissim [57] that supports the evaluation of quadratic (2-DNF) formulas with arbitrary

monomials. In this context, one popular PHE application is secure electronic voting (e.g., [58]).

Since the discovery of FHE by Gentry [44], constant improvements have been reported in the literature.

In addition to the BGV [40] and GSW [41] schemes mentioned earlier, notable examples also include

the DGHV [59], FV [60], LTV [61], YASHE [62], and AGCD [63] fully homomorphic schemes. In an

effort to assess the behavior of FHE in practice, previous work has focused on evaluating and comparing

contemporary schemes. For example, Lepoint and Naehrig compare implementations of the FV and

YASHE schemes [64], while Varia, Yakoubov and Yang develop an specialized testing framework for

FHE and evaluate the performance of HElib under different configurations [24].

The prohibitive overhead of FHE has been a concern from its early days [22], which has motivated

the design of special hardware accelerators for large FHE operands. The authors of [65] present an

architecture for multiplying million–bit integers in milliseconds using the Schönhage-Strassen algorithm,

while [66] presents an FPGA-based design of a 768K-bit multiplier using an FFT core. Since arbitrary

computation on encrypted data remains a highly-sought application of FHE, earlier work has also focused

on developing FHE processors for cloud computing. The authors of [67] present a methodology for private

execution of a program on an untrusted host, and discuss the leakage problem due to early termination,

which motivates us to prohibit branch decisions over encrypted data in this work.

Recent work has also focused on using FHE in machine learning applications over encrypted values

[68], as well as in constructions for reusable garbled circuits [69] and indistinguishability obfuscation

[70]. As both the academic community and the industry have embraced FHE, many open-source imple-

mentations have been reported in the literature. The authors of cuHE [71] accelerate FHE operations using

28

GPGPUs, while HEANN [72] provides support for fixed-point approximate FHE arithmetic. Likewise,

Λoλ [73] provides FHE support in Haskell, Palisade [74] implements lattice-based homomorphic schemes,

and SEAL [75] is Microsoft’s implementation of the FV scheme.

IX. CONCLUSION

In this work, we developed E3, which is a comprehensive framework that enables data processing

directly in the encrypted domain using Fully Homomorphic Encryption. The primary objective of E3

is to assist non-crypto-savvy programmers to incorporate privacy in their developed programs. One

major highlight is the automatic compilation of real C++ programs using fully homomorphic variables,

which guarantee end-to-end protection for sensitive data. The development of our framework is the first

effort, to the best of our knowledge, to automate the use of fully homomorphic data in real programs.

The framework can be used as a baseline for optimizations at different computation abstraction layers,

including, but not limited to, hardware accelerators, compiler optimizations, algorithmic optimizations,

etc.

RESOURCES

The E3 framework can be downloaded from https://github.com/momalab/e3.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,

“Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,

“Spectre attacks: Exploiting speculative execution,” arXiv preprint arXiv:1801.01203, 2018.

[3] C. Barron, H. Yu, and J. Zhan, “Cloud computing security case studies and research,” in World Congress on Engineering,

2013, pp. 1287–1291.

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: Exploring information leakage in

third-party compute clouds,” in Computer and Communications Security (CCS). ACM, 2009, pp. 199–212.

[5] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels and their use to extract private keys,” in

Computer and Communications Security (CCS). ACM, 2012, pp. 305–316.

[6] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing: Mitigating insider data theft attacks in the cloud,” in

IEEE Symposium on Security & Privacy Workshops (SPW). IEEE, 2012, pp. 125–128.

[7] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram, “Scheduler vulnerabilities and coordinated attacks in cloud computing,”

Journal of Computer Security, vol. 21, no. 4, pp. 533–559, 2013.

[8] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog malicious hardware,” in IEEE Symposium on

Security and Privacy (S&P). IEEE, 2016.

[9] D. Hély, M. Augagneur, Y. Clauzel, and J. Dubeuf, “Malicious key emission via hardware trojan against encryption system,”

in International Conference on Computer Design (ICCD). IEEE, 2012, pp. 127–130.

29

[10] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of untrusted computing platforms,” in International

Conference on Computer Design (ICCD). IEEE, 2012, pp. 131–134.

[11] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware trojans: Lessons learned after one decade

of research,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 22, no. 1, p. 6, 2016.

[12] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware: Identifying and classifying hardware

trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[13] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead malicious modifications enabling modern

microprocessor privilege escalation,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 1, pp. 81–93,

2014.

[14] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant–level hardware trojans,” in Cryptographic

Hardware and Embedded Systems Workshop, 2013, pp. 197–214.

[15] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39, 2008.

[16] J. A. Gross, “Ending a decade of silence, israel confirms it blew up assad’s nuclear reactor,” https://www.timesofisrael.

com/ending-a-decade-of-silence-israel-reveals-it-blew-up-assads-nuclear-reactor/, 2018.

[17] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology ePrint Archive, vol. 2016, p. 086, 2016.

[18] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGXspectre Attacks: Leaking Enclave Secrets via Speculative

Execution,” arXiv preprint arXiv:1802.09085, 2018.

[19] C. Gentry, “Computing arbitrary functions of encrypted data,” Communications of the ACM, vol. 53, no. 3, pp. 97–105,

2010.

[20] D. Micciancio, “A first glimpse of cryptography’s holy grail,” Communications of the ACM, vol. 53, no. 3, pp. 96–96,

2010.

[21] J. E. Savage, Models of Computation: Exploring the Power of Computing. Addison-Wesley Longman Publishing Co.,

Inc., 1997.

[22] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can Homomorphic Encryption Be Practical?” in Cloud Computing Security

Workshop (CCSW). ACM, 2011, pp. 113–124.

[23] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the AES Circuit (Updated Implementation),” IACR

Cryptology ePrint Archive, vol. 2012, p. 099, 2015.

[24] M. Varia, S. Yakoubov, and Y. Yang, “HEtest: A Homomorphic Encryption Testing Framework,” in Financial Cryptography

and Data Security. Springer, 2015, pp. 213–230.

[25] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully homomorphic encryption: Bootstrapping in less

than 0.1 seconds,” in International Conference on the Theory and Application of Cryptology and Information Security.

Springer, 2016, pp. 3–33.

[26] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in less than a second,” in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2015, pp. 617–640.

[27] S. Halevi and V. Shoup, “Bootstrapping for HElib,” in Advances in Cryptology–EUROCRYPT 2015. Springer, 2015, pp.

641–670.

[28] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing. ACM, 2005, pp. 84–93.

[29] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie, “On the learnability of discrete distributions,”

in Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. ACM, 1994, pp. 273–282.

30

[30] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing. ACM, 1996, pp. 99–108.

[31] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” Journal of the ACM (JACM), vol. 56,

no. 6, p. 34, 2009.

[32] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” Journal of the ACM

(JACM), vol. 60, no. 6, p. 43, 2013.

[33] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning with errors,” Journal of Mathematical

Cryptology, vol. 9, no. 3, pp. 169–203, 2015.

[34] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, “Classical hardness of learning with errors,” in Proceedings

of the forty-fifth annual ACM symposium on Theory of computing. ACM, 2013, pp. 575–584.

[35] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational coefficients,” Mathematische Annalen,

vol. 261, no. 4, pp. 515–534, 1982.

[36] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algorithms and solving subset sum problems,”

Mathematical programming, vol. 66, no. 1-3, pp. 181–199, 1994.

[37] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,” in International Conference on the Theory and

Application of Cryptology and Information Security. Springer, 2011, pp. 1–20.

[38] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based encryption,” in Cryptographers’ Track at the

RSA Conference. Springer, 2011, pp. 319–339.

[39] M. R. Albrecht et al., “Security Estimates for the Learning with Errors Problem,” [Online]. Available: https://bitbucket.

org/malb/lwe-estimator, 2018.

[40] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption without bootstrapping,” in

Innovations in Theoretical Computer Science Conference, 2012, pp. 309–325.

[41] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based,” in Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 75–92.

[42] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “TFHE: Fast Fully Homomorphic Encryption Library over the

Torus,” [Online]. Available: https://github.com/tfhe/tfhe, 2017.

[43] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster Packed Homomorphic Operations and Efficient Circuit

Bootstrapping for TFHE,” in International Conference on the Theory and Application of Cryptology and Information

Security. Springer, 2017, pp. 377–408.

[44] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM Symposium on Theory of Computing, 2009, pp.

169–178.

[45] L. Ducas and D. Micciancio, “FHEW: A Fully Homomorphic Encryption library,” [Online]. Available: https://github.com/

lducas/FHEW, 2017.

[46] S. Halevi and V. Shoup, “Design and Implementation of a Homomorphic Encryption Library,” [Online]. Available: https:

//github.com/shaih/HElib, 2018.

[47] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog overhead,” in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2012, pp. 465–482.

[48] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Designs, codes and cryptography, vol. 71, no. 1,

pp. 57–81, 2014.

[49] S. Halevi and V. Shoup, “HElib Test Bootstrapping,” [Online]. Available: https://github.com/shaih/HElib/blob/master/src/

Test\ bootstrapping.cpp, 2018.

31

[50] D. Mouris, N. G. Tsoutsos, and M. Maniatakos, “Terminator suite: Benchmarking privacy-preserving architectures,” IEEE

Computer Architecture Letters, vol. 17, no. 2, pp. 122–125, 2018.

[51] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Foundations of secure

computation, vol. 4, no. 11, pp. 169–180, 1978.

[52] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances in cryptology–

EUROCRYPT’99. Springer, 1999, pp. 223–238.

[53] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker keeping secret all partial information,”

in ACM Symposium on Theory of Computing. ACM, 1982, pp. 365–377.

[54] I. Damgård, M. Jurik, and J. B. Nielsen, “A generalization of paillier’s public-key system with applications to electronic

voting,” International Journal of Information Security, vol. 9, no. 6, pp. 371–385, 2010.

[55] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Transactions on

Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[56] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,”

Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[57] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on ciphertexts,” in Theory of Cryptography Conference.

Springer, 2005, pp. 325–341.

[58] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard, “Practical multi-candidate election system,” in

Proceedings of the twelveth annual ACM symposium on Principles of distributed computing. ACM, 2001, pp. 274–

283.

[59] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” in Advances

in Cryptology–EUROCRYPT. Springer, 2010, pp. 24–43.

[60] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” Cryptology ePrint Archive, Report

2012/144, 2012.

[61] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty computation on the cloud via multikey fully

homomorphic encryption,” in ACM Symposium on Theory of Computing. ACM, 2012, pp. 1219–1234.

[62] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for a ring-based fully homomorphic encryption

scheme,” in IMA International Conference on Cryptography and Coding. Springer, 2013, pp. 45–64.

[63] J. H. Cheon and D. Stehlé, “Fully homomophic encryption over the integers revisited,” in Annual International Conference

on the Theory and Applications of Cryptographic Techniques. Springer, 2015, pp. 513–536.

[64] T. Lepoint and M. Naehrig, “A comparison of the homomorphic encryption schemes fv and yashe,” in International

Conference on Cryptology in Africa. Springer, 2014, pp. 318–335.

[65] Y. Doröz, E. Öztürk, and B. Sunar, “A million-bit multiplier architecture for fully homomorphic encryption,” Micropro-

cessors and Microsystems, vol. 38, no. 8, pp. 766–775, 2014.

[66] W. Wang and X. Huang, “FPGA implementation of a large-number multiplier for fully homomorphic encryption,” in

International Symposium on Circuits and Systems (ISCAS). IEEE, 2013, pp. 2589–2592.

[67] M. Brenner, J. Wiebelitz, G. Von Voigt, and M. Smith, “Secret program execution in the cloud applying homomorphic

encryption,” in Digital Ecosystems and Technologies Conference (DEST), 2011, pp. 114–119.

[68] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over encrypted data.” in NDSS, vol. 4324,

2015, p. 4325.

[69] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich, “Reusable garbled circuits and succinct functional

encryption,” in ACM symposium on Theory of computing. ACM, 2013, pp. 555–564.

32

[70] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistinguishability obfuscation and

functional encryption for all circuits,” in Foundations of Computer Science (FOCS). IEEE, 2013, pp. 40–49.

[71] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator library,” in International Conference on Cryptography

and Information Security in the Balkans. Springer, 2015, pp. 169–186.

[72] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of approximate numbers,” in

International Conference on the Theory and Application of Cryptology and Information Security. Springer, 2017, pp.

409–437.

[73] E. Crockett and C. Peikert, “λoλ: Functional lattice cryptography,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2016, pp. 993–1005.

[74] K. Rohloff et al., “The PALISADE Lattice Cryptography Library,” [Online]. Available: https://git.njit.edu/palisade/

PALISADE, 2018.

[75] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-seal v2.1,” in International Conference on Financial

Cryptography and Data Security. Springer, 2017, pp. 3–18.

