
ZLiTE: Lightweight Clients for Shielded Zcash
Transactions using Trusted Execution

Abstract. Cryptocurrencies record transactions between parties in a
blockchain maintained by a peer-to-peer network. In most cryptocurren-
cies, transactions explicitly identify the previous transaction providing
the funds they are spending, revealing the amount and sender/recipient
pseudonyms. This is a considerable privacy issue. Zerocash resolves this
by using zero-knowledge proofs to hide both the source, destination and
amount of the transacted funds. To receive payments in Zerocash, how-
ever, the recipient must scan the blockchain, testing if each transaction is
destined for them. This is not practical for mobile and other bandwidth
constrained devices. In this paper, we build ZLiTE, a system that can
support the so called “light clients”, which can receive transactions aided
by a server equipped with a Trusted Execution Environment. Even with
the use of a TEE, this is not a trivial problem. First, we must ensure
that server processing the blockchain does not leak sensitive information
via side channels. Second, we need to design a bandwidth efficient mech-
anism for the client to keep an up-to-date version of the witness needed
in order to spend the funds they previously received.

1 Introduction

Decentralized cryptocurrencies offer the potential to revolutionize payments. By
providing transparent means to audit transactions, they reduce the need to rely
on trusted incumbents and allow new innovation on financial applications. But
this same transparency renders nearly all cryptocurrencies completely unsuited
for wide-scale adoption: all transaction are broadcast publicly in a manner that
can be readily linked to real world identities [26,4], raising issues with government
surveillance, harassment and stalking, and the viability of business competition
when competitors can see all cash flow.

A variety of protocols have been proposed, such as Solidus [2,9], Cryptonote
[37], Zerocoin [27] and Zerocash [5], that, with varying effectiveness [29,22,21],
alleviate these issues. For example, in Cryptonote the destination address is
always a newly generated one-time public key derived from the receiver’s public
key and some randomness from the sender. Zerocoin functions as an overlay
on Bitcoin, where users mint a zerocoin and issue a transaction to transfer the
funds to its commitment. The coin can be further spent by using zero-knowledge
proofs. The most promising of these protocols, Zerocash, removes all information,
such as sender/recipient identity, value, and linkability through the use of a zero-
knowledge proof that there exists some past transaction which gave the user the
funds they are spending. Zerocash is deployed in the cryptocurrency Zcash.

2

Payment Notification. Unlike in traditional means of payment, like credit cards
and cash payments, in nearly all cryptocurrencies, including Bitcoin, Ethereum,
and Zcash, it is possible to send money to a recipient’s address without direct
interaction or communication with the recipient. The recipient is paid, but only
learns this next time when she is online. This raises the problem of payment
notification, that is, the recipient must find out they were paid. Some cryptocur-
rencies, like Ethereum, use an account model where there is a single, well-defined
location for payments. As a result, the recipient and, more significantly, anyone
else, can see when and for how much someone is paid. Other cryptocurrencies, in-
cluding Bitcoin and Zerocash, eschew this approach for improved privacy, storing
payments individually as unspent transaction outputs (UTXOs) in unpredictable
locations. In such systems, there must be some mechanism for users to discover
a UTXO belongs to them. The simplest way to do this is to scan the blockchain
and check each transaction.

Payment notification is a particular problem for privacy-preserving systems
like Zcash. Transactions in Zcash, consist of an opaque commitment, a cipher-
text, a serial number to prevent double spending, and a zero-knowledge proof
of the transaction’s correctness and the existence of funds to spend. In partic-
ular, there is no metadata to identify the sender or recipient. The only way for
a client to identify if a payment is directed to them is by trial decryption of
the ciphertext associated with a transaction: each transaction contains a cipher-
text under the recipient’s public key. To monitor for payments, clients must,
therefore, conduct a trial decryption for every transaction on the blockchain.
While this is completely feasible for well-resourced clients, running on platforms
like standard desktop PCs, it is not desirable, nor often feasible, for resource-
constrained clients like mobile devices where both power and bandwidth are
major constraints. In this paper, we focus on such resource-constrained clients.

Light Client Model. Several cryptocurrencies address this problem with a model,
exemplified by Bitcoin’s Simplified Payment Verification (SPV) scheme [30],
where “light clients” entrust a server (full node) to respond to queries about
payments to a given address. The SPV protocol reveals to the server which
(pseudonymous) addresses belong to a client and thus links multiple addresses
together and potentially to real world identities, reducing user privacy. Directly
applying the same model to Zcash is not possible without revealing the client’s
decryption key to the server so that it can perform the trial decryption for
transactions, and thus completely breaking the privacy properties of Zcash.

Another challenge for resource-constrained clients is that simply notifying
users that they received funds is not sufficient to use them for new payments
in Zcash. To spend funds sent to them in a previous transaction tx in block n,
users must prove that there exists a path (called witness) w from the root of a
Merkle tree (called note commitment tree) to tx. Moreover, this information is
not static and it needs to be updated as new transactions are added to the tree.

Our Contribution. In this paper, we introduce ZLiTE, a system that enables
efficient privacy-preserving light clients for Zcash. Our approach follows the com-

ZLiTE: Zcash Lightweight Clients using Trusted Execution 3

mon “light client and server” model, thus minimizing the client bandwidth and
computation requirements by offloading processing to the server. To tackle the
privacy problem of client queries, we leverage trusted execution, namely Intel
SGX [19], on the server. This approach allows the server to perform the trial
decryption for transactions without learning the client’s key.

Although this approach is conceptually simple, realizing it securely requires
overcoming technical challenges. First, external reads and writes from the SGX
enclave to the blocks stored on the server or to response buffers can leak which
transactions belong to the client. Second, SGX enclaves are susceptible to side-
channel attacks [7,8,28,15,34,39] that can leak their internal memory access pat-
terns. Secret-dependent code and data accesses can enable a malicious server to
infer the used client’s key. Third, our system also needs to ensure that the residing
platform cannot mount a combination of eclipse attacks [18,38] on the blockchain
and replay client messages to identify queried transactions. And fourth, we need
to efficiently provide the client with up-to-date Merkle tree witnesses needed to
spend funds from a given transaction without leaking any private information.

To address these challenges, ZLiTE combines, in a novel way, a number of
known techniques from private information retrieval and side-channel resilient
trusted execution, making the processing of client queries oblivious towards a
powerful adversary controlling the supporting server. We also design a new com-
mitment tree update mechanism that allows the client to obtain efficiently from
the server all the needed information to spend the received funds.

Parallel Work. Finally, we note that, in parallel work, a similar solution has been
suggested for privacy protection in Bitcoin [25]. While our overall approach is
similar, the technical challenges that we address are specific to Zcash, and thus
different. We review such parallel work in more detail in Section 7.

2 Background

Transactions in Cryptocurrencies. Many cryptocurrencies operate in the so
called Unspent Transaction Output (UTXO) model. In this model, a transac-
tion consists of a set of outputs, each with a numerical amount of money and
an address, and a set of inputs each of which references the output of a previous
transaction. For a transaction to be valid, the following conditions have to be
met: (1) referenced outputs must exist, (2) inputs must be signed by the key
specified in the referenced output address, (3) the

∑
(output amounts) must be

≤ to the
∑

(input amounts), and (4) referenced outputs must not be spent by a
previous transaction.

In Bitcoin, this is accomplished by directly identifying the referenced out-
puts, checking that they are not referenced by any other transactions, and then
checking the sum inputs and outputs. If a transaction validates, then the out-
puts it references are removed from the UTXO set and the outputs it generates
added. Transactions in Bitcoin and most cryptocurrencies are validated via a
peer-to-peer network and assembled into blocks (e.g., every 10 minutes), that
are broadcast to the network.

4

In Zcash there are two types of transactions: transparent and shielded trans-
actions. The transparent kind is directly derived from Bitcoin and will not be
considered for the rest of this paper.

Shielded transactions also take some inputs and create new outputs, but
the similarities end there. Outputs, also called notes, are created by so called
joinsplits and are a commitment to an amount and the address it belongs to. A
joinsplit takes a transparent input and up to two notes as input and creates one
transparent output and up to two notes as output. However this information is
encrypted and can only be inspected by the receiver. Additionally a Merkle tree
is constructed over all notes on the blockchain forming the note commitment
tree. A zero-knowledge proof forms the second part of the transaction and shows
that conditions (1)-(3) hold with respect to that Merkle tree root. Because the
“outputs” that a shielded transaction spends are not revealed, they cannot be
removed from the UTXO set. Instead, a unique serial number, sometimes called
a nullifier, is produced by the transaction that ensures the referenced outputs
cannot be used again. This prevents double spending.

To perform operations in Zcash, each user has two keys associated to his
shielded address. First, the spending key that is used during the creation of a
zero-knowledge proof allowing the users to prove ownership of the received funds.
Second, the viewing key that is used to decrypt the shielded transaction in the
blocks and verify if each transaction belongs to the user.

Full Nodes and Light Clients. To interact with a cryptocurrency, one must have a
client. In both Bitcoin and Zcash, the default client is a full node, which receives
and validates every block, and contains the full state of the blockchain. Full nodes
do not need to trust other entities, provided the system functions as assumed,
e.g., for Proof-of-Work systems the majority of the network’s computational
power is honest and messages disseminate without problems. While full nodes
offer the best security and privacy, they entail considerable resource usage. The
computation and network resources necessary to maintain a full node are a major
impediment and in some cases, e.g. mobile devices, simply prohibitive.

In contrast, lightweight clients are nodes that have smaller resource footprint.
They were originally proposed for Bitcoin [30] as the Simplified Payment Veri-
fications (SPV) scheme. In this proposal, clients store only the header of each
block instead of the entire blockchain. This is sufficient to check the Proof-of-
Work on each block and verify the presence of transactions by checking their
inclusion in the Merkle tree whose root is contained in the block header: clients
must merely request both a transaction and the witness to its inclusion in the
Merkle tree from a full node.

The reduced resource usage of SPV clients comes at a major cost: privacy. As
the light client must request individual transactions from a full node, it reveals
which transactions and addresses belong to the requesting client. In Bitcoin, this
allows multiple addresses to be linked together. In Zcash, this effect is far more
pronounced since the client completely loses privacy: without such queries, no
shielded transaction can be linked together, i.e., an adversary learns nothing.

ZLiTE: Zcash Lightweight Clients using Trusted Execution 5

ORAM. Encryption provides data confidentiality but access patterns can leak
information possibly leading to reconstruction of the content itself. Oblivious
RAM (ORAM) [14] is a popular scheme that hides access patterns and achieves
fully oblivious data accesses. Most ORAM algorithms use randomized encryption
and shuffling techniques to build a fully oblivious database. Intuitively ORAM
hides the address, access patterns, whether the same data access is repeated and
the type of operation, i.e. read or write. Note that ORAM operations still leak
timing information related to the frequency of access operations themselves.

3 Our Approach

3.1 Requirements

The main goal of this paper is to design a solution that enables privacy-preserving
light clients assisted by full-node servers for Zcash. More precisely, we specify
the following requirements for our solution:

R1 Privacy. ZCash light clients should be able to privately retrieve all transac-
tion related data without revealing sensitive information (e.g., viewing key,
transaction count, blocks containing transactions) to the server.

R2 Integrity. The server that is assisting the light client should not be able to
steal funds or make a client falsely accept a payment.

R3 Completeness. The retrieval of transactions should guarantee that the light
client receives all data necessary for spending the funds they received.

R4 Performance. The solution should have minimal bandwidth and processing
requirement for the client. The server’s processing should be in the same
order of magnitude as the normal full node operation.

3.2 Main Idea

Our main idea is to leverage commonly-available Trusted Execution Environ-
ments (TEEs) and apply them to full nodes (servers) to enable privacy-preserving
light clients for Zcash. In particular, we use Intel’s SGX [19] which provides iso-
lated execution of security-critical application code, called enclaves, such that
enclave data confidentiality and execution integrity remains protected from un-
trusted software such as other applications, the OS, hypervisor. In SGX, the
CPU enforces that untrusted software cannot access enclave memory. For space
reasons we omit details regarding Intel SGX. We refer readers unfamiliar with
the technology to a more detailed SGX introduction [12,20].

Similar to SPV in Bitcoin, we assume deployments where the light Zcash
clients may be assisted by any number of servers (full nodes) that support TEEs.
Some of the servers could be run by well-known companies as commercial services
where light clients may have to pay a small fee for the service. Other servers could
be run by private individuals, like members of the cryptocurrency community,
as a free service. As in SPV, the light clients are free to choose which servers to
use, if any. In this regard, our solution retains the decentralized nature of Zcash.

6

3.3 Controversy and Challenges

The use of TEEs is often controversial. TEEs rely on a trusted authority to
design a secure processor and issue some form of certification for it. Attestations
from the TEE can be forged either via exploiting design flaws or by corrupting
the provider and falsely claiming that an attestation came from a genuine piece
of hardware. The hardware and software are frequently closed source and the
manufacturers opaque. These kind of trust assumptions are frequently an anath-
ema, especially for cryptocurrencies. Moreover, usage of TEEs often seems like
lazy systems design choice, since, if one assumes fully trusted TEEs (e.g., none
of the enclaves can be compromised, no side-channel leakage, full resilience on
physical attacks etc.), solving many problems becomes relatively easy.

However, current TEEs including SGX enclaves have noteworthy limitations
such as side-channel attacks that leak information and no resilience to physical
attacks. We argue that the real research challenge is to leverage TEEs such
that one can enable improved performance and privacy, but at the same time
address the limitations of TEEs such as side-channel leakage. In the (unlikely)
case that TEEs are fully broken (e.g., a new severe processor vulnerability is
discovered), the system should fail gracefully. One example of graceful failure is
that the affected clients’ privacy may be reduced, but integrity of the system is
preserved, i.e., in a cryptocurrency, no money is lost or stolen.

3.4 Adversary Model

In this paper, we consider the standard SGX adversary model where the at-
tacker controls the OS and all other system software in the supporting server.
In practice, the adversary could be a malicious administrator in a company that
provides the full node service, an external attacker that has compromised the
OS on the full node server, or a malicious individual operating a free server.

The adversary is able to perform digital side-channel attacks [7,8,15]. We as-
sume that he is able to perfectly observe the enclave’s control flow with instruction-
level granularity and its data accesses with byte-level granularity (best known
attacks are cache-line granularity). We overestimate the attacker capabilities, as
all current side-channel attacks suffer from significant noise and cannot extract
perfect traces in pratcice. By assuming such an adversary, we design our solution
for future attacks that may be able to mount more precise side-channels. Ad-
ditionally, the adversary has full control over the communication and can thus
read, modify, block or delay all messages sent by the enclave.

The adversary cannot break the hardware protections of SGX along with
cryptographic primitives such as encryption schemes and signatures. More specif-
ically, the adversary cannot access SGX’s processor-specific keys and the en-
clave’s encrypted runtime memory protected by the CPU.

Finally, even if full compromise of SGX is outside our adversary model, we
consider this possibility in our system design and discuss how our solution han-
dles such worst case scenario in Section 5.3.

ZLiTE: Zcash Lightweight Clients using Trusted Execution 7

3.5 Strawman Solutions

We propose to leverage TEEs to protect the privacy of Zcash light clients. If client
privacy relies on TEEs, it becomes natural to ask if one needs a complicated
solution like Zcash and if anonymous payments can be realized through a much
simpler solution using TEEs. To answer this question, we consider the limitations
of a few strawman solutions.

Our first strawman solution is that clients send all transactions in an en-
crypted format to a set of authorized TEEs that process them privately. Such a
solution would protect user privacy, but in case the enclaves get broken, the ad-
versary can perform unlimited double spending on all users. Additionally, such
a solution would not be decentralized.

Our second strawman solution is to use pseudonymous transactions that are
published to a permissionless ledger, similar to Bitcoin, and mix them in one or
more TEEs for improved privacy. Such a solution would prevent double spending,
ensuring security for all users, even in the event that TEEs are broken. However,
such a solution does not provide the same strong privacy protection, namely
unlinkability, as Zcash, since the anonymity set for a transaction output only
consists of the inputs of the mixed transaction. An adversary controlling the
OS on the mixing service can further reduce anonymity by blocking incoming
transactions or injecting his own.

Our third strawman solution is to use the Zcash system, due to its strong pri-
vacy properties, but allow light clients to offload their complete wallets to TEEs
that perform new payments and notification of received payments for them. The
main drawback of this approach is that if the TEE would be compromised, it
would incur direct monetary loss for a high number of clients.

Our goal is to design a solution that enables light clients for Zcash, and
thus benefits from its sophisticated privacy protections, but avoids the above
discussed limitations of simple TEE-based solutions.

3.6 Solution Overview

In our solution, when a light clients wants to be notified about received funds or
make new payments, she connects to one of the TEE-enabled full node servers,
performs remote attestation of the server’s SGX enclave, and establishes a secure
channel to it.

To enable payment notification, the client sends its viewing keys for the
addresses that she owns to the enclave and indicates from which point on (e.g.,
the latest known block to the client) she wishes to update the light client’s state.
The enclave obtains the data and information from the locally stored blockchain
and processes it in a side-channel oblivious manner based on the client request
and sends back the response to the client.

To enable new payments by the client, the server also prepares a witness for
each new transaction of the client, as well as the note commitment tree update
and sends them to the client. Given this information, the client can efficiently
create new transactions, and the associated zero-knowledge proofs, using the
received funds, without revealing his spending key to the enclave.

8

ZCash Full Nodes

ZFN1

ZFN3

ZFNm

ZFN2

ZCash Lightweight Clients

ZLC2

ZLC1

ZLCn

…
…

…

…

secure
Enclave E

Original
full

node

BC

SpendingKey1,1…i

ViewingKey1,1…i

SpendingKey2,1…j

ViewingKey2,1…j

SpendingKeyn,1…k

ViewingKeyn,1…k

Fig. 1: System model. Lightweight clients request transaction verification and
payment issuing service from enclaves hosted on full Zcash nodes.

4 ZLiTE System Design

4.1 System Model and Operation Overview

Figure 1 presents our system model. The main stakeholders in the system are
Zcash Lightweight Clients ZLC1...ZLCn and Zcash Full Nodes ZFN1...ZFNm.
A lightweight client ZLCa connects to any full node ZFNb that supports our
service by hosting an enclave E when she wants to acquire information regarding
transactions and addresses that belong to the client or to issue new transactions
towards another Zcash client. ZLCa can own one or more addresses in her wallet
that are also characterized by the SpendingKeya,1...c and the V iewingKeya,1...c.

Full nodes maintain the local version of the blockchain (BC) as usual, ap-
pending each new confirmed block to the longest chain they have. The blockchain
is maintained outside the secure environment, either on the disk or memory of
the platform where the node resides. SGX enclave memory is limited (128MB)
and is only suitable for smaller storage related to the currently executed task.

A client that wants to retrieve transactions, performs remote attestation
for the ZLiTE enclave and then establishes a secure connection (TLS), through
which she sends her viewing key and the height h of the last known block Bh. The
enclave then scans the blockchain for transactions for this viewing key starting
from Bh and obliviously moves them to a temporary response ORAM (rORAM)
to hide which transactions are of the client’s interest. Additionally, the ORAM
structure is obliviously serialized in the response buffer sent to the client.

Oblivious Scanning. All processes that rely on secret data, i.e. the clients viewing
key, must be performed in an oblivious fashion to prohibit any leakage of sensitive
information (see Section 5). Finding the transactions that match the clients
viewing key clearly depends on the client’s secrets. To make block scanning
oblivious to a side-channel observer (see the adversary model in Section 3.4),
processing of each transaction should produce the same side-channel trace. A
naive way to solve this is to do a fake copy of each non-matching transaction
(viewing key does not result in a valid decryption) to the response buffer as
well. However, in that case the response buffer is as big as the scanned blocks
(no performance improvement). To improve the performance we use a response
ORAM to hold all relevant transactions of the current client. The rORAM allows
us to perform one ORAM operation per transaction while still hiding if this

ZLiTE: Zcash Lightweight Clients using Trusted Execution 9

operation is a write (relevant transaction) or a read (irrelevant transaction). This
is achieved by constant-time branchless code using the cmov instruction [32]. In
conclusion, the enclave performs the following operations for each transaction:

(1) check if the viewing key manages to decrypt the transaction

(2) calculate the Merkle tree

(3) perform an ORAM operation (write or read transaction into the rORAM
depending on the outcome of (1))

Together with the transactions stored in the rORAM, ZLiTE delivers the
corresponding Merkle paths, all block headers since Bh, and the note commit-
ment tree update for the requested interval (see Section 4.3). Below we first
describe the details of the ZLiTE operation and the retrieval of transactions
and then describe how a lightweight client using our system can create new
shielded transaction.

4.2 Transaction Retrieval

The operation of the synchronization protocol (see Figure 2) works as follows:
Initialization and continuous operation.

(a) On initialization the Full Node ZFNj connects to the P2P network (a-1)
and downloads the full ZCash blockchain (a-2). This locally stored blockchain
is continuously updated as new blocks are received from the network.

(b) When the lightweight client is installed, it contains a checkpoint block
header (this can be from a recent date or the genesis block). The client then
downloads all newer block headers from the P2P network and verifies them (i.e.
the client checks the PoW and that their hash chain leads to the checkpoint). All
but a small number of the most recent block headers (to handle shallow forks)
can be deleted afterwards. This state is later updated during the synchronization
process that the client performs with a ZLiTE node in order to check for re-
ceived transactions or before sending transactions (see below). This is similar to
the operation of existing lightweight clients for other blockchains (e.g. Bitcoin).

Synchronization of Transactions. Clients synchronize with a ZLiTE en-
clave as follows:

(1) The ZCash Lightweight Client ZLCi performs attestation with the secure
Enclave Ej residing on the full node ZFNj .

(2) If the attestation was successful, the ZCash Lightweight Client ZLCi estab-
lishes a secure communication channel to the Enclave Ej using TLS.

(3) The Lightweight Client ZLCi sends a request containing its viewing key and
the number of the latest known block.

(4) The Enclave Ej creates a temporary in-memory response ORAM (rORAM)
to store the transactions that will be sent to the client. Ej then scans its locally
stored copy of the blockchain (BC) starting at the block number specified by the
client and decrypts the transactions with the specified viewing key. The decryp-
tion will either result in garbage or in a valid plaintext transaction. If the decryp-
tion is successful, Ej moves the transaction and the corresponding Merkle paths

10

establish secure communication
2

information request for transaction retrieval
3

authentication, TLS connection

5

Zcash Lightweight Client ZLCi ZCash Full Node ZFNj ZCash Full Node ZFNm…

attestation
1

req(ViewingKey,h)

4

create
response

ORAM (rORAM)

return request information about transactions
res(trxs, block_headers,

note_commitment_tree update)

6

Enclave Ej Enclave Em

P2P communication

update blockchain
unchanged full node

normal operation

co
nt

in
uo

usBC
2

1
a

acquire latest block header
from the P2P ZCash network b

BCscan BC from h
decrypt with ViewingKey
if successful

-›(move to ORAM) rORAM

verify PoW and longest chain
verify trx and Merkle paths

apply note commitment updates

Fig. 2: Synchronization. The lightweight client establishes a secure connection
to an enclave on a full node and sends a request that contains its viewing key and
latest known block to perform the retrieval of all of her transaction information.

(for the transaction and for the note commitments) to the response ORAM,
and if it is not successful, Ej performs a read operation, thereby performing the
move obliviously using the cmov technique mentioned in Section 4.1 to replace
conditional statements.

(5) After the scanning operation has finished, the rORAM is serialized by mov-
ing the entries to a fixed-size (dependent on the request, i.e., number of requested
blocks for update) response array that is then sent to the client. In addition, the
response contains all of the block headers and the note commitment tree updates
(see Section 4.3 for details).

(6) The ZCash Lightweight Client ZLCi verifies that the received block headers
have a valid proof of work, create a chain to its latest known header and that
the chain is the heaviest chain advertised in the P2P network. For every received
transaction, it checks whether the recomputed Merkle root, given the received
path, matches the corresponding block header. The client then updates the wit-
nesses for all transactions with the received note commitment tree update and
finally deletes old block headers that no longer need to be stored.

ZLiTE: Zcash Lightweight Clients using Trusted Execution 11

4.3 Transaction Creation

The lightweight client receives all information necessary to create shielded Zcash
transactions from our system. Namely, for every output he wants to spend,
he requires the witness (at the time of creating the new transaction) of the
corresponding note commitment (i.e., its Merkle path in the note commitment
tree).

These witnesses could be retrieved from a ZLiTE node at the time of spend-
ing. However, this would require the node to retrieve the witness in an oblivious
fashion on request, which becomes computationally expensive as the commit-
ment tree gets larger. Instead, when scanning the chain for a client, we addition-
ally supply the witness of a note at the block height where it was created (see
Section 4.2). When synchronizing, the client then also receives commitment tree
updates, which allow him to update witnesses for any previous note commitment.
In this case, there is no need for oblivious computation since the update only
depends on the block height and not on the transaction relevant to the client.

Given a note commitment tree at time t1 and a note commitment tree at
time t2, to compute the commitment tree update, the enclave starts with an
empty list Uct to store the update. Let cmi be the latest note commitment in
the tree at time t1, i.e., it is the rightmost non-empty leaf. Then, in the tree at
time t2, for every node on the path from cmi to the root of the tree, add the
right child to Uct. A client in the possession of a witness at time t1 for some
note, can then apply the update by replacing any node on the witness with the
corresponding node from Uct, if these two nodes have the same location in the
Merkle tree. We present a proof in Appendix A that this construction results in
a correct witness for the note commitment tree at time t2.

5 Security Analysis

In this Section, we provide an informal security analysis of ZLiTE. We first
discuss protection against information leakage, then discuss the completeness of
responses, and finally consider the worst-case scenario, i.e. a full break of SGX.

5.1 Protection Against Information Leakage

Since ORAM reads and writes are indistinguishable, an adversary observing
memory access patterns is not able to determine which transactions were written.
For ORAM accesses, when accessing the stash, indexes or the position map, every
location is accessed to hide memory access patterns.

To protect against side channels (e.g. [8,28,15,34]), conditional statements
that depend on transactions (e.g. during the process of moving transactions to
the response ORAM) are replaced using the cmov instruction. Since this results
in the same control flow independent of the transaction, protection against leak-
age even against an adversary that can observe the control flow with instruction
level granularity is guaranteed. The cmov instruction has been previously used
to protect against side channels by Raccoon [32], Zerotrace [33] and also Oblivi-
ate [3] in the context of providing secure ORAM access using SGX. This prior
research shows that cmov can effectively protect against digital side channels.

12

Finally, the response size only depends on the number of scanned blocks, i.e.
it is independent of how many (or if any) transactions are in the response, and
thus does not leak any information about a client’s viewing key or transactions.

5.2 Integrity and Completeness

The ZLiTE node delivers the requested information along with all block infor-
mation needed for simple payment verification. The client herself then verifies
the block headers using the Merkle paths for her transactions. Similar to SPV
in Bitcoin lightweight clients [30], this ensures that the server cannot make a
client falsely accept payments for which the transactions are not included in the
chain. As the client can also check the proof of work and gossips with the P2P
network to receive block headers, she can ensure that she receives information
from the longest chain. Thus, the server does not have stronger capabilities to
eclipse a lightweight client than against a full node.

In contrast to standard SPV (as e.g. in Bitcoin [30]), where the client cannot
be sure to have received all of her transactions, the usage of a TEE makes sure
that the received response contains all of her transactions for the scanned interval
given the ZLiTE node’s view of the blockchain.

5.3 Impact of Full SGX Compromise

While our adversary model considers side-channel attacks, we do not consider a
full compromise of SGX, i.e., forged attestations, arbitrary control flow change or
enclave secrets reading. However, recent research has shown that secrets can be
read even from the quoting enclave allowing an adversary to extract attestation
keys [10,36] which makes it necessary to discuss such a worst-case scenario.

While it is obvious that the privacy provided by ZLiTE can no longer hold,
if the adversary can read all secrets, or a client connects to a server that uses a
forged attestation to impersonate an SGX enclave, such a breach cannot lead to
loss of funds. In addition to the loss of privacy, a client also loses completeness,
since a node may omit payments. However, because the client’s spending key is
never sent to a ZLiTE node and the client performs Simple Payment Verification
for all of his transactions, a node is not able to steal coins from the client or
make him falsely accept a payment.

5.4 Trust Assumptions Comparison

In terms of security properties like double-spending protection, Zcash relies on
the following two trust assumptions: First, there must be an honest majority of
mining power. Second, the dissemination of messages broadcast to the peer-to-
peer network must be sufficiently good, i.e., no eclipse attacks. ZLiTE relies on
the same trust assumptions as Zcash for its security properties.

For privacy, Zcash relies on securely-generated public parameters and hard-
ness of numeric cryptographic assumptions. ZLiTE requires the same assump-
tions and additional trust in TEEs.

ZLiTE: Zcash Lightweight Clients using Trusted Execution 13

6 Performance Evaluation

6.1 Implementation Details

Our implementation of ZLiTE is based on the protocol specification of Zcash.
It consists of a blockchain parser, an oblivious Path ORAM implementation [35]
and it makes use of some bundled cryptographic libraries. We support the current
Zcash protocol specification including the ’overwinter’ protocol update.

The Trusted Computing Base (TCB) of our implementation can be split
up into a network part that is responsible for the communication with a client
(around 1.5k LoC) and the blockchain relevant part (around 3.7k LoC). Ad-
ditionally we use well reviewed crypto libraries like mbedTLS (53k LoC) and
small libraries that provide crypto primitives: sha256 , blake2b, ripemd160,
ChaCha20Poly1305 and ed25519 totaling to around 2.2k LoC. All of the in-
cluded crypto primitives come from well reviewed sources. We will not go into
details on the TLS library mbedTLS [23] and refer the interested reader to [40,24]
for implementation details and performance results.

6.2 Performance

ZLiTE measurements were done on an i7-8700k processor with an SSD. Note
that all the reported timing results are without the additional TLS latency. All
measurements are according to the blockchain activity as of August 2018.

Lower Bound. Any node that wants to check for new transactions needs to parse
the new blocks and test its viewing keys against all transaction in the blocks.
This is part of the Zcash specification and implies a lower bound for any full
node. Testing viewing keys is computationally intensive because it involves a
key exchange based on an elliptic curve for each transaction and viewing key.
Our implementation manages to parse blocks of an entire day and test a single
viewing key against the transactions within 1.24s compared to fully oblivious
operation of ZLiTE which takes around 5s. We have to retrieve the Merkle
paths and perform at least one ORAM operation per shielded transaction while
non oblivious solutions can skip this for all non-relevant transactions.

Average Transaction Size. We measured the average number of joinsplits in
a shielded transaction and show a histogram in Figure 3a. Around 95% of all
shielded transactions only contain one joinsplit, thus they have at most 2 shielded
inputs and 2 shielded outputs. Every joinsplit occupies around 2KB of data. We
also have to store the commitment tree update (see Appendix A) which is around
1KB in size. The average shielded transaction thus requires an ORAM operation
for around 3KB of data. These measurements allow us to chose optimal ORAM
block size for our response ORAM of 3KB.

Latency. We measured the time required to fetch various amounts of blocks and
show a comparison between different expected client data per hour in Table 1.
Note that the time per block rises when a client requests a longer time period
because the response ORAM is chosen accordingly and a big ORAM database
leads to slower accesses. Additionally, slower responses are observed when the
client expects a lot of activity and requests a lot of client data.

14

0 1 2 3 4 5 6

Number of joinsplits

0%

25%

50%

75%

100%
99%

94.7%

3.1% 0.8% 0.4%

(a) Joinsplit distribution in all shielded
transactions up until block 350000.

1h 4h 12h 24h

Requested timespan

0s

1s

2s

3s

4s

5s

5%

25%

49%

21%

7%

29%

43%

20%

9%
38%
31%
22%

14%
53%
13%
19%

merkle tree calculation

ORAM operations

parsing

PoW verification

(b) Enclave latency for various request
sizes (with 24576B of client data/hour).

Fig. 3: Performance measurements.

Table 1: Total time for various request and response sizes. (100 runs)

Client data per hour

Time Blocks 6144B 12288B 24576B

24h 576 4187ms ±504ms 4382ms ±510ms 4967ms ±617ms
12h 288 1875ms ±315ms 2122ms ±364ms 2317ms ±397ms
4h 96 541ms ±75ms 583ms ±92ms 631ms ±104ms
1h 24 123ms ±21ms 129ms ±21ms 130ms ±21ms

Figure 3b shows the latency for a request with 24576B of client data per hour
and various requested time spans. The latency is further divided in the four main
contributors to the total: parsing the block, proof of work verification, ORAM
operations and generating the merkle tree. Note that the ORAM operations start
to take the lions share of the latency as soon as longer time spans are requested.

Bandwidth. The required bandwidth can be split into a static part (not depen-
dent on the number of blocks requested) and a dynamic part. The dynamic part
is composed of the blockheader (1487B) and the private data per block that is
used to return transactions to the client. For reasonable usage we estimate a
lightweight client to have (at most) one transaction every hour occupying 12kB.
This results in 1024B of private data per block and the total dynamic bandwidth
accumulates to 2511B per block. The static part only consists of the commitment
tree update and is therefore 29 ∗ 32B = 928B large. A client that requests one
day of blocks from our system gets a response of 1.38MB.

Increased Blockchain Activity. As of August 2018 shielded transactions are not
very common on the Zcash blockchain (only 1.5 shielded txs/block). With single
steps measurements we estimated ZLiTE performance with increased future
activity. For 100 shielded transactions per block, a daily request would take
112s, while with an hourly one the latency would shrink to around 750ms.

7 Related Work

Privacy for Lightweight Clients. Nakamoto introduced SPV in [30] in order to
enable light clients for Bitcoin. The straight forward application of SPV trivially

ZLiTE: Zcash Lightweight Clients using Trusted Execution 15

sacrifices client privacy, which is why BIP 37 [17] introduced Bloom filters [6]
to somewhat hide the client’s addresses in requests. Gervais et al. showed that
this only marginally improves privacy [13]. Recently, Bitcoin protocol changes
were proposed where full nodes publish a filter for all transactions in a block
and clients download the block if the filter matches one of his addresses [31].

Most closely related to our work, Matetic et al. recently used SGX to provide
privacy to Bitcoin lightweight clients in a system called Bite [25]. While the main
challenge was to efficiently protect privacy in a system that already provides
light clients, we tackle the problem of enabling light clients in a system that
provides privacy, but until now does not support operation of light clients. One
notable difference between [25] and our work is that in Zcash spending previously
received funds requires the witness to the transaction’s inclusion in the Merkle
tree of all transactions, and therefore client must obtain, in efficient manner, an
up-to-date version of this witness to spend the funds.

Zcash Scalable Clients. Several proposals aim to lower the resource requirements
for clients in Zcash. While protocol upgrades [1] have reduced the computational
resources required to generate a transaction, they have not substantially changed
the bandwidth or verification requirements.

Bolt [16] proposes privacy preserving payment channels in which clients con-
duct most transactions off chain in a fully private manner. However, the current
version requires clients to either monitor the blockchain for channel closure using
a full-node, or entrust a third party to do so. While this does not violate privacy,
failures by the third party can result in monetary loss. No such risk of theft exists
with ZLiTE even if TEE integrity is violated. Moreover, Bolt requires payers
to have an existing relationship with the recipient or an intermediate payment
hub. While promising, Bolt is not a full solution for bandwidth limited clients.

In [11], Chiesa et al. explore the use of probabilistic micro-payments as a way
of increasing throughput. In this setting, a sequence of, e.g., 100 micro-payments
for one cent, is approximated by paying $1 with probability 1

100 . Thus only 1
100

of transactions are actually issued. However, this is only suitable for small and
frequently repeated payments. Moreover, it is unclear if it will reduce the total
volume of transactions or simple free up capacity for even more transactions.

8 Conclusion

Zcash provides strong privacy for its users. Shielded transactions, however, re-
quire clients to download and process every block which is impractical for de-
vices like smartphones, and consequently no mobile client that supports shielded
transactions exists in the market. In this paper we have developed a new solution
that enables light clients to create and receive shielded payments by leveraging
a supporting server and a commonly available TEE. Usage of trusted execution,
obviously, changes the original trust model of Zcash, but we argue that such a
solution strikes a balance between the best possible privacy and the range of
scenarios where Zcash can be used in practice. Thanks to our solution, develop-
ment of mobile clients that support shielded transactions becomes possible and
more users can benefit from the sophisticated privacy protections of Zcash.

16

References

1. Sapling (2018), https://z.cash/upgrade/sapling.html
2. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solidus: An incentive-

compatible cryptocurrency based on permissionless byzantine consensus. CoRR,
abs/1612.02916 (2016)

3. Ahmad, A., Kim, K., Sarfaraz, M.I., Lee, B.: OBLIVIATE: A Data Oblivious File
System for Intel SGX (2018)

4. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 34–51. Springer (2013)

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE Sympo-
sium on Security and Privacy. pp. 459–474. IEEE Computer Society (2014)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

7. Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Müller, U.,
Sadeghi, A.: DR.SGX: hardening SGX enclaves against cache attacks with data
location randomization, http://arxiv.org/abs/1709.09917

8. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software Grand Exposure: SGX Cache Attacks Are Practical. In: 11th USENIX
Workshop on Offensive Technologies,WOOT 2017. USENIX (2017)

9. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: Con-
fidential distributed ledger transactions via PVORM. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 701–717
(2017). https://doi.org/10.1145/3133956.3134010, http://doi.acm.org/10.1145/
3133956.3134010

10. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: Sgxpectre attacks:
Leaking enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085
(2018)

11. Chiesa, A., Green, M., Liu, J., Miao, P., Miers, I., Mishra, P.: Decentralized anony-
mous micropayments. In: Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II. pp. 609–
642 (2017). https://doi.org/10.1007/978-3-319-56614-6 21, https://doi.org/10.
1007/978-3-319-56614-6_21

12. Costan, V., Devadas, S.: Intel SGX explained. In: Cryptology ePrint Archive (2016)
13. Gervais, A., Capkun, S., Karame, G.O., Gruber, D.: On the privacy provisions

of bloom filters in lightweight bitcoin clients. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 326–335. ACM (2014)

14. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) 43(3) (1996)

15. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on intel sgx.
In: Proceedings of the 10th European Workshop on Systems Security. p. 2. ACM
(2017)

16. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized curren-
cies. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - Novem-
ber 03, 2017. pp. 473–489 (2017). https://doi.org/10.1145/3133956.3134093, http:
//doi.acm.org/10.1145/3133956.3134093

https://z.cash/upgrade/sapling.html
http://arxiv.org/abs/1709.09917
https://doi.org/10.1145/3133956.3134010
http://doi.acm.org/10.1145/3133956.3134010
http://doi.acm.org/10.1145/3133956.3134010
https://doi.org/10.1007/978-3-319-56614-6_21
https://doi.org/10.1007/978-3-319-56614-6_21
https://doi.org/10.1007/978-3-319-56614-6_21
https://doi.org/10.1145/3133956.3134093
http://doi.acm.org/10.1145/3133956.3134093
http://doi.acm.org/10.1145/3133956.3134093

ZLiTE: Zcash Lightweight Clients using Trusted Execution 17

17. Hearn, M., Corallo, M.: Connection bloom filtering. Bitcoin Improvement Pro-
posal 37 (2012), https://github.com/bitcoin/bips/blob/master/bip-0037.

mediawiki

18. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium. pp. 129–144 (2015)

19. Intel: Intel Software Guard Extensions, https://software.intel.com/en-us/sgx

20. Intel: Software Guard Extensions Tutorial Series (2016),
available at: https://software.intel.com/en-us/articles/

introducing-the-intel-software-guard-extensions-tutorial-series

21. Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of
anonymity in zcash. In: 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018. pp. 463–477 (2018), https:

//www.usenix.org/conference/usenixsecurity18/presentation/kappos

22. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: ESORICS (2). Lecture Notes in Computer Science, vol. 10493, pp.
153–173. Springer (2017)

23. Limited, A.: mbedTLS (formerly known as PolarSSL) (2015), https://tls.mbed.
org/

24. Matetic, S., Schneider, M., Miller, A., Juels, A., Capkun, S.: Delegatee: Brokered
delegation using trusted execution environments. In: 27th USENIX Security Sym-
posium (USENIX Security 18). USENIX Association (2018)

25. Matetic, S., Wúst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.:
BITE: Bitcoin Lightweight Client Privacy using Trusted Execution. IACR Cryp-
tology ePrint Archive 2018, XXXX (2018)

26. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140. ACM (2013)

27. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: Security and Privacy (SP), 2013 IEEE Symposium on. pp.
397–411. IEEE (2013)

28. Moghimi, A., Irazoqui, G., Eisenbarth, T.: Cachezoom: How sgx amplifies the
power of cache attacks. In: International Conference on Cryptographic Hardware
and Embedded Systems. Springer (2017)

29. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,
Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An empirical analysis of
traceability in the monero blockchain. PoPETs 2018(3), 143–163 (2018)

30. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

31. Osuntokun, O., Akselrod, A., Posen, J.: Client side block filtering. Bitcoin Improve-
ment Proposal 157 (2017), https://github.com/bitcoin/bips/blob/master/

bip-0157.mediawiki

32. Rane, A., Lin, C., Tiwari, M.: Raccoon: Closing digital side-channels through ob-
fuscated execution. In: USENIX Security Symposium (2015)

33. Sasy, S., Gorbunov, S., Fletcher, C.: Zerotrace: Oblivious memory primitives from
intel sgx. In: Symposium on Network and Distributed System Security (NDSS)
(2017)

34. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Mal-
ware Guard Extension: Using SGX to Conceal Cache Attacks (2017),
http://arxiv.org/abs/1702.08719

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://www.usenix.org/conference/usenixsecurity18/presentation/kappos
https://tls.mbed.org/
https://tls.mbed.org/
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki

18

35. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. pp. 299–
310. ACM (2013)

36. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-
stein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the keys
to the intel sgx kingdom with transient out-of-order execution. In: Proceedings of
the 27th USENIX Security Symposium. USENIX Association (2018)

37. Van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/

whitepaper.pdf

38. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Tech. rep., ETH Zurich (2016)
39. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-

nels for untrusted operating systems. In: Security and Privacy (SP), 2015 IEEE
Symposium on. pp. 640–656. IEEE (2015)

40. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town Crier: An Authen-
ticated Data Feed for Smart Contracts. In: CCS (2016)

A Commitment Tree Updates

As described in Section 4.3, the commitment tree update Uct for the interval
between time t1 and t2 consists of the right child of the path from cmi to the
root at time t2, where cmi is the rightmost non-empty leaf at time t1.

x

x

ba c d g l mi kh jf ne

N1

⊕

t1

X

Clients transaction

x

t2

a filled leaf before t1

filled leaf between t1 and t2b

N11[t2]

Uct

Witness

Note commitment update

N2

N4 N5 N7N6

N3

N15N14N13N12N11N10N9N8

N5[t2] N3[t2]

Witness(c)[t1] Witness(c)[t2]

d N8[t1] N5[t1] N3[t1] d N8[t1] N5[t2] N3[t2]

=

Fig. 4: At a time t1 the note commitments Merkle tree is fully updated up to
the latest block. A specific client holds a transaction with a note commitment c
and knows the witness (i.e. the Merkle path) for it (d, N8, N5, and N3 nodes).
After some time the blockchain is updated and new transactions added, thus,
the Merkle Tree is updated accordingly (t2). In order for the client to update
the witness of her commitment c, she only needs the updated information from
nodes (N11, N5, N3).

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

ZLiTE: Zcash Lightweight Clients using Trusted Execution 19

In Figure 4, we show an example for the commitment tree update. In this
example, the leaf f is the rightmost non-empty leaf at t1, i.e. it corresponds to
cmi, which means that the commitment tree update consists of the values of
the nodes N11, N5, N3 at time t2. In the example, the update is applied to the
witness of the leaf c (consisting of the nodes d, N8, N5, and N3). In this case,
the values of the leaf d and node N8 do not change between time t1 and t2,
the values of N5 and N3 do, however, and thus the values are contained in the
commitment tree update and updated from there.

We now show that given a witness at time t1 for a commitment cmj (where
j < i, i.e. cmj was added to the tree before cmi) and the commitment tree
update Uct, a client can compute the witness for cmj at time t2.

Let Aji be the lowest common ancestor node of cmj and cmi in the commit-
ment tree, i.e. cmj is in the left subtree of Aji and cmi is in the right subtree.
Any node in the left subtree of Aji remains unchanged between t1 and t2, i.e.
any node from that subtree which is part of the witness for cmj also remains
unchanged. Since none of these nodes changes through the update process, up-
dating the witness with Uct results in the correct values.

Similarly, any node of the witness for cmj that is a left child of a node on the
path from Aji to the root remains unchanged in the Merkle tree at time t2, since
all leafs in any left subtree are already fixed at time t1 and thus all node values
are already final. Since our update process does not change any left children in
the tree, it also leaves these values unchanged and thus results in the correct
values.

Finally, any node of the witness for cmj that is a left child of a node on the
path from Aji to the root may change in the Merkle tree at time t2. Since Aji

is an ancestor of cmi, any such node is included in Uct, i.e. these nodes on the
witness are updated in our update process. These values are therefore changed
to the correct values from the note commitment tree at time t2.

It follows that the witness at time t2 for cmj can be constructed correctly
given the witness at time t1 and the commitment tree update Uct.

	ZLiTE: Lightweight Clients for Shielded Zcash Transactions using Trusted Execution

