
Integer Matrices Homomorphic Encryption and

Its application

Yanan Bai Jingwei Chen Yong Feng
Wenyuan Wu

Chongqing Key Lab Automated Reasoning & Cognit,
Chongqing Institute of Green and intelligent Technology,

Chinese Academy Sciences,
University of Chinese Academy of Sciences.

e-mail:baiyanan@cigit.ac.cn

October 22, 2018

Abstract

We construct an integer matrices encryption scheme based on bina-
ry matrices encryption scheme proposed in [9], and support homomor-
phic addition and multiplication operations, we prove the correctness and
analyze the security. Besides, we implement four encryption schemes in-
cluding public-key and symmetric-key binary matrices encryption schemes
from [9], and public-key and symmetric-key integer matrices encryption
schemes from this work. The experimental results show that the running
time of homomorphic multiplycation just costs 0.32sec for 40 × 40 inte-
ger matrices, it provides a promising prospect for application. Finally,
we apply integer matrices encryption into graph theory to homomorphi-
clly solve a problem that the number of length-k walks between any two
vertices, the algorithm shows the effectiveness.

1 Introduction

Homomorphic encryption is a ciphertext computation technology, which allows
us to evaluate functions over encryped texts, and can get the same results as
evaluating over the corresponding plaintexts. With the development of cloud
computing and global growth of data, private and sensitive information have re-
ceived increasingly concern, ciphertext computing becomes an urgent demand,
Homomorphic encryption can meet this requirement [17] [16], [12] [11].
Homomorphic encryption arises from privacy homomorphism proposed by Rivest
et.al [14] in 1978, in the fellowing thirty years there is no deteministic solutions.
Until the year 2009, Gentry constructed the frist fully homomorphic encryp-
tion scheme [7] [6], which based on ideal lattice with low efficiency. In the year

1

of 2012, Brakerski, Gentry and Vaikuntanathana made a newly leveled fully
homomorphic encryption scheme [3], emplying module switch and key switch
technologies [4] [2]. In order to make homomorphic operations more natural,
GSW, as the third generation homomorphic encryption system was proposed [8]
by Gentry, Sahai and Waters in the year 2013. This scheme used eigenvector
to construct encryption scheme, and can encrypt binary bits and integers. At
present, this scheme is the fastest and simplest fully homomorphic encryption
scheme compared with the first and the second generation. Later, Khedr et.al in-
troduced SHIELD [10], which based on ring LWE setting, The impressed feature
of this scheme is that it can conduct addition and multiplication homomorphic
operations on encrypted polynomials. [9] constructed the first fully homomor-
phic encryption scheme for binary matrices, and optimized the bootstrapping
procedure of Alprin-Sheriff and Peikert [1]. As the homomorphic operations are
limited to binary matrices, most of applications have to design complex circuit
to achieve more homomorphic operations, besides, for some application scenar-
ios, efficiency is more significant than achieving full homorphism. Therefore, it
is meaningful to design the integer matrices encryption scheme. In this paper,
there are four aspects to our work.

• We propose the novel encryption and decryption algorithms for the integer
matrices , and also realize the homomorphic addition and multiplication
operations in the form of integer matrices, rather than the traditional
binary form.

• We demonstrate the correctness of the proposed scheme in theory, and
analyze the security.

• With implementing the binary matrices and integer matrices encryption
schemes, we evaluate the efficiency of proposed integer matrices encryption
schemes.

• We apply the proposed scheme in the graph theory, which calculates the
number of length-k walks between any two vertices in the encrypted net-
work. The experimental result shows the effective of proposed method.

2 Preliminaries

2.1 The Learning with Errors(LWE) Problem

The learnnig with errors (LWE) was introduced by Regev in 2005 [13], the
definition is:

Definition 2.1. For security parameter λ, let n = n(λ) be an integer dimension,
let χ = χ(λ) is a Gasussian distribution over Z, q = q(λ) be an integer. The
DLWEn,χ,q problem is to distinguish the following two distributions:
1. Sample (ai, bi) uniformly from Znq × Zq.
2. One fristly draws s

U←− Znq uniformly, and then sample (ai, bi) by sampling

2

ai
U←− Znq , ei

R←− χ, and setting bi =< ai, s > +ei.
The DLWEn,q,χ assumption is that the DLWEn,q,χ problem is infeasible.

Gadget matrix G: Let l = dlog2qe and identify Zq as 0, 1, ..., q − 1. Then
each m ∈ Zq can be represented as

m =

l−1∑
i=0

xi2
i

where xi ∈ {0, 1}. Let row vector gT = (1, 2, ..., 2l−1), and column vector

x = (x0, x1, ...xl−1)
T ∈ Zl such that gTx ≡ m(modq). Define

G = gT ⊗ I(n+1) =


gT

gT

. . .

gT

 ∈ Z(n+1)×((n+1)l

Define operation G−1 : Zn+1
q −→ Z(n+1)l describs below:

For any m ∈ Zn+1
q → Z(n+1)l and short vector x ∈ Z(n+1)l, such that Gx ≡

m(modq) so we define G−1(m) = x.
G−1 maps each vector m ∈ Zn+1

q to a short vector x ∈ Z(n+1)l and Gx ≡
m(modq) will satisfied.

2.2 GSW Fully Homomorphic Encryption scheme

The GSW fully homomorphic encryption scheme use approximate eigenector
method to construct ciphertext C to make secrect key s be an approximate
mod− q eigenvector of C. The scheme was modified by Alperin-Sheriff [1]. We
describe the scheme below.
GSW.Setup(1λ, 1L): This step produce related parameters. Let l = dlog2 qe,
and m > nl

GSW.keyGenSec(params): Choose s̄
U←− Znq , and output sk = (1,−s̄) ∈

Zn+1
q

GSW.keyGenPub(params): Choose a n×m random matrix A ∈ Zn×mq , and

pick ei
R←− χm at random.Compute

bT = s̄TA+ eT ∈ Zmq

Then the public key is B =

(
bT

A

)
∈ Z(n+1)×m

q , Observe that sB = eTmodq

GSW.Enc(params, pk,m): Let m ∈ Zq be an integer, To encrypt m, choose
a random short matrix R ∈ {0, 1}m×(n+1)l, Compute

C = mG+BR ∈ Z(n+1)×(n+1)l
q

G is the Gadget matrix, B is the public key. If m ∈ {0, 1}, take the same
encryption method.

3

GSW.DEC(C, sk): This algorithm can recover plaintext m ∈ {0, 1}. Let c be
the penultimate column of ciphertext matrix C, the decryption algorithm output
plaintext m = b< s, c >e2, where b·e2 donates that Zq −→ {0, 1} whether the
inner product is closer to 0 or q/4. As sT c = msTG + sTBR = msTG +
eTR(modq). We need eTR to be small, let noise = eTR, if ‖noise‖∞ < q/8,
then we can recover m. We denote notation ‖x‖∞ as Maximum norm.
GSW.MPDEC(C, sk): This algorithm can recover plaintext m ∈ Zq, we will
show the decryption process below. Taking the frist l − 1 rows of Cs, Let

Cs =


γ0
γ1
...

γl−2

 = m ·


20

21

...
2l−2

+ noise ∈ Zl−1q

we set plaintext m =
∑l−2
i=0 xi2

i where xi ∈ {0, 1}. Taking the last entity is

γl−2 = (x0 + 2x1 + ...2l−2xl−2) · 2l−2 + el−2

so

x0 =
γl−2 − el−2

2l−2
− (2x1 + 2x2 + ...2l−2xl−2)

γl−2
2l−2

− γl−2 − el−2
2l−2

=
el−2
2l−2

as long as el−2 < q/8, and set q = 2l−1, so el−2

2l−2 < 1/4, so we can proof that

round

(
γl−2 − el−2

2l−2

)
= round

(γl−2
2l−2

)
so we can get

x0 = round
(γl−2

2l−2

)
mod2

we can recover the left bits in this way,

x1 = round

(
γl−3 − 2l−3x0

2l−2

)
mod2

x2 = round

(
γl−4 − (2l−4x0 + 2l−3x1)

2l−2

)
mod2

...

xl−2 = round

(
γ0 − (20x0 + 2x1 + ...+ 2l−3xl−3)

2l−2

)
mod2

Finally, we can get plaintext m by m =
∑l−2
i=0 xi2

i.

4

2.3 binary matrices encryption scheme

Ryo, Masayuki and Tatauaki [9] proposed a fully homomorphic encryption
scheme that encrypts binary matrices and supports homomorphic matrix ad-
dition and multiplication. They use the multilinear maps to construct cipher-

text matrix to satisfy decryption equation. For a secret matrix S ∈ Zr×(n+r)q ,

The ciphertext C ∈ Z(n+1)×(n+1)·l
q of matrix M ∈ {0, 1}r×r satisfy that SC =

MS + noise. The scheme constructs the preimage of MS + noise for the func-
tion fS(x) = Sx(modq), as S[BR +

(
MS
0

)
G] = ER + MSG, so the ciphertext

C is a preimage of BR +
(
MS
0

)
G for the function fG, But the pliantext s-

pace is M ∈ {0, 1}r×r, In this paper, We extend this scheme to encrypt integer
matrices.

3 Integer Matrices Homomorphic Scheme

In this section, we firstly present a modifield scheme which can encrypt matrices
with integer element, basing on [9] encrypting binary matrix. We revised the
encyption algorithm and redesign the decryption algorithm, the shceme can
proceed homomorphic operation of Addition and multiplication, then give the
correctness and security analysis.

3.1 midifield scheme

The integer matrices encryption scheme can be split into two shemes including
symmetric and public-key encryption systems, the key generation algorithms
and the encryption algorithms are slightly different, so we present the schemes
respectly.

3.1.1 public-key encryption scheme

-Setup:(1λ): Our scheme is parameterized by an integer lattice dimension n,
Let λ be security parameter, q is an integer modulus, a distribution χ over Z,
the parameter above depends on λ. Let l := dlog2 qe, the message space is

Zr×rq , m := O((n+ r) log q), N := (n+ r) · l , The ciphertext space is Z(n+r)×N
q ,

gT = (1, 2, ...2l−1) , and G = gT ⊗ In+r ,This algorithm outputs parameters
above.
The key generation procedure is described as two steps: secret key generation
and public key generation.

-KeyGenSec(params): The input is the parameters generated from the
Setup procedure, sample S̄ from Gassian distribution χr×n, Ir is the identity
matrix with r order, we concatenate Ir and S̄, output secret key S := [Ir ‖ −S̄]
and S̄.

-KeyGenPub(params, S̄): This step get the input including parameters,

S̄, A is a random matrix sampled uniformly A
U←− Zr×(n+r)q , Zq is defined as

5

Z ∩ [−q/2, q/2),the noise matrix E
R←− χr×m, Let

B :=

(
S̄A+ E

A

)
∈ Z(n+r)×m

q

Set M(i,j) is a r × r matrix with 1 in the (i, j)− th position and 0 in the others,

and R(i,j) is a random {0, 1} matrix, R(i,j)
U←− {0, 1}m×N and compute

P(i,j) := BR(i,j) +

(
M(i,j)S

0

)
G ∈ Z(n+r)×N

q

output public key pk := (P(i,j),i,j∈r, B).
-PubIntEnc(params, pk,M): Plaintext matrix M ∈ Zq, M [i][j] donotes

the (i, j) − th element value in M , sample R(i,j)
U←− {0, 1}m×N , output the

ciphtext matrix

C := BR+
∑
i,j∈[r]

M [i][j] · P(i,j) ∈ Z(n+r)×N
q (3.1)

-IntDec(params,C, S): The algorithm inputs parameters, ciphtext and se-
cret key, observe that SC = MSG + noise, The frist r · l rows of (MSG)T

is 

m00 m10 mr0

2 ·m00 2 ·m10 2 ·mr0

...
2(l−1)m00 2(l−1)m10 2(l−1)mr0

m01 m11 mr1

2 ·m01 2 ·m11 2 ·mr1

...
2(l−1)m01 2(l−1)m11 2(l−1)mr1

...

...
m0r m1r mrr

2 ·m0r 2 ·m1r 2 ·mrr

...
2(l−1)m0r 2(l−1)m1r 2(l−1)mrr


whose the frist column and the frist l rows is correspondence to the frist column
and the frist l rows of (SC)T , when the noise is very small. This have the same
form as Cs in algorithm GSW.MPDec, so we can call GSW.MPDec to recover
every bit of m00. Besides, the following l rows of (MSG)T is correspondence
to the respect (SC)T , so we can call GSW.MPDec again to recover every bit of
m01, in this way every element in matrix M will be got along rows.

Homomorphic addition is C1

⊕
C2 = C1 + C2.

Homomorphic multiplication is C1

⊙
C2 = C1 ·G−1(C2).

6

3.1.2 asymmetric encryption scheme

The scheme contains four algorithms: Setup, KeyGenSec, SecEnc and IntDec.
The Setup, KeyGenSec and IntDec are the same as the public-key enryption
scheme.
-SecEnc(M,params, S, s̄): The input is M , parameters, secret key S and S̄,

sample a random matrix Ā
U←− Zn×Nq and E

R←− χr×N , the output is:

C :=

(
S̄Ā+ E

A

)
+

(
MS

0

)
G ∈ Z(n+r)×N

q

Homomorphic addition is C1

⊕
C2 = C1 + C2.

Homomorphic multiplication is C1

⊙
C2 = C1 ·G−1(C2).

3.2 correctness and security analysis

The correctness of decryption will be guaranteed by the following lemma.

Lemma 3.1. If a ciphertext C in a public-key encryption scheme encrypts a
plaintext matrix M ∈ Zr×rq and let

∑
i,j∈[r]M [i][j] = µ, and the noise matrix E

as long as such that ‖E‖∞ · (µ+ 1) < q/8, then IntDecsk(C) = M.

Proof. Put equation (3.1) into SC, as SB = E, so

SC = S(BR+
∑
i,j∈[r]

M [i][j] · P(i,j))

= S(BR+
∑
i,j∈[r]

M [i][j] ·
(
BR(i,j) +

M(i,j)S

0

)
G)

= ER+
∑
i,j∈[r]

M [i][j] · ER(i,j) +
∑
i,j∈[r]

M [i][j] · (1,−S̄)

(
M(i,j)S

0

)
G

= E(R+
∑
i,j∈[r]

M [i][j] ·R(i,j)) +
∑
i,j∈[r]

M [i][j] ·M(i,j)SG

= E(R+
∑
i,j∈[r]

M [i][j] ·R(i,j)) +MSG

Let noise = E(R +
∑
i,j∈[r]M [i][j] · R(i,j)), if ‖noise‖∞ < q/8, i.e. ‖E(R +∑

i,j∈[r]M [i][j] · R(i,j))‖∞ < q/8, so ‖E‖∞ · (µ + 1) < q/8, according to the
GSW scheme, the decryption will be correct.

The symmetric encryption scheme is similar with public- key encryption
scheme, so no more detailed description here.

The security of the two schemes holds from DLWEn,q,χ problem directly,
and circular security definition, the detailed come from [9] Lemma 4. In the

7

public-key scheme, the algorithm encrypts the bases of every element in plain-
text matrix in the public key generation step. According to circular security
definition in [9], lake nothing to adversary, so the security of the scheme can be
hold.

4 Implementation

We have accomplished four homomorphic encryption schemes including binary
matrices public-key and symmetry encryption scheme from literature [9], and
integer matrices public-key and symmetry encryption scheme from section 3.
We show the results of the implementation of these schemes and analyze the
efficiency.

4.1 experimental platform

We implemented the schemes in python 2.7 using pycharm community 2018.1.3,
and run the algorithms on computer with 64-bit double cores(i7-7500U) at
2.7GHz and 2.9GHz, and 8GB RAM. The parameters chosen as follows:

Table 1: Parameters selection in encryption schemes

Parameter this work
q 230

n 16
l 30
r 32
m 1440
N 1440
var 10

The four schemes contain four algorithms respectly, each algorithm runs
20 times and takes the average as the result, table 2 shows the running time
of binary matrices encrypion scheme, and table 3 shows the running time of
integer matrices encryption scheme.

Table 2: running time of binary matrices encryption scheme(sec)

Scheme Type Setup KeyGen enc dec
public-key encryption 0.000331 76.313 0.274 0.00436
symmetric encryption 0.0002402 0.0960 0.0961 0.00474

8

Table 3: runing time of integer matrices encryption scheme running time(sec)

Scheme Type Setup KeyGen enc dec
public-key encryption 0.00029 143.104 0.764 0.117
symmetric encryption 0.000285 0.0894 0.0984 0.129

In the symmetirc encryption schemes, binary matrices and integer matrices
have almost the same running time in setup, KeyGen and enc algorithms, but
in dec algorithm, the latter is slower than the former.
In the public-key encyption schemes, key generation step consumes the most
time about 76s in binary matrices and 143s in integer matrices, it costs the
most time in two types of schemes. Figure 2 shows in public-key integer ma-
trices encryption scheme, how the time of key generation grows with the size
of matrices changes. Besids, for r = 32 we computed the space occupied in
memory of the secret key, public key and ciphertext, table 4 shows the details.
We conclude that key generation takes a lot of time and space in public-key
integer matrices scheme, which is a problem to research in future work.

Table 4: key and ciphertext size r = 32 (MB)

type sksize pksize ctsize
size 6 877.5 67.5

Table 5 shows the homomorphic operations time consuming in public-key
integer matrices encryption scheme. For a plaintext matrices 32×32, the multi-
plication costs 0.25sec, and addition just costs 0.09sec, as the homorphic oper-
ation just natural matrices computations, the results confrim our theory above.
Futhermore, Figure 1 shows that homomorphic multiplication time grows over
the size of matrices grows. We can see that for r = 8, the multiplication just
takes 0.06sec and for r = 40, the time takes 0.32sec, the time increases ap-
proximately linearly with the size of matrices, which provides applications for
homomorphic evaluations.

Table 5: Homomorphic operation running time in public-key integer matrices
encryption scheme(sec)

Operation Setup KeyGen enc dec homomorphic
Multiplication 0.000446 125.711 1.425 0.115 0.251

Addition 0.000286 129.758 1.342 0.1197 0.0917

9

5 Application

Matrices encryption schemes have a lot of applications, such as graph theory,
one of the application scenarios is to homomorphicly compute the number of
legth-k walks between any two vertexes, given an undirected graph. In graph
theory, the plaintext operation to get the solution of this problem is described
in [15] [5] through the powers of adjacent matrix. As an application of integer
matrices, we present the algorithm using integer matrices public-key encryption
in encrypted graph to homomorphiclly compute the number of walks of length
less than k(= 3) between any two vertexes. The detail is in Algorithm 1.

Algorithm 1 homomorphiclly compute the number of walks of length less than
k(= 3) between any two vertexes

Input: Number of vertices r
Output: The Matrix Ā, denotes the number of walks of length less than 3

between any two vertexes
1: Generate randomly an adjacent matrix A with r vertexes;
2: Call algorithmn Setup, KeyGen in sequence;
3: Call algorithmn PubIntEnc to get Epk(A);
4: Call homorphic multiplication algorithmn Epk(A2) = mult(Epk(A), Epk(A))

and Epk(A3) = mult(Epk(A2), Epk(A));
5: Call homomorphic addition algorithmn Epk(A′) = add(Epk(A2), Epk(A3));

6: Compute A2 = A ·A, A3 = A2 ·A, A
′

= A2 +A3 in sequence;
7: Call algorithmn IntDec to get Ā = IntDec(params,Epk(A′), S)

8: Compare matrices ¯(A) and A
′
;

9: if ¯(A) == A
′

then
10: return Ā
11: end if

10

6 conclusion

In this paper, we extend binary matrices encryption schemes to integer ma-
trices for improving the efficiency of encryption algorithm with homomorphic
operations. We proved the correctness and analyze the security of the schemes,
and implement four encryption schemes to show the efficiency of the schemes.
Finally, as an application, design an algorithm to solve a encryped graph theory
problem.
The fellowing work has three aspects, reduce the cost of space and time in
key generation to improve the efficiency of the public-key encryption scheme.
Analyze the growth of noise to make the scheme fully homomorphic. Design
specific application scenarios using the matrices encryptiion schemes to make
homomorphic encryption more practical.

References

[1] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial
error. In International Cryptology Conference, pages 297–314, 2014.

[2] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Cryptology Conference on Advances in Cryptology
— CRYPTO, pages 868–886, 2012.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. Acm Transactions on Computation
Theory, 6(3):1–36, 2014.

[4] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) lwe. In Foundations of Computer Science, pages 97–
106, 2011.

[5] A. Duncan. Powers of the adjacency matrix and the walk matrix. The
Collection, pages 9, 4–11, 2004.

[6] Gentry and Craig. Fully homomorphic encryption using ideal lattices. Stoc,
9(4):169–178, 2009.

[7] C. Gentry. A fully homomorphic encryption scheme. Stanford University,
2009.

[8] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Cryptology Conference, pages 75–92, 2013.

[9] R. Hiromasa, M. Abe, and T. Okamoto. Packing Messages and Optimizing
Bootstrapping in GSW-FHE. Springer Berlin Heidelberg, 2015.

11

[10] A. Khedr, G. Gulak, and V. Vaikuntanathan. Shield: Scalable homomor-
phic implementation of encrypted data-classifiers. IEEE Transactions on
Computers, 65(9):2848–2858, 2016.

[11] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data
without additional independent servers. In ACM Sigsac Conference on
Computer and Communications Security, pages 874–885, 2015.

[12] Naehrig, Michael, Lauter, Kristin, Vaikuntanathan, and Vinod. Can ho-
momorphic encryption be practical? Proc Ccsw, pages 113–124, 2011.

[13] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the Acm, 56(6):1–40, 2009.

[14] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and priva-
cy homomorphisms. Foundations of Secure Computation, pages 169–179,
1978.

[15] D. B. West. Introduction to graph theory, 2nd edition. Prentice-Hall Inc,
1996.

[16] G. Xu, Y. Ren, H. Li, D. Liu, Y. Dai, and K. Yang. Cryptmdb: A practical
encrypted mongodb over big data. In IEEE International Conference on
Communications, pages 1–6, 2017.

[17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vsql: Verifying arbitrary sql queries over dynamic outsourced databases.
In Security and Privacy, pages 863–880, 2017.

12

	1 Introduction
	2 Preliminaries
	2.1 The Learning with Errors(LWE) Problem
	2.2 GSW Fully Homomorphic Encryption scheme
	2.3 binary matrices encryption scheme

	3 Integer Matrices Homomorphic Scheme
	3.1 midifield scheme
	3.1.1 public-key encryption scheme
	3.1.2 asymmetric encryption scheme

	3.2 correctness and security analysis

	4 Implementation
	4.1 experimental platform

	5 Application
	6 conclusion

