
A Unified Security Perspective on Legally Fair Contract Signing
Protocols

Diana Maimuţ1 and George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro
2 Department of Computer Science

“Al.I.Cuza” University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract. Inspired by Maurer’s universal zero knowledge (UZK) abstract perspective and building
on legally fair contract signing protocols without keystones, we propose and analyze the security of
the first UZK class of co-signing protocols. We construct our main idea considering the stringent
issue of scheme compatibility which characterizes communication systems. Typical examples are the
cases of certificates in a public key infrastructure and the general issue of upgrading the version of a
system. Thus, working in a general framework may reduce implementation errors and save application
development and maintenance time.

Keywords: Public key, zero knowledge, digital signature, co-signature protocol, legal fairness, security
proofs.

1 Introduction

The main issue addressed by zero knowledge proofs (ZKP) is represented by identification schemes (entity
authentication). Thus, building on the most important goal that a ZKP can achieve one may find elegant
solutions to various problems that arise in different areas: digital cash, auctioning, Internet of Things (IoT),
password authentication and so on.

A typical zero knowledge protocol involves a prover Peggy which possesses a piece of secret information
x associated with her identity and a verifier V ictor whose job is to check that Peggy really owns x. Two
classical examples of such protocols (proposed for smartcards) are the Schnorr protocol [16] and the Guillou-
Quisquater protocol [10]. Working in an abstract framework, Maurer shows in [11] that the previously
mentioned protocols are actually instantiations of the same one.

Inspired by Maurer’s generic perspective, we considered of great interest extending the unification
paradigm to contract signing protocols. Therefore, we construct our main idea considering the stringent
issue of scheme compatibility which characterizes communication systems. Typical examples are the cases of
certificates in a public key infrastructure and the general issue of upgrading the version of a system. Thus,
working in a general framework may reduce implementation errors and save application development (and
maintenance) time.

Various contract signing schemes which fall into three different design categories were proposed during
the last decades: gradual release [7–9,13], optimistic [1, 2, 12] and concurrent [3] or legally fair [5] models. A
typical co-signing protocol involves two (mutually distrustful) signing partners, Alice and Bob wishing to
compute a common function on their private inputs.

Compared to older paradigms like gradual release or optimistic models, concurrent signatures or legally
fair protocols do not rely on trusted third parties and do not require too much interaction between co-signers.
As such features seem much more attractive for users, we further consider legally fair co-signing protocols
(rather than older solutions) in our paper.

https://orcid.org/0000-0002-9541-5705
https://orcid.org/0000-0003-3953-2744

To the best of our knowledge, in this work we present the first unified class of legally fair co-signing
protocols without keystones and prove its security. Thus, we provide the reader with a common theoretical
framework. To be more precise, we propose a class of UZK based co-signing protocols that maintains the
valuable properties3 of the scheme presented in [5].

As digital signature schemes represent the core of modern contract signing protocols, we preserve this
perspective and prove the security of our main result building on the unified digital signature scheme we
propose in Section 3.

Outline. We introduce notations, definitions, schemes and protocols used throughout the paper in Section 2.
We present a signature scheme inspired by Maurer’s UZK paradigm in Section 3. In Section 4 we present
our main result, namely a UZK based co-signing protocol built on the legally fair contract signing protocol
of [5]. We conclude and discuss related open problems in Section 5.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinal of a set S. The action of selecting a
random element x from a sample space X is denoted by x

$←− X, while x ← y represents the assignment of
value y to variable x. The probability of the event E to happen is denoted by Pr[E]. The subset {0, . . . , s} ∈ N
is denoted by [0, s]. Let h : {0, 1}∗ → C be a hash function, where C ⊂ N.

2.1 Groups

Let (G, ⋆) and (H,⊗) be two groups. We assume that the group operations ⋆ and ⊗ are efficiently computable.
We further consider a more restrictive set of initial conditions compared to [11], in the sense that we also
assume that G is commutative4.

Definition 1 (Homomorphism). Let f : G→ H be a function (not necessarily one-to-one). We say that
f is a homomorphism if f(x ⋆ y) = f(x)⊗ f(y).

Throughout the rest of the paper we consider f to be a homomorphism as well as a one-way function5.
To be consistent with [11], we denote the value f(x) by [x]. Note that given [x] and [y] we can efficiently
compute [x ⋆ y] = [x] ⊗ [y], due to the fact that f is a homomorphism. We further denote the set of public
parameters by pp = (G,H, f, h).

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ ×{0, 1}∗ → {true, false} be a predicate. Given a value y, Peggy will try to convince Victor
that she knows a value x such that Q(y, x) = true. We further recall a definition from [4]. This definition
captures the notion that being successful in a protocol (P, V) implies having the knowledge of a value x such
that Q(y, x) = true.

Definition 2 (Proof of Knowledge Protocol). An interactive protocol (P, V) is a proof of knowledge
protocol for predicate Q if the following properties hold

– Completeness: V accepts the proof when P has as input an x with Q(y, x) = true;
– Soundness: there is an efficient program K (called knowledge extractor) such that for any P̂ (possibly

dishonest) with non-negligible probability of making V accept the proof, K can interact with P̂ and output
(with overwhelming probability) an x such that Q(y, x) = true.

3 legal fairness without keystones, guaranteed output delivery
4 The group G is considered as being generic in [11].
5 meaning that it is infeasible to compute x from f(x)

2

Definition 3 (2-Extractable). Let Q be a predicate for a proof of knowledge. A 3-move protocol6 with
challenge space C is 2-extractable if from any two triplets (r, c, s) and (r, c′, s′), with distinct c, c′ ∈ C accepted
by V ictor, one can efficiently compute an x such that Q(y, x) = true.

Peggy V ictor

Knows x Knows y
Computes y = [x]

Choose k
$←− G

Compute r ← [k]
r−−−−−−−−−−−→

Choose c
$←− C ⊂ N

c←−−−−−−−−−−−
Compute s← k ⋆ xc

s−−−−−−−−−−−→
If [s] = r ⊗ yc return true
Else return false

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) Protocol.

According to [11], UZK (Figure 1) is a zero-knowledge protocol if the conditions from Theorem 1 are
satisfied. If the challenge space C is small, then one needs several 3-move rounds to make the soundness error
negligible. We further assume that UZK satisfies the conditions stated in Theorem 1.

Theorem 1. If values ℓ ∈ Z and u ∈ G are known such that gcd(c0−c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1
and [u] = yℓ, then the protocol described in Figure 1 is 2-extractable. Moreover, a protocol consisting of α
rounds is a proof of knowledge if 1/|C|α is negligible, and it is a zero-knowledge protocol if |C| is polynomially
bounded.

2.3 Signatures

Definition 4 (Signature Scheme). A Signature Scheme consists of three PPT algorithms: KeyGen, Sign
and Verify. The first one takes as input a security parameter and outputs the system’s parameters, the public
key and the matching secret key. The secret key together with the Sign algorithm are used to generate a
signature σ for a message m. Using only the public key, the third algorithm verifies that a signature σ for a
message m is generated using the matching secret key.

Throughout the paper we only consider signature schemes which, on input m, produce triplets of the form
(σ1, h(m∥σ1), σ2), independent of previous signatures. In these triplets we consider σ2 as being dependent on
m, σ1 and h(m∥σ1). In some cases h(m∥σ1) is easily computable from the available data and, thus, can be
omitted. For such signatures, the following security result can be proven [14,15].

Lemma 1 (Forking Lemma). Let A be a PPT algorithm, given only the public data as input. If A
can find a valid signature7 (m,σ1, h(m∥σ1), σ2) with non-negligible probability, then, also with non-negligible
probability, a replay of A with a different hashing oracle h′ outputs a second signature (m,σ1, h

′(m∥σ1), σ
′
2)

such that h(m∥σ1) ̸= h′(m∥σ1).
6 in which Peggy sends r, V ictor sends c, Peggy sends s
7 i.e. if the Verify algorithm outputs True for this signature

3

Security Model. We further present the security model of [15] for signature schemes.

Definition 5 (Signature Unforgeability - ef-cma). The notion of unforgeability for signatures is defined
in terms of the following security game between the adversary A and a challenger:

1. The KeyGen algorithm is run and all the public parameters are provided to A.
2. A can perform any number of signature queries to the challenger.
3. Finally, A outputs a tuple (m,σ1, h(m∥σ1), σ2).

A wins the game if Verify(m,σ1, h(m∥σ1), σ2) = True and A did not query the challenger on m. We say that
a signature scheme is unforgeable when the success probability of A in this game is negligible.

2.4 Legally Fair Signatures without Keystones

In [5] the authors present a new contract signing paradigm that does not require keystones to achieve legal
fairness. Their provably secure co-signature construction recalled in Figure 2 is based on Schnorr digital
signatures [16].

In Figure 2, L represents a local non-volatile memory used by Bob and C = [0, q−1]. During the protocol,
Alice makes use of a publicly known auxiliary signature scheme σxA

using her secret key xA.

Alice Bob

y ← yA · yB y ← yA · yB
kA

$←− Z∗
q kB

$←− Z∗
q

rA ← gkA rB ← gkB

ρ← h(0∥rB)
ρ←−−−−−−−−−−−

t← σxA(rA∥Alice∥Bob) rA,t−−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−−
if h(0∥rB) ̸= ρ then abort
r ← rA · rB r ← rA · rB
e← h(1∥m∥r∥Alice∥Bob) e← h(1∥m∥r∥Alice∥Bob)
sA ← kA + exA mod q sB ← kB + exB mod q

store sB in L
sB←−−−−−−−−−−−

if sB is incorrect then abort
sA−−−−−−−−−−−→

if sA is incorrect then abort
s← sA + sB mod q s← sA + sB mod q

if {m, r, s} is valid then
erase t, sB from L

Fig. 2. The legally fair signature (without keystones) of message m.

Security model. According to the analysis presented in [5], a legally fair signature scheme is secure when
it achieves existential unforgeability against an active adversary A with access to an unlimited amount of
conversations and valid co-signatures, i.e. A can perform the following queries:

– Hash queries: A can request the value of h(x) for an x of his choosing.

4

– Sign queries: A can request a valid signature t for a message m and a public key yC of his choosing.
– CoSign queries: A can request a valid co-signature (r, s) for a message m and a common public key yC,D

of his choosing.
– Transcript queries: A can request a valid transcript (m, ρ, rC , t, rD, sC , sD) of the co-signing protocol for

a message m of his choosing, between users C and D of his choosing.
– SKExtract queries: A can request the private key corresponding to a public key.
– Directory queries: A can request the public key of any user.

The following definition captures the notion of unforgeability in the co-signing context:

Definition 6 (Co-Signature Unforgeability). The notion of unforgeability for co-signatures is defined
in terms of the following security game between the adversary A and a challenger:

1. The KeyGen algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D such that yC,D = yCyD and
either of the following holds:

– A did not query SKExtract on yC nor on yD, and did not query CoSign on (m, yC,D), and did not query
Transcript on (m, yC , yD) nor (m, yD, yC).

– A did not query Transcript on (m, yC , yi) for any yi ̸= yC and did not query SKExtract on yC , and did
not query CoSign on (m, yC , yi) for any yi ̸= yC .

We say that a co-signature scheme is unforgeable when the success probability of A in this game is negligible.

3 A UZK Based Digital Signature Scheme

We describe our proposed UZK based digital signature scheme (further referred to as UDS) in Table 1. We
further prove the security of our scheme in Section 3.2.

3.1 Description

By applying the Fiat-Shamir transform [6] to the UZK protocol in Figure 1 we obtain the signature scheme
presented in Table 1.

Table 1. A Unified Digital Signature (UDS) Scheme.

KeyGen(pp)

On input the public parameters pp, this algorithm chooses uniformly at random
x

$←− G and computes y ← [x]. The output is the couple (sk, pk), where sk = x is
kept private and pk = y is made public.

Sign(pp, sk,m)

On input public parameters pp, a secret key sk, and a message m this algorithm
selects a random k

$←− G, computes

r ← [k] e← h(m∥r) s← k ⋆ xe

and outputs (r, s) as the signature of m.

Verify(pp, pk,m, (r, s))
On input public parameters pp, a public key pk, a message m and a signature (r, s),
this algorithm computes e ← h(m∥r) and returns True iff [s] = r ⊗ ye; otherwise it
returns False.

5

3.2 Security Analysis

The proofs presented in [14,15] do not cover the generic case. Thus, we adapt the initial results to the UDS
case and provide the reader with the proof of Theorem 2.

Theorem 2. If an ef-cma attack on the UDS has non-negligible probability of success in the ROM, then
the homomorphism [·] can be inverted in polynomial time.

Proof. If an attacker A can forge a UDS, then we are able to construct a simulator S that interacts with A
and forces it to produce a forgery. By using Lemma 1 we transform A into a homomorphism inverter (i.e.
that computes an x′ such that y = [x′]). We further show how S can simulate the three phases necessary to
mount the ef-cma attack.

Key Establishment Phase. In this phase S sets up the public key as y = [x] and then activates A with
input y.

Query Phase. A will start to present queries to the S. Thus, S must respond to two types of queries:
hash and signature queries. S will maintain a table T containing all the hash queries performed throughout
the attack. At start T ← ∅. We further describe the simulations of the hash function in Algorithm 1 and
the signature scheme in Algorithm 2.

Algorithm 1: Hashing oracle Oh simulation for h.
Input: A hashing query qi from A

1 if ∃hi, {qi, hi} ∈ T then
2 e← hi

3 else
4 e

$←− C
5 Append {qi, e} to T

6 end if
7 return e

Algorithm 2: Signing oracle OS simulation.
Input: A signature query m

1 s
$←− G

2 e
$←− C

3 r ← [s]⊗ y−e

4 u← m∥r
5 if ∃e′ ̸= e, {u, e′} ∈ T then
6 abort
7 else
8 Append {u, e} to T
9 end if

10 return (r, s)

Output Phase. After the query phase, A will eventually produce a forgery (r, s).
When simulating the signing oracle OS there is a case when S aborts before completion: this happens

when m∥r has already been queried by A. In this case, S can not reprogram Oh, which is why it must
abort. Since A does not know the random value r, the previously described event occurs with a negligible
probability qh/q, where qh is the number of queries to Oh.

6

Therefore, A is turned into a forger for the UDS with probability (1− qh/q)
qs ≥ 1− qhqs/q, where qs is

the number of signing queries to OS . As A has a success probability ϵsucc, the success probability of A in
the simulated environment is ϵsim = (1− qhqs/q)ϵsucc.

Algorithm 3: Hashing oracle O′
h simulation for h.

Input: A hashing query qi from A, an index γ and a table T
1 if i < γ then
2 e← hi, where (qi, hi) ∈ T

3 Append {qi, e} to T̃

4 else if i = γ then
5 e

$←− C \ {hγ}, where (qγ , hγ) ∈ T

6 Append {qi, e} to T̃

7 else
8 if ∃hi, {qi, hi} ∈ T̃ then
9 e← hi

10 else
11 e

$←− C
12 Append {qi, e} to T̃

13 end if
14 end if
15 return e

Due to the ideal randomness of Oh, A queries Oh on m∥r with probability 1− 1/c, where |C| = c. Hence,
let γ be the position of m∥r in T from Oh. After A produces a forgery (r, s), S runs A with the same inputs
and a different h oracle (Algorithm 3). As before, S will maintain a table T̃ containing all the h queries
performed throughout this phase of the attack. At start T̃ ← ∅. Then, by Lemma 1, A will produce a
different forgery (r, s′). Thus, we obtain c = Oh(m∥r) ̸= O′

h(m∥r) = c′. Using the 2-extractable property of
UZK, we obtain an x′ such that y = [x′].

⊓⊔

4 Main Protocol

We describe our main result, a UZK class of legally fair contract signing protocols in Figure 3 and discuss
its correctness. We further prove the security of our proposed idea in Section 4.2 based on the security of
the UDS scheme we propose in Section 3.

Compared to the initial work on legally fair contract signing protocols without keystones [5], we give a
more complete proof by taking into account the signature scheme σ too.

4.1 Description

To illustrate our unified paradigm, we now discuss a legally fair co-signing protocol built from the UDS
(Figure 3), which produces signatures compatible with standard UDS (Table 1). This contract signing protocol
is provably secure in the ROM assuming the one-way property of [·].

7

Alice Bob

y ← yA ⊗ yB y ← yA ⊗ yB

kA
$←− G kB

$←− G
rA ← [kA] rB ← [kB]

ρ← h(0∥rB)
ρ←−−−−−−−−−−−

t← σxA(rA∥Alice∥Bob) rA,t−−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−−
if h(0∥rB) ̸= ρ then abort
r ← rA ⊗ rB r ← rA ⊗ rB
e← h(1∥m∥r∥Alice∥Bob) e← h(1∥m∥r∥Alice∥Bob)
sA ← kA ⋆ xe

A sB ← kB ⋆ xe
B

store sB in L
sB←−−−−−−−−−−−

if sB is incorrect then abort
sA−−−−−−−−−−−→

if sA is incorrect then abort
s← sA ⋆ sB mod q s← sA ⋆ sB mod q

if {m, r, s} is valid then
erase t, sB from L

Fig. 3. A Class of Legally Fair Co-Signature Schemes.

Correctness. To prove the correctness of the class of co-signing schemes described in Figure 3 we use the
commutative property of G which is preserved by f(x):

[s] = [sA ⋆ sB]

= [sA]⊗ [sB]

= [kA]⊗ [xA]
e ⊗ [kB]⊗ [xB]

e

= [kA]⊗ [kB]⊗ ([xA]⊗ [xB])
e

= r ⊗ ye.

4.2 Security Analysis

To prove that the unified co-signature protocol is secure in the ROM we use the following strategy: assuming
A is an efficient forger for the co-signature scheme, we turn A into an efficient forger for UDS, then invoke
Lemma 1 to prove the existence of an efficient inverter for the homomorphism [·]. We further address two
scenarios: when the attacker plays Alice’s role, and when the attacker plays Bob’s.

4.2.1 Adversary Attacks Bob

Theorem 3. If AAlice plays the role of Alice and is able to forge a co-signature with non-negligible probability,
then we can construct an ef-cma attack on the UDS that has non-negligible probability of success.

Proof. The proof consists in constructing a simulator SBob that interacts with the adversary and forces it to
actually produce a UDS forgery. Here is how this simulator behaves at each step of the protocol.

8

Key Establishment Phase. SBob is given a target public key y. As a simulator, SBob emulates not only
Bob, but also all oracles and the directory D (see Figure 4).

To inject a target y ← [x] into A, the simulator SBob reads yA from D and poses as an entity whose
public-key is ySBob ← y ⊗ (yA)

−1. It follows that yA,SBob , the common public-key of A and SBob will be
precisely yA,SBob ← ySBob ⊗ yA which, by construction, is exactly y.

Then SBob activates AAlice, who queries the directory and gets yB . At this point in time, AAlice is tricked
into believing that she has successfully established a co-signature public-key set (pp, y) with the “co-signer”
SBob.

Query Phase. AAlice will start to present queries to S. Thus, S must respond to three types of queries:
hash queries, co-signature queries and transcript queries. We consider oracle Oh as in Theorem 2. We further
describe the simulation of the co-signature protocol in Algorithm 4. When AAlice requests a conversation
transcript, SBob replies by sending (m, ρ, rA, t, rB , sB , sA) from a previously successful interaction.

Output Phase. After performing queries, AAlice eventually outputs a co-signature (r, s) valid for yA,SBob

where r = rA ⊗ rB and s = sA ⋆ sB . By design, these parameters are those of a UDS and therefore AAlice
has produced a UDS forgery.

Algorithm 4: Co-signing oracle simulation for SBob.
Input: A co-signature query m from AAlice

1 sB
$←− G

2 e
$←− C

3 rB ← [sB]⊗ y−e

4 Send h(0∥rB) to AAlice
5 Receive rA, t from AAlice
6 Send rB to AAlice
7 r ← rA ⊗ rB
8 u← 1∥m∥r∥Alice∥Bob
9 if ∃e′ ̸= e, {u, e′} ∈ T then

10 abort
11 else
12 Append {u, e} to T
13 end if
14 return sB

To understand SBob’s co-signature reply (Algorithm 4), assume that AAlice is an honest Alice who plays
by the protocol’s rules. For such an Alice, (r, s) is a valid signature with respect to the co-signature public-key
set (pp, y).

AAlice SBob

pp, ypp

activate

1

yB = y ⊗ (yA)
−1

2
SAlice ABob

pppp, y

activate

1

yA = y ⊗ (yB)
−1

2

Fig. 4. The simulator SBob (left) or SAlice (right) answers the attacker’s queries to the public directory D.

9

There is a case in which SBob aborts the protocol before completion: this happens when it turns out that
1∥m∥r∥Alice∥Bob∥t has been previously queried by AAlice. In that case, it is no longer possible for SBob to
reprogram the oracle, which is why SBob must abort. Since AAlice does not know the random value rB , such
a bad event would only occur with a negligible probability exactly equal to qh/q, where qh is the number of
queries to Oh.

Therefore, A is turned into a forger for the SFS with probability 1− qh/q. As A has a success probability
ϵsucc, the success probability of A in the simulated environment is ϵsim = (1− qh/q)ϵsucc.

⊓⊔

Corollary 1. If AAlice plays the role of Alice and is able to forge a co-signature with non-negligible probability,
then the homomorphism [·] can be inverted in polynomial time.

4.2.2 Adversary Attacks Alice

Theorem 4. If ABob plays the role of Bob and is able to forge a co-signature with non-negligible probability,
then we can construct an ef-cma attack on the UDS that has non-negligible probability of success if signature
σxA

can be simulated without knowing the secret key xA.

Proof. Here also the proof consists in constructing a simulator, SAlice, that interacts with the adversary and
forces it to actually produce a UDS forgery. The simulator’s behavior at different stages of the security game
is as follows.

Key Establishment Phase. SAlice is given a target public key y. Again, SAlice impersonates not only Alice,
but also all the oracles and D.
SAlice injects the target y into the game as described in Theorem 3. Now SAlice activates ABob, who

queries D (actually controlled by SAlice) to get yA. ABob is thus tricked into believing that it has successfully
established a co-signature public-key set (pp, y) with the “co-signer” SAlice.

Query Phase. A will start to present queries to S. Thus, S must respond to four types of queries: hash
queries, signature queries, co-signature queries and transcript queries. We consider oraclesOh as in Theorem 2.
We denote by Oσ the simulation of σxA

. We further describe the simulation of the co-signature algorithm in
Algorithm 5. When AAlice requests a conversation transcript, SBob replies by sending (m, ρ, rA, t, rB , sB , sA)
from a previously successful interaction.

Output Phase. After performing queries, ABob eventually outputs a co-signature (r, s) valid for ySAlice,ABob

where r = rA⊗ rB and s = sA ⋆ sB . By design, these parameters are those of a UDS and therefore ABob has
produced a UDS forgery.

As in Theorem 3, Algorithm 5 may fail with probability qh/q. Thus, the success probability of A in the
simulated environment is ϵsim = (1− qh/q)ϵsucc. ⊓⊔

Corollary 2. If ABob plays the role of Bob and is able to forge a co-signature with non-negligible probability,
then the homomorphism [·] can be inverted in polynomial time if signature σxA

can be simulated without
knowing the secret key xA.

5 Conclusion

In this paper we presented a signature scheme inspired by Maurer’s UZK paradigm from [11] and proved
its security. We further described our main result, i.e. a UZK class of co-signing protocols based on both
Maurer’s abstract perspective and the legally fair framework from [5] and then proved its security.

Open Problems. A couple of interesting related studies could be the analysis of our co-signature protocols’
resistance to SETUP (Secretly Embedded Trapdoor with Universal Protection) attacks and the proposal of
suitable countermeasures.

10

Algorithm 5: Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob

1 Receive ρ from ABob
2 Query T to retrieve rB such that h(0∥rB) = ρ

3 sA
$←− G

4 e
$←− C

5 r ← rB ⊗ [sA]⊗ y−e

6 u1 ← 1∥m∥r
7 if ∃e′ ̸= e, {u1, e

′} ∈ T then
8 abort
9 else

10 Append {u1, e} to T
11 end if
12 rA ← r ⊗ r−1

B

13 u2 ← rA∥Alice∥Bob
14 t← Oσ(u2)
15 Send rA, t to ABob
16 Receive rB from ABob
17 Receive sB from ABob
18 return sA

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: CCS 1997. pp. 7–17. ACM
(1997)

2. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: CRYPTO 2000. Lecture Notes in Computer
Science, vol. 1880, pp. 93–111. Springer (2000)

3. Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: EUROCRYPT 2004. Lecture Notes in Computer
Science, vol. 3027, pp. 287–305. Springer (2004)

4. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of Cryptology 1(2), 77–94 (1988)
5. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally Fair Contract Signing Without

Keystones. In: ACNS 2016. Lecture Notes in Computer Science, vol. 9696, pp. 175–190. Springer (2016)
6. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In:

CRYPTO 1986. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)
7. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Composability of Cryptographic

Protocols. In: TCC 2006. Lecture Notes in Computer Science, vol. 3876, pp. 404–428. Springer (2006)
8. Goldwasser, S., Levin, L., Vanstone, S.A.: Fair Computation of General Functions in Presence of Immoral Majority.

In: CRYPT0 1990. Lecture Notes in Computer Science, vol. 537, pp. 77–93. Springer (1991)
9. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-Party Computation. Jornal of

the ACM 58(6), 1–37 (December 2011)
10. Guillou, L.C., Quisquater, J.J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimiz-

ing Both Transmission and Memory. In: EUROCRYPT 1988. Lecture Notes in Computer Science, vol. 330, pp.
123–128. Springer (1988)

11. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: AFRICACRYPT 2009. Lecture Notes in Com-
puter Science, vol. 5580, pp. 272–286. Springer (2009)

12. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In: PODC 2003. pp. 12–19. ACM
(2003)

13. Pinkas, B.: Fair Secure Two-Party Computation. In: EUROCRYPT 2003. Lecture Notes in Computer Science,
vol. 2656, pp. 87–105. Springer (2003)

14. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: EUROCRYPT 1996. Lecture Notes in
Computer Science, vol. 1070, pp. 387–398. Springer (1996)

15. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology
13(3), 361–396 (2000)

11

16. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In: CRYPTO 1989. Lecture Notes in
Computer Science, vol. 435, pp. 239–252. Springer (1989)

12

	A Unified Security Perspective on Legally Fair Contract Signing Protocols

