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Abstract. We describe a method to decompose any power permutation,
as a sequence of power permutations of lower algebraic degree. As a result
we obtain decompositions of the inversion in GF(2n) for small n from 3
up to 16, as well as for the APN functions, when n = 5. More precisely,
we find decompositions into quadratic power permutations for any n not
multiple of 4 and decompositions into cubic power permutations for n
multiple of 4. Finally, we use the Theorem of Carlitz to prove that for
3 ≤ n ≤ 16 any n-bit permutation can be decomposed in quadratic and
cubic permutations.

1 Introduction

In order to construct efficient hardware implementations, we are interested in
the decomposition of complex S-boxes or permutations into simpler maps.

Definition 1 (Decomposition). A decomposition of a function f : GF(2n)→
GF(2n) is a finite sequence of functions g1, g2, . . . gt such that

f(x) = gt ◦ gt−1 ◦ · · · ◦ g2 ◦ g1(x).

The question has been investigated in the context of Threshold Implementation
in [10, 14], where the decomposition and factorization of the Present S-box on
quadratic S-boxes has been proposed. This research has been extended to all 3×3
and 4× 4 S-boxes in [2,3]. In the same context it was proven that when n = 4 all
S-boxes belonging to the Alternative group have decomposition into quadratic
permutations and all S-boxes not belonging to the Alternative group have no
such decomposition, the inversion is among the latter [2,3]. Decompositions of
permutations into simpler operations, i.e. with less field multiplications, to enable
more efficient side-channel countermeasures have been presented in [5, 6, 9, 15].
The goal of this paper is different - we target a decomposition of permutations
into quadratic or cubic permutations.

Let us recall some well known results, which we are using in the paper. There
is no n-bit permutation with degree n [1], i.e. the maximal algebraic degree
of a balanced n-variable Boolean function is n − 1. The inverse of an affine
permutation is affine, the (algebraic) degree of a permutation xd is equal to wt(d)

(Hamming weight), hence the permutations xd and xd ◦ x2i are affine equivalent

since x2
i

are linear permutations. It has also been shown that xd is a permutation



of GF(2n) if and only if gcd(d, 2n − 1) = 1 [1]. Note that for n = 2m there is no
quadratic power function which is a permutation. It can easily be seen that the
quadratic function x3 is a permutation whenever n is odd. Indeed, since 2 = −1
mod 3 it follows that 2n − 1 = 1 mod 3 or in other words gcd(3, 2n − 1) = 1. It
can also been seen that x3 is not a permutation when n is even. All involution
permutations [13] are a product of disjoint cycles with 1 or 2 elements only.

Recall that a mapping f from GF(2n) into GF(2m) is called differentially
δ-uniform (or simply δ-uniform) if for all a ∈ GF(2n), a 6= 0 and b ∈ GF(2m)
we have |{z ∈ GF(2n)|f(z + a) − f(z) = b}| ≤ δ. It is proven in [12] that the
inversion mapping f i.e. x−1 = x2

n−2 in GF(2n) has deg(f) = n − 1, since
wt(2n− 2) = n− 1; it has odd parity; f is differentially 2-uniform if n is odd and
it is differentially 4-uniform if n is even. The functions which are 2-uniform are
also known as Almost Perfect Nonlinear(APN) functions.

Theorem 1 ([4]). There are 5 APN permutations in GF(25) up to affine
equivalence, all of those are affine equivalent to power functions APN5

1 = x3,
APN5

2 = x5, APN5
3 = x7, APN5

4 = x11, APN5
5 = x15. Where APN5

5 is equiva-
lent to its inverse, and APN5

1 (respectively APN5
2 ) is equivalent to the inverse of

APN5
4 (respectively APN5

3 ). Note that APN5
1 and APN5

2 are quadratic, APN5
3

and APN5
4 are cubic, and APN5

4 has degree 4.

There is only one known affine equivalence class of 6-bit APN permutations
and it has degree 4. It is known that this permutation can be decomposed into
two permutations of degree three and two, namely APN6 = g ◦ f , where f is
cubic and g is quadratic.

Carlitz proved the following important theorem [7].

Theorem 2. Given a finite field GF(q) with q > 2 then all permutation poly-
nomials over it are generated by the special permutation polynomials xq−2 (the
inversion) and ax+ b (affine i.e. a, b ∈ GF(q) and a 6= 0).

In other words any permutation [8, 16] can be presented as decomposition of
affine and inverse permutations. Such a decomposition is called the Carlitz rank.
The length i.e. the number of inversions in this decomposition is referred as the
Carlitz length.

Our contribution in this paper is twofold - first, we describe a method to
decompose any power function as a sequence of power permutations of lower
algebraic degree. Using this method we provide decompositions of the inversion
in GF(2n) for small n from 3 up to 16, as well as for the APN functions when
n = 5. Namely, there exist decompositions into quadratic power permutations for
any n not multiple of 4 and decompositions into cubic power permutations for
n multiple of 4. The second contribution of this paper is to extend the known,
for n = 4, decomposition results to any permutation in GF(2n) with 3 ≤ n ≤ 16.
In other words, we show that any permutation can be decomposed in cubic (or
quadratic) permutations when n is (or not) multiple of 4. This general result is
obtained thanks to the Theorem of Carlitz.
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2 Decompositions

We will start with an algorithm which finds decompositions for the inversion into
quadratic or cubic power permutations. Note that it is straightforward to apply
the same method to other well known power functions as we demonstrate later
for the APN functions when n = 5.

Let us recall that for n = 2m there is no quadratic power function which
is a permutation, hence there will be no decomposition of the inversion on
quadratic power permutations for such n. When n = 12 the only quadratic power
permutation is x17, but it has even parity while the inversion has an odd parity,
hence no decomposition of the inversion on quadratic power permutations exist
when n = 12. Since we consider 3 ≤ n ≤ 16 then when n is multiple of 4 (i.e.
n = 4, 8, 12, 16) we will look for decompositions on cubic power permutations,
in all the other cases we will search for decompositions on quadratic power
permutations. Let us denote by A(k) the cyclotomic class of a power permutation
xk. Next, we consider the following algorithm (see Figure 1) in which the first
two steps are pre-computations followed by two alternatives for the search loop.

We note that since we are looking only for decompositions relevant to the
S-boxes used in symmetric cryptographic primitives the choice of n between 3
and 16 is entirely justified. We would like to point out as well that the use of
cyclotomic classes in the first step of the algorithm is similar to the algorithms
in [5, 6, 9, 15], however our goal and the algorithm steps afterwards are different.
Thus, the algorithm described above is adapted to serve well our purposes to
find all desirable decompositions. Note that the exhaustive search worked out for
all n except n = 13, 15 and 16.

Table 1. Decompositions of the inversion

n Decomposition n Decomposition
x−1 Length x−1 Length

3 x2 ◦ x3 1 4 x2 ◦ x7 1
5 x2 ◦ x3 ◦ x5 2 6 x5 ◦ x5 ◦ x5 3

7 x26 ◦ x5 ◦ x5 ◦ x5 3 8 x25 ◦ x13 ◦ x19 2
9 x2 ◦ x17 ◦ x5 ◦ x3 3 10 x17 ◦ ... ◦ x17 15

11 x2 ◦ x5 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 8 12 x23 ◦ x97 ◦ x97 ◦ x97 3

13 x210 ◦ x5 ◦ x17 ◦ x17 ◦ x17 4 14 x5 ◦ ... ◦ x5 21

15 x22 ◦ x3 ◦ x9 ◦ x33 ◦ x129 ◦ x129 ◦ x129 6 16 x213 ◦ x11 ◦ x37 ◦ x161 3

All decompositions we found for the inversion given in Table 1 are with a
minimal length. We applied our algorithm also for APN5

3 = x7, APN5
4 = x11 and

APN5
5 = x15 and found that for APN5

3 = x4 ◦x5 ◦x5 i.e. decomposition of length
2; for APN5

4 = x8 ◦x3 ◦x5 ◦x5 i.e. decomposition of length 3; for APN5
5 = x5 ◦x3

i.e. decomposition of length 2; and those are the shortest decompositions.
A confirmation of the above results is given by the decompositions of the

inversion in GF(28) i.e. the AES S-box which is of algebraic degree 7, presented
in [11]: x−1 = x32 ◦ x19 ◦ x13 i.e., a composition of 2 permutations of degree
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Fig. 1. Algorithm for decompositions of power permutations

1. First define A(k) = {k2i mod (2n − 1) | s.t. gcd(k2i, 2n − 1) = 1 for i =
0, . . . , n− 1}. Note that for any permutation xd, the degree d will belong to only
one cyclotomic class A(k). Next we build the set of all cyclotomic classes, which
are permutations CP, i.e. it is a collection of all A(k). Further, we consider the
subset of CP consisting of either quadratic or when there are no quadratic then
cubic permutations denoted by CPQ (or CPC).

2. For each k from CPQ (or CPC) compute the order of k as the smallest power mk

such that wt(kmk mod (2n − 1)) = 1. In other words, xkmk
has algebraic degree

1, i.e. is a linear function. Hence, for each set A(k) we construct a corresponding
set P(k) which we call the power set of k, namely P(k) = {ki mod (2n− 1) | i =
1, . . . ,mk}. The collection of all power sets P(k) we denote by P. Last define
` = |P| and enumerate the representatives k of P(k) ∈ P for example, ki for
i = 1, . . . , `. Note 2 is not among them since it generates linear permutation.

3. Exhaustive search
For each ji = 0, . . . ,mki − 1 and j = 0, . . . , n − 1 compute the num-
ber z(j, j1, . . . , j`) = 2j ∏`

i=1 k
ji
i mod (2n − 1). Then check (∗) whether

z(j, j1, . . . , j`) = 2n − 2. Note that the number
∑`

i=1 ji corresponds to the
length of the decomposition. If the check (∗) is satisfied then we remember the
tuple (j′, j′1, . . . , j

′
`) which results in the shorter decomposition length. Naturally

at the end we have the decomposition with the shortest length. The complexity
of this exhaustive search is n

∏`
i=1 mki .

4. Adaptive search
We start in the same way as in the exhaustive search i.e. for each ji = 0, . . . ,mki−
1 and j = 0, . . . , n − 1, but with the additional constrain on the length of
the decomposition, i.e.

∑`
i=1 ji ≤ t for a chosen t. However, when a tuple

(j′, j′1, . . . , j
′
`) is found which satisfies the check (∗) and achieves a shorter

decomposition length than the already known, then the search space is reduced
to only those tuples which have even shorter decomposition length.

3; x−1 = x16 ◦ x43 ◦ x53 i.e., a composition of 2 permutations of degree 4;
x−1 = x128 ◦ x23 ◦ x11 i.e., a composition of a permutations of degree 3 with a
permutation of degree 4.

To complete our result we use the Carlitz Theorem 2 and we arrive at our
main Theorem.

Theorem 3. For n ≤ 16 any permutation can be decomposed in quadratic
permutations, when n is not multiple of 4 and in cubic permutations, when n is
multiple of 4.

Note that the Carlitz Theorem 2 uses a subset of affine transforms of the
type ax+ b where a, b are field elements. Recall that any affine permutation can
be presented as b +

∑n−1
i=0 aix

2i called also linearized polynomials, where the
coefficients ai are field elements. Since Carlitz considers only a subset of them by
using all affine permutations instead we can achieve shorter Carlitz length. Note
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that the classes with even/odd Carlitz length have even/odd parity. We should
point out that although the decompositions we have found for the inversion are
with minimal length, the decompositions found in Theorem 3 for any S-box might
not have minimal length.

Another application of our main Theorem relates to the decompositions of
the S-boxes when n = 3 and n = 4. All single permutation transpositions (0, j)
belong to class Q3

1 for 3×3 permutations. Moreover, all 4 classes for n = 3 can be
obtained via Inv ◦A ◦ Inv ◦B ◦ Inv i.e. with Carlitz length at most 3. Class A3

0

is the affine class, i.e., has length 0 and class Q3
3 is the only class with length 1,

since it contains the inversion. Then class Q3
2 is with length 2 and the remaining

class Q3
1 is with length 3. Note that, from the construction used in the proof of

the Carlitz Theorem, the single transpositions (i.e. class Q3
1) are with Carlitz

length 3.
All 302 classes for n = 4 can be obtained as follows: Inv◦A◦Inv◦B◦Inv◦C ◦

Inv i.e. with Carlitz length at most 4. Class A4
0 is the affine class and hence with

length 0, class C4
282 is the only class with length 1 since it contains the inversion.

Then there are 59 Classes with length 2: {010, 016, 024, 041, 049, 050, 052, 053, 060,
061, 063, 064, 066, 067, 070, 071, 073, 074, 076, 081, 083, 089, 092, 095, 096, 099, 107,
118, 126, 127, 130, 131, 138, 140, 142, 150, 151, 164, 165, 168, 171, 172, 174, 180, 192,
201, 202, 211, 212, 217, 236, 249, 254, 262, 268, 270, 273, 281, 287}.
Next there are 150 classes with length 3 - namely all the classes not belonging to
the Alternative group except C4

282: {001, 003, 005, 007, 009, 011, 013, 015, 017, 019,
021, 023, 025, 027, 029, 030, 032, 035, 037, 039, 040, 042, 045, 047, 048, 051, 054, 056,
058, 059, 062, 065, 068, 069, 072, 075, 077, 079, 080, 082, 084, 087, 088, 090, 091, 093,
094, 097, 098, 100, 102, 105, 106, 108, 109, 112, 113, 116, 117, 119, 122, 125, 128, 129,
132, 133, 135, 137, 139, 141, 143, 144, 146, 149, 152, 153, 156, 157, 160, 163, 166, 167,
169, 170, 173, 175, 177, 179, 181, 182, 185, 186, 188, 190, 191, 193, 195, 197, 199, 200,
203, 204, 206, 207, 209, 210, 213, 216, 218, 220, 222, 224, 226, 227, 229, 230, 232, 235,
237, 239, 241, 242, 245, 246, 248, 250, 251, 253, 255, 256, 257, 261, 263, 265, 267, 269,
271, 272, 274, 276, 279, 283, 284, 285, 289, 290, 291, 295, 298, 301}.
From the construction used in the proof of the Carlitz Theorem, the single
transpositions (0, j) (i.e. class C4

1 ) are with Carlitz length 3. The remaining
91 classes are with length 4 and among them are all the 6 quadratic classes:
{002, 004, 006, 008, 012, 014, 018, 020, 022, 026, 028, 031, 033, 034, 036, 038, 043,
044, 046, 055, 057, 078, 085, 086, 101, 103, 104, 110, 111, 114, 115, 120, 121, 123, 124,
134, 136, 145, 147, 148, 154, 155, 158, 159, 161, 162, 176, 178, 183, 184, 187, 189, 194,
196, 198, 205, 208, 214, 215, 219, 221, 223, 225, 228, 231, 233, 234, 238, 240, 243, 244,
247, 252, 258, 259, 260, 264, 266, 275, 277, 278, 280, 286, 288, 292, 293, 294, 296, 297,
299, 300}. Five classes {006, 136, 161, 162, 278} will have length 2 instead of length
4 if all Affine transforms are used instead of only the ones of the type ax+ b.

3 Conclusions

We have shown that any permutation (for 3 ≤ n ≤ 16 ) can be decomposed in
quadratic permutations, when n is not multiple of 4 and in cubic permutations,
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when n is multiple of 4. There are still two open problems to be solved: Can the
inversion be decomposed in quadratic permutations when n is multiple of 4 and
n > 4? Can we find decompositions with shorter length?
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