
Sharing Independence & Relabeling: Efficient
Formal Verification of Higher-Order Masking

Roderick Bloem, Hannes Gross, Rinat Iusupov, Martin Krenn, and
Stefan Mangard

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{firstname.lastname}@iaik.tugraz.at

Abstract. The efficient verification of the security of masked hardware
implementations is an important issue that hinders the development
and deployment of randomness-efficient masking techniques. At EURO-
CRYPT 2018, Bloem et al. [6] introduced the first practical formal tool
to prove the side-channel resilience of masked circuits in the probing
model with glitches. Most recently Barthe et al. [2] introduced a more
efficient formal tool that builds upon the findings of Bloem et al. for
modeling the effects of glitches. While Barthe et al.’s approach greatly
improves the first-order verification performance, it shows that higher-
order verification in the probing model with glitches is still enormously
time-consuming for larger circuits like a second-order AES S-box, for
instance. Furthermore, the results of Barthe et al. underline the discrep-
ancy between state-of-the-art formal security notions that allow for faster
verification of circuits. Namely the strong non-interference (SNI) notion,
and existing masked hardware implementations that are secure in the
probing model with glitches. In this work, we extend and improve the
formal approaches of Bloem et al. and Barthe et al. on manifold levels.
We first introduce a so-called sharing independence notion which helps
to reason about the independence of shared variables. We then show
how to use this notion to test for the independence of input and output
sharings of a module which allows speeding up the formal verification of
circuits that do not fulfill the SNI notion. With this extension, we are for
the time able to verify the security of a second-order masked DOM AES
S-box which takes about 3 seconds, and up to a fifth-order AES S-box
which requires about 47 days for verification. Furthermore, we discuss
in which case the independence of input and output sharings lead to
composability.

Keywords: masking · formal verification · domain-oriented masking ·
hardware security · side-channel analysis · private circuits

1 Introduction

Side-channel analysis attacks (SCA), like differential power analysis [16] or elec-
tromagnetic emanation analysis [20], are one of the main security threats for

2 Bloem et al.

security-critical embedded devices. Masking has proven to be a very effective and
scalable countermeasure against SCA for hardware implementations. Extensive
research over the last 20 years has led to a broad variety of masking schemes and
protected hardware implementations [3, 11–13, 18, 21]. The efficient and secure
implementation of masked implementation, however, has also proven to be a dif-
ficult task in which flaws are easily overseen. Such flaws can be either introduced
by designers of masked hardware implementations themselves, but also by the
automated processes of a digital design flow (like synthesis or place-and-route)
which can diminish the SCA resistance. These issues make verification of masked
implementation before production and deployment inevitable.

Bloem et al. [6] introduced a formal verification approach suitable for hard-
ware implementations that proves the security in the so-called probing model of
Ishai et al. [14] under consideration of glitches. With their approach, Boolean
masked hardware implementations can be formally proven directly on the netlist
of a circuit which was demonstrated (among other examples) for a first-order
AES S-box. The formal verification of larger circuits and for higher protection or-
ders, however, is quite time-consuming. The verification of the first-order masked
AES S-box required up to 10 hours, for instance.

One very promising approach to speed up the formal verification of masked
implementations was originally introduced by Barthe et al. [1] for masked
software implementations. Barthe et al. introduced the notion of strong non-
interference (SNI) which allows splitting the verification of larger masked soft-
ware implementations into smaller parts (composability).While the verification
performance is increased enormously, the drawback of this approach is the strong
requirements on the masked implementations regarding randomness usage to
reach this SNI property.

Over the last years, SNI has been extensively researched and used to prove
masked software implementations and schemes. The SNI approach has been
extended by Faust et al. [10] to also cover the specifics of hardware implementa-
tions, and thus models signal timing effects like glitches in a similar way as the
approach of Bloem et al. [6]. However, the SNI extension to hardware inherits
its strong requirements about randomness usage and does not work for the most
randomness efficient masking schemes despite security in the probing model with
glitches.

Very recently, Barthe et al. [2] introduced an efficient tool to prove the se-
curity of masked hardware implementations using different leakage models in-
cluding SNI. While Barthe et al.’s tool is already very fast for first-order (e.g.,
an AES S-box is verified within seconds instead of hours), still higher-order ver-
ification of larger circuits like the AES S-box does not finish within reasonable
time. Furthermore, the verification results of Barthe et al. show that there is a
practically noticeable formal gap between probing security with glitches and the
non-interference (NI) based security. This was also shown by Faust et al. [10] on
the example of the threshold implementations masking scheme [18].

Our contribution. We first demonstrate that the (strong) non-interference no-
tion is indeed too strong, even for less specific masking schemes than threshold

3

implementations, but also for d + 1 masking schemes like the domain-oriented
masking scheme (DOM) [13] or the consolidating masking scheme [21]. For this
purpose, we first introduce an alternative notion that allows proving the in-
dependence of sharings in the probing model with glitches. When this sharing
independence notion is proven for the input and output sharings of a module,
it follows that the outputs can be treated as independent circuit inputs (rela-
beling). Relabeling of sharings allows for tremendous verification speedups, as
we demonstrate by the tool of Bloem et al. [6] and Barthe et al. [2], while still
allowing to prove more general circuits than by SNI. With relabeling, we reduce
the verification time of the first-order DOM AES S-box from 80 hours to 10
minutes in the tool of Bloem et al. [6]. Relabeling allows us for the first time
to successfully prove the security of the generic DOM AES S-box for second-
order probing security with the tool of Barthe et al. [2] which before did not
finish within reasonable verification time (experiment stopped after two weeks).
Furthermore, we show verification results for the DOM AES S-box design up to
order five. We also note that this relabeling technique is independent of the used
tool since it allows preprocessing of the circuit such that its logic-depth becomes
lower.

Finally, we also argue that composability of circuits can be proven with our
independence notion. While the independence of a module’s inputs and outputs
does not directly lead to composability of the module in the higher-order case as
in SNI, it still allows arguing composability for circuits which do not feed-forward
the module’s inputs. Meaning that any module is composable if its outputs are
independent of its inputs and the module’s inputs are not connected to any
other module (with nonindependent outputs), as it is e.g., the case for the S-box
layer of the AES. This is a circumstance that is intuitively already leveraged
in many masked hardware implementations works to reason about the probing
security over multiple rounds by demonstrating the security of separate parts.
With the notion of sharing independence, we now have a formal argument for the
correctness of this practice without relying on the strong formal requirements of
SNI.

2 Preliminaries

Masking was introduced as a countermeasure against side-channel analysis
(SCA) and has been extensively researched over the last almost 20 years. The
idea of masking is to counteract SCA attacks by randomizing the representation
of security-sensitive data to make physical side-channel information, like power
consumption or electromagnetic emanation, statistically independent (Defini-
tion 1) from the processed data.

Definition 1 (Statistical independence) Let A, B, and Q be sets of Boolean
variables and let f : 2A×2B → 2Q. We say that f is statistically independent of A
if for all q ∈ Q there is a t such that for all a ∈ A we have |{b | f(a, b) = q}| = t.

4 Bloem et al.

To achieve statistical independence the security-sensitive data is split into a
vector of uniformly random shares, which only when combined again result in
the original data. A variable a, for example, is represented as a vector of shares
(called sharing) a = {a1, a2, . . . an} containing n random shares. We consider
Boolean masking in which the sharing function is the exclusive-or (XOR) of
all shares such that (although the shares are produced randomly) the relation
a1 ⊕ a2 ⊕ · · · ⊕ an = a is always fulfilled.

Definition 2 (Sharing) A sharing a of variable a is a vector with the elements
denoted {a1, a2, ..., an} s.t. a = a1 ⊕ a2 ⊕ ... ⊕ an, and any subset of up to d
elements of a is statistically independent of the sharing value a.

The number of shares n is a function of the targeted protection order d of
masked circuit. For the sake of simplicity we assume in the remainder of this
work that n = d+1 which is the minimum number of shares to achieve dth-order
security in the probing model of Ishai et al. [14] has become the defacto standard
model for the security evaluation of masked circuits.

We define a circuit C = (G,W, R, f, I), where (G,W) is an acyclic directed
graph with vertices G (gates) and edgesW ⊆ G×G (wires). Gates with indegree
zero are called inputs I, gates with outdegree zero are called outputs O. R ⊆ G
is a set of registers, f is a function that associates with any gate g ∈ G \ I.

Definition 3 (Secure probes) Let C be a circuit, P = {p1, ..., pd} be a set of
probes in C, and f : Bd → B be a function of d probes. P is secure if every f(P)
is statistically independent of any sharing value in C.

Definition 4 (d-th order probing security) Let C be a circuit. C is d-
probing secure if any tuple P of up to d probes is secure.

According to this definition, the shared variable a is securely stored in the
share vector a containing d+ 1 shares because a probing attacker cannot collect
all shares of a with just d probes. A securely masked circuit thus keeps the shares
of a separated at all times.

Fourier expansion. The approach of Bloem et al. [6] expresses the security of
a circuit in the probing model by relying on the so-called Fourier expansion of
Boolean functions.

Definition 5 (Fourier expansion [19]) A Boolean function f : {−1, 1}n →
{−1, 1} can be uniquely expressed as a multilinear polynomial in the n-tuple of
variables A = (a1, a2, . . . , an) with ai ∈ {±1}, i.e., the multilinear polynomial of
f is a linear combination of monomials, called Fourier characters, of the form
χT (A) =

∏
ai∈T ai for every subset T ⊆ A. The coefficient of χT ∈ Q is called the

Fourier coefficient f̂(T) of the subset T . Thus we have the Fourier representation
of f :

f(A) =
∑
T⊆A

f̂(T)χT (A) =
∑
T⊆A

f̂(T)
∏
ai∈T

ai.

5

The statistical dependence (Definition 1) of a function can be directly read
from its Fourier expansion using the following lemma.

Lemma 6 (Xiao-Massey [24]) A Boolean function f : {−1, 1}n → {−1, 1} is
statistically independent of a set of variables A′ ⊆ A iff ∀T ⊆ A′ it holds that if
T 6= ∅ then f̂(T) = 0.

(Strong) Noninterference. There also exists other definitions for the security
of masked circuits. One of these notions is called non-interference (NI) which
implies probing security but allows for simulation-based proofs (for more details
we refer the interested reader to [1]).

Definition 7 (dth-order Non-interference [1]) A circuit is d-noninterfering
(d-NI) iff for ti probes on the circuit’s internal signals, and to probes on its out-
puts with ti + to ≤ d, all probes can be simulated with ti + to shares per shared
input variable.

Barthe et al. [1] also define a more demanding security notion called strong
non-interference (SNI). The SNI notion requires that the order for the NI resis-
tance of a circuit only depends on the number of probes that are placed inside
the circuit but not on the probes at the output of the circuit. Thereby a sepa-
ration of the shared input variables and the shared output variables is achieved
by adding fresh randomness.

Definition 8 (dth-order Strong Noninterference [1]) A circuit is d-strong
noninterfering (d-SNI) iff for ti probes on the circuit’s internal signals, and to
probes on its outputs with ti + to ≤ d, all probes can be simulated with only ti
shares per each shared input.

Since SNI implies also NI, which ensures that at most one share per variable
is combined within the circuit (even for masking schemes that use more than
d + 1 shares), any circuit that fulfills SNI can serve as input of an NI circuit
without compromising (interfering with) its security. Thus this SNI notion allows
verifying the security of the whole circuit by performing verification of smaller
and independently verifiable parts of the circuit. The SNI notion is thus often
referred to as composability notion.

In the next section, we first demonstrate that the NI and the SNI notion are
more demanding than actually required by the probing model or a more intuitive
form of composability, respectively. We analyze differences and show examples
for masked hardware implementations. We then suggest a less restrictive notion
based on probing security and on our notion of sharing independence which
allows us to speed up the formal verification by proving circuit parts to be
independent of its inputs. Our approach, however, does not in all cases allow for
independent verification of circuit parts as with SNI, but allows disconnecting
parts of the circuit, and thus to lower the maximum logic depth which makes
verification much faster as we will demonstrate subsequently.

6 Bloem et al.

&

& FF

FF FF FF

&

&

FF

FF

FF FF

r

a
1

b
1

c
1

c
2

b
2

a
2

probing secure ≠ NI

composable ≠ SNI

q
1

q
2

Fig. 1. Example for a first-order probing secure (black parts only) and a composable
(when including the red parts) circuit that is neither NI nor SNI

3 Independence and Composability in the Probing Model

Informally speaking, composability refers to a property of a masked circuit mod-
ule that makes its outputs independent of its inputs and intermediate values by
using freshly generated randomness. Composability thus allows neglecting these
composable modules from the verification of the overall circuit. The SNI based
composability notion by Barthe et al. [1] builds on the notion of NI. While cir-
cuits that fulfill the NI notion are secure in the probing model, not all circuits
that are probing secure are also NI which was, e.g., demonstrated by Faust et
al. [10] for threshold implementations that use more than the minimum number
of d+1 shares. We first show that NI is too demanding even for masking schemes
that use d+ 1 shares.

As an example, we consider the first-order masked circuit in Figure 1 that
calculates ab⊕c in shared form. Up to the beginning of the red circuit parts, the
circuit can be expressed by following equations where the parentheses denote
the order of the operations as enforced by the registers.

q1 = (a1b1)⊕ (a1b2 ⊕ c1)

q2 = (a2b2)⊕ (a2b1 ⊕ c2)
(1)

This example circuit is first-order probing secure when considering all input
variables to be independently shared, as can be verified by using the tool of
Bloem et al. [6], for instance. However, the circuit is not NI according to Defini-
tion 7 because when considering an attacker that places a probe at the output

7

q1 or q2, the wire cannot be simulated with only one share of each variable since
b1 and b2 are always both required to calculate the outputs (see Equation 1).
Because the circuit does not fulfill the NI notion, it also does not achieve the
SNI notion for composability.

Composability. The circuit is so far indeed not composable because even a
(by itself harmless) linear combination with one share of c could destroy the
probing security. For example, if q1 would be fed into a circuit that adds c1 to
the signal, the resulting equation would be (a1b1⊕a1b2) which would violate the
probing security by bringing both shares of b together. However, by extending
the circuit with the red circuitry in Figure 1, a fresh random share (mask) r is
added to the output of the circuit. This random share leads to a remasking of
the output shares, thus making the output shares statistically independent of
the input shares (from a masking perspective) as long as q0 and q1 are never
combined inside the circuit.

Informally speaking, the shared output of the circuit has the same properties
as assumed for the inputs of the circuit, namely the outputs are securely and
independently shared from the other inputs as we will demonstrate later in this
section. If we again consider a combination of the output of q1 with c1 in an
adjacent circuit (or any share of the input variables), the security is not violated
in this case. The circuit can be fed into any other first-order probing secure
circuit that even takes the shares of a, b and c (apart from r, which is assumed
to be only used inside the circuit) as input without violating its security. In
this sense, the circuit achieves some form of separation of input and output
sharings which is, however, strictly weaker and less demanding than the SNI
composability notion.

To formally express composability in the probing model, we first formalize
what independence of two shared variables in the probing model means which
can be easily extended to any number of variables.

Definition 9 (Order-d sharing independence) Two sharings a and b are
order-d independently shared (or d-probing independent) if any arbitrary circuit,
taking at most d shares of a and d shares of b as inputs, is first-order (d = 1)
probing secure.

As an example how this notion would be checked, consider the two indepen-
dent sharings of the input variables a (= {a1, a2}) and b (= {b1, b2}). The shar-
ing independence is given by the fact that each possible combination of shares
({a1, a2, b1, b2, a1b1, a1b2, a2b1, a2b2}) does not contain both shares of a or b. If
on the other hand, we consider the sharing independence of a with itself, this
would result in {a1, a2, a1a2, a2a1}, which contains the insecure combinations
a1a2 and a2a1.

Definition 10 (Composable module) A subcircuit whose output sharings
are d-probing independent from the inputs is a composable module.

8 Bloem et al.

Based on the definition of sharing independence, we can define first-order
composability as the independence of the input sharings of a module and its
output sharings. To break the probing security of the output sharing of a com-
posable module it always requires to bring all output shares together. A combi-
nation with any shares from the module’s inputs (and for this reason also with
any other sharings in the circuit) that by itself is probing secure cannot cre-
ate a flaw. Since a first-order attacker is bound to one probe and the module
itself is secure, it follows that the attacker cannot leverage from the modules
internal signals and we can thus treat any first-order secure module with inde-
pendent sharings as a composable module. Please note, that composability for
the higher-order case does not directly follow from a separation of input and
output sharings of a module.

As a very simple example for a first-order composable circuit, we consider
the circuit depicted in Figure 2 which just takes a shared variable a as input,
performs a resharing with r, and ensures that no glitches propagate by using
registers. This circuit is securely remasked and can thus be composed with any
other probing secure circuit under the assumption that the random variable r is
fresh and only used for resharing inside this circuit in Figure 2. As a result, even
every combination with the input shares a1 and a2 (that when considered on
their own are first-order probing secure) at the outputs of the circuit (a1 ⊕ r...
or a2⊕ r...) do not create an insecure circuit. For example, adding a2 to the first
output results in the equation (a1 ⊕ r) ⊕ a2 which is again first order probing
secure because an attacker probing this signals, does not know r.

Connections to SNI. The sharing independence of inputs and outputs can
be also formally expressed as a weaker form of SNI where the simulator has no
access to any shares of the input variables and the attacker can place up to d
probes but only on the output of the circuit.

Definition 11 (Independence of inputs and outputs as variation of SNI)
A module’s outputs are independently shared from its inputs iff for 0 probes on
the module’s internal signals, and to probes on its outputs with to ≤ d, all probes
can be simulated with only 0 shares per each shared input.

This definition is strictly weaker than the SNI notion since it contains only
the case where each probe is spent on the outputs. It follows from this definition
that each circuit that fulfills the SNI notion also fulfills the independence of
input and output sharings which in the first-order case implies composability.

For the higher-order masking, it remains uncertain whether the independence
of inputs and outputs is sufficient for higher-order composability in the general
case. However, if the inputs of a module are exclusively used by the module that
fulfills input and output independence (as it is often the case in nonlinear layers
of cryptographic implementations), composability is trivially given by the fact
that the input is nowhere else used in the remaining circuit. For this reason,
when analyzing the probing security of a round-based cipher, for instance, it is
enough to ensure security of one round and the sharing independence on the

9

FF

a
1

a
2

FF q
1

q
2

r

Fig. 2. Example for a very simple first-order secure and composable module

output sharings of the round function. In either case, as we discuss in the next
section, the independence of modules allows for faster formal verification of the
probing security in the higher-order case.

4 Improvements on the Formal Verification

The sharing independence notion as given in Definition 11 states that a module
that fulfills this notion generates only outputs that have the same properties
as it is also assumed of any other sharing of two input variables of a circuit.
Namely, the module only produces sharings that are independent of all other
sharings used in the remaining parts of the circuit by utilizing fresh randomness
that is only used once and inside the module. We can thus treat the outputs of
this module as if they are freshly shared inputs of the original circuit. Consider
as an example the whole circuit from Figure 1. The registers ensure that any
circuit connected to this circuit gets following the equation as input.

q1 = ((a1b1)⊕ (a1b2 ⊕ c1)⊕ r)
q2 = ((a2b2)⊕ (a2b1 ⊕ c2)︸ ︷︷ ︸

q=ab⊕c

⊕r) (2)

When we assume that r is only used inside this module, then it is quite
intuitive that only by bringing the shares of q together this sharing can be
demasked which would leak a, b and c. Any other composition with probing
secure circuitry, even with one that contains the input sharings used to calculate
the shares of q (but not the fresh mask r), is secure. Instead of tracking the whole
history of the sharing of q as given by Equation 2 we can simply replace the shares
of q by a d-probing secure sharing as in Equation 3 to verify the security of the
circuit. We call this process of replacing complex but independent sharings by
simpler sharings relabeling.

q1 = (q ⊕ r)
q2 = r

(3)

Figure 3 shows how we modify an original circuit in which one of the modules
produces independently shared outputs to speed up the verification by relabel-
ing. We thus prune the output wires of the module M1, create a new input port

10 Bloem et al.

a
b

M1
indep.

c

d

M2 q

a
b

M1
indep.

c

M2

d

p

q
p'

relabeling

Fig. 3. Example for relabeling of independently shared outputs

(p′) and a new output port (p) for the top-level circuit and reconnect the fan-out
of the module to the newly created input port. The complexity of the circuit,
and therefore also the complexity of its formal verification, is reduced because
the logic depth of the overall circuit is lowered. It is important to denote that
our composability notion does not allow to also cut the input wires of the com-
posable module for the higher-order case (d > 1) as in SNI, and thus complete
separation of the module from the remaining circuit. In the following, we prove
the correctness of our approach.

4.1 Proofs for Relabeling

If not stated, we assume that all the functions are functions from 2X → B. We
denote by |f | the number of minterms of f .

Lemma 12 |f | = (1− f̂(∅)) · 2|X|−1.

Definition 13 (Function independence) f is independent of g if |f ∧
g|/|g| = |f ∧ ¬g|/|¬g|.

The intuitive meaning of the Definition 13 is that f gives no information
about g. If g is a secret then knowing f does not produce a security flaw. It is
easy to see that independence is symmetric.

Lemma 14 f is independent of g iff |f ∧ g| · |¬f ∧ ¬g| = |¬f ∧ g| · |f ∧ ¬g| iff
g is independent of f .

Definition 15 (Independent function set) A set of functions {f1, ..., fk}
is independent if ∀i∀g : Bk−1 → B, we have that fi is independent of
g(f1, ..., fi−1, fi+1, ..., fk).

Theorem 16 (Independent functions) Let f and g be functions such that

there is no ∅ 6= t ⊆ X such that f̂(t) 6= 0 and ĝ(t) 6= 0. Then f and g are
independent.

11

Proof. Because the Fourier expansions of f and g do not have a term ∅ 6= t ⊆ X
such that f̂(t) 6= 0 and ĝ(t) 6= 0, we have that ̂(f ∧ g)(∅) depends only on f̂(∅)
and ĝ(∅), and likewise for ̂(f ∧ ¬g)(∅), ̂(¬f ∧ g)(∅), and ̂(¬f ∧ ¬g)(∅).

Using the Fourier expansion of conjunction and straightforward arithmetic,

we can show that |f∧g|·|¬f∧¬g| = (1−f̂ ∧ g(∅))·2|X|−1·(1−f̂ ∧ ¬g(∅))·2|X|−1 =

(1− ¬̂f ∧ g(∅)) · 2|X|−1 · (1− ̂¬f ∧ ¬g(∅)) · 2|X|−1 = |¬f ∧ g| · |f ∧ ¬g|. ut

We identify a sharing T with the set of functions given by the set of shares
in T .

Definition 17 (Cut) Given a circuit C and a set of sharings T = {T1, ..., Tn}
where each sharing in T is given as a set of gates in the circuit, we say that T
is a cut of C if for any sharing Ti ∈ T and any shares s1j , ..., s

d
j ∈ Tj the set of

functions {val(Tj)} ∪
⋃

j∈[1,n]{s1j , ..., sdj} is independent.

Theorem 18 Let C be a circuit. The set of primary input sharings and output
sharings of composable modules is cut in C.

Proof. The correctness of the theorem follows by the facts that initial sharings
are independent, and the output sharing of a composable module can only de-
pend on its inputs which is covered by the Definition 10. ut

Given a circuit C and its cut T , one can get the circuit equivalent C ′ where
any sharing T ∈ T can be securely relabeled. That is, outputs of a composable
module are cut and become circuit outputs, and new primary inputs are created
and connected to the fan-out of the module as a sharing of a new variable. The
following theorem gives the generalization of the above claim.

Theorem 19 (Relabeling) Let C is a circuit, T be a cut in C, and C ′ is the
equivalent of C that is cut along T . Then C is d-probing secure if C ′ is d-probing
secure.

Proof. Suppose P ′ = {p1, ..., pd} be a set of probes in C ′, and P ′ is secure. Let
P be the corresponding probes in C. If P ′ is secure, it cannot depend on any
sharing value in T . Thus, it depends on at most d shares for any sharing in T .
Therefore, P depends on at most d shares of any sharing in T , and by definition
of cut, the function defined by T is independent of any sharing in C. Then, P
is secure.

Given C ′ is secure, all possible tuples P ′ of up to d probes in C ′ are secure,
so as well as P in C. Therefore, C is d-probing secure. ut

12 Bloem et al.

li
n
.

m
ap

γ 1 γ 0

in
v
.

li
n
.

m
ap

y

γ 1

⊗

γ 0

θ

⊗

γ 1

θ

⊗

γ 0

Γ
1

Γ
0

N

⊗

Γ
²

Γ
1

⊗

Γ
0

Θ

⊗

Γ
1

Θ

⊗

Γ
0

Γ
-1 G
F
(2

4)

in
v
er

te
r

ν
⊗

 γ
²

in
v
.

li
n
.

m
ap

x
x

M
1

M
2

8-
b
it
 s

ig
n
al

4-
b
it
 s

ig
n
al

2-
b
it
 s

ig
n
al

p
ip

el
in

e
st

ag
e

re
gi

st
er

Fig. 4. DOM AES S-box with the two relabeled modules M1 and M2 as used for
verification

13

5 Practical Experiments and Comparisons

To demonstrate the efficiency increase in the formal verification when using
our independence notion, we decide to use the generic DOM AES S-box [13]
depicted in Figure 4 as an example. This S-box is based on the original design of
Canright [7] and was used in many masked AES implementations [4, 5, 8, 9, 11,
13, 17]. Furthermore, the AES S-box has proven to be a suitable and complex
benchmark for masking schemes as well as for verification tools [1, 6].

Before the verification approaches of Bloem et al. and Barthe et al. can
benefit from our approach, we first need to find suitable modules that fulfill
the independence of inputs and outputs. For this purpose, we wrote a pass for
the Yosys Open Synthesis Suite [22, 23] that automatically detects and extracts
suitable modules. The pass searches for entry points of fresh random masks
followed by two register stages (such that the compression to d + 1 masks is
fulfilled) and tracks the signal flow forth and back to extract the modules. We
then use the SAT based checking from Appendix A to verify the independence of
the outputs and cut the output ports of the modules. The outputs then become
outputs of the top-level module, and new inputs are created that are reconnected
to the fan-out of the independent module. This way we found and extracted
two suitable modules for relabeling: M1) the circuitry around the first GF (24)
multiplier, and M2) the first GF (22) multiplier and registers inside the GF (24)
inverter.

Further optimization. To speed up the verification even further we used in ad-
dition a trick borrowed from cryptanalysis. Since, e.g., the approach of Bloem et
al. uses just an approximation of the Fourier spectrum which becomes already
quite complicated after the initial linear transformation of the S-box, we fed the
inverse linear transformation of the linear mapping into the S-box. We are al-
lowed to do this since our proofs work for any independent sharing of the inputs
which is given because the mapping is linearly independent since it is invertible,
and the mapping is applied share-wise to the input sharings. The advantage we
get from this, however, is a cleaner representation of the shared input bits after
the linear mapping which we can then feed to the tools. We note that we do not
cut the linear mapping away from the S-box but rather connect the fan-out of
the linear transformation to the signals before the inverse linear transformation.

Results. Table 1 shows the verification results for the relabeled AES S-box
up to order five as well as results for the unmodified circuit and from related
work. In addition, Table 2 states some statistics on the size and complexity of
the relabeled circuits, such as the number of linear and nonlinear gates, and
how many secrets and masks were checked. Since our circuit transformations
for relabeling introduce new secret and masks, the additional number of secrets
and masks are denoted in parentheses for the relabeled circuits. Time spent on
checking module independence is negligible compared to the actual verification
time and not stated in the results. With relabeling, the verification times for
the tool of Bloem et al. (Rebecca) and the tool of Barthe et al. (maskVerif) are

14 Bloem et al.

Table 1. Verification results for the DOM AES S-box [13]

Order Rebecca [15] maskVerif [2]

w/o relabeling w/ relabeling w/o relabeling w/ relabeling

1 10 h [6] 10 min 3 s [1] ≤ 0.1 s
2 - - - 3 s
3 - - - 4 m
4 - - - 9 h
5 - - - 46.6 d

lowered from 10 hours to 10 minutes and from 3 seconds to less than 100 ms for
the first-order circuits, respectively. Since there have not been any higher-order
results reported in existing works so far, we tried to verify the second-order S-
box circuits without relabeling but canceled the experiments after more than
one month. With relabeling we can verify the second-order S-box in just about
3 seconds for the maskVerif tool.

Figure 5 illustrates the verification times for different protection orders in-
cluding results up to the fifth protection order which takes about 46.6 days to
be completed.

6 Conclusions and Discussion

In this work, we targeted the more efficient formal verification of circuits. As a
first step, we discussed the gap between composability in the more general prob-
ing model with glitches and the strong noninterference (SNI) notion. We then
introduced a sharing independence notion and demonstrated that this implies
composability for first-order probing secure circuits which outputs and inputs
are independently shared. Furthermore, we discussed that even for higher-order
masking composability results from independence input and output sharings if
there exists no feed-forward path for the inputs. In either case, we demonstrated
that sharing independence helps to speed up the formal verification in existing
tools from Bloem et al. [6] and Barthe et al. [1] by allowing us to relabel indepen-
dently shared module outputs. We could thus reduce the verification time for a

Table 2. Statistics for the relabeled circuits, numbers in parentheses indicate additional
variables induced by cutting of signals

Order Gates Variables

linear nonlinear reg secret mask

1 460 144 278 8 (6) 26 (6)
2 978 324 471 8 (6) 54 (12)
3 1,688 576 700 8 (6) 108 (18)
4 2,590 900 965 8 (6) 180 (24)

15

1 2 3 4 5

millisecond

second

minute

hour

day

month

Protection order d

Experimental

Fig. 5. Protection order versus verification time of DOM AES S-box

first-order DOM masked AES S-box from 10 hours to 8 minutes and from 3 sec-
onds to less than 0.1 seconds respectively. We also presented the first verification
results for the higher-order DOM masked AES S-box up to order 5. With these
results, we are now for the first time able to prove large circuits for higher-order
security directly on the netlist of a masked hardware implementation. Also, we
now have formal justification for round-separated analysis of side-channel infor-
mation of cryptographic implementations which round functions fulfill input and
output sharing independence.

Future work. Our work opens the door to some new and interesting research
questions.

• Even though relabeling results in a significant speed-up for the higher-order
verification, it remains uncertain whether or not composability follows from
the sharing independence of input and outputs in the general case. This
would allow for separated verification of modules and would speed-up the
verification even more.

• For the search for suitable candidates for independent modules, we focused
on finding patterns that consist of a combination of an XOR gate with fresh
randomness followed by two register stages before the next nonlinear trans-
formation. There exists another thinkable relabeling point that is located
inside the last multiplier stage in Figure 4. We did not consider this as an
independent module, since using it would mean that we need to change more
in the circuitry than just connecting and disconnecting of wires. Neverthe-
less, this could be another way to speed up the verification if one finds the
correct formal justification to do so.

16 Bloem et al.

• Existing verification tools are not able to handle feedback loops and do
not consider the actual control flow in their verification. Especially first-
order circuits for which there exist masking solutions which reuse randomness
from different clock cycles or even switch between the source of randomness
requires manual treatment. One possible solution is to unroll feedback loops
up to a certain clock cycle to analyze the security within a limited number
of iterations.

• Another open question is the assessment of the amount of leakage for a given
flaw once it is detected. At the moment the solutions of Bloem et al. and
Barthe et al. do not support analysis on the severity for a given flaw. The
approach of Bloem et al. could be theoretically extended towards the precise
calculation of the Fourier spectrum for a given flaw which could then serve
as a basis for the quantification of the leakage. However, such calculations
could soon become unfeasible due to their high complexity.

Acknowledgements.

We want to thank Sonia Beläıd, Gilles Barthe, Pierre-Alain Fouque, and Ben-
jamin Grégoire for the helpful discussions and support with their maskVerif
tool [2]. This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 681402). This work has been supported by the
Austrian Research Promotion Agency (FFG) via the project IoT4CPS. Further-
more, the work has been supported in part by the Austrian Science Fund (FWF)
through project S11406-N23 and project W1255-N23.

References

1. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zuc-
chini. Strong non-interference and type-directed higher-order masking. In ACM
Conference on Computer and Communications Security, pages 116–129. ACM,
2016.

2. G. Barthe, S. Beläıd, P. Fouque, and B. Grégoire. maskverif: a formal tool for an-
alyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive, 2018:562, 2018.

3. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order threshold
implementations. In ASIACRYPT (2), volume 8874 of Lecture Notes in Computer
Science, pages 326–343. Springer, 2014.

4. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A more efficient AES
threshold implementation. In AFRICACRYPT, volume 8469 of Lecture Notes in
Computer Science, pages 267–284. Springer, 2014.

5. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. on CAD of Integrated Circuits
and Systems, 34(7):1188–1200, 2015.

6. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal
verification of masked hardware implementations in the presence of glitches. In

17

EUROCRYPT (2), volume 10821 of Lecture Notes in Computer Science, pages
321–353. Springer, 2018.

7. D. Canright. A very compact s-box for AES. In CHES, volume 3659 of Lecture
Notes in Computer Science, pages 441–455. Springer, 2005.

8. T. D. Cnudde, B. Bilgin, O. Reparaz, V. Nikov, and S. Nikova. Higher-order
threshold implementation of the AES s-box. In CARDIS, volume 9514 of Lecture
Notes in Computer Science, pages 259–272. Springer, 2015.

9. T. D. Cnudde, O. Reparaz, B. Bilgin, S. Nikova, V. Nikov, and V. Rijmen. Masking
AES with d+1 shares in hardware. In CHES, volume 9813 of Lecture Notes in
Computer Science, pages 194–212. Springer, 2016.

10. S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert. Composable
masking schemes in the presence of physical defaults and the robust probing model.
IACR Cryptology ePrint Archive, 2017:711, 2017.

11. H. Groß, R. Iusupov, and R. Bloem. Generic low-latency masking in hardware.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–21, 2018.

12. H. Groß and S. Mangard. Reconciling d+1 masking in hardware and software.
In CHES, volume 10529 of Lecture Notes in Computer Science, pages 115–136.
Springer, 2017.

13. H. Groß, S. Mangard, and T. Korak. Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive, 2016:486, 2016.

14. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 463–481. Springer, 2003.

15. R. Iusupov. REBECCA - Masking verification tool.
https://github.com/riusupov/rebecca.

16. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

17. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A
very compact and a threshold implementation of AES. In EUROCRYPT, volume
6632 of Lecture Notes in Computer Science, pages 69–88. Springer, 2011.

18. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-
channel attacks and glitches. In ICICS, volume 4307 of Lecture Notes in Computer
Science, pages 529–545. Springer, 2006.

19. R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
20. J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): measures and

counter-measures for smart cards. In E-smart, volume 2140 of Lecture Notes in
Computer Science, pages 200–210. Springer, 2001.

21. O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating
masking schemes. In CRYPTO (1), volume 9215 of Lecture Notes in Computer
Science, pages 764–783. Springer, 2015.

22. C. Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
23. C. Wolf and J. Glaser. Yosys - a free verilog synthesis suite. In Proceedings of

Austrochip 2013, 2013.
24. G. Xiao and J. L. Massey. A spectral characterization of correlation-immune com-

bining functions. IEEE Trans. Information Theory, 34(3):569–571, 1988.

18 Bloem et al.

A Independence checking

We introduce the the method to check order-d sharing independence according to
the Definition 9. We encoded a problem into formulas in propositional logic and
use SAT solving as a resolution procedure. Intuitively, we encode the semantics
of the module in a way described in [6], and connect an XOR gate (checking gate)
to any possible subset of up to d signals from each sharing. Then, if the output
of the checking gate is 1-order secure, the sharings are d-probing independent.

Let C be a circuit. For each gate g we introduce a set of Boolean variables
Xg = {xg | x ∈ X}, additionally for each gate in input and output sharings we
create a Boolean activation variable ag. For a checking gate gc we introduce a set
of Boolean variables Xgc . We define a formula Ψ to check whether the sharings
are d-probing independent. L and N are the sets of linear gates and nonlinear
gates, resp. Formula Ψ consist of multiple parts:

Ψ =
∧
g∈I

Ψinp(g) ∧
∧
g∈N

Ψnl(g) ∧
∧
g∈L

Ψlin(g) ∧
∧
g∈R

Ψreg(g).

The labeling of the inputs is determined by I. For X ′ ⊆ X, we define

ψg(X ′) =
∧
x∈X

{
xg(X ′) if x ∈ X ′,
¬xg(X ′) if x /∈ X ′, and

Ψinp(g) =
∨

X′⊆X:Î(g)(X′)6=0

ψg(X ′).

To define the behavior of linear and nonlinear gates we define the fol-
lowing auxiliary formulas, where T = (t1, . . . , tn), U = (u1, . . . , un), and
V = (v1, . . . , vn) are ordered sets of variables, and define ↔ to denote equal-
ity.

Ψempty(T) =
∧
i

¬ti,

Ψcopy(T,U) =
∧
i

(ti ↔ ui), and

Ψlin(T,U, V) =
∧
i

(ti ↔ (ui ⊕ vi)).

For a linear gate g with inputs g′ and g′′, we use the formula

Ψlin(g) = Ψlin(Xg, Xg′ , Xg′′),

for a nonlinear gate g with inputs g′ and g′′, we use the formula

Ψnl(g) = Ψempty(Xg)∨Ψcopy(Xg, Xg′)∨Ψcopy(Xg, Xg′′)∨Ψlin(Xg, Xg′ , Xg′′), and

for a register g withs input g′, we simply have Ψreg(g) = Ψcopy(Xg, X
′
g).

19

Also we introduce an integer variables as sum for each sharing, and bound it
to the attack order d:

as sum =
∑
gs

Ite(ag, 1, 0)

as sum ≤ d.

The function Ite(ag, 1, 0) (if-then-else) converts a Boolean variable to Integer.
For the checking gate we XOR the corresponding inputs:

Ψ(gc) =
∧
x∈X

xgc ↔⊕g∈Gag ∧ xg.

For the transient signals we introduce a second set of variables X ′g = {x′g |
x ∈ X}. We create a slightly modified set of constraints, where we write Φ′ to
denote a formula Φ in which each variable xg has been replaced by x′g.

Φ = Φgates ∧ Φ′unsafe, where

Φgates =
∧
g∈I

(Ψinp(g) ∧ Ψ ′inp(g)) ∧
∧
g∈N

(Ψnl(g) ∧ Ψ ′nl(g))∧

∧
g∈L

(Ψlin(g) ∧ Ψ ′nl(g)) ∧
∧
g∈R

Φreg(g),

where for a register g with input g′, we copy only the original (glitch-free) signals:

Φreg(g) = Ψcopy(Xg, Xg′) ∧ Ψcopy(Xg, X
′
g′).

Finally, we check whether security is violated, that is, whether there is a non-zero
Fourier coefficient which contains a secret and no masks:

Φ′unsafe(gc) =
∨
s∈S

s′gc ∧
∧

m∈M
¬m′gc .

