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Abstract

In 2008 Satoshi Nakamoto invented the basis for blockchain based distributed ledgers. The
core concept of this system is an open and anonymous network of nodes, or miners, which
together maintain a public ledger of transactions. The ledger takes the form of a chain of
blocks, the blockchain, where each block is a batch of new transactions collected from users.
One primary problem with Satoshi’s blockchain is its highly limited scalability. The security
of Satoshi’s longest chain rule, more generally known as the Bitcoin protocol, requires that
all honest nodes be aware of each other’s blocks very soon after the block’s creation. To this
end, the throughput of the system is artificially suppressed so that each block fully propagates
before the next one is created, and that very few “orphan blocks” that fork the chain be created
spontaneously.

In this paper we present PHANTOM, a protocol for transaction confirmation that is secure
under any throughput that the network can support. PHANTOM thus does not suffer from
the security-scalability tradeoff which Satoshi’s protocol suffers from. PHANTOM utilizes a
Directed Acyclic Graph of blocks (a blockDAG), a generalization of Satoshi’s chain which better
supports faster block generation and larger blocks that take longer to propagate. PHANTOM
uses a greedy algorithm on the blockDAG to distinguish between blocks mined properly by
honest nodes and those that created by non-cooperating nodes who chose to deviate from
the mining protocol. Using this distinction, PHANTOM provides a robust full order on the
blockDAG in a way that is eventually agreed upon by all honest nodes.

1. INTRODUCTION

A. The Bitcoin protocol

The Bitcoin protocol instructs miners how to create blocks of transactions. The body of a
block contains new transactions published by users, a proof-of-work puzzle, and a pointer to
one previous block. The latter rule implies that blocks naturally form in a tree structure. When
creating his next block, the miner is instructed to reference the tip of the longest chain within
the tree and ignore the rest of blocks (aka orphans).

Miners share and propagate a block immediately upon receiving or creating it, and reference
the latest block in the chain they observe. The security of Bitcoin relies on honest nodes being
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Fig. 1: An example of a block DAG G. Each block
references all blocks to which its miner was aware at
the time of its creation. The DAG terminology, applied
to block H as an example, is as follows:
past (H) = {Genesis, C,D,E} – blocks which
H references directly or indirectly, and which were
provably created before H;
future (H) = {J,K,M} – blocks which reference H
directly or indirectly, and which were provably created
after H;
anticone (H) = {B,F, I, L} – the order between
these blocks and H is ambiguous. Deciding the order
between H and blocks in anticone (H) is the main
challenge of a DAG protocol.
tips(G) = {J, L,M} – leaf-blocks, namely, blocks
with in-degree 0; these will be referenced in the header
of the next block

sufficiently connected so that when one miner extends the chain with a new block, it propagates
in time to all honest nodes before the next one is created.

In order to guarantee this property, the creation of blocks is regulated by the protocol to occur
once every 10 minutes. As a result, Bitcoin suffers from a highly restrictive throughput in the
order of 3-7 transactions per second (tps).

B. The PHANTOM protocol

In this work we present PHANTOM, a protocol that enjoys a very large transaction throughput
compared to Bitcoin. PHANTOM structures blocks in a Directed Acyclic Graph, a blockDAG.
Rather than extending a single chain, miners in PHANTOM are instructed to reference all blocks
in the graph (that were not previously referenced, i.e., leaf-blocks). An example of a blockDAG,
and the basic terminology, is provided in Figure 1 above.

The core challenge of a DAG protocol is how to order transactions embedded in it, so that in
case of two (or more) conflicting transactions, we can accept the one that arrived first (according
to the prescribed order) and reject the other(s).

To that end, PHANTOM relies on the interconnectivity of honest nodes (similarly to Bitcoin’s
assumption in slow rates). Since cooperating PHANTOM miners propagate their blocks as soon
as possible and reference all of their counterparts’ blocks, we should expect to see in the DAG a
well-connected cluster of blocks. In contrast, blocks that were mined by non-cooperating nodes
will appear as outliers and will easily be discerned. Indeed, deviation from PHANTOM’s mining
protocol comes in the form of (i) withholding a new block for a while, or\and (ii) creating a
new block that does not reference other blocks available at the time, both cases in which the
new block can be recognized and penalized.
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Fig. 2: An example of the largest 3-cluster of blocks within
a given DAG: A,B,C,D, F,G, I, J (coloured blue). It is
easy to verify that each of these blue blocks has at most 3
blue blocks in its anticone, and (a bit less easy) that this
is the largest set with this property. Setting PHANTOM’s
inter-connectivity parameter with k = 3 means that at most
4 blocks are assumed to be created within each unit of
delay, so that typical anticone sizes should not exceed 3.
Blocks outside the largest 3-cluster, E,H,K (coloured red),
belong to the attacker (w.h.p.). For instance, block E has 6
blue blocks in its anticone (B,C,D, F,G, I); these blocks
didn’t reference E, presumably because E was withheld
from their miners. Similarly, block K admits 6 blue blocks
in its anticone (B,C,G, F, I, J); presumably, its malicious
miner received already some blocks from (B,C,D,G), but
violated the mining protocol by not referencing them.

Following this intuition, together with the assumption that honest nodes hold a majority of
the hashrate, we argue that the largest set of blocks with good inter-connectivity was mined by
honest nodes, with high probability. Accordingly, given a blockDAG, we would want to solve
the following optimization problem:

Maximum k-cluster SubDAG (MCSk)
Input: DAG G = (C, E)
Output: A subset S∗ ⊂ C of maximum size, s.t. |anticone (B) ∩ S∗| ≤ k for all B ∈ S∗.

Here, anticone (B) is the set of blocks in the DAG which did not reference B (directly or
indirectly via their predecessors) and were not referenced by B (directly or indirectly via B’s
predecessors). The parameter k is related to an assumption that PHANTOM makes regarding
the network’s propagation delay; this is explained in detail in Section 4, following the formal
framework specified in Section 3.

In practice, the Maximum k-cluster SubDAG is NP hard (see problem [GT26] in [2]).
PHANTOM works therefore with a variant of this problem, using a greedy algorithm approach.
The algorithm will be given in Sections 2, and some interesting variants in Section 6.

Once the set of honest and dishonest blocks are properly recognized by the protocol, we order
the DAG in a way that favours the former set and penalizes the latter. Interestingly, the specific
way in which we order honest blocks is of no importance to the security of the protocol—any
arbitrary rule which respects the topology will enjoy the robustness properties of PHANTOM,
as we prove formally in Section 5.

However, the ordering rule does affect confirmation times. An arbitrary topological ordering
might take a long while before converging, especially if an active visible attack is taking place.
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Thus, vanilla PHANTOM does not guarantee fast convergence time in all cases. In Section 7 we
elaborate on this, and discuss techniques and modifications that allow fast confirmation times.

C. Related work

Many suggestions to improve Bitcoin’s scalability have been proposed in recent years. These
proposals fall into two categories, on-chain scaling and off-chain scaling. Roughly speaking, the
former includes protocols where all valid transactions are those that appear – as in Bitcoin –
inside blocks that are organized in some data structure (aka “the ledger”).
On-chain scaling. The protocols in this category may differ e.g. in how fast blocks are created,
how blocks are organized in the ledger (a chain, a tree, a DAG, etc.), which transactions in
the ledger are considered valid, and more. PHANTOM belongs to this line of works. Previous
works in this family of protocols includes GHOST [9], where a main chain of blocks is chosen
according to a greedy algorithm and not through the longest chain rule; Inclusive [5], where
any chain-selection rule is extended to an ordered DAG and transactions off the main chain are
added in a consistent manner; Bitcoin NG [1], where the ledger consists of slow key blocks
(containing no transactions) and fast microblocks that contain transactions. The sole purpose of
key blocks in Bitcoin NG is to define the miner that is eligible to create microblocks in that
epoch and confirm thus transactions at a high rate.

GHOST is still susceptible to some attacks, one of which was described in [3]. The DAG
in Inclusive adds throughput but not security to the main chain, hence suffers from the same
limitations as the underlying main chain selection rule. Key blocks in Bitcoin NG are still
generated slowly, thus confirmation times remain high.

Our work is most similar to the SPECTRE protocol [8]. SPECTRE enjoys both high throughput
and fast confirmation times. It uses the structure of the DAG as representing an abstract vote
regarding the order between each pair of blocks. One caveat of SPECTRE is that the output of
this pairwise ordering may not be extendable to a full linear ordering, due to possible Condorcet
cycles. PHANTOM solves this issue and provides a linear ordering over the blocks of the DAG.
As such, PHANTOM can support consensus regarding any general computation, also known as
Smart Contracts, which SPECTRE cannot. Indeed, in order for a computation or contract to be
processed correctly and consistently, the full order of events in the ledger is usually required,
and particularly the order of inputs to the contract.1 PHANTOM’s linear ordering does not come
without cost—confirmation times are mush slower than those in SPECTRE. In Section 7 we
describe how the same system can simultaneously enjoy the best of both protocols.
Off-chain scaling. Another totally different approach keeps block creations infrequent and their
sizes small (so that propagation delay remains negligible), yet this slow chain is not used for
recording the entire economic activity. Instead, most of the transactions occur outside the chain,
with better scalability, and the chain itself is used for the purpose of resolving conflicts or
settling transactions. One example is Hybrid Consensus [6], improving over [4], which uses the
chain to select a rotating committee of nodes which in turn run a classic consensus protocol to

1Contracts that do not require such a strict ordering can indeed be served under SPECTRE as well.
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confirm transactions in the corresponding epoch. Another well known proposed solution in the
same category is the Lightning Network [7] (LN), where transactions are processed off-chain
over over a network of micropayment channels, and the blockchain is used only for settlement
of these channels.

Our work is orthogonal and complementary to these solutions, and can enhance their operation
by orders-of-magnitude. For instance, when the DAG is used to serve channel-settlement
transactions of LN, it allows for a much cheaper access (due to larger supply of blocks and
capacity) and much faster processing than if the LN were operating over a chain.

2. THE PHANTOM PROTOCOL

In this section we describe the operation of the PHANTOM protocol. PHANTOM consists of
the following three-step procedure:

1) Using the structure of the DAG, we recognize in it a cluster of well-connected blocks; with
high probability, blocks that were mined honestly belong to this cluster and vice versa.

2) We extend the DAG’s natural partial ordering to a full topological ordering in a way that
favours blocks inside the selected cluster and penalizes those outside it.

3) The order over blocks induces an order over transactions; transactions in the same block are
ordered according to the order of their appearance in it. We iterate over all transactions in
this order, and accept each one that is consistent (according to the underlying Consistency
notion) with those approved so far.

The Consistency notion used in the last step depends on the specific application under
consideration. For instance, with regards to the Payments application, a transaction is consistent
with the history only if all of its inputs have been approved and no double spending transaction
has been approved before. Our work is agnostic to the definition of the Consistency rule. The
contribution of PHANTOM is its implementation of the first two steps described above, which
we now turn to describe.

A. Intuition

How can we distinguish between honest blocks (i.e., blocks mined by cooperating nodes) and
dishonest ones? Recall that the DAG mining protocol instructs a miner to acknowledge in its
new block the entire DAG it observes locally, by referencing the “tips” of the DAG. Thus, if
block B was mined at time t by an honest miner, then any block published before time t−D
was received by the miner and is therefore in B’s past set (i.e., referenced by B directly or
recursively via its predecessors; see illustration in Figure 1). Similarly, if B’s miner is honest
then it published B immediately, and so any honest block created after time t + D belongs to
B’s future set.

As a result, the set of honest blocks in B’s anticone – which we denote anticoneh (B) –
is typically small, and consists only of blocks created in the interval [t −D, t + D].2 In other

2 Note that, in contrast to anticoneh (B), an attacker can easily increase the size of anticone (B), for any block
B, by creating many blocks that do not reference B and that are kept secret so that B cannot reference them.
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words, the probability that an honest block B will suffer a large honest anticone is small:
Pr (|anticoneh (B)| > k) ∈ O

(
e−C·k

)
, for some constant C > 0 (this stems from a bound

on the Poisson distribution’s tail). We rely on this property and set PHANTOM’s parameter k
such that the latter probability is smaller than δ, for some predefined δ > 0; see discussion in
Section 4.

Following this intuition, the set of honest blocks (save perhaps a fraction δ thereof) is
guaranteed to form a k-cluster.

Definition 1. Given a DAG G = (C, E), a subset S ⊆ C is called a k-cluster, if ∀B ∈ S :
|anticone (B) ∩ S| ≤ k.

Note that the attacker can easily create k-clusters as well, e.g., by structuring his blocks in a
single chain. Fortunately, we can leverage the fact that the group of honest miners possesses a
majority of the computational power, and look at the largest k-cluster. We argue that the latter
represents, in most likelihood, blocks that were mined properly by cooperating nodes. Refer to
Figure 2 for an illustration of the largest 3-cluster in a given blockDAG. Identifying this set in
general DAGs turns out to be computationally infeasible, and so in practice our protocol uses a
greedy algorithm which is good enough for our purposes.

We term this selection of a k-cluster a colouring of the DAG, and use the colours blue and
red as a convention for blocks inside and outside the chosen cluster, respectively.

B. Step #1: recognizing honest blocks

Algorithm 1 below selects a k-cluster in a greedy fashion. We denote by BLUEk (G) the set
of blocks that it returns. The algorithm operates as follows:

1) Given a DAG G, the algorithm recursively computes on the past set of each tip in G.3 This
outputs a k-cluster for each tip.4 (lines 4-5)

2) Then, it makes a greedy choice and picks the largest one among the outputted clusters.
(lines 6-7)

3) Finally, it tries to extend this set and add to it any block whose anticone is small enough
with respect to the set. (lines 8-10)

Intuitively, we first let the DAG inherit the colouring of its highest scoring tip, Bmax,
where the score of a block is defined as the number of blue blocks in its past: score (B) :=
|BLUEk (past (B))|. Then, we proceed to colour blocks in anticone (Bmax) in a way that
preserves the k-cluster property. This inheritance implies that the greedy algorithm operates
as a chain-selection rule—Bmax is the chain tip, the highest scoring tip in past (Bmax) is
its predecessor in the chain, and so on. We denote this chain by Chn(G) = (genesis =
Chn0(G), Chn1(G), . . . , Chnh(G)). The reasoning behind this procedure is very similar to that

3A tip is a leaf-block, that is, a block not referenced by other blocks. See Figure 1.
4Observe that, for any block B, the DAG past (B) is fixed once and for all at B’s creation, and in particular

the set BLUEk (past (B)) cannot be later modified. Thus, in an actual implementation of Algorithm 1, the sets
BLUEk (B) will have been computed already (by previous calls) and stored, and there will be no need to recompute
them.
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Fig. 3: An example of a blockDAG G and the operation of the greedy algorithm to construct its blue set
BLUEk (G) set, under the parameter k = 3. The small circle near each block X represents its score,
namely, the number of blue blocks in the DAG past (X). The algorithm selects the chain greedily, starting
from the highest scoring tip M , then selecting its predecessor K (the highest scoring tip in past (M)),
then H , D (breaking the C,D,E tie arbitrarily), and finally Genesis. For methodological reasons, we
add to this chain a hypothetical “virtual” block V – a block whose past equals the entire current DAG.
Blocks in the chain (genesis,D,H,K,M, V ) are marked with a light-blue shade. Using this chain, we
construct the DAG’s set of blue blocks, BLUEk (G). The set is constructed recursively, starting with an
empty one, as follows: In step 1 we visit D and add genesis to the blue set (it is the only block in
past (D)). Next, in step 2, we visit H and add to BLUEk (G) blocks that are blue in past (H), namely,
C,D,E. In step 3 we visit K and add H, I; note that block B is in past (K) but was not added to the
blue set, since it has 4 blue blocks in its anticone. In step 4 we visit M and add K to the blue set; again,
note that F ∈ past (M) could not be added to the blue set due to its large blue anticone. Finally, in step
5, we visit the block virtual (G) = V , and add M and J to BLUEk (G), leaving L away due to its
large blue anticone.

given in Section 1 in relation to the Maximum k-cluster SubDAG problem. They differ in that,
instead of searching for the maximal k-cluster, we are hoping to maximize it via the tip with
maximal cluster and then adding blocks from its anticone. We emphasize that this addition
of blocks may end up violating the k-cluster property of the selected set. Thus, the solution
outputted by our algorithm serves as a proxy – rather than a formal approximation – to the
optimal solution to the Maximum k-cluster SubDAG problem. We prove the security of the
algorithm, in formal terms, in Section 5.

We demonstrate the operation of this algorithm in Figure 3. Another example appears in
Figure 4.
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Note that the recursion halts because for any block B ∈ G: |past (B)| < |G|.
Let us specify the order in which blocks in anticone (Bmax) should be visited, in line 8 of the

algorithm. We suggest inserting all blocks in anticone (Bmax) into a lexicographical topological
priority queue, which we denote topo queue. The priority of a block is represented by the size
of its past set;5 in case of ties, the block with lowest hash ID is chosen.

Remark. Our choice of ordering via topo queue is not inherently significant, and many
alternative topological orderings can provide similar robustness properties. That said, it might
be the case that other rules provide faster convergence and confirmation times. We revisit this
issue in Section 7.

To summarize the function that the blue set satisfies, we state the following:

Proposition 2. Let G = Gpub∞ be the eventual DAG containing all blocks in history, and let B
be an arbitrary block in G.
• If B was created by an honest miner, the probability that B will not belong to BLUEk (G)

decreases exponentially with k.
• If B was created by a malicious miner, and was withheld for a time interval of length T ,

the probability that B will belong to BLUEk (G) decreases exponentially with T .

The proof of this proposition follows from the proof of Claim 3 in Section 5.

C. Step #2: ordering blocks

Recall that the DAG is ordered partially via its topology. We now wish to extend this order
to a full order (aka a topological order). Our objective is to define a rule that gives precedence
to blocks in the blue set, that penalizes blocks outside this set by deferring their location in the
order, and that preserves the topological relations of blocks.

We propose the following procedure: Traverse the blue set according to some topological
order, and iteratively add blocks to the current last position in ordk; when visiting block B, first
check if there are blocks in past (B) that haven’t been added yet, add such blocks to the order
(again, according to some topological order), and then add B to the order.

For example, a possible output of ord3 on the blockDAG illustrated in Figure 2 is:
(A,D,C,G,B, F, I, E, J,H,K).

This procedure is formalized in Algorithm 2 below. The algorithm begins by initializing an
empty priority queue and an empty ordered list. Throughout, the list will represent the order in
which blocks were popped out from the queue. The algorithm favours blocks in the blue set by
adding to the queue all of the blue children of the current block. When a block is pushed into
the queue, all blocks in its past (that weren’t already treated) are pushed as well.

In the algorithm, topo queue is the same lexicographical topological priority queue defined
in the preceding subsection. In addition, the queue should avoid duplicating elements, and so
topo queue.push(C) should do nothing in case C is already in topo queue.

5This guarantees that a block cannot be popped out while a block in its past is still in the queue, since C ∈
future (B) =⇒ |past (C)| > |past (B)|.
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Algorithm 1 Selection of a blue set
Input: G – a block DAG, k – the propagation parameter
Output: BLUEk (G) – the dense-set of G

1: function CALC-BLUE(G, k)
2: if G == {genesis} then
3: return {genesis}
4: for B ∈ tips(G) do
5: BLUEk (B)←CALC-BLUE(past (B) , k)

6: Bmax ← arg max {|BLUEk (B)| : B ∈ tips(G)} (and break ties arbitrarily)
7: BLUEk (G)← BLUEk (Bmax) ∪ {Bmax}
8: for B ∈ anticone (Bmax) do in some topological ordering
9: if |anticone (B) ∩BLUEk (G)| ≤ k then

10: add B to BLUEk (G)

11: return BLUEk (G)

Algorithm 2 Ordering of the DAG
Input: G – a block DAG, k – the propagation parameter
Output: ord(G) – an ordered list containing all of G’s blocks

1: function ORDER(G, k)
2: initialize empty queue topo queue
3: initialize empty ordered list L
4: BLUEk (G)←CALC-BLUE(G, k)
5: topo queue.push (genesis)
6: while topo queue 6= ∅ do
7: B ← topo queue.pop()
8: L.add(B) (B is added to the end of the list)
9: for all C ∈ B.children ∩BLUEk (G) do

10: for all D ∈ past (C) ∩ anticone (B) \ L do
11: topo queue.push(D)

12: topo queue.push(C)

13: ord(G)← L
14: return ord(G)
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In the algorithm, B.children stands for B’s direct successors, namely, the set of blocks which
explicitly reference B as their direct predecessor. The intuition behind Algorithm 2 is simple.
The algorithm is intended to guarantee that a block B can precede a blue block C only if B is
blue, or B is referenced by a blue block. In this way, blocks that were withheld by an attacker
will not precede blocks that were mined properly and published on time (which are represented
roughly by the set of blue blocks).

D. Implications to transaction security

We now demonstrate how the above procedures of PHANTOM enable safe acceptance of
transactions. Consider a transaction tx ∈ B, where B is a block in the blue set of G. In order
to render tx invalid, a conflicting transaction t̄x must precede it in the order, and must therefore
be embedded in a block C ∈ anticone (B) that precedes B.6 The ordering procedure implies
that, for C to precede B, it must either be a blue block or in the past set of a blue block. In both
cases, C could not have been withheld for too long, by the second guarantee of Proposition 2.
Thus, the recipient of tx can wait for the blue set around B to become sufficiently robust to
reorgs, and then approve tx. In Section 5 we prove that robustness is indeed obtained, after
some waiting time.

3. FORMAL MODEL AND STATEMENT

In this section we describe our formal framework. While we introduce new notation and
terminology, the reader should keep in mind that we stick to Bitcoin’s model in almost every
respect—transactions, blocks, Proof-of-work, computationally bounded attacker, P2P propagation
of blocks, probabilistic security guarantees, etc. The “only” difference is that a block references
(possibly) several predecessors rather than a single one. While this has far reaching consequences
on how the ledger is to be interpreted, on the mining side things remain largely the same.

A. Network

We follow the model specified in [8]. The network of nodes (or miners) is denoted N , honest
denotes the set of nodes that abide to the mining protocol (as defined below), and malicious
denotes the rest of the nodes. Honest nodes form a connected component in N ’s topology, and
the communication delay diameter of the honest subnetwork is D: if an honest node v ∈ N
sends a message of size b MB at time t, it arrives at all honest nodes by time t+D the latest.
The attacker is assumed to suffer no delays whatsoever on its outgoing or incoming links.

The real value of D is a priori unknown. The PHANTOM protocol assumes that D is always
smaller than some constant Dmax (both depend on the block size b). The parameter Dmax is not
hard-coded explicitly in the protocol, rather it influences another parameter, k = k(Dmax), which
is hard-coded and decided once and for all at the inception of the system. Roughly speaking,
k(Dmax) represents an upper bound on the number bound on the number of blocks that the
network creates in one unit of delay and that may not be referenced by one another. Section 4
discusses this parameter in more detail.

6Or, t̄x can appear in B before tx, but this is not an interesting scenario.
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B. Mining framework

Proof-of-work. Nodes create blocks of transactions by solving Proof-of-work puzzles. Block
creation follows a Poisson process with parameter λ. For the sake of simplicity, we assume that
λ is constant.7 The computational power of node v ∈ N is captured by 0 < αv < 1, which
represents the probability that node v will be the creator of the next block in the system (at any
point in time; this is a memoryless process). The attackers’ computational power is less than
50%. Thus,

∑
v∈N αv = 1, and

∑
v∈malicious αv =: α < 0.5.

Block references. Every block specifies its direct predecessors by referencing their ID in its
header (a block’s ID is obtained by applying a collision resistant hash to its header); the choice
of predecessors will be described in the next subsection. This results in a structure of a direct
acyclic graph (DAG) of blocks (as blocks can only reference blocks created before them), denoted
typically G = (C, E). Here, C represents blocks and E represents the hash references. We will
frequently write B ∈ G instead of B ∈ C.
DAG topology. The topology of the blockDAG induces a natural partial ordering over blocks,
as follows: if there is a path in the DAG from block C to block B we write B ∈ past (C); in
this case, C was provably created after B and therefore B should precede C in the order.8 A
node does not consider a block as valid until it receives its entire past set. The unique block
genesis is the block created at the inception of the system, and every valid block must have it
in its past set.

Similarly, the future set of a block, future (B), represents blocks that were provably created
after it: B ∈ past (C) ⇐⇒ C ∈ future (B). In contrast to the past set, the future set of
a block keeps growing in time, as more blocks are created and are referencing it. To avoid
ambiguity, we write future (B) ∩ G or future (B,G), and write future (B) only when the
context is clear or unimportant.

The set anticone (B) represents all blocks not in B’s future or past (excluding B as well).
These are blocks whose ordering with respect to B is not defined via the partial ordering
that the topology of the DAG induces. Formally, for two distinct blocks B,C ∈ G: C ∈
anticone (B,G) ⇐⇒ (B /∈ past (C) ∧ C /∈ past (B)) ⇐⇒ B ∈ anticone (C, g). Here too
we usually specify the context, anticone (B,G), because the anticone set can grow with time.

In Figure 1 above we illustrates this terminology.
DAG mining protocol. Gvt denotes the block DAG that node v ∈ N observes at time t. This DAG
represents the history of all (valid) block-messages received by the node. Goraclet := ∪v∈NGvt
denotes the block DAG of a hypothetical oracle node, and Gpubt := ∪v∈honestGvt denotes the
block DAG containing all blocks that are visible to some honest node(s).

A tip of the DAG is a leaf-block, namely, a block with in-degree 0. The instructions to a
miner in the DAG paradigm are simple:

7In practice, λ must occasionally be readjusted to account for shifting network conditions. PHANTOM can support
a retargeting mechanism similar to Bitcoin’s, e.g., readjust every time that Chn(G) grows by 2016 blocks.

8Note that an edge in the DAG points back in time, from the new block to previously created blocks which it
references.
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1) When creating or receiving a block, transmit it to all of one’s peers in N . Formally, this
implies that ∀v, u ∈ honest : Gvt ⊆ Gut+D.

2) When creating a block, embed in its header a list containing the hash of all tips in the
locally-observed DAG. Formally, this implies that if block B was created at time t, by
honest node v, then past (B) = Gvt .9

Since these are the only two mining rules in our system, a byzantine behaviour of the attacker
(which controls up to α of the mining power) amounts to an arbitrary deviation from one or
both of these instructions.

C. DAG client protocol

The DAG as described so far possibly embeds conflicting transactions. These are resolved on
the client level. A client can be defined formally as a node in N which has no mining power.
Intuitively, it is any user of the system who is interested in reading and interpreting the current
state of the ledger.

In this work, a transaction tx is an arbitrary message that is embedded in a block. An
underlying Consistency rule takes as input a set T of transactions and returns valid or invalid.
Our work is agnostic to the definition and operation of this rule, or to the characterization of the
transaction space. Instead, we focus on the following task: devising a protocol through which
all nodes agree on the order of all transactions in the system. Once such an order is agreed, one
can iterate over all transactions, in the prescribed order, and approve each transaction that is
consistent – according to the underlying rule – with those approved so far. Such an ordering rule
constitutes the client protocol, and is run by each client locally without any need to communicate
additional messages with other clients.

Formally, an ordering rule ord takes as input a blockDAG G and outputs a linear order over
G’s blocks, ord(G) = (B0, B1, . . . , B|G|). Transactions in the same block are ordered according
to their appearance in it, and this convention allows us to talk henceforth on the order of blocks
only. With respect to a given rule ord, we write B ≺ord(G) C if the index of B precedes that of
C in ord(G); we abbreviate and write B ≺G C or even B ≺ C when the context is understood.
For convenience, we use the same notation B ≺G C when B ∈ G but C /∈ G.

D. Convergence of the order

The following definition captures the desired security of the protocol, in terms of the
probability that some order between two blocks will be reversed.

Definition 3. Fix a rule ord. Let B ∈ G = Gpubt0 . The function Risk is defined by the probability
that a block that did not precede B in time t1 ≥ t0 will later come to precede it: Risk (B, t1) :=

Pr
(
∃s > t1, ∃C ∈ Gpubs : B ≺Gpub

t1

C ∧ C ≺Gpub
s

B
)

.

In the definition above, the probability is taken over all random events in the network, including
block creation and propagation, as well as the attacker’s arbitrary (byzantine) behaviour. The

9Technically it is more accurate to write past (B) = Gvt \ {B}, as a block does not belongs to its own past set.
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convergence property below guarantees that the order between a block and those succeeding it,
or those not published yet, will not be reversed, w.h.p. This captures the security of the protocol,
as it provides honest nodes with (probabilistic) security guarantees regarding possible reorgs.

Property 1. An ordering rule ord is converging if ∀t0 > 0 and B ∈ Gpubt0 : lim
t1→∞

Risk (B, t1) =

0, even when a fraction α of the mining power is byzantine.

Remark. Property 1 essentially couples the Safety and Liveness properties required from
consensus protocols. Indeed, once Risk (B, t1) < ε, a decision to accept transactions in B
can be made (Liveness), and is guaranteed to be irreversible (Safety) up to an error probability
of ε (as in Bitcoin and other protocols). Nevertheless, we avoid phrasing our results in these
terms, for the sake of clarity of presentation. The complication arises from the need to analyze
the system from the perspective of every node Gvt , and not merely from the public ledger’s
hypothetical perspective Gpubt ; this technicality is not unique to PHANTOM, and should be
regarded in any work that formalizes blockchain based consensus (unless propagation delays
are assumed to be negligible). We leave the task of bridging this gap to a later version.

The security threshold is the minimal hashing power that the attacker must acquire i order to
disrupt the protocol’s operation:

Definition 4. The security threshold of an ordering rule ord is defined as the maximal α
(attacker’s relative computational power) for which Property 1 holds true.

A protocol is scalable if it is safe to increase the block creation rate λ without compromising
the security, that is, if the security threshold does not deteriorate as λ increases (this can be
phrased also in terms of increasing the block size b rather than λ).

E. Main result

Our goal in this paper is to describe formally the ordering procedure of PHANTOM and to
prove that it is scalable in the above sense.

Theorem 5 (PHANTOM scales). Given a block creation rate λ > 0, δ > 0, and Dmax > 0, if
Dmax is equal to or greater than the network’s propagation delay diameter D, then the security
threshold of PHANTOM, parameterized with k(Dmax, δ), is at least 1/2 · (1− δ).

The parameterization of PHANTOM via k(Dmax, δ) is defined in the subsequent section
(see (1)). Theorem 5 encapsulates the main achievement of our work. We prove the theorem
formally in Section 5. Contrast this result to a theorem regarding the Bitcoin protocol, which
appears in several forms in previous work (e.g., [6], [9]):

Theorem 6 (Bitcoin does not scale). As λ increases, the security threshold of the Bitcoin protocol
goes to 0.

Finally, we note that even if Dmax 6≥ D, the system’s security does not immediately break
apart. Rather, the minimal power needed to attack the system goes from 50% to 0, deteriorating
at a rate that depends on the error gap D −Dmax.
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4. SCALABILITY AND NETWORK DELAYS

A. The propagation delay parameter Dmax

The scalability of a distributed algorithm is closely tied to the assumptions it makes on the
underlying network, and specifically on its propagation delay D. The real value of D is both
unknown and sensitive to shifting network conditions. For this reason, Bitcoin operates under
the assumption that D is much smaller than 10 minutes, and sets the average block interval
time to 10 minutes. While this seems like an overestimation of the network’s propagation delay
under normal conditions (at least in 2018’s Internet terms), some safety margin must be taken,
to account for peculiar network conditions as well. Similarly, in PHANTOM we assume that
the unknown D is upper bounded by some Dmax which is known to the protocol. The protocol
does not explicitly encode Dmax, rather, it is parameterized with k which depends on it, as will
be described in the next subsection.

The use of an a priori known bound Dmax distinguishes PHANTOM’s security model from
that of SPECTRE [8]. While the security of both protocols depends on the assumption that the
network’s propagation delay D is upper bounded by some constant, in SPECTRE the value of
such a constant need not be known or assumed by the protocol, whereas PHANTOM makes
explicit use of this parameter (via k) when ordering the DAG’s blocks. The fact that the order
between any two blocks becomes robust in PHANTOM, but not in SPECTRE, should be ascribed
to this added assumption; see further discussion in Section 7.

B. The anticone size parameter k

The parameter k is decided from the outset and hard-coded in the protocol. It is defined as
follows:

k(Dmax, δ) := (1)

min

k̂ ∈ N :
(

1− e−2·Dmax·λ
)−1
·

 ∞∑
j=k̂+1

e−2·Dmax·λ · (2 ·Dmax · λ)j

j!

 < δ


The motivation here is to devise a bound over the number of blocks created in parallel. Since
the block creation rate follows a Poisson process, for an arbitrary block B created at time t, at
most k(Dmax, δ) additional blocks were created in the time interval [t−Dmax, t+Dmax], with
probability of at least 1− δ.10

Observe that blocks created in the intervals [0, t−Dmax) and (t+Dmax,∞), by honest nodes,
belong to B’s past and future sets, respectively. Consequently, in principle, |anticone (B)| ≤ k
with probability of 1− δ at least. However, an attacker can artificially increase B’s anticone by
creating blocks that do not reference it and by withholding his blocks so that B cannot reference
them.

10In more detail: The second multiplicand in the definition of k bounds the probability that more than k blocks
were created in parallel to B in the time interval [t −Dmax, t + Dmax]. This term is divided by 1 − e−2·Dmax·λ,
which is the probability that at least one block was created during this time, namely, B. Thus, conditioned on the
appearance of B, at most k blocks were created during this time interval, with probability of 1− δ at least.
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C. Trade-offs

Theorem 5, and the parameterization of PHANTOM in (1), tie between k, Dmax, λ, and δ.
Striving for a better performance by modifying one parameter (e.g., increasing λ to obtain larger
throughput and more frequent blocks) must be understood and considered against the effect on
all other parameters.
Increased block creation rate. Although the security threshold does not deteriorate as λ is
increased, λ cannot be increased indefinitely, or otherwise the network becomes congested. The
value of λ should be set such that nodes that are expected to participate in the system can
support such a throughput. For instance, if nodes are required to maintain a bandwidth of at
least 1 MB per second, and blocks are of size b = 1 MB, then the block creation rate should
be set to λ = 1 blocks per second (this is merely a back-of-the-envelope calculation, and in
practice other messages consume the bandwidth as well).
Higher security threshold. Theorem 5 states the security threshold in terms of δ. Following (1)
we notice that tightening the security threshold – by choosing a lower δ – requires increasing
k. A large k leads to slow confirmation times, as will be discussed shortly.11

Larger safety margin. Similarly, if Dmax is to be increased, one needs to increase k as well
in order to maintain the same security level (represented by δ).

As discussed in Subsection 4.1, it is better to overestimate D and choose a large Dmax in order
remain on the safe side.12 Recall that the security of Bitcoin’s chain depends on the assumption
that D · λ� 1, namely, that w.h.p. at least D seconds pass between consecutive blocks, so that
forks are rare. Thus, Bitcoin’s large safety margin over D suppresses its throughput severely as
it requires selecting a very low block rate λ = 1/600 (one block per 10 minutes). This is not
the case with PHANTOM’s DAG, as the security of the DAG ordering does not rely on the
assumption D · λ � 1. Therefore, even if we overestimate D, we can still allow for very high
block creation rates while maintaining the same level of security. Consequently, PHANTOM
supports a very large throughput, and does not suffer from a security-scalability tradeoff.

That said, in PHANTOM there is still a tradeoff between a large safety margin and fast
convergence of the protocol. A gross overestimation of Dmax – resulting an increase in k –
would significantly slow down the waiting time for transaction settlement. Thus, Dmax should
be set to a reasonable level. In Section 7 we discuss how this tradeoff can be restricted to visible
conflicts only, and how applications such as Payments can enjoy very fast confirmation times
nonetheless.

5. PROOF

We now turn to prove that the order converges, and that an attacker (with less than 50%) is
unable to cause reorgs. We restate the theorem from Section 3:

11The advanced reader should notice that although increasing λ has a similar negative effect on k, it has at the
same time a positive effect on confirmation times, and so a certain λ will be optimal as far as confirmation times are
concerned.

12Several blockchain based projects do not do so, and consequently compromise the security threshold of their
system.
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Fig. 4: An example of a DAG with an Hourglass block K. Here, the delay parameter is k = 3. As
in Figure 3, the small circle near each block represents its score. The colouring of the DAG was done
according to Algorithm 1. The greedily selected chain of blocks of highest score is marked with light-blue
filling (note that this chain is not the longest one). Block K has the property that all blue blocks are
either in K’s past or in its future (in addition to K itself). It is thus an Hourglass block.

Theorem 5 (PHANTOM scales) Given a block creation rate λ > 0, δ > 0, and Dmax > 0, if
Dmax is equal to or greater than the network’s propagation delay diameter D, then the security
threshold of PHANTOM, parameterized with k(Dmax, δ), is at least 1/2 · (1− δ).

Our proof relies on the following lemma, which states that if some block B has the property
that its anticone contains no blue blocks, then all blue blocks in its past precede all blocks
outside its past. We call this the Hourglass property:

Lemma 7. If for some B̂ ∈ G, BLUEk (G) ∩ anticone
(
B̂
)

= ∅, then ∀B ∈ past
(
B̂
)
∩

BLUEk (G) and ∀C /∈ past
(
B̂
)

, B ≺G C. We then write B̂ ∈ Hourglass(G).

In Figure 4 we provide an example of an Hourglass block. The proof of this lemma is
straightforward from the operation of Algorithm 2:

Proof of Lemma 7. First note that if BLUEk (G)∩ anticone
(
B̂
)

= ∅ then B̂ ∈ BLUEk (G).
Indeed, Algorithm 1 defines a chain, Chn(G) (see Subsection 2.2). This chain necessarily
intersects some block in anticone

(
B̂
)
∪
{
B̂
}

. And the intersection block must become blue

itself, by lines (6-7). Thus, BLUEk (G) ∩ anticone
(
B̂
)

= ∅ implies that B̂ ∈ Chn(G) and in

particular B̂ ∈ BLUEk (G).
Now, Algorithm 2 pushes a block into the queue only after it has pushed already all blocks

in its past (lines 11 and 12). Therefore, topo queue pops out blocks according to a topological
order. Now, there are no blue blocks in anticone

(
B̂
)

, hence if C is a blue block then it must
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belong to future
(
B̂
)
∪
{
B̂
}

, in which case it must have been pushed to the queue after B̂

was popped (unless C = B̂). Thus, if C is blue, any block in past
(
B̂
)

was popped out before
C, and added to the ordered list L before it (line 8). In particular, B ≺G C. On the other hand,
if C is not blue, it was necessarily pushed into the queue only by belonging to the past set of
some blue block B′ (lines 9-11). B′ was popped out after B̂ (unless B = B̂), from the same
argument as in the previous case. Thus, C was pushed into the queue after B̂ was popped out,
which in turn must have occurred after B was popped out. In particular, in this case as well,
B ≺G C.

Lemma 8. If B̂ is an Hourglass block in a DAG G, then G inherits the order from B̂: ord(G)∩
past

(
B̂
)

= ord(past
(
B̂
)

).

Proof. In the proof of the previous lemma we have shown that B̂ ∈ Chn(G). By the recursive
operation of Algorithm 1 (lines 6-7), this implies that G inherits the colouring of B̂ on its past:
BLUEk (G) ∩ past

(
B̂
)

= BLUEk

(
past

(
B̂
))

.

Now, no block in anticone
(
B̂
)

is pushed into topo queue before B̂ is popped out, because

blocks get pushed in only if they are blue (and no such block exists in anticone
(
B̂
)

) or if

a blue block in their future was pushed in—and this too only happens after B̂ is popped out.
Since the queue respects the topology, this means that all blocks in past

(
B̂
)

(which must be

visited before B̂) are popped out before any block outside past
(
B̂
)

.

The fact that blocks in anticone
(
B̂
)

are not pushed into the queue before all of past
(
B̂
)

is

popped out, implies further that the order in which Algorithm 2 pushes blocks in past
(
B̂
)

into

and out of topo queue depends only on past
(
B̂
)

, and not on the DAG G. Hence, ord(G) ∩

past
(
B̂
)

= ord(past
(
B̂
)

).

The proof of Theorem 5 uses the occurrence of Hourglass blocks to secure all blocks in their
past set.

Proof of Theorem 5. Let δ > 0 and assume that α < 1/2 · (1− δ). We need to
prove that ∀t0 > 0 and B ∈ Gpubt0 : lim

t1→∞
Risk (B, t1) = 0, where Risk (B, t1) :=

Pr
(
∃s > t1, ∃C ∈ Gpubs : B ≺Gpub

t1

C ∧ C ≺Gpub
s

B
)

, and assuming a fraction of at most 1/2−δ
can deviate arbitrarily from the mining protocol.

Fix t0 and B, and let τ(t0) be the first time after t0 where an honest block B̂ was published
such that B̂ is an Hourglass block and will forever remain so:

τ(t0) := min
{
u ≥ t0 : ∃B̂ ∈ Gpubu such that B̂ ∈ ∩r≥sHourglass

(
Gpubr

)}
(2)
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τ(t0) is a random variable. By Lemma 9 it has finite expectation. In particular,
lim
t1→∞

Pr (τ(t0) > t1) = 0 (e.g., by Markov’s Inequality).

Assume that such a τ(t0) arrives, i.e., that a block B̂ is created and remains permanently
an Hourglass block. Then, by Lemma 8, the order between all blocks in past

(
B̂
)

never
changes, and in particular the order between B and any other block C never changes. Thus, =
Risk (B, τ(t0)) = 0. Therefore, lim

t1→∞
Pr (τ(t0) > t1) = 0 implies lim

t1→∞
Risk (B, t1) = 0.

Lemma 9. Let t0 ≥ 0. The expected waiting time for τ(t0) (defined in (2)) is finite, and moreover
is upper bounded by a constant that does not depend on t0.

Proof. Let E(t0) denote the event defined by the following conditions:
1) Some block B̂ was created at some time u > t0 by an honest node (i.e., B̂ ∈ Gpubu ) and

apart from B̂ no other block was created in the time interval [u−D,u+D].13

2) For some T1, the k latest blocks in BLUEk

(
past

(
B̂
))

, denoted LASTk

(
past

(
B̂
))

,
were created in the time interval [u−T1, u], and dishonest miners created no blocks in this
time interval.

3) The score of B̂’s chain is forever higher than the score of any chain that does not
pass through B̂: ∀s ≥ u,∀C1, C2 ∈ tips

(
Gpubs

)
: score (C1) ≥ score (C2) =⇒ B̂ ∈

Chn(past (C1)).
Claim 2 and 4 together imply the required result.
The following claim states that the first two conditions in the above definition guarantee that

as long as B̂ is blue no block in its anticone is blue:

Claim 1. Assume that for some block B̂ the first two conditions in the definition of E(t0)
hold true. Then, as long as B̂ is blue, all blue blocks have B̂ in their past: ∀s ≥ u,∀B ∈
anticone

(
B̂
)

: B /∈ BLUEk
(
Gpubs

)
∨ B̂ /∈ BLUEk

(
Gpubs

)
.

Proof of Claim 1. Let B ∈ anticone
(
B̂
)

. If B̂ /∈ BLUEk

(
Gpubs

)
we’re done. Assume

therefore that B̂ ∈ BLUEk
(
Gpubs

)
. Any block that was published before time u−D belongs

to past
(
B̂
)

. Any block that was created after time u + D by an honest node belongs to

future
(
B̂
)

. As honest nodes did not create blocks in the interim, blocks in anticone
(
B̂
)

can only belong to the attacker. Now, since the attacker did not create new blocks while
blocks in LASTk

(
past

(
B̂
))

were created, all attacker blocks that were created before the

interval [u− T1, u] and that do not belong to past
(
B̂
)

(hence belong to anticone
(
B̂
)

) have

all blocks in LASTk

(
past

(
B̂
))

in their anticone; formally: ∀C ∈ anticone
(
B̂,Goracleu

)
:

13We cannot assume, however, that no block was published during this interval, because the attacker might decide
to publish during this interval blocks that he created earlier.
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LASTk

(
past

(
B̂
))
⊆ anticone

(
C,Goracleu

)
. Thus, if B̂ ∈ BLUEk

(
Gpubs

)
, any block in

anticone
(
B̂
)

suffers an anticone that is larger than k (it contains LASTk
(
past

(
B̂
))
∪
{
B̂
}

)

and is therefore not in BLUEk
(
Gpubs

)
. In particular, B /∈ BLUEk

(
Gpubs

)
.

Claim 2. The waiting time for the event E(t0) upper bounds τ(t0).

Proof of Claim 2. The previous claim implies that a block B̂ that satisfies the first two conditions
is an Hourglass block in Gpubs . The third condition implies that B̂ forever remains in the chain,
and in particular forever remains blue. It is thus an Hourglass block in all DAGs Gpubs (s ≥ u).

Claim 3. If the first two conditions in the definition of E(t0) hold true then the third one holds
true with a positive probability.

Proof of Claim 3. Part I: We begin by assuming that the attacker did not publish any block in
the time interval [0, u−Dmax); formally, we assume that ∀C ∈ past

(
B̂
)

: C ∈ honest.
Let us compare the score of the honest chain to that of any chain that excludes B̂. This gap

is captured by the following definition: For a time r > 0, define

X1
r := max

B:B̂ /∈Chn(B)
{score (Chn(B))} (3)

X2
r := max

B:B̂∈Chn(B)
{score (Chn(B))} (4)

Xr := X1
r −X2

r . (5)

Let us focus first on the evolution of the process Xr between time 0 and time u−T1. We refer to
the lead Xu−T1

that the attacker obtained at the end of this stage as “the premining gap”; see [8].
Let Br

1 be the argmax of X1
r , and let C1

r be the latest block in Gpubr ∩ BLUEk (past (Br
1)),

namely, the latest honest block which is blue in the attacker chain. Recall that for now we are
assuming that all attacker blocks that were premined were kept secret until after time u−Dmax.
Observe that at most k blocks that were created by the attacker before time

(
C1
r

)
can be in

BLUEk (past (Br
1)) and can contribute to the score of the attacker’s chain. Thus, between

time
(
C1
r

)
and time u− T1 – i.e., during the premining phase – the score of the attacker chain

grows only via the contribution of attacker blocks, and therefore at a rate of α · λ at most.14

Part II: Let us now consider the growth rate of the honest chain’s score. Let Bt
max be the tip

of the public chain Chn
(
Gpubt

)
. The score of this chain is by definition the score of this block.

14Notice that our analysis does not assume that the attacker creates its blocks in a single chain. We only claim
that the attacker’s highest scoring chain grows at a rate of α · λ at most, because every attacker block can increase
the attacker’s highest scoring chain by 1 at most. Creating a single chain is indeed the optimal attack on the attacker
side.
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Now, by the choice of k(Dmax, δ) (defined in 1), the probability of an arbitrary honest block B
having too large of an honest anticone is small:15

Pr
B∼arbitrary honest block in Gpub

t

(∣∣∣anticoneh (B,Gpubt

)∣∣∣ > k(Dmax, δ)
)
< δ. (6)

This is because block creation follows a Poisson process, and because honest blocks that were
created Dmax seconds before (after) B belong to its past (future), hence are not in its anticone.
Since any block that is blue in the honest chain contributes to its score, at any time interval, the
score of the public chain grows at a rate of (1− δ) · (1− α) · λ at least. And at most k honest
blocks created in the premining stage contributed to the score of the attack chain.

Part III: From Part I and Part II we conclude that the random process Xr−k is upper bounded
by the premining race analyzed in [8]. Therein it was shown that the probability distribution
over Xu−T1

− k (the process’s state at the end of the premining stage) is dominated by the
stationary probability distribution π of a reflecting random walk over the non-negative integers
with a bias of (1−δ)·(1−α)

1−δ·(1−α) towards negative infinity. The stationary distribution exists because
α ≤ 1/2 · (1− δ) < (1− α) · (1− δ).16

In particular, there is a positive probability that at time u−T1 the premining gap, Xu−T1
, was

less than k, so that Xu−T1
−k < 0.17 Between times u−T1 and u the honest network contributed

additional k + 1 to the score of the public chain, namely, blocks LASTk
(
past

(
B̂
))
∪
{
B̂
}

.
During the same time the score of any secret chain(s) did not increase at all, per the second
condition in the definition of E(t0). Thus, Xu = Xu−T1

− (k+ 1). And by the first assumption,
Xu+Dmax

= Xu. All in all, with some positive probability, Xu+Dmax
< 0.

Part IV: Let us turn to look at the evolution of (Xr)r≥u+Dmax
at the second stage. Assume

that Xu+Dmax
< 0.

In Claim 1 we saw that for any r such that B̂ ∈ BLUEk
(
Gpubr

)
, all blocks in B̂’s anticone

are red in Gpubr . This implies that, as long as B̂ is blue in the public DAG, only attacker blocks
contribute to the score of the attacker’s chain: B̂ ∈ BLUEk

(
Gpubr

)
=⇒ ∀B ∈ anticone

(
B̂
)

:

BLUEk (past (B)) \ future
(
B̂
)

= ∅ (indeed, note that all honest blocks created after time

u + Dmax belong to future
(
B̂
)

). Consequently, the attacker’s best chain grows at a rate of

α · λ at most, as this interval ([u + Dmax,∞)) as well, as long as B̂ ∈ BLUEk

(
Gpubr

)
.

We have already seen that at any time interval the honest chain’s score grows at a rate of
(1− δ) · (1−α) ·λ at least. Thus, starting at time u+Dmax, the race between the honest chain’s

15Below, anticoneh (B,G) denotes all blocks in anticone (B,G) created by honest nodes.
16Note that we have multiplied (1−α) by (1− δ) to account for the rare events where there was a burst of block

creation events and where consequently some honest blocks did not contribute to the score of the public chain. Note
on the other hand that blocks created by honest nodes too do not contribute to the attacker chain’s score, even if they
are red in Gpubr . This is because we argued that at most k blocks that were created by the attacker before time

(
C1
r

)
can be blue in BLUEk (past (Br1)), and this is regardless of C1

r ’s status within Gpubr (we merely used the fact that
C1
r was created by an honest node, we didn’t use the assumption that C1

r is blue in the honest chain).
17In fact, this probability is decreasing logarithmically as k increases.
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score and the attacker chain’s score can be modeled as a random walk over all integers with a
bias of (1−δ)·(1−α)

1−δ·(1−α) towards negative infinity.
Since the random walk begins at the negative location Xu+Dmax

, this supposedly
implies that with a positive probability the walk will never return to the origin:
Pr (∀r ≥ u+Dmax : Xr < 0) > 0. This in turn implies that B̂ will forever remain a blue
block (and a chain block for that matter). However, to complete the analysis correctly, some
careful attention is required:

Part V: First, we must account for the fact that not all honest nodes observe all honest blocks
immediately, i.e., that Gvr might be a proper subset of Gpubr . This might give the attacker an
advantage, as he can create blocks, reveal them immediately to honest nodes, and these blocks
do not compete with honest blocks unseen yet by these nodes. This advantage can be accounted
for by assuming that the race begins only after the attacker was given Dmax additional seconds
to create blocks while the honest network sat idle; see [8]. This fact does not change our general
conclusion that Pr (∀r ≥ u+Dmax : Xr < 0) > 0, e.g., because there is a positive probability
that the attacker did not create any block during these Dmax additional seconds.

Secondly, observe that the honest chain grows according to a random process that is not
necessarily Poisson. Fortunately, a result from [9] shows that nevertheless we can treat the block
race as if the honest score grows according to a Poisson process, and that this assumption can
only increase the value of Xr; it is thus a worst case analysis.

Part VI: Finally, we alleviate our assumption that the attacker published no block during
the premining phase [0, u−Dmax). Instead, consider any attacker block C that belongs to
past

(
B̂
)

. If C ∈ BLUEk (past (BB)) then C contributed to the score of the honest chain

which passes through B̂ and maybe to the attacker chain as well, so its existence does not change
the above analysis. Similarly, if C /∈ BLUEk (past (BB)), the fact that it was published has
no consequence whatsoever on the score of the honest chain, and so we can ignore it and apply
the same analysis as if it weren’t published.

Claim 4. The waiting time for the event E(t0) is finite. Moreover, it is upper bounded by a
constant that does not depend on t0.

Proof of Claim 4. Let B be an arbitrary honest block created in time (B). The probability that
no other block was created in the interval [time (B) − Dmax, time (B) + Dmax] is given by(
1− e−2·Dmax·λ

)−1 ·(1−
∑∞

j=2 e
−2·Dmax·λ · (2·Dmax·λ)j

j!

)
. An arbitrary block B satisfies the first

condition in the definition of E(t0) with a positive probability.
Given an arbitrary block B satisfying the above condition, let T1 be the creation time of the

earliest block in LASTk (past (B)). The probability that the attacker did not create any block
in the interval [u− T1, u−Dmax] is given by ((1− α) · (1− δ))k. In particular, given the first
condition, the second one is satisfied with a positive probability.

Importantly, for any two blocks B1 and B2 created after t0 and that satisfy |time (B1) −
time (B2)| > 4 ·Dmax, the satisfaction of the first condition with respect to B1 is independent
from its satisfaction with respect to B2. Consequently, the expected waiting time for the
occurrence of a block B̂ which satisfies the first two conditions in the definition of E(t0)
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is finite (see, for instance, Chapter 10.11 in [10]). Moreover, while the precise expected
time E[Hourglass(t0)] may theoretically depend on t0, the above argument shows that
E[Hourglass(t0)] < const+ 4 · d, where const does not depend on t0.

This completes the proof of Claim 4 and of Lemma 9.

Theorem 5 guarantees that the probability of reorg with respect to a given block B diminishes:
Risk (B, t1)→ 0. However, it does not guarantee anything about the convergence rate, i.e., the
waiting time for a t1 that satisfies Risk (B, t1) < ε, for some ε > 0.18 Following the analysis
in the proof of Claim 4, the waiting time for an Hourglass block can be upper bounded by a
constant in the order of magnitude of O

(
eC·Dmax·λ

)
, for some C > 0; and after such a block is

created,the analysis implies that Risk (B, t1) converges to 0 at an exponential rate, due to the
random walk dynamic.

However, the analysis used in the proof is not tight. It relies on rather infrequent events which
guarantee convergence in a straightforward way, namely, on the occurrence of Hourglass blocks.
In practice the network is likely to converge much faster. Moreover, it can be shown that when
there is no active attack, the convergence time is faster by orders-of-magnitude.

6. VARIANTS

In Section 2 we described the PHANTOM’s greedy algorithm to mark blocks as blue or red
(Algorithm 1). In fact, similar algorithms can provide similar guarantees. We describe several
such variants below and explain the intuition behind them. All these variants can be thought of
as greedy approximations to the Maximum k-cluster SubDAG problem described in Section 1.

A. Choosing the maximizing tip

In our original version of the colouring procedure, we chose the tip which has the highest
score (Algorithm 1, line 6). Instead, Algorithm 3 below chooses the tip for which the score of
the (virtual block of the) current DAG would be highest:

18ε represents the risk that the party confirming the transaction is willing to absorb.
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Algorithm 3 Selection of a blue set
Input: G – a block DAG, k – the propagation parameter
Output: BLUEk (G) – the dense-set of G

1: function CALC-BLUE(G, k)
2: if G == {genesis} then
3: return {genesis}
4: for B ∈ tips(G) do
5: BLUEk (B)←CALC-BLUE(past (B) , k)
6: SB ← BLUEk (B) ∪ {B}
7: for C ∈ anticone (B) in some arbitrary order do
8: if |anticone (C) ∩ SB| ≤ k then
9: add C to SB

10: return arg max {|SB| : B ∈ tips(G)} (and break ties arbitrarily)

B. Adding blocks to the greedily chosen blue set

Another variant over the previous algorithms is the procedure to mark more blocks as blue,
after the best tip and its blue set were selected. Previously, we required that the candidate block
admit an anticone of size at most k in the current set. Instead, we can require that its anticone
be counted only inside the originally chosen blue set. Thus, yet another variant is to replace
lines 8-9 with

8: if |anticone (C) ∩ (BLUEk (B) ∪ {B})| ≤ k then
9: add C to SB

Observe that the resulting blue set may contain blocks which have an anticone larger than k
within the set.

Finally, another viable alternative is to further relax the condition (in lines 8-9) by counting the
anticone of the candidate B only against the resulting chain of blue blocks, Chn(past (B))∪{B},
where B is the selected tip:

8: if |anticone (C) ∩ (Chn(past (B)) ∪ {B})| ≤ k then
9: add C to SB

Compare this variant to Satoshi’s longest-chain rule, a rule that can be described as follows:
each block in a chain Chn increases its weight by 1, and we select the highest scoring chain.
In contrast, in our last variant, each block whose gap from a chain Chn is at most k increases
its weight by 1, and we select the highest scoring chain.
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C. Iterative elimination of blocks

We now introduce another variant based on an iterative method common in combinatorial
optimization. The algorithm works as follows: Given a block DAG G, we iteratively eliminate
from the blue set the block with largest blue anticone, and continue doing so until all blue blocks
admit a blue anticone of size k at most:

Algorithm 4 Selection of a blue set

Input: G = (V,E) – a block DAG, k – the propagation parameter
Output: BLUEk (G) – the dense-set of G

1: function CALC-BLUE(G, k)
2: BLUEk (G)← V
3: while ∃B ∈ BLUEk (G) with |anticone (B) ∩BLUEk (G)| > k do
4: C ← argB max {|anticone (B) ∩BLUEk (G)|} (with arbitrary tie-breaking)
5: remove C from BLUEk (G)

6: return BLUEk (G)

We conjecture that Algorithm 1 can be replaced with each of the greedy algorithms described
in this section. To this end, suffice it to repeat the proof of Theorem 5 with respect to these
variants. We suspect that the same proof technique, namely, the use of Hourglass, would prove
useful.

7. CONFIRMATION TIMES

As discussed in Section 5, the convergence rate of Risk(B, t) is slow, at least theoretically
and under certain circumstances. Recall that the function Risk(B, t) measures the probability
that a certain block that did not precede B at time t will later come to precede it. Recall further
that throughput this work we used arbitrary topological orderings (over blue blocks). In light if
this, it would be interesting to seek for an ordering rule (over blue blocks) that would converge
faster. We suspect this is not a trivial task, and leave its full investigation to future work.

The primary factor to the fact that PHANTOM cannot guarantee fast confirmation times is
that membership in the blue set takes time to finalize. The waiting time for such finalization can
be further increased if an attacker manages to balance the decision between B ∈ BLUEk (G)
and B /∈ BLUEk (G). Observe however that if a certain transaction tx ∈ B admits no conflicts
in anticone (B), then tx can be accepted even before the decision regarding B is finalized.

A. Combining SPECTRE and PHANTOM

SPECTRE is a DAG based protocol that can support large transaction throughput (similarly
to PHANTOM ) and very fast confirmations. SPECTRE does not output a linear order over
blocks. Rather, every block B admits a vote regarding the pairwise ordering of any two blocks
C and D, and the output is the majority vote regarding each pair. In SPECTRE, cycles of the
sort “B precedes C, C precedes D, D precedes B” may form.
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Furthermore, if an active balancing attack is taking place, for some pairs of blocks (B,C) the
SPECTRE relation might not become robust (in which case Risk(B, t)→ 0 is not guaranteed).
Instead, a published block B is guaranteed to robustly precede any block C that was published
later than B, unless C was published shortly after B. We call this property Weak Liveness. In
the context of the Payments application, this fact can only harm a user that signed and published
two conflicting payments at approximately the same time.19

Since PHANTOM does guarantee (strong) Liveness and a liner ordering, it is interesting
to inquire whether we can enjoy the best of both worlds. We provide below a partial answer to
this question.

Consider the following procedure: Given a blockDAG G,
1) mark blocks as blue or red according to PHANTOM’s colouring procedure
2) run SPECTRE on the subDAG BLUEk (G); this determines the pairwise ordering between

any two blue blocks B and C
3) for any blue block B and red block C, if C ∈ past (B) then determine that C precedes

B, otherwise determine that B precedes C
4) decide the pairwise ordering of any two red blocks in some arbitrary way that respects the

topology (B ∈ past (C)⇒ B precedes C)
Intuitively, we run SPECTRE on the set of blue blocks (as determined by PHANTOM), and

complemented the pairwise ordering in a way that both penalizes red blocks and respects the
topology. We argue that this protocol enjoys SPECTRE’s fast confirmation times and at the
same time inherits the (regular) Liveness property of PHANTOM. To see the latter, observe that
a Hourglass block would have a similar effect in SPECTRE—all blocks in its future will vote
according to its vote. In particular, the pairwise relation of all previous blocks becomes as robust
as the Hourglass block.

Note that this incremental improvement over vanilla SPECTRE is only possible because
we allowed the protocol to assume something on the network’s topology, namely, that the
communication delay diameter is upper bounded by Dmax.

B. Summary

In summary, it is possible to achieve both fast confirmation times and Liveness by combining
PHANTOM and SPECTRE. It is of yet unclear whether we can further achieve a linear ordering
without compromising the fast confirmation times. Hopefully, we will provide answers to these
questions in future work.
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