
PHANTOM, GHOSTDAG:
Two Scalable BlockDAG protocols

Yonatan Sompolinsky and Aviv Zohar

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{yoni sompo,avivz}@cs.huji.ac.il

F

Abstract

In 2008 Satoshi Nakamoto invented the basis for blockchain based distributed ledgers. The
core concept of this system is an open and anonymous network of nodes, or miners, which
together maintain a public ledger of transactions. The ledger takes the form of a chain of blocks,
the blockchain, where each block is a batch of new transactions collected from users. One primary
problem with Satoshi’s blockchain is its highly limited scalability. The security of Satoshi’s longest
chain rule, more generally known as the Bitcoin protocol, requires that all honest nodes be aware
of each other’s blocks very soon after the block’s creation. To this end, the throughput of the
system is artificially suppressed so that each block fully propagates before the next one is created,
and that very few “orphan blocks” that fork the chain be created spontaneously.

In this paper we present PHANTOM, a PoW based protocol for a permissionless ledger that
generalizes Nakamoto’s blockchain to a direct acyclic graph of blocks (blockDAG). PHANTOM
includes a parameter k that controls the level of tolerance of the protocol to blocks that were
created concurrently, which can be set to accommodate higher throughput. It thus avoids the
security-scalability tradeoff which Satoshi’s protocol suffers from.

PHANTOM uses a greedy algorithm on the blockDAG to distinguish between blocks mined
properly by honest nodes and those that created by non-cooperating nodes who chose to deviate
from the mining protocol. Using this distinction, PHANTOM provides a robust total order on the
blockDAG in a way that is eventually agreed upon by all honest nodes.

1 INTRODUCTION

The security of the Bitcoin protocol relies on blocks propagating quickly to all miners
in the network [1], [3], [6]. Block creation itself is slowed down via the requirement
that each block contain a proof-of-work. For the Bitcoin protocol to be secure, block
propagation must be faster than the typical time it takes the network together to create
the next block. In order to guarantee this property, the creation of blocks in Bitcoin is

2

regulated by the protocol to occur only once every 10 minutes, and the block size itself is
limited to allow for fast transmission. As a result, Bitcoin suffers from a highly restrictive
throughput on the order of 3-7 transactions per second (tps).1.
The PHANTOM protocol. In this paper we present PHANTOM, a protocol that
generalizes Nakamoto’s longest chain protocol. While Bitcoin blocks each contain a
hash of a single predecessor block in the chain they are extending which implies that
blocks for a tree, PHANTOM structures blocks in a Directed Acyclic Graph, a blockDAG.
Each block can thus include several hash references to predecessors. PHANTOM then
provides a total ordering over all blocks and transactions, and outputs a consistent set
of accepted transactions. Unlike the Bitcoin protocol, where blocks that are not on the
main chain are discarded, PHANTOM incorporates all blocks in the blockDAG into the
ledger, but places blocks that were created by attackers later in the order.

The main achievement of PHANTOM can be summarized as follows:

Theorem 1 (Informal). Given two transactions tx1, tx2 that were published and embedded in
the blockDAG at some point in time, the probability that PHANTOM’s order between tx1 and
tx2 changes over time decreases exponentially as time grows, even under a high block creation
rate that is non-negligible relative to the network’s propagation delay, assuming that a majority
of the computational power is held by honest nodes.

We will upload soon a version with a formalization of this theorem and a proof.
The security property given in the theorem allows PHANTOM to support a high block
creation rate. This translates both to fast confirmation times and to a larger throughput
of transactions.

In rough terms, PHANTOM consists of a three-step procedure:
1) Using the structure of the blockDAG, we recognize a set of well-connected blocks

(we later refer to these as blue blocks); This procedure is used to exclude blocks
created by misbehaving nodes and is the heart of the protocol: Blocks that either
reference only old blocks from the DAG, or are withheld by their creator for some
time, are excluded from the set of blue blocks with high probability.

2) We complete the DAG’s naturally induced partial ordering to a full topological
order in a way that favours blocks inside the selected cluster and penalizes those
outside it.

3) The order over blocks induces an order over transactions; transactions in the same
block are ordered according to the order of their appearance in the block. We iterate
over all transactions in this order, and accept each one that is consistent (according
to the underlying consistency notion) with all transactions approved so far.

We now proceed to describe the PHANTOM protocol more formally.

1. The exact figure varies according to the size of a typical transaction, and changes if one includes
protocol changes such as SegWit, Schnorr signatures, etc.

3

Fig. 1: An example of a block DAG G. Each block
references all blocks that were known to its miner
at the time it was created. The DAG terminology
applies to H as follows:
past (H) = {Genesis, C,D,E} – blocks which H
references directly or indirectly, and which were
provably created before H ;
future (H) = {J,K,M} – blocks which reference
H directly or indirectly, and which were provably
created after H ;
anticone (H) = {B,F, I, L} – the order between
these blocks and H is ambiguous. Reaching
consensus on the order between blocks and other
blocks in their anticone is the main challenge that
we face.
tips(G) = {J, L,M} – leaf-blocks, namely, blocks
with in-degree 0; these will be referenced in the
header of the next block.

2 THE PHANTOM PROTOCOL

2.1 Preliminaries
The following terminology is used extensively throughout this paper. A DAG of blocks
is denoted G = (C, E), where C represents blocks and E represents the hash references
to previous blocks. We frequently write B ∈ G instead of B ∈ C. past (B,G) ⊂ C denotes
the subset of blocks reachable from B, and similarly future (B,G) ⊂ C denotes the
subset of blocks from which B is reachable; these are blocks that were provably created
before and after B, correspondingly. An edge in the DAG points back in time, from the new
block to previously created blocks which it extends. We denote by anticone (B,G) the set of
blocks outside past (B,G) and future (B,G) (excluding B itself); this is the set of blocks
in the DAG which did not reference B (directly or indirectly via their predecessors) and
were not referenced by B (directly or indirectly via B’s predecessors).2 Finally, tips(G)
is the set of blocks with in-degree 0 (usually, the most recent blocks). This terminology
is demonstrated in Figure 1.

2.2 The DAG mining protocol
Rather than extending a single chain, a miner in PHANTOM references in its new block
all blocks in tips(G), where G is the DAG that the miner observes locally at the time
when the new block is created. Additionally, the miner should broadcast its new block
as fast as possible. These two rules together constitute the DAG mining protocol in
PHANTOM.

2. We will frequently abbreviate the notation and write, e.g., anticone (B), instead of anticone (B,G).

4

2.3 The DAG ordering protocol
The aforementioned DAG mining protocol implies in particular that even when two
blocks contain conflicting transactions, both blocks are incorporated into the blockDAG
and referenced by all (honest) miners. The core challenge is then how to recover
the consistency of the blockDAG. This is done in our framework by ordering all
blocks – and by extension, all transactions – and accepting transactions one by one,
eliminating individual transactions that are inconsistent with those approved before
them. PHANTOM achieves consensus on the order of blocks, and this guarantees
agreement on the set of accepted transactions as well.

Essentially, Bitcoin can be seen as an ordering protocol as well, according to which
transactions embedded in the longest chain of blocks precede those off the longest chain.
Unfortunately, Bitcoin’s protocol is known to be secure only under slow block rates (see
Section 4).

The ordering rule of PHANTOM has two stages: First, we divide the blocks to
Blues and Reds; the Blue set represents blocks that appear to have been mined by
cooperating nodes, whereas blocks in the Red set are outliers that were most likely
mined by malicious or strategic nodes. Then, we order the DAG in a way that favours
blue blocks and penalized red ones. The latter step is rather immediate, and the novelty
of PHANTOM lies mainly in the first colouring procedure.

2.3.1 The intuition behind PHANTOM
Just like Bitcoin, PHANTOM relies on the ability of honest nodes to communicate to their
peers recent blocks in a timely manner, and on the assumption that honest nodes possess
more than 50% of the hashrate. The block rate in Bitcoin is suppressed so as to ensure
block creation is slower than the time it takes to communicate them. In PHANTOM, on
the other hand, we notice that the set of honest blocks can be recognized even when the
block rate is high and many forks appear spontaneously: Due to the communication and
cooperation of honest mines, we should expect to see in the DAG a “well-connected”
cluster of blocks.

Indeed, let D be an upper bound on the network’s propagation delay. If block B
was mined by an honest miner at time t, then any block published before time t − D
necessarily arrived at its miner before time t, and is therefore included in past (B).
Similarly, the honest miner will publish B immediately, and so B will be included in
the past set of any block mined after time t + D. As a result, the set of honest blocks
in B’s anticone is typically small, and consists only of blocks created in the interval
[t−D, t+D]. The proof-of-work mechanism guarantees that the number of blocks created
in an interval of length 2 ·D is typically below some k > 0.

In short, the set of blocks created by honest nodes is well-connected. The following
definition captures “well-connectedness”:

Definition 2. Given a DAG G = (C, E), a subset S ⊆ C is called a k-cluster, if ∀B ∈ S :
|anticone (B) ∩ S| ≤ k.

5

Attacker nodes may deviate arbitrarily from the mining rules, have large anticones,
and even artificially increase the anticone of honest blocks. Nonetheless, since honest
miners possess more proof-of-work power, it is usually impossible for malicious miners
to create a well-connected set of blocks that is larger than that created by honest nodes.
PHANTOM utilizes this fact and selects the largest well-connected set within the DAG,
by solving the following optimization problem:

Maximum k-cluster SubDAG (MCSk)
Input: DAG G = (C, E)
Output: A subset S∗ ⊂ C of maximum size, s.t. |anticone (B) ∩ S∗| ≤ k for all B ∈ S∗.

In this formulation, the parameter k is predetermined; see Section 4 for more details.
An example of a maximum k-cluster appears in Figure 2.

2.3.2 The PHANTOM protocol
Following the above intuition, the ordering protocol of PHANTOM comprises the
following two steps:

1) Given a block G, solve MCSk(G); let’s refer to its output as the Blue set and to its
complement set as the Red one.

2) Determine the order between Blue blocks according to some topological sort. Then,
for any Blue block B, add to the order just before B all of the Red blocks in past (B)
that weren’t added to the order yet; these Red blocks too should be added in a
topological manner.3

An example of the output of the PHANTOM procedure on the small blockDAG
from Figure 2 is: (A,D,C,G,B, F, I, E, J,H,K). Unfortunately, the Maximum k-cluster
SubDAG problem is NP hard (see problem [GT26] in [2]), and PHANTOM is therefore of
less practical use for an ever-growing blockDAG. We thus introduce a greedy algorithm
that is more suitable for implementation. We call this greedy variant GHOSTDAG.4

2.4 The GHOSTDAG protocol
Similar to PHANTOM, the GHOSTDAG protocol selects a k-cluster, which induces a
colouring of the blocks as Blues (blocks in the selected cluster) and Reds (blocks outside
the cluster). However, instead of searching for the largest k-cluster, GHOSTDAG finds
a cluster using a greedy algorithm. The algorithm constructs the Blue set of the DAG

3. The topological sorts in this second step are additionally required to be agnostic to future blocks: For
any Blue block B, the order on blocks in past (B) should remain the same if we remove from the DAG
blocks in future (B). This can be implemented, for instance, using a priority queue that pops out blocks
according to the size of their past set.

4. In previous versions of this paper we referred to both versions as PHANTOM. Essentially, GHOSTDAG
can be seen as a fix of the greedy algorithm introduced by the authors in [6], called the GHOST protocol.
We thank Ethan Heilman for suggesting this name.

6

Fig. 2: An example of the largest 3-cluster of blocks
within a given DAG: A,B,C,D, F,G, I, J (coloured
blue). It is easy to verify that each of these blue
blocks has at most 3 blue blocks in its anticone,
and (a bit less easy) that this is the largest set with
this property. Setting PHANTOM’s inter-connectivity
parameter with k = 3 means that at most 4 blocks
are assumed to be created within each unit of delay,
so that typical anticone sizes should not exceed 3.
Blocks outside the largest 3-cluster, E,H,K (coloured
red), belong to the attacker (w.h.p.). For instance, block
E has 6 blue blocks in its anticone (B,C,D, F,G, I);
these blocks didn’t reference E, presumably because
E was withheld from their miners. Similarly, block K
admits 6 blue blocks in its anticone (B,C,G, F, I, J);
presumably, its malicious miner received already some
blocks from (B,C,D,G), but violated the mining
protocol by not referencing them.

by first inheriting the Blue set of the best tip Bmax, i.e., the tip with the largest Blue set
in its past, and then adds to the Blue set blocks outside Bmax’s past, provided that the
k-cluster property is preserved.

Observe that this greedy inheritance rule induces a chain: The last block of the chain
is the selected tip of G, Bmax; the next block in the chain is the selected tip of the
DAG past (Bmax); and so on down to the genesis. We denote this chain by Chn(G) =
(genesis = Chn0(G), Chn1(G), . . . , Chnh(G)).

The final order over all blocks, in GHOSTDAG, follows a similar path as the
colouring procedure: We order the blockDAG by first inheriting the order of Bmax on
blocks in past (Bmax), then adding Bmax itself to the order, and finally adding blocks
outside past (Bmax) according to some topological ordering. Thus, essentially, the order
over blocks becomes robust as the colouring procedure.

2.4.1 Formal algorithm
The procedures described above are formalized in Algorithm 1 below. The algorithm
begins with the base case where the DAG consists of the genesis block only (lines 2-3).
Next, it performs a recursive call to compute the Blue sets and ordering of the past of
each of the DAG’s tips (lines 4-5), and inherits those of the best tip (lines 6-8). Then,
the selected tip is added to the Blue set BlueSetG and to the last position in the current
ordered list OrderedListG (lines 9-10). Then we iterate over anticone (Bmax, G) in some
topological way which guarantees that a block is visited only after its predecessors

7

are (lines 11-14).5 For every block we visit, we check if adding B to the Blue set will
preserve the k-cluster property, and if this condition is satisfied, we add B to the Blue
set (lines 9-13); either way, we add B to the current last position in the list (line 14).
Finally, we return the Blue set and the ordered Note that the recursion in the algorithm
(line 5) halts, because for any block B ∈ G: |past (B)| < |G|.

Algorithm 1 Ordering the DAG
Input: G – a block DAG, k – the propagation parameter
Output: ord – an ordered list containing all blocks in G; BLUEk (G) – the Blue set of G

1: function ORDERDAG(G, k)
2: if G == {genesis} then
3: return [{genesis} , {genesis}]
4: for B ∈ tips(G) do
5: [OrderedListB, BlueSetB]←OrderDAG(past (B) , k)

6: Bmax ← argmax {|BlueSetB| : B ∈ tips(G)} (and break ties according to lowest hash)
7: BlueSetG ← BlueSetBmax

8: OrderedListG ← OrderedListBmax

9: add Bmax to BlueSetG
10: add Bmax to the end of OrderedListG
11: for B ∈ anticone (Bmax, G) do in some topological ordering
12: if BlueSetG ∪ {B} is a k-cluster then
13: add B to BlueSetG
14: add B to the end of OrderedListG
15: return [OrderedListG, BlueSetG]

2.5 Collapse to Bitcoin when k = 0

If the block creation rate is kept low, as in Bitcoin, the parameter k can be safely set
to 0, as honest blocks are likely to create a chain (see Section 4). In such a setup, both
PHANTOM and GHOSTDAG converge to Bitcoin’s rule in the sense that, in case of
a chain split, blocks on the longest chain precede those off the longest chain. These
protocols would differ from Bitcoin’s rule in that, as of according to the DAG mining
protocol, blocks in the longest chain would eventually reference those off the longest
chain, in PHANTOM or GHOSTDAG, and will thereby insert them in the order.

In fact, it is easy to see that the longest chain is, by definition, the largest 0-cluster
of the DAG. Accordingly, our protocols can be seen as a generalization of Satoshi’s

5. This can be implemented in several ways, e.g., by inserting all blocks in anticone (Bmax) into a
deterministic priority queue which respects the topology. That is, the queue should pop out a block only after
all of its parents have been popped out, and the order in which it pops blocks should be fully determined
by the blockDAG.

8

longest-chain rule to a setup where block rate is high and propogation delays are not
negligible.

In Section 5 we prove that GHOSTDAG remains secure under high block creation
rates as well. We leave the formal analysis of PHANTOM for future work.

3 FORMAL MODEL AND STATEMENT

In this section we describe our formal framework. While we introduce new notation
and terminology, the reader should keep in mind that we stick to Bitcoin’s model in almost
every respect—transactions, blocks, Proof-of-work, computationally bounded attacker,
P2P propagation of blocks, probabilistic security guarantees, etc. The “only” difference
is that a block references (possibly) several predecessors rather than a single one. While
this has far reaching consequences on how the ledger is to be interpreted, on the mining
side things remain largely the same.

3.1 Network
We follow the model specified in [5]. The network of nodes (or miners) is denoted N ,
honest denotes the set of nodes that abide to the mining protocol (as defined below),
and malicious denotes the rest of the nodes. Honest nodes form a connected component
in N ’s topology, and the communication delay diameter of the honest subnetwork is D:
if an honest node v ∈ N sends a message of size b MB at time t, it arrives at all honest
nodes by time t +D the latest. The attacker is assumed to suffer no delays whatsoever
on its outgoing or incoming links.

The real value of D is a priori unknown. The PHANTOM protocol assumes that
D is always smaller than some constant Dmax (both depend on the block size b). The
parameter Dmax is not hard-coded explicitly in the protocol, rather it influences another
parameter, k = k(Dmax), which is hard-coded and decided once and for all at the
inception of the system. Roughly speaking, k(Dmax) represents an upper bound on the
number bound on the number of blocks that the network creates in one unit of delay
and that may not be referenced by one another. Section 4 discusses this parameter in
more detail.

3.2 Mining framework

Proof-of-work. Nodes create blocks of transactions by solving Proof-of-work puzzles.
Block creation follows a Poisson process with parameter λ. For the sake of simplicity,
we assume that λ is constant.6 The computational power of node v ∈ N is captured by
0 < αv < 1, which represents the probability that node v will be the creator of the next

6. In practice, λ must occasionally be readjusted to account for shifting network conditions. PHANTOM
can support a retargeting mechanism similar to Bitcoin’s, e.g., readjust every time that Chn(G) grows by
2016 blocks.

9

block in the system (at any point in time; this is a memoryless process). The attackers’
computational power is less than 50%. Thus,

∑
v∈N αv = 1, and

∑
v∈malicious αv =: α <

0.5.
Block references. Every block specifies its direct predecessors by referencing their ID in
its header (a block’s ID is obtained by applying a collision resistant hash to its header);
the choice of predecessors will be described in the next subsection. This results in a
structure of a direct acyclic graph (DAG) of blocks (as blocks can only reference blocks
created before them), denoted typically G = (C, E). Here, C represents blocks and E
represents the hash references. We will frequently write B ∈ G instead of B ∈ C.
DAG topology. The topology of the blockDAG induces a natural partial ordering over
blocks, as follows: if there is a path in the DAG from block C to block B we write
B ∈ past (C); in this case, C was provably created after B and therefore B should
precede C in the order.7 A node does not consider a block as valid until it receives its
entire past set. The unique block genesis is the block created at the inception of the
system, and every valid block must have it in its past set.

Similarly, the future set of a block, future (B), represents blocks that were provably
created after it: B ∈ past (C) ⇐⇒ C ∈ future (B). In contrast to the past set, the future
set of a block keeps growing in time, as more blocks are created and are referencing it.
To avoid ambiguity, we write future (B)∩G or future (B,G), and write future (B) only
when the context is clear or unimportant.

The set anticone (B) represents all blocks not in B’s future or past (excluding B as
well). These are blocks whose ordering with respect to B is not defined via the partial
ordering that the topology of the DAG induces. Formally, for two distinct blocks B,C ∈
G: C ∈ anticone (B,G) ⇐⇒ (B /∈ past (C) ∧ C /∈ past (B)) ⇐⇒ B ∈ anticone (C, g).
Here too we usually specify the context, anticone (B,G), because the anticone set can
grow with time.

In Figure 1 above we illustrates this terminology.
DAG mining protocol. Gvt denotes the block DAG that node v ∈ N observes at time
t. This DAG represents the history of all (valid) block-messages received by the node.
Goraclet := ∪v∈NGvt denotes the block DAG of a hypothetical oracle node, and Gpubt :=
∪v∈honestGvt denotes the block DAG containing all blocks that are visible to some honest
node(s).

A tip of the DAG is a leaf-block, namely, a block with in-degree 0. The instructions
to a miner in the DAG paradigm are simple:

1) When creating or receiving a block, transmit it to all of one’s peers in N . Formally, this
implies that ∀v, u ∈ honest : Gvt ⊆ Gut+D.

2) When creating a block, embed in its header a list containing the hash of all tips in the
locally-observed DAG. Formally, this implies that if block B was created at time t, by

7. Note that an edge in the DAG points back in time, from the new block to previously created blocks
which it references.

10

honest node v, then past (B) = Gvt .8

Since these are the only two mining rules in our system, a byzantine behaviour of the
attacker (which controls up to α of the mining power) amounts to an arbitrary deviation
from one or both of these instructions.

3.3 DAG client protocol
The DAG as described so far possibly embeds conflicting transactions. These are
resolved on the client level. A client can be defined formally as a node in N which has
no mining power. Intuitively, it is any user of the system who is interested in reading
and interpreting the current state of the ledger.

In this work, a transaction tx is an arbitrary message that is embedded in a block. An
underlying Consistency rule takes as input a set T of transactions and returns valid
or invalid. Our work is agnostic to the definition and operation of this rule, or to
the characterization of the transaction space. Instead, we focus on the following task:
devising a protocol through which all nodes agree on the order of all transactions in
the system. Once such an order is agreed, one can iterate over all transactions, in the
prescribed order, and approve each transaction that is consistent – according to the
underlying rule – with those approved so far. Such an ordering rule constitutes the client
protocol, and is run by each client locally without any need to communicate additional
messages with other clients.

Formally, an ordering rule ord takes as input a blockDAG G and outputs a linear
order over G’s blocks, ord(G) = (B0, B1, . . . , B|G|). Transactions in the same block
are ordered according to their appearance in it, and this convention allows us to talk
henceforth on the order of blocks only. With respect to a given rule ord, we write
B ≺ord(G) C if the index of B precedes that of C in ord(G); we abbreviate and write
B ≺G C or even B ≺ C when the context is understood. For convenience, we use the
same notation B ≺G C when B ∈ G but C /∈ G.

3.4 Convergence of the order
The following definition captures the desired security of the protocol, in terms of the
probability that some order between two blocks will be reversed.

Definition 3. Fix a rule ord. Let B ∈ G = Gpubt0
. The function Risk is defined by the probability

that a block that did not precede B in time t1 ≥ t0 will later come to precede it: Risk (B, t1) :=

Pr

(
∃s > t1,∃C ∈ Gpubs : B ≺

Gpub
t1

C ∧ C ≺
Gpub

s
B

)
.

In the definition above, the probability is taken over all random events in the
network, including block creation and propagation, as well as the attacker’s arbitrary

8. Technically it is more accurate to write past (B) = Gv
t \{B}, as a block does not belongs to its own past

set.

11

(byzantine) behaviour. The convergence property below guarantees that the order
between a block and those succeeding it, or those not published yet, will not be reversed,
w.h.p. This captures the security of the protocol, as it provides honest nodes with
(probabilistic) security guarantees regarding possible reorgs.

Property 1. An ordering rule ord is converging if ∀t0 > 0 andB ∈ Gpubt0
: lim
t1→∞

Risk (B, t1) =

0, even when a fraction α of the mining power is byzantine.

Remark. Property 1 essentially couples the Safety and Liveness properties required from
consensus protocols. Indeed, once Risk (B, t1) < ε, a decision to accept transactions in B can be
made (Liveness), and is guaranteed to be irreversible (Safety) up to an error probability of ε (as in
Bitcoin and other protocols). Nevertheless, we avoid phrasing our results in these terms, for the
sake of clarity of presentation. The complication arises from the need to analyze the system from
the perspective of every node Gvt , and not merely from the public ledger’s hypothetical perspective
Gpubt ; this technicality is not unique to PHANTOM, and should be regarded in any work that
formalizes blockchain based consensus (unless propagation delays are assumed to be negligible).
We leave the task of bridging this gap to a later version.

The security threshold is the minimal hashing power that the attacker must acquire
i order to disrupt the protocol’s operation:

Definition 4. The security threshold of an ordering rule ord is defined as the maximal α
(attacker’s relative computational power) for which Property 1 holds true.

A protocol is scalable if it is safe to increase the block creation rate λ without
compromising the security, that is, if the security threshold does not deteriorate as λ
increases (this can be phrased also in terms of increasing the block size b rather than λ).

3.5 Main result
Our goal in this paper is to describe formally the ordering procedure of PHANTOM and
to prove that it is scalable in the above sense.

Theorem 5 (PHANTOM scales). Given a block creation rate λ > 0, δ > 0, and Dmax > 0, if
Dmax is equal to or greater than the network’s propagation delay diameter D, then the security
threshold of PHANTOM, parameterized with k(Dmax, δ), is at least 1/2 · (1− δ).

The parameterization of PHANTOM via k(Dmax, δ) is defined in the subsequent
section (see (1)). Theorem 5 encapsulates the main achievement of our work. We prove
the theorem formally in Section 5. Contrast this result to a theorem regarding the Bitcoin
protocol, which appears in several forms in previous work (e.g., [4], [6]):

Theorem 6 (Bitcoin does not scale). As λ increases, the security threshold of the Bitcoin
protocol goes to 0.

12

Finally, we note that even if Dmax 6≥ D, the system’s security does not immediately
break apart. Rather, the minimal power needed to attack the system goes from 50% to 0,
deteriorating at a rate that depends on the error gap D −Dmax.

4 SCALABILITY AND NETWORK DELAYS

4.1 The propagation delay parameter Dmax

The scalability of a distributed algorithm is closely tied to the assumptions it makes on
the underlying network, and specifically on its propagation delay D. The real value of
D is both unknown and sensitive to shifting network conditions. For this reason, Bitcoin
operates under the assumption that D is much smaller than 10 minutes, and sets the
average block interval time to 10 minutes. While this seems like an overestimation of the
network’s propagation delay under normal conditions (at least in 2018’s Internet terms),
some safety margin must be taken, to account for peculiar network conditions as well.
Similarly, in PHANTOM we assume that the unknown D is upper bounded by some
Dmax which is known to the protocol. The protocol does not explicitly encode Dmax,
rather, it is parameterized with k which depends on it, as will be described in the next
subsection.

The use of an a priori known bound Dmax distinguishes PHANTOM’s security
model from that of SPECTRE [5]. While the security of both protocols depends on the
assumption that the network’s propagation delay D is upper bounded by some constant,
in SPECTRE the value of such a constant need not be known or assumed by the protocol,
whereas PHANTOM makes explicit use of this parameter (via k) when ordering the
DAG’s blocks. The fact that the order between any two blocks becomes robust in
PHANTOM, but not in SPECTRE, should be ascribed to this added assumption; see
further discussion in Section 7.

4.2 The anticone size parameter k
The parameter k is decided from the outset and hard-coded in the protocol. It is defined
as follows:

k(Dmax, δ) := (1)

min

k̂ ∈ N :

∞∑
j=k̂+1

e−2·Dmax·λ · (2 ·Dmax · λ)j

j!
< δ

The motivation here is to devise a bound over the number of blocks created in parallel.
Since the block creation rate follows a Poisson process, for an arbitrary block B created
at time t, at most k(Dmax, δ) additional blocks were created in the time interval [t −
Dmax, t+Dmax], with probability of at least 1− δ.9

9. In more detail: The term written inside the definition of k bounds the probability that more than k
blocks were created in parallel to B in the time interval [t −Dmax, t +Dmax]. Thus, with probability of at
least 1− δ, at most k blocks were created during this time interval (in addition to B).

13

Observe that blocks created in the intervals [0, t − Dmax) and (t + Dmax,∞), by
honest nodes, belong to B’s past and future sets, respectively. Consequently, in principle,
|anticone (B)| ≤ k with probability of 1− δ at least. However, an attacker can artificially
increase B’s anticone by creating blocks that do not reference it and by withholding his
blocks so that B cannot reference them.

4.3 Trade-offs
Theorem 5, and the parameterization of PHANTOM in (1), tie between k, Dmax, λ, and
δ. Striving for a better performance by modifying one parameter (e.g., increasing λ to
obtain larger throughput and more frequent blocks) must be understood and considered
against the effect on all other parameters.
Increased block creation rate. Although the security threshold does not deteriorate as
λ is increased, λ cannot be increased indefinitely, or otherwise the network becomes
congested. The value of λ should be set such that nodes that are expected to participate
in the system can support such a throughput. For instance, if nodes are required to
maintain a bandwidth of at least 1 MB per second, and blocks are of size b = 1
MB, then the block creation rate should be set to λ = 1 blocks per second (this is
merely a back-of-the-envelope calculation, and in practice other messages consume the
bandwidth as well).
Higher security threshold. Theorem 5 states the security threshold in terms of δ.
Following (1) we notice that tightening the security threshold – by choosing a lower
δ – requires increasing k. A large k leads to slow confirmation times, as will be discussed
shortly.10

Larger safety margin. Similarly, if Dmax is to be increased, one needs to increase k as
well in order to maintain the same security level (represented by δ).

As discussed in Subsection 4.1, it is better to overestimate D and choose a large Dmax

in order remain on the safe side.11 Recall that the security of Bitcoin’s chain depends
on the assumption that D · λ � 1, namely, that w.h.p. at least D seconds pass between
consecutive blocks, so that forks are rare. Thus, Bitcoin’s large safety margin over D
suppresses its throughput severely as it requires selecting a very low block rate λ =
1/600 (one block per 10 minutes). This is not the case with PHANTOM’s DAG, as the
security of the DAG ordering does not rely on the assumption D · λ � 1. Therefore,
even if we overestimate D, we can still allow for very high block creation rates while
maintaining the same level of security. Consequently, PHANTOM supports a very large
throughput, and does not suffer from a security-scalability tradeoff.

10. The advanced reader should notice that although increasing λ has a similar negative effect on k, it
has at the same time a positive effect on confirmation times, and so a certain λ will be optimal as far as
confirmation times are concerned.

11. Several blockchain based projects do not do so, and consequently compromise the security threshold
of their system.

14

That said, in PHANTOM there is still a tradeoff between a large safety margin and
fast convergence of the protocol. A gross overestimation of Dmax – resulting an increase
in k – would significantly slow down the waiting time for transaction settlement. Thus,
Dmax should be set to a reasonable level. In Section 7 we discuss how this tradeoff can
be restricted to visible conflicts only, and how applications such as Payments can enjoy
very fast confirmation times nonetheless.

5 PROOF

This section is under construction. Will upload soon a version with correct proof.

6 VARIANTS

In Section 2 we described the PHANTOM’s greedy algorithm to mark blocks as blue
or red (Algorithm 1). In fact, similar algorithms can provide similar guarantees. We
describe below the two most interesting ones, and explain the intuition behind them.
These variants can be thought of, informally, as greedy approximations to the Maximum
k-cluster SubDAG problem described in Section 1.

6.1 Choosing the maximizing tip
In our original version of the colouring procedure, we chose the tip which has the
highest score (Algorithm 1, line 6). Instead, Algorithm 2 below chooses the tip for which
the score of the (virtual block of the) current DAG would be highest:

Algorithm 2 Ordering the DAG
Input: G – a block DAG, k – the propagation parameter
Output: ord – an ordered list containing all blocks in G; BLUEk (G) – the Blue set of G

1: function ORDERDAG(G, k)
2: if G == {genesis} then
3: return [{genesis} , {genesis}]
4: for B ∈ tips(G) do
5: [OrderedListB, BlueSetB]←OrderDAG(past (B) , k)
6: add B to BlueSetB
7: add B to the end of OrderedListB
8: for C ∈ anticone (B,G) do in some topological ordering
9: if BlueSetB ∪ {C} is a k-cluster then

10: add C to BlueSetB
11: add C to the end of OrderedListB
12: Bmax ← argmax {|BlueSetB| : B ∈ tips(G)} (and break ties according to lowest hash)
13: return [OrderedListBmax , BlueSetBmax]

15

6.2 Iterative elimination of blocks
We now introduce another variant based on an iterative method common in
combinatorial optimization. The algorithm works as follows: Given a block DAG G,
we iteratively eliminate from the Blue set the block with largest Blue anticone, and
continue doing so until we arrive at a k-cluster:

Algorithm 3 Selection of a blue set

Input: G = (V,E) – a block DAG, k – the propagation parameter
Output: BLUEk (G) – the dense-set of G

1: function CALC-BLUE(G, k)
2: BLUEk (G)← V
3: while ∃B ∈ BLUEk (G) with |anticone (B) ∩BLUEk (G)| > k do
4: C ← argBmax {|anticone (B) ∩BLUEk (G)|} (with arbitrary tie-breaking)
5: remove C from BLUEk (G)

6: return BLUEk (G)

We conjecture that Algorithm 1 can be replaced with each of the greedy algorithms
described in this section. We leave this conjecture for future work.

7 CONFIRMATION TIMES

As discussed in Section 5, the convergence rate of Risk(B, t) is slow, at least theoretically
and under certain circumstances. Recall that the function Risk(B, t) measures the
probability that a certain block that did not precede B at time t will later come to precede
it. Recall further that throughput this work we used arbitrary topological orderings (over
blue blocks). In light if this, it would be interesting to seek for an ordering rule (over
blue blocks) that would converge faster. We suspect this is not a trivial task, and leave
its full investigation to future work.

The primary factor to the fact that PHANTOM cannot guarantee fast confirmation
times is that membership in the blue set takes time to finalize. The waiting time for
such finalization can be further increased if an attacker manages to balance the decision
between B ∈ BLUEk (G) and B /∈ BLUEk (G). Observe however that if a certain
transaction tx ∈ B admits no conflicts in anticone (B), then tx can be accepted even
before the decision regarding B is finalized.

7.1 Combining SPECTRE and PHANTOM
SPECTRE is a DAG based protocol that can support large transaction throughput
(similarly to PHANTOM) and very fast confirmations. SPECTRE does not output a
linear order over blocks. Rather, every block B admits a vote regarding the pairwise
ordering of any two blocks C and D, and the output is the majority vote regarding each

16

pair. In SPECTRE, cycles of the sort “B precedes C, C precedes D, D precedes B” may
form.

Furthermore, if an active balancing attack is taking place, for some pairs of blocks
(B,C) the SPECTRE relation might not become robust (in which case Risk(B, t) → 0
is not guaranteed). Instead, a published block B is guaranteed to robustly precede any
block C that was published later than B, unless C was published shortly after B. We
call this property Weak Liveness. In the context of the Payments application, this fact can
only harm a user that signed and published two conflicting payments at approximately
the same time.12

Since PHANTOM does guarantee (strong) Liveness and a liner ordering, it is
interesting to inquire whether we can enjoy the best of both worlds. We provide below
a partial answer to this question.

Consider the following procedure: Given a blockDAG G,
1) mark blocks as blue or red according to PHANTOM’s colouring procedure
2) run SPECTRE on the subDAG BLUEk (G); this determines the pairwise ordering

between any two blue blocks B and C
3) for any blue blockB and red block C, if C ∈ past (B) then determine that C precedes

B, otherwise determine that B precedes C
4) decide the pairwise ordering of any two red blocks in some arbitrary way that

respects the topology (B ∈ past (C)⇒ B precedes C)
Intuitively, we run SPECTRE on the set of blue blocks (as determined by

PHANTOM), and complemented the pairwise ordering in a way that both penalizes
red blocks and respects the topology. We argue that this protocol enjoys SPECTRE’s
fast confirmation times and at the same time inherits the (regular) Liveness property
of PHANTOM. To see the latter, observe that a Hourglass block would have a similar
effect in SPECTRE—all blocks in its future will vote according to its vote. In particular,
the pairwise relation of all previous blocks becomes as robust as the Hourglass block.

Note that this incremental improvement over vanilla SPECTRE is only possible
because we allowed the protocol to assume something on the network’s topology,
namely, that the communication delay diameter is upper bounded by Dmax.

7.2 Summary
In summary, it is possible to achieve both fast confirmation times and Liveness by
combining PHANTOM and SPECTRE. It is of yet unclear whether we can further
achieve a linear ordering without compromising the fast confirmation times. Hopefully,
we will provide answers to these questions in future work.

12. In contrast, usually any user can engage with a smart contract and introduce conflicts inputs. Thus,
Weak Liveness might potentially harm the usability of SPECTRE to the Smart Contracts application.

17

REFERENCES

[1] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 281–310. Springer, 2015.

[2] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman New York,
2002.

[3] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. IACR Cryptology ePrint Archive, 2016:454, 2016.

[4] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model, 2016.
[5] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable cryptocurrency

protocol. IACR Cryptology ePrint Archive, 2016:1159, 2016.
[6] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In International

Conference on Financial Cryptography and Data Security, pages 507–527. Springer, 2015.
[7] David Williams. Probability with martingales. Cambridge university press, 1991.

	Introduction
	The PHANTOM protocol
	Preliminaries
	The DAG mining protocol
	The DAG ordering protocol
	The intuition behind PHANTOM
	The PHANTOM protocol

	The GHOSTDAG protocol
	Formal algorithm

	Collapse to Bitcoin when k =0

	Formal Model and Statement
	Network
	Mining framework
	DAG client protocol
	Convergence of the order
	Main result

	Scalability and network delays
	The propagation delay parameter Dmax
	The anticone size parameter k
	Trade-offs

	Proof
	Variants
	Choosing the maximizing tip
	Iterative elimination of blocks

	Confirmation times
	Combining SPECTRE and PHANTOM
	Summary

	References

