
PHANTOM and GHOSTDAG
A Scalable Generalization of Nakamoto Consensus

May 25, 2021

ABSTRACT
In 2008 Satoshi Nakamoto invented the basis for blockchain-based

distributed ledgers. The core concept of this system is an open

and anonymous network of nodes, or miners, which together

maintain a public ledger of transactions. The ledger takes the

form of a chain of blocks, the blockchain, where each block is

a batch of new transactions collected from users. One primary

problem with Satoshi’s blockchain is its highly limited scalability.

The security of Satoshi’s longest chain rule, more generally known

as the Bitcoin protocol, requires that all honest nodes be aware of
each other’s blocks very soon after the block’s creation. To this end,

the throughput of the system is artificially suppressed so that each

block fully propagates before the next one is created, and that very

few “orphan blocks” that fork the chain be created spontaneously.

In this paper we present PHANTOM, a proof-of-work based

protocol for a permissionless ledger that generalizes Nakamoto’s

blockchain to a direct acyclic graph of blocks (blockDAG).

PHANTOM includes a parameter k that controls the level of

tolerance of the protocol to blocks that were created concurrently,

which can be set to accommodate higher throughput. It thus avoids

the security-scalability tradeoff which Satoshi’s protocol suffers

from.

PHANTOM solves an optimization problem over the blockDAG

to distinguish between blocks mined properly by honest nodes

and those created by non-cooperating nodes who chose to deviate

from the mining protocol. Using this distinction, PHANTOM

provides a robust total order on the blockDAG in a way that

is eventually agreed upon by all honest nodes. Implementing

PHANTOM requires solving an NP-hard problem, and to avoid this

prohibitive computation, we devised an efficient greedy algorithm

GHOSTDAG that captures the essence of PHANTOM.

The GHOSTDAG protocol has been implemented as the

underlying technology of the Kaspa cryptocurrency. The Kaspa

network allows us to produce statistics about the performance of

GHOSTDAG in real world scenarios. We provide an analysis of

confirmation times obtained by observing the Kaspa network.

We provide a formal proof of the security of GHOSTDAG, namely,

that its ordering of blocks is irreversible up to an exponentially

negligible factor. We discuss the properties of GHOSTDAG and

how it compares to other DAG based protocols.

1 INTRODUCTION
The security of the Bitcoin protocol relies on blocks propagating

quickly to all miners in the network [9, 14, 19]. Block creation

itself is slowed down via the requirement that each block contain

a proof-of-work. For the Bitcoin protocol to be secure, block

propagationmust be faster than the typical time it takes the network

together to create the next block. In order to guarantee this property,

the creation of blocks in Bitcoin is regulated by the protocol to occur

only once every 10 minutes, and the block size itself is limited to

allow for fast transmission. As a result, Bitcoin suffers from a highly

restrictive throughput on the order of 3-7 transactions per second

(tps)
1
.

The PHANTOMprotocol. In this paper we present PHANTOM, a

protocol that generalizes Nakamoto’s longest chain protocol. While

Bitcoin blocks each contain a hash of a single predecessor block

in the chain they are extending which implies that blocks for a

tree, PHANTOM structures blocks in a Directed Acyclic Graph, a

blockDAG. Each block can thus include several hash references to

predecessors. PHANTOM then provides a total ordering over all

blocks and transactions, and outputs a consistent set of accepted

transactions. Unlike the Bitcoin protocol, where blocks that are

not on the main chain are discarded, PHANTOM incorporates all

blocks in the blockDAG into the ledger, but places blocks that were

created by attackers later in the order.

In rough terms, PHANTOM consists of a three-step procedure:

(1) Using the structure of the blockDAG, we recognize a set

of well-connected blocks (we later refer to these as blue

blocks); this procedure is used to exclude blocks created by

misbehaving nodes and is the heart of the protocol: Blocks

that either reference only old blocks from the DAG, or are

withheld by their creator for some time, will be excluded

from the set of blue blocks with high probability.

(2) We complete the DAG’s naturally induced partial ordering

to a full topological order in a way that favours blocks inside

the selected cluster and penalizes those outside it.

(3) The order over blocks induces an order over transactions;

transactions in the same block are ordered according to

the order of their appearance in the block. We iterate over

all transactions in this order, and accept each one that is

consistent (according to the underlying consistency notion)

with all transactions approved so far.

Propagation delay. The first step above is parameterized with k ,
which is a function of the assumed network delay diameter. In that,

PHANTOM is similar to Nakamoto Consensus which assumes that

an upper bound on the network’s delay diameter. In fact, under low

throughput we can set k = 0, in which case PHANTOM coincides

with Nakamoto Consensus.

However, while Nakamoto Consensus suppresses the throughput

and sets the block creation rate λ such that D · λ ≪ 1, PHANTOM

does not impose an a priori constraint over λ. Instead, the

throughput (in terms of λ and the block size) can be set to approach

the network’s capacity, and then k can be set after the fact to ensure

the safety of the protocol. This alleviates the security-scalability

tradeoff that Nakamoto Consensus suffers. Still, increasing k does

not come without cost, as we will discuss shortly.

1
The exact figure varies according to the size of a typical transaction, and changes if

one includes protocol changes such as SegWit, Schnorr signatures, etc.

, ,

GHOSTDAG. In its vanilla form, PHANTOM requires solving

an NP-hard problem, and is therefore unsuitable for practical

applications. Instead, we use the intuition behind PHANTOM to

devise a greedy algorithm, GHOSTDAG, which can be implemented

efficiently. We prove formally that GHOSTDAG is secure, in the

sense that its ordering of blocks becomes exponentially difficult to

reverse as time develops.

The main achievement of GHOSTDAG can be summarized as

follows:

Theorem (Informal). Given two transactions tx1, tx2 that were
published and embedded in the blockDAG at some point in time,
the probability that GHOSTDAG’s order between tx1 and tx2 changes
over time decreases exponentially as time grows, even under a high
block creation rate that is non-negligible relative to the network’s
propagation delay, assuming that a majority of the computational
power is held by honest nodes.

We will reformalize this theorem in Section 3, and provide a

formal proof in Section A.

We now proceed to describe the PHANTOM and GHOSTDAG

protocols more formally.

2 THE PHANTOM PROTOCOL
2.1 Preliminaries
The following terminology is used extensively throughout this

paper. A DAG of blocks is denoted G = (C, E), where C represents

blocks and E represents the hash references to previous blocks.

We frequently write B ∈ G instead of B ∈ C. past (B,G) ⊂ C
denotes the subset of blocks reachable from B, and similarly

f uture (B,G) ⊂ C denotes the subset of blocks from which B is

reachable; these are blocks that were provably created before and

after B, correspondingly. An edge in the DAG points back in time,
from the new block to previously created blocks which it extends.
We denote by anticone (B,G) the set of blocks outside past (B,G)
and f uture (B,G) (excluding B itself); this is the set of blocks in

the DAG which did not reference B (directly or indirectly via their

predecessors) and were not referenced by B (directly or indirectly

via B’s predecessors).2 Finally, tips(G) is the set of blocks with

in-degree 0 (usually, the most recent blocks). This terminology is

demonstrated in Figure 1.

2.2 The DAG mining protocol
Rather than extending a single chain, a miner in PHANTOM

references in its new block all blocks in tips(G), where G is the

DAG that the miner observes locally at the time when the new

block is created. Additionally, the miner should broadcast its new

block as fast as possible. These two rules together constitute the

DAG mining protocol in PHANTOM.

2.3 The DAG ordering protocol
The aforementioned DAGmining protocol implies in particular that

even when two blocks contain conflicting transactions, both blocks

are incorporated into the blockDAG and referenced by all (honest)

miners. The core challenge is then how to recover the consistency of

2
We will frequently abbreviate the notation and write, e.g., anticone (B), instead of

anticone (B,G).

Figure 1: An example of a block DAG G . Each block
references all blocks that were known to its miner at the
time it was created. The DAG terminology applies to H
as follows:
past (H) = {Genesis ,C , D , E } – blocks which H
references directly or indirectly, and which were
provably created before H ;
f uture (H) = {J , K ,M } – blocks which reference H
directly or indirectly, and which were provably created
after H ;
anticone (H) = {B, F , I , L } – the order between these
blocks and H is ambiguous. Reaching consensus on the
order between blocks and other blocks in their anticone
is the main challenge that we face.
t ips(G) = {J , L,M } – leaf-blocks, namely, blocks with
in-degree 0; these will be referenced in the header of the
next block.

the blockDAG. This is done in our framework by ordering all blocks

– and by extension, all transactions – and accepting transactions one

by one, eliminating individual transactions that are inconsistent

with those approved before them. PHANTOM achieves consensus

on the order of blocks, and this guarantees agreement on the set of

accepted transactions as well.

Essentially, Bitcoin can be seen as an ordering protocol as well,

according to which transactions embedded in the longest chain of

blocks precede those off the longest chain. Unfortunately, Bitcoin’s

protocol is known to be secure only under slow block rates (see

Section 4).

The ordering rule of PHANTOM has two stages: First, we divide

the blocks to Blues and Reds; the Blue set represents blocks that

appear to have been mined by cooperating nodes, whereas blocks in

the Red set are outliers that were most likely mined by malicious or

strategic nodes. Then, we order the DAG in a way that favours blue

blocks and penalized red ones. The latter step is rather immediate,

and the novelty of PHANTOM lies mainly in the first colouring

procedure.

2.3.1 The intuition behind PHANTOM. Just like Bitcoin,

PHANTOM relies on the ability of honest nodes to communicate

to their peers recent blocks in a timely manner, and on the

assumption that honest nodes possess more than 50% of the

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

hashrate. The block rate in Bitcoin is suppressed so as to ensure

block creation is slower than the time it takes to communicate

them. In PHANTOM, on the other hand, we notice that the set of

honest blocks can be recognized even when the block rate is high

and many forks appear spontaneously: Due to the communication

and cooperation of honest mines, we should expect to see in the

DAG a “well-connected” cluster of blocks.

Indeed, let D be an upper bound on the network’s propagation

delay. If block B was mined by an honest miner at time t , then any

block published before time t − D necessarily arrived at its miner

before time t , and is therefore included in past (B). Similarly, the

honest miner will publish B immediately, and so B will be included

in the past set of any block mined after time t+D. As a result, the set
of honest blocks in B’s anticone is typically small, and consists only

of blocks created in the interval [t − D, t + D]. The proof-of-work
mechanism guarantees that the number of blocks created in an

interval of length 2 · D is typically below some k > 0.

In short, the set of blocks created by honest nodes

is well-connected. The following definition captures

“well-connectedness”:

Definition 1. Given a DAG G = (C, E), a subset S ⊆ C is called a
k-cluster, if ∀B ∈ S : |anticone (B) ∩ S | ≤ k .

Attacker nodes may deviate arbitrarily from the mining rules,

have large anticones, and even artificially increase the anticone

of honest blocks. Nonetheless, since honest miners possess more

proof-of-work power, it is usually impossible for malicious miners

to create a well-connected set of blocks that is larger than that

created by honest nodes. PHANTOMutilizes this fact and selects the

largest well-connected set within the DAG, by solving the following

optimization problem:

Maximum k-cluster SubDAG (MCSk)
Input: DAG G = (C, E)
Output: A subset S∗ ⊂ C of maximum size, s.t.

|anticone (B) ∩ S∗ | ≤ k for all B ∈ S∗.

In this formulation, the parameter k is predetermined; see

Section 4 for more details. An example of a maximum k-cluster
appears in Figure 2.

2.3.2 The PHANTOM protocol. Following the above intuition, the

ordering protocol of PHANTOM comprises the following two steps:

(1) Given a block G, solveMCSk (G); let’s refer to its output as

the Blue set and to its complement set as the Red one.

(2) Determine the order between Blue blocks according to some

topological sort. Then, for any Blue block B, add to the order
just before B all of the Red blocks in past (B) that weren’t
added to the order yet; these Red blocks too should be added

in a topological manner.
3

An example of the output of the PHANTOM procedure on

the small blockDAG from Figure 2 is: (A,D,C,G,B, F , I , E, J ,H ,K).
Unfortunately, the Maximum k-cluster SubDAG problem is NP hard

(see problem [GT26] in [10]), and PHANTOM is therefore of less

3
The topological sorts in this second step are additionally required to be agnostic to

future blocks: For any Blue block B , the order on blocks in past (B) should remain

the same if we remove from the DAG blocks in f uture (B). This can be implemented,

for instance, using a priority queue that pops out blocks according to the size of their

past set.

Figure 2: An example of the largest 3-cluster of blocks
within a given DAG: A, B,C , D , F ,G , I , J (coloured blue).
It is easy to verify that each of these blue blocks has
at most 3 blue blocks in its anticone, and (a bit less
easy) that this is the largest set with this property.
Setting PHANTOM’s inter-connectivity parameter with
k = 3 means that at most 4 blocks are assumed to
be created within each unit of delay, so that typical
anticone sizes should not exceed 3. Blocks outside the
largest 3-cluster, E , H , K (coloured red), belong to the
attacker (w.h.p.). For instance, block E has 6 blue blocks
in its anticone (B,C , D , F ,G , I); these blocks didn’t
reference E , presumably because E was withheld from
their miners. Similarly, block K admits 6 blue blocks in
its anticone (B,C ,G , F , I , J); presumably, its malicious
miner received already some blocks from (B,C , D ,G),
but violated the mining protocol by not referencing
them.

practical use for an ever-growing blockDAG. We thus introduce a

greedy algorithm that is more suitable for implementation. We call

this greedy variant GHOSTDAG.
4

2.4 The GHOSTDAG protocol
Similar to PHANTOM, the GHOSTDAG protocol selects a k-cluster,
which induces a colouring of the blocks as Blues (blocks in the

selected cluster) and Reds (blocks outside the cluster). However,

instead of searching for the largest k-cluster, GHOSTDAG finds a

k-cluster using a greedy algorithm. The algorithm constructs the

Blue set of the DAG by first inheriting the Blue set of the best tip

Bmax, i.e., the tip with the largest Blue set in its past, and then adds

to the Blue set blocks outside Bmax’s past in a way that preserves

the k-cluster property.
Observe that this greedy inheritance rule induces a chain: The

last block of the chain is the selected tip of G, Bmax; the next block

in the chain is the selected tip of the DAG past (Bmax); and so on

4
In previous versions of this paper we referred to both versions as PHANTOM.

Essentially, GHOSTDAG can be seen as a fix of the greedy algorithm introduced

by the authors in [19], called the GHOST protocol. We thank Ethan Heilman for

suggesting this name.

, ,

down to the дenesis . We denote this chain by Chn(G) = (дenesis =
Chn0(G), Chn1(G), . . . , Chnh (G)).

The final order over all blocks, in GHOSTDAG, follows a

similar path as the colouring procedure: We order the blockDAG

by first inheriting the order of Bmax on blocks in past (Bmax),

then adding Bmax itself to the order, and finally adding blocks

outside past (Bmax) according to some topological ordering. Thus,

essentially, the order over blocks becomes robust as the colouring

procedure.

2.4.1 Formal algorithm. The procedures described above are

formalized in Algorithm 1 below. The algorithm begins with

the base case where the DAG consists of the дenesis block only

(lines 2-3). Next, it performs a recursive call to compute the Blue

sets and ordering of the past of each of the DAG’s tips (lines 4-5),

and inherits those of the best tip (lines 6-8). Then, the selected

tip is added to the Blue set BlueSetG and to the last position in

the current ordered list OrderedListG (lines 9-10). Then we iterate

over anticone (Bmax,G) in some topological way which guarantees

that a block is visited only after its predecessors are (lines 11-14).
5

For every block we visit, we check if adding B to the Blue set will

preserve the k-cluster property, and if this condition is satisfied,

we add B to the Blue set (lines 9-13); either way, we add B to the

current last position in the list (line 14). Finally, we return the Blue

set and the ordered Note that the recursion in the algorithm (line 5)

halts, because for any block B ∈ G: |past (B)| < |G |.

Algorithm 1 Ordering the DAG

Input: G – a block DAG, k – the propagation parameter

Output: BLUEk (G) – the Blue set of G; ord – an ordered list

containing all blocks in G
1: function OrderDAG(G,k)
2: if G == {дenesis} then
3: return [{дenesis} , {дenesis}]
4: for B ∈ tips(G) do
5: [BlueSetB ,OrderedListB] ←OrderDAG(past (B) ,k)

6: Bmax ← argmax {|BlueSetB | : B ∈ tips(G)}
(break ties according to lowest hash)

7: BlueSetG ← BlueSetBmax

8: OrderedListG ← OrderedListBmax

9: add Bmax to BlueSetG
10: add Bmax to the end of OrderedListG
11: for B ∈ anticone (Bmax,G) do in some topological ordering

12: if BlueSetG ∪ {B} is a k-cluster then
13: add B to BlueSetG
14: add B to the end of OrderedListG
15: return [BlueSetG ,OrderedListG]

We demonstrate the operation of this algorithm in Figure 3.We

will introduce some variants of Algorithm 1 in Section ??. Finally,
we have an efficient implementation of Algorithm 1, and we tested it

under high block rates (λ = 10 and 25 blocks per second, for blocks

5
This can be implemented in several ways, e.g., by inserting all blocks in

anticone (Bmax) into a deterministic priority queue which respects the topology.

That is, the queue should pop out a block only after all of its parents have been popped

out, and the order in which it pops blocks should be fully determined by the blockDAG.

of size 0.1-1 MB). We will make the implementation available in

the full version of this paper.

2.5 Collapse to Bitcoin when k = 0

If the block creation rate is kept low, as in Bitcoin, the parameter k
can be safely set to 0, as honest blocks are likely to create a chain

(see Section 4). In such a setup, both PHANTOM and GHOSTDAG

converge to Bitcoin’s rule in the sense that, in case of a chain

split, blocks on the longest chain precede those off the longest

chain. These protocols would differ from Bitcoin’s rule in that, as

of according to the DAG mining protocol, blocks in the longest

chain would eventually reference those off the longest chain, in

PHANTOM or GHOSTDAG, and will thereby insert them in the

order.

In fact, it is easy to see that the longest chain is, by definition,

the largest 0-cluster of the DAG. Accordingly, our protocols can be

seen as a generalization of Satoshi’s longest-chain rule to a setup

where block rate is high and propagation delays are not negligible.

In Appendix A we prove that GHOSTDAG remains secure under

high block creation rates as well. We leave the formal analysis of

PHANTOM for future work.

3 FORMAL MODEL AND STATEMENT
In this section we describe our formal framework. While we

introduce new notation and terminology, the reader should keep

in mind that we stick to Nakamoto Consensus’s model in almost
every respect—transactions, blocks, Proof-of-work, computationally

bounded attacker, P2P propagation of blocks, probabilistic security

guarantees, etc. The “only” difference is that a block references

(possibly) several predecessors rather than a single one. While this

has far reaching consequences on how the ledger is to be interpreted,

on the mining side things remain largely the same.

3.1 Network
We follow the model specified in [18]. The network of nodes (or

miners) is denotedN , honest denotes the set of nodes that abide to
the mining protocol (as defined below), andmalicious denotes the
rest of the nodes. Honest nodes form a connected component in

N ’s topology, and the communication delay diameter of the honest

subnetwork is D: if an honest node v ∈ N sends a message of size

b MB at time t , it arrives at all honest nodes by time t + D the

latest. The attacker is assumed to suffer no delays on its outgoing

or incoming links.

The real value ofD is a priori unknown. The PHANTOMprotocol

assumes that D is always smaller than some constant Dmax (both

depend on the block size b). The parameter Dmax is not hard-coded

explicitly in the protocol, rather it influences another parameter,

k = k(Dmax), which is hard-coded and decided once and for all at

the inception of the system. Roughly speaking, k(Dmax) represents

an upper bound on the number of blocks that the network creates

in one unit of delay and that may not be referenced by one another.

Section 4 discusses this parameter in more detail.

3.2 Mining framework
Proof-of-work. Nodes create blocks of transactions by solving

Proof-of-work puzzles. Block creation follows a Poisson process

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

Figure 3: An example of a blockDAG G and the operation of GHOSTDAG to construct its blue set BLU Ek (G) set, under the parameter k = 3.
The small circle near each blockX represents its score, namely, the number of blue blocks in the DAG past (X). The algorithm selects the chain
greedily, starting from the highest scoring tip M , then selecting its predecessor K (the highest scoring tip in past (M)), then H , D (breaking
the C , D , E tie arbitrarily), and finally Genesis . For methodological reasons, we add to this chain a hypothetical “virtual” block V – a block
whose past equals the entire current DAG. Blocks in the chain (дenesis , D , H , K ,M ,V) are marked with a light-blue shade. Using this chain,
we construct the DAG’s set of blue blocks, BLU Ek (G). The set is constructed recursively, starting with an empty one, as follows: In step 1 we
visit D and add дenesis to the blue set, as the only block in past (D). Next, in step 2, we visit H and add to BLU Ek (G) blocks that are blue in
past (H), namely, C , D , E . In step 3 we visit K and add H , I ; note that block B is in past (K) but was not added to the blue set, since it has 4
blue blocks in its anticone. In step 4 we visit M and add K to the blue set; again, note that F ∈ past (M) could not be added to the blue set due
to its large blue anticone. Finally, in step 5, we visit the block vir tual (G) = V , and add M and to BLU Ek (G), leaving L away due to its large
blue anticone, and leaving J away because adding it would cause I to suffer too large a blue anticone (it already has C , D , and H in it).

with parameter λ. For the sake of simplicity, we assume that λ is

constant.
6
We denote by time (B) the absolute time of B’s creation.

The computational power of nodev ∈ N is captured by 0 < αv < 1,

which represents the probability that node v will be the creator

of the next block in the system (at any point in time; this is a

memoryless process).

Block references. Every block specifies its direct predecessors

by referencing their ID in its header (a block’s ID is obtained by

applying a collision resistant hash to its header); the choice of

predecessors will be described in the next subsection. This results

in a structure of a direct acyclic graph (DAG) of blocks (as blocks

can only reference blocks created before them), denoted typically

G = (V, E). Here,V represents blocks and E represents the hash

references. We will frequently write B ∈ G instead of B ∈ V .

DAG topology. The topology of the blockDAG induces a natural

partial ordering over blocks, as follows: if there is a path in the DAG

from block C to block B we write B ∈ past (C); in this case, C was

provably created after B and therefore B should precede C in the

order.
7
A node does not consider a block as valid until it receives

6
In practice, λ must occasionally be readjusted to account for shifting network

conditions. PHANTOM can support a retargeting mechanism similar to Bitcoin’s,

e.g., readjust every time that Chn(G) grows by 2016 blocks.

7
Note that an edge in the DAG points back in time, from the new block to previously

created blocks which it references.

its entire past set. The unique block дenesis is the block created at

the inception of the system, and every valid block must have it in

its past set.

Similarly, the future set of a block, f uture (B), represents blocks
that were provably created after it: B ∈ past (C) ⇐⇒ C ∈
f uture (B). In contrast to the past set, the future set of a block keeps
growing in time, as more blocks are created and are referencing it.

To avoid ambiguity, we write f uture (B) ∩G or f uture (B,G), and
use f uture (B) only when the context is clear or unimportant.

The set anticone (B,G) represents all blocks in G that belong

neither to B’s future nor to its past (excluding B as well). These

are blocks whose ordering with respect to B is not defined by the

partial ordering that the topology of the DAG induces. Formally,

for two distinct blocks B,C ∈ G: C ∈ anticone (B,G) ⇐⇒

(B < past (C) ∧C < past (B)) ⇐⇒ B ∈ anticone (C,G). Here
too we usually specify the context, anticone (B,G), because the

anticone set can grow with time. In Figure 1 above we illustrate

this terminology.

DAG mining protocol. Gv
t denotes the block DAG that node v ∈

N observes at time t . This DAG represents the history of all (valid)

block-messages received by the node.

A tip of the DAG is a leaf-block, namely, a block with in-degree

0. The instructions to a miner in the DAG paradigm are simple:

, ,

(1) When creating or receiving a block, transmit it to all of one’s
peers in N . Formally, this implies that ∀v,u ∈ honest : Gv

t ⊆

Gu
t+D .

(2) When creating a block, embed in its header a list containing
the hash of all tips in the locally-observed DAG. Formally, this
implies that if block B was created at time t , by honest node v ,
then past (B) = Gv

t .
8

Since these are the only two mining rules in our system, a

byzantine behaviour of the attacker (which controls up to α of

the mining power) amounts to an arbitrary deviation from one or

both of these instructions.

For convenience, we additionally regard the virtual block of the

DAG, virtual (G), which is a hypothetical (un-mined) block which

points to the DAG’s tips as its parents. Thus, past (virtual (G)) = G .
Essentially, virtual (G) represent the block template for the next

block to be created by the miner, if it is honest.

3.3 DAG client protocol
The DAG as described so far possibly embeds conflicting

transactions. In our work, these conflicts are resolved via an

ordering protocol, namely, a protocol through which all nodes

agree on the order of all transactions in the system. We refer to

the ordering rule as the client protocol, as every participant in the

network can run the ordering procedure on its client locally without

any need to communicate additional messages with other clients.

Once such an order is agreed, one can iterate over all transactions

in the prescribed order and approve each transaction that is

consistent with those approved so far. In the case where transactions
represent payments in Bitcoin’s UTXO model, a transaction would

be consistent with the set of previously approved transactions if its

inputs belong to this set and none of these inputs are already spent

by another transaction in the set (i.e., no “double spend”). However,

our work is agnostic to the precise definitions of the transaction

space and of the underlying consistency notion—for our purpose,

suffice it to regard an abstract transaction spaceU and an abstract

consistency function that determines whether a set of transactions

T ⊆ U is consistent or not.

Formally, an ordering rule ord takes as input a blockDAG G and

outputs a linear order over G’s blocks, ord(G) = (B0,B1, . . . ,B |G |).
Transactions in the same block are ordered according to their

appearance in it, and this convention allows us to talk henceforth

on the order of blocks only. With respect to a given rule ord , we
write B ≺ord (G) C if the index of B precedes that of C in ord(G);
we abbreviate and write B ≺G C or even B ≺ C when the context

is understood. For convenience, we use the same notation B ≺G C
when B ∈ G but C < G.

3.4 Convergence of the order
The following definition captures the desired security of the

protocol, in terms of the probability that some order between two

blocks will be reversed.

Definition 2. Fix a rule ord and a node u ∈ N . Let B ∈ Gu
t . The

function Risku is defined by the probability that from the point of

8
Technically it is more accurate to write past (B) = Gv

t \ {B }, as a block does not

belongs to its own past set.

view of u a block that did not precede B in time t + r will later come
to precede it:

Risku (B, t, r) := Pr

(
∃s > t + r , ∃C ∈ Gu

s : B ≺Gu
t+r

C ∧C ≺Gu
s
B
)

If B < Gu
t we define Risku (B, t, r) = 0.

The function Risk is the maximal Risku over honest nodes:

Risk(B, t, r) = max

u ∈honest
Risku (B, t, r)

In the definition above, the probability is taken over all random

events in the network, including block creation and propagation,

as well as the attacker’s arbitrary (byzantine) behaviour. The

convergence property below guarantees that the order between a

block and those succeeding it (or those not published yet) will not

be reversed, w.h.p. This captures the security of the protocol, as

it provides honest nodes with (probabilistic) security guarantees

regarding possible reorgs.

Property 1. An ordering rule ord is said to (1-α)-converge if ∀t > 0

and B: lim

r→∞
Risk (B, t, r) = 0, even when a fraction α of the mining

power is byzantine.

Ideally, we would want Risk (B, t, r) = 0 to vanish exponentially

fast so as to ensure speedy confirmation times.

Remark. Property 1 essentially couples the Safety and Liveness
properties required from consensus protocols. Indeed, once
Risk (B, t, r) < ϵ , a decision to accept transactions in B can be made
(Liveness), and is guaranteed to be irreversible (Safety) up to an error
probability of ϵ—as in Nakamoto Consensus and similar protocols,
decisions are only irreversible in the probabilistic sense. Nevertheless,
we avoid phrasing our results in these terms, for the sake of clarity of
presentation. The complication arises from the need to analyze the
system from the perspective of every node Gv

t ; this technicality is
not unique to PHANTOM, and should be regarded in any work that
formalizes blockchain based consensus (unless propagation delays
are assumed to be negligible). We leave the task of bridging this gap
to a later version.

The security threshold is the minimal portion of the hashing

power that an attacker must acquire in order to disrupt the

protocol’s operation:

Definition 3. The security threshold of an ordering rule ord is
defined as the maximal α (attacker’s relative computational power)
for which ord (1-α)-converges exponentially fast.

3.5 Main result
A protocol is scalable if it is safe to increase the block creation

rate λ without compromising the security, that is, if the security

threshold does not deteriorate as λ increases (this can be phrased

also in terms of increasing the block size b rather than λ).
We claim that GHOSTDAG is indeed a scalable protocol, in this

sense:

Theorem 4 (GHOSTDAG scales). Given a block creation rate λ > 0,
δ > 0, and Dmax > 0, if Dmax is equal to or greater than the
network’s propagation delay diameter D, then the security threshold
of GHOSTDAG, parameterized with k(Dmax , δ), is lower bounded by
1

2
· (1 − δ).

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

The parameterization of GHOSTDAG via k(Dmax , δ) is defined
in the subsequent section. Theorem 4 encapsulates the main

achievement of our work. We prove the theorem formally in

Section A. Contrast this result to a theorem regarding Nakamoto

Consensus, which appears in several forms in previous work

(e.g., [15, 19]):

Theorem 5 (Nakamoto Consensus does not scale). The security
threshold of Nakamoto Consensus goes to 0 as D · λ grows.

Finally, we note that even if Dmax ̸≥ D, the system’s security

does not immediately break apart. Rather, the minimal power

needed to attack the system goes from 50% (times (1 − δ)) to 0,

deteriorating at a rate that depends on the error gap D − Dmax .

4 SCALABILITY AND NETWORK DELAYS
4.1 The propagation delay parameter Dmax

The scalability of a distributed algorithm is closely tied to the

assumptions it makes on the underlying network, and specifically

on its propagation delay D = D(b) where b is the block-size in

KB. The real value of D is both unknown and sensitive to shifting

network conditions. For this reason, Bitcoin operates under the

assumption that D is much smaller than 10 minutes, and sets the

average block interval time to 10 minutes. While this seems like an

overestimation of the network’s propagation delay under normal

conditions (at least in 2018’s Internet terms), some safety margin

must be taken, to account for peculiar network conditions as well.

Similarly, in PHANTOM (and GHOSTDAG) we assume that the

unknown D is upper bounded by some Dmax = Dmax (b) which
is known to the protocol. The protocol does not explicitly encode

Dmax , rather, it is used to parameterize k , as will be described in

the next subsection.

The use of an a priori known bound Dmax distinguishes

GHOSTDAG’s (and PHANTOM’s) security model from that of

SPECTRE [18]. While the security of both protocols depends on

the assumption that the network’s propagation delay D is upper

bounded by some constant, in SPECTRE the value of such a

constant need not be known or assumed by the protocol, whereas

GHOSTDAG makes explicit use of this parameter (via k) when
ordering the DAG’s blocks. The fact that the order between any

two blocks becomes robust in GHOSTDAG, but not in SPECTRE,

should be ascribed to this added assumption; see further discussion

in Section 5.

4.2 The anticone size parameter k
The parameter k is decided from the outset and hard-coded in the

protocol. It is defined as follows:

k(Dmax , δ) := min

{
ˆk ∈ N : f (ˆk,Dmax) < δ

}
(1)

f (ˆk,Dmax) :=max

∞∑

j= ˆk+1

e−2·C ·
(2 ·C)j

j!
,

2 ·C

ˆk + 2 ·C

 , (2)

where C := Dmax · λ. The motivation behind this definition is

twofold.

Natural anticone size. First, we want to devise a bound over the

number of blocks created in parallel. Since the block creation rate

follows a Poisson process, for an arbitrary block B created at time

t , k(Dmax , δ) bounds the number of additional blocks created in

the time interval [t − Dmax , t + Dmax], with probability of at least

1 − δ ; the term
∑∞
j= ˆk+1

e−2·Dmax ·λ ·
(2·Dmax ·λ)j

j ! from (2) bounds

the probability that more than k blocks were created in parallel to

B in the time interval [t − Dmax , t + Dmax].

Observe that blocks created in the intervals [0, t − Dmax) and

(t + Dmax ,∞), by honest nodes, belong to B’s past and future sets,

respectively. Consequently, in principle, |anticone (B)| ≤ k with

probability of 1 − δ at least. However, an attacker can artificially

increase B’s anticone by creating blocks that do not reference it

and by withholding his blocks so that B cannot reference them.

Chain growth rate. The second motivation for (1) is potential

manipulations by attackers on the increase rate of the blue set.

GHOSTDAG does not guarantee that discovering new blocks

necessarily increases the size of the blue set. Fortunately, by

increasing k , we are able guarantee that the adverse effect is

arbitrarily small. Indeed, A worst case analysis carried out in

Lemma 9 shows that the overall decrease is at most by a factor of(
1 − 2·C

k+2·C

)
. This is the role of the right-hand size term inside (2).

We note one caveat here: the probability
2·C

k+2·C does not vanish

exponentially fast with k . To fix this, a tighter analysis of the effect

of these attacks is needed; we leave this challenge to future work.

4.3 Trade-offs
Theorem 4, and the parameterization of GHOSTDAG in (1), tie

together k , Dmax , λ, and δ . Striving for a better performance

by modifying one parameter (e.g., increasing λ to obtain larger

throughput and more frequent blocks) must be understood and

considered against the effect on all other parameters.

Increased block creation rate. Although the security threshold

does not deteriorate as λ is increased, λ cannot be increased

indefinitely, or otherwise the network becomes congested. The

value of λ should be set such that nodes that are expected to

participate in the system can support such a throughput. For

instance, if nodes are required to maintain a bandwidth of at least

1MB per second, and blocks are of size b = 1MB, then the block

creation rate should be set to λ = 1 blocks per second (this is merely

a back-of-the-envelope calculation, and in practice other messages

consume the bandwidth as well).

Higher security threshold. Theorem 4 states the security

threshold in terms of δ . Following (1) we notice that tightening the

security threshold – by choosing a lower δ – requires increasing

k . A large k leads to slow confirmation times, as will be discussed

shortly.
9

Larger safety margin. Similarly, if Dmax is to be increased, one

needs to increase k as well in order to maintain the same security

level (represented by δ).
As discussed in Subsection 4.1, it is better to overestimate D and

choose a large Dmax in order to remain on the safe side.
10

Recall

9
The advanced reader should notice that although increasing λ has a similar negative

effect on k , it has at the same time a positive effect on confirmation times, and so a

certain λ will be optimal as far as confirmation times are concerned.

10
Several blockchain based projects do not do so, and consequently compromise the

security threshold of their system.

, ,

that the security of Bitcoin’s chain depends on the assumption that

D · λ ≪ 1, namely, that w.h.p. at least D seconds pass between

consecutive blocks, so that forks are rare. Thus, Bitcoin’s large

safety margin over D suppresses its throughput severely as it

requires selecting a very low block rate λ = 1/600 (one block

per 10 minutes). This is not the case with GHOSTDAG’s DAG, as

the security of the DAG ordering does not rely on the assumption

D · λ ≪ 1. Therefore, even if we overestimate D, we can still allow

for very high block creation rates while maintaining the same

level of security. Consequently, GHOSTDAG supports a very large

throughput, and does not suffer from a security-scalability tradeoff.

That said, in GHOSTDAG there is still a tradeoff between a

large safety margin and fast convergence of the protocol. A gross

overestimation of Dmax – resulting an increase in k – would

significantly increase the waiting time for transaction settlement.

Thus, Dmax should be set to a reasonable level. In Section 5 we

discuss how this tradeoff can be restricted to visible conflicts only,

and how applications such as payments can enjoy much faster

confirmation times.

A note on the effective throughput. To increase the number of

transactions included in the DAG per second, the protocol designer

can increase the block rate λ or/and the block size b (which in turn

affects Dmax = Dmax (b)). However, if honest miners include in

their blocks the very same transactions, this would not contribute to

the number of unique transactions included in the DAG, per second.

There are two approaches to fix this. The first is to observe that

honest and rational miners are actually incentivized to randomize

over the transactions available to them in order to avoid “collision”

and to thereby maximize their own profit; see more on this in [12].

The second approach is to shard the transaction space and allow

the block to contain transactions from one shard only, in a way

that guarantees that parallel blocks will not collide on the same

shard, with high probability. This technique was used in some of the

works mentioned in Section 7, under “Parallel Nakamoto Chains”.

Both techniques can be deployed in GHOSTDAG. Consequently,

increasing the block rate or block size does indeed lead to a linear

increase in the effective throughput.

5 CONFIRMATION TIMES
As in Nakamoto Consensus, the waiting time for transaction

confirmation depends on the assumed attacker size α , and on

the allowed error ϵ . The security analysis given in Appendix A

shows that within constant expected time the chain of the honest

network enters into a block race with any hypothetical or actual

attacker chain. It is implied that the waiting time for the ordering

between a given block B and other blocks becomes robust at a rate

of O

(
log α

1−α
(1/ϵ)

)
. This analysis was asymptotic, and we leave the

task of tightening the analysis and improving the constants (hidden

in the O) for future work.

Still, we observe that in the case of payments, transactions of

honest users can be confirmed much faster. Indeed, an honest user

will not publish a conflicting transaction, and her transaction will

therefore be commutative with all other published transactions.

Of course, the payee does not know a priori who of the payers is

honest, and will thus wait until the block containing the transaction

is guaranteed (w.h.p.) to precede any new block that might be

published by the attacker. Blocks that are published in the interim

will not contain a conflicting transaction, in the case of an honest

payer, and will therefore not delay acceptance.

Formally, we argue that GHOSTDAG enjoys the following

property: Given a published block b, the probability that a newly

added block in anticone (b) will be accepted as a blue block decays

exponentially:

Proposition 6. If blocks b and c were published at times t and t + r ,
respectively, and c ∈ anticone (b), then the probability that c will ever
be considered blue is O(e−C ·r) for some positive constant C .

Proof. Lemma 9 implies that the number of adversary blocks

that are in the blue set of an honest node and not in past (B) grows
linearly with r . Let Br = f uture (B) ∩ past (Br) where Br is the

honest tip of the node just before r . Then for any N and for any

sufficiently large r it holds that |Br | ≤ N + k . All blocks in Br are
in anticone (C), for any C ∈ anticone (B) that was discovered after

t + r : indeed, if B′ ∈ Br satisfies B
′ < C then B′ < B, and ifC < B′

then it was discovered before t + r . Therefore, if Br remains the

honest tip at time t + r , then C is not in the blue set of the honest

node, as it has at least |Br | > k blue blocks in its anticone.

Let B′ be a block such thatC ∈ BlueSet(B′), then |BlueSet(B′) ∩
Br | ≤ k , or otherwise C cannot be inside BlueSet(B′). This proves
that for the honest node to consider C blue, a block B′ has to win

a block-race with Br – up to 3k blocks which it can freeload –

which started a time t the latest and lasted up to t + r at least. The
probability of winning such a block-race is in O(e−C ·r). □

In fact, following a similar analysis to that developed in [17, 18],

the probability of C becoming blue is

∞∑
m=0

(
m + N + k − 1

m

)
· αm · (1 − α ′)N+k ·

(α

1 − α ′

)
max(N−m,0)

where 1−α ′ = (1−α) · (1− δ) as derived in Lemma 9. This implies,

practically, that a merchant who received a payment in a block B,
listens to the blockDAG and sees no conflicting payment in any

block in B’s anticone, can accept the payment when the latter term

becomes smaller than ϵ (- the error probability allowed by the

merchant).

For example, if the block creation rate is set to λ = 1 block per

second, and the assumed upper bound on the network’s round trip

time (2 ·D) is 7 seconds, then k can safely be set to 16. Assuming an

attacker with α ≤ 0.25, and an allowed error of ϵ = 0.1% (the values

of these parameters must be assumed in Nakamoto Consensus as

well), the waiting time for transaction confirmation would be in

the order of 45 seconds. Note that if the actual network delay is

smaller than the 7 seconds bound – say, below 4 seconds, as in

Bitcoin’s Relay Network [1] – then the waiting time will remain the

same. This demonstrates that GHOSTDAG is not responsive to the

actual network delay. For comparison, under the same conditions,

SPECTRE’s waiting time would be in the order of 21 seconds. This is

due to SPECTRE not assuming any upper boundwithin the protocol,

which enables it to be responsive.

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

Figure 4: A histogram of the elapsed waiting time
for a first confirmation of 458,557 transactions. The
horizontal axis is confirmation time in seconds, the
vertical axis is the number of transaction (note that the
vertical axis is log scaled).

6 IMPLEMENTATION: THE KASPA
NETWORK

Kaspa is a cryptocurrency which operates over an open

source implementation of the GHOSTDAG protocol [2]. This

implementation includes an entire range of tools useful to monitor,

test and analyze the network. Among these tools are a block

explorer [4], a graph inspector [3] and a performance dashboard

[5] which monitors quantities of interest such as the global hash

rate, transaction throughput and combinatorial properties of the

DAG such as width and tip count.

The Kaspa implementation also includes features not discussed

in the current work such as difficulty adjustment and algorithmic

solution for efficient computation of all required quantities such as

the blue anticone.

Unlike simple proof of concept simulations, the Kaspa network

provides evidence of the feasibility of GHOSTDAG in real world

situations where the global hashrate fluctuates, the network miners

are organically spread
11
, nodes are required to synchronize and

verify blocks reasonably fast, and the network has been running

for extended periods of time.

At its current state, the fully operational network easily handles

a throughput of 40 transactions per second, where the average

waiting time for a single confirmation is of the order of seconds. We

stress that a throughput of 40 transaction per second is larger than

the highest throughput ever witnessed on both the Ethereum and

Bitcoin networks, whose confirmation times are longer by orders

of magnitude.

We emphasize that the nodes running on the Kaspa network

are fully operational, and furnish all services required for a real

world cryptocurrency. The performance data of the network should

11
at the time of writing, at least 30% of the Kaspa mining is carried out by parties other

than the original developers

Table 1: Percentage of transaction approvedwithin given
periods of time of the transactions described in fig. 4.
All transactions were eventually confirmed. The largest
observed first confirmation time is 746 second.

Wait time 1s 2s 3s 4s 5s 10s

Approval

rate

5.3% 27.8% 43.6% 53.1% 59.3% 70,4%

Wait time 30s 1m 2m 5m 10m

Approval

rate

80.7% 86.4% 92.2% 99.5% 99.9%

not be compared against considerably simplified proof of concept

simulations.

We tested the confirmation times of the network by generating

a total of 458,557 transactions and measuring how long before each

transaction got a first confirmation. The results are summarized in

fig. 4 and table 1.

7 RELATEDWORK
Many suggestions to improve the scalability of permissionless

blockchains have been proposed in recent years. These proposals

fall into two main categories, on-chain scaling and off-chain scaling.
On-chain scaling. The protocols in this category may differ, e.g.,

in how fast blocks are created, how blocks are organized in the

ledger (a chain, a tree, a DAG, etc.), which transactions in the

ledger are considered valid, and more. PHANTOM belongs to this

line of works. Previous works in this family of protocols includes

GHOST [19], where a main chain of blocks is chosen according

to a greedy algorithm and not through the longest chain rule;

Inclusive [12], where any chain-selection rule is extended to an

ordered DAG and transactions off the main chain are added in a

consistent manner; Bitcoin NG [7], where the ledger consists of

slow key blocks (containing no transactions) and fast microblocks
that contain transactions. The sole purpose of key blocks in Bitcoin

NG is to define the miner that is eligible to create microblocks in

that epoch and confirm thus transactions at a high rate.

GHOST is still susceptible to some attacks, one of which was

described in [11]. The DAG in Inclusive adds throughput but not

security to the main chain, hence suffers from the same limitations

as the underlying main chain selection rule. Key blocks in Bitcoin

NG are still generated slowly, thus confirmation times remain high.

Our work is most similar to the SPECTRE protocol [18].

SPECTRE enjoys both high throughput and fast confirmation

times. It uses the structure of the DAG as representing an abstract

vote regarding the order between each pair of blocks. One caveat

of SPECTRE is that the output of this pairwise ordering may

not be extendable to a total order, due to possible Condorcet

cycles. Another related caveat is that SPECTRE does not guarantee

convergence of the ordering between two blocks that were

published in time proximity to one another. This weak liveness

property is showed to suffice for the use case of payments, where

conflicts in two such blocks can only harm a malicious user

that published a double spend. PHANTOM solves these issue

and provides a linear ordering over the blocks of the DAG. As

, ,

such, PHANTOM can support consensus regarding any general

computation, including general Smart Contracts, which SPECTRE

cannot handle. Indeed, in order for a computation or contract to

be processed correctly and consistently, the full order of events

in the ledger is usually required, and particularly the order of

inputs to the contract.
12

PHANTOM’s linear ordering does not

come without cost—confirmation times are mush slower than those

in SPECTRE. In Section 5 we discuss the confirmation times in

PHANTOM compared to those of SPECTRE, when the user does

not publish a visible double spend.

Parallel Nakamoto Chains. Another line of work attempts to

avoid the scalability-security tradeoff imposed by the longest chain

rule by dividing the ledger into k separate Nakamoto chains [6, 8,

20]. The basic technique behind these protocols is to assign a block

to one of the chains only after it was successfully mined, using the

proof-of-work randomness represented in (the hash of) its header.

This randomness ensures that an attacker cannot choose which

chain to concentrate its attack on. One way to view these protocols

and compare them against PHANTOM (and GHOSTDAG) is that

Nakamoto Consensus operates under the assumption thatD ·λ ≪ 1,

PHANTOM under the assumption that D ·λ ≪ k , and these parallel
chain protocols under D ·λ/k ≪ 1; indeed, by dividing the protocol

into k separate chains, each chain is mined at a rate of λ/k , and this
inequality ensures that each chain enjoys a negligible orphan rate

similarly to Nakamoto Consensus.

Protocols in this paradigm must specify the order over blocks in

the ledger of parallel chains. The performance of these protocols

depends on their respective ordering rules, and we differ the task

of rigorously comparing them to GHOSTDAG to the full version of

this paper.

An attack on a previous variant. The work in [13]

presents a DAG-based protocol Conflux, which is identical

to Inclusive-GHOST [12, 19]. In the appendix section of [13]

there appears an attack on a previous version of PHANTOM. In

that version, the greedy algorithm inherited the blue set S of the

maximal tip, and added blocks to S as long as their anticone in

S was of size k or less. The fact that the greedy algorithm – in

contrast to vanilla PHANTOM– did not attempt at enforcing the

k-cluster property on the chosen set of blue blocks was shown

in [13] to be exploitable by an attacker. The greedy algorithm

presented in this updated version of the paper, GHOSTDAG, does

enforce the k-cluster property; we utilize this fact to prove its

correctness. We thank the authors of [13] for highlighting this

subtlety.

Off-chain scaling. Our work is orthogonal and complementary

to off-chain scaling solutions, and can enhance their operation

by orders-of-magnitude. For instance, when the DAG is used

to serve channel-settlement transactions of Bitcoin’s Lightning

Network [16], it allows for a much cheaper access (due to larger

supply of blocks and capacity) and much faster processing than if

the LN were operating over a chain.

12
Contracts that do not require such a strict ordering can indeed be served under

SPECTRE as well.

8 DISCUSSION
In this work we have introduced the PHANTOM paradigm, which

generalizes over Nakamoto’s chain into a DAG, and which imposes

no a priori constraint over the system’s throughput, thus avoiding

the scalability-security tradeoff imposed by Nakamoto Consensus.

We described a greedy algorithm, GHOSTDAG, which is more

practical to implement, and proved its security rigorously. There

are still several open research questions regarding GHOSTDAG: a

tight analysis of its confirmation times, a comparison between it

and the variants suggested in Section ??, and a security analysis

of the original PHANTOM protocol which wasn’t provided in this

work.

REFERENCES
[1] Bitcoin’s relay network stats. http://bitcoinfibre.org/stats.html. Accessed:

2020-01-20.

[2] Kaspa github repository. https://github.com/kaspanet/kaspad/.

[3] Kaspa graph inspector (testnet). http://kgi-testnet.daglabs-dev.com/.

[4] Kaspa katnip block explorer (testnet). http://testnet.katnip.sh/.

[5] Kaspa performance dashboard (testnet). http://kasboard-testnet.daglabs-dev.

com/.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

Prism: Deconstructing the blockchain to approach physical limits. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 585–602, 2019.

[7] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 45–59, 2016.

[8] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Parallel

chains: Improving throughput and latency of blockchain protocols via parallel

composition. IACR Cryptology ePrint Archive, 2018:1119, 2018.
[9] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone

protocol: Analysis and applications. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 281–310. Springer,
2015.

[10] Michael R Garey and David S Johnson. Computers and intractability, volume 29.

wh freeman New York, 2002.

[11] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions

in the blockchain. Cryptology ePrint Archive, Report 2016/545, 2016.

[12] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain

protocols. In International Conference on Financial Cryptography and Data
Security, pages 528–547. Springer, 2015.

[13] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. Scaling

nakamoto consensus to thousands of transactions per second. arXiv preprint
arXiv:1805.03870, 2018.

[14] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol

in asynchronous networks. IACR Cryptology ePrint Archive, 2016:454, 2016.
[15] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the

permissionless model, 2016.

[16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable

off-chain instant payments. Technical Report (draft), 2015.
[17] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009, 2014.
[18] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and

scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159,
2016.

[19] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in

bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[20] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. Ohie: Blockchain

scaling made simple. arXiv preprint arXiv:1811.12628, 2018.

A GHOSTDAG SCALABILITY PROOF
We present a proof that the GHOSTDAG order converges, and that

an attacker (with less than 50% of the global hashrate) is unable to

cause reorgs. We restate the theorem from Section 3:

Theorem 4 (GHOSTDAG scales) Given a block creation rate λ > 0,
δ > 0, and Dmax > 0, if Dmax is equal to or greater than the

http://bitcoinfibre.org/stats.html
https://github.com/kaspanet/kaspad/
http://kgi-testnet.daglabs-dev.com/
http://testnet.katnip.sh/
http://kasboard-testnet.daglabs-dev.com/
http://kasboard-testnet.daglabs-dev.com/

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

network’s propagation delay diameter D, then the security threshold
of GHOSTDAG, parameterized with k(Dmax , δ), is at least 1

2
·(1 − δ).

A.1 Assumptions and notations
We first remind the reader that the topology of the DAG is regarded

in our context in reverse to the usual convention, namely, if there

is a path from a block B to a block C we say that C is a parent
of B, whereas most literature concerning DAGs would say that

B is a parent (or predecessor) of C . In our context blocks always

point to older blocks, so this anti-convention is biologically justified

whereas the conventional terminology is misleading.

We assume a worst case byzantine attacker which suffers no

internal delays or delays from or to honest nodes, and which

deviates from the mining protocol arbitrarily (see definition). Still,

regardless of any attacker intervention in the network, she cannot

cause messages between honest nodes to take longer than Dmax to

propagate. In the sequel, to avoid clutter, we use D instead of Dmax
to denote the bound on the network delay (note that in previous

sections D was used to denote the actual delay).
When discussing the honest network, we fix an arbitrary honest

node u ∈ honest and assume its point of view, whereby terms such

as the honest chain should be interpreted from u’s point of view.
To that effect, by the honest (attacker) tips at time t we mean all

immediate parents of the virtual block of the honest (attacker) node

at time t , by the honest (attacker) chain we mean the selected chain

of the virtual block, and by the honest (attacker) blue set we mean

the blue set of the virtual block of the honest (attacker) node.

The attacker does not follow the consensus rules and in particular

may create a block which points at blocks which are not tips, and

withhold any blocks they create. Hence, we separate between the

time a block was created (by the attacker) and by the time it was

discovered (by the arbitrary honest node u).
The honest scorewH (t) is defined as the score of the virtual block

of the honest node at time t . The advantage of a block B is defined

as adv(B) = score (B) −wH (t), where t is the time B was created.

The attacker advantage adv(t) is the maximum of adv(B) over all
attacker tips at time t . For a given block B, we define the relative
advantage advB (t) to be the maximum of adv(B) over all attacker
tips at time t such that B is not in their selected chain (or −∞ if

there are none). We say that B convinced the honest node at time t
if it was discovered before t − 2D and was in the selected chain at

time t .
We use B → C to denote that C is an immediate parent of B

and B ⇒ C to indicate that it is a selected parent. We use C < B
to denote that C ∈ past (B) and C <⋆ B to denote at C is in the

selected chain of B. We use C ≤ B and C ≤⋆ B to denote the same,

with the possibility that B = C .
We define many constants throughout the proof with the proviso

that they only depend "on system parameters", by which we mean

that they only depend on λ, D and k (and not on t , on the particular

DAG structure of any node, etc.).

A.2 Proof Structure
Due to the definition of security threshold in Definition 3, Theorem

4 reduces to the following proposition.

Proposition 7 (GHOSTDAG security). For any t, r , the probability
that the ordering of two blocks published before time t will change
after time t + r is O(e−cr), where c depends only on the system
parameters.

In terms of Section 3, Proposition 7 states that Risku (B, t, r)
decays exponentially fast, at a rate which does not depend on u
or t . This implies that Risk(B, t, r) decays at the same rate, and in

particular that the GHOSTDAG ordering rule (1 − α)-converges.
The correctness of this Proposition 7 follows from the following

proposition:

Proposition 8. Assume that B convinced the network at time t , then
advB (t) is bound from above by a Markovian process on Z which goes
to −∞ exponentially fast.13.

The following two lemmas, which are of independent interest,

are part of the proof of Proposition 8. The first lemma states that

the growth rate of the blue score of the public chain is 1 − α , up to

a factor arbitrarily close to 1:

Lemma 9. The expected value of wH (t + r) − wH (t) is at least
(1 − α) (1 − δ) rλ.

The next lemma states that the attacker’s advantage can be

capped with high probability:

Lemma 10. The advantage adv(t) is upper bounded by a stochastic
process which admits a stationary distribution with an exponentially
decaying tail.

A.3 Blue set growth
In this section we discuss the non monotonicity of the chain weight

and prove Lemma 9.

In Nakamoto Consensus the longest chain is chosen, and it is

therefore impossible for an adversary to reduce the length of the

longest chain by publishing blocks. Stated otherwise, the score of

a Bitcoin node increases monotonically. In GHOSTDAG this no

longer holds. Indeed, there are cases where by learning of new

blocks, the blue score of the virtual node actually decreases. This
might have an adverse effect on the growth of the blue set, that is, of

the score of the honest network. This adverse effect is bounded by a

constant factor of

(
1 − 2Dλ

k+2Dλ

)
which is already built into δ in the

definition of the security threshold (1). That this is the appropriate

factor is exactly the statement of Lemma 9, which we now prove.

Lemma 9. The expected value of wH (t + r) − wH (t) is at least
(1 − α) (1 − δ) rλ.

Proof. Assume that a block B was published that caused wH
to decrease. Let B′ be the honest selected tip right before B was

published. We must have that B′ ≮ B and that score (B) ≥
score (B′), then the reduction in score is at most the amount of

blocks in anticone (B′) that the virtual node considered blue before

B was discovered, and red after B was discovered. In particular,

13
In the same sense that a random walk on Z which is biased to the left goes to −∞

exponentially fast. That is, if T is the transition operator and p is a finitely supported

distribution on Z, then for any N ∈ Z it holds that ∥Π[N ,∞)TO (N)p ∥1 = O (cN) for
some constant c < 1 (which is

α
1−α for a random walk which transitions right with

probability α < 1/2)

, ,

any such block must have an anticone larger than k . If all blocks
are honest then the probability of this is at most δ . This proves
the theorem for the special case of an attacker which indefinitely

withholds their blocks.

To generalize to the adversarial setting, we need to argue the

most damage an attacker can cause to the blue score by withholding

blocks. Assume that at time t a blockC was discovered that reduced

the blue score, and let B be the honest selected tip right before C
was published. If B <⋆ C then score (C) > score (B), contradicting
the hypothesis. It follows thatC → B can only increase score (C), so
we may assume without loss thatC ̸→ B. It follows that score (C) ≥
score (B), for else B would have remained the honest selected tip

and the score could not have decreased.

Let nB be the number of blue blocks in the anticone of B that

were in the honest blue when B was the selected tip, and let nC
be defined similarly for C , then the decrease in score is at most

nB −nC . However, note that if the selected chain ofC contains less

than k blocks above max(SelectedChain(B) ∩ SelectedChain(C))
then nB ≥ nC (as any block in anticone (B) could be a blue block,

up to k blocks), and the score actually did not decrease.

It follows that the adversary gains the most by publishing k + 1
blocks in the anticone of the selected parent such that the most

recent published block has score at least as large as that of the

selected parent. This will cause the honest network to switch a

chain, such that all the blocks in the anticone of the old selected

parent, except the k + 1 blocks published by the adversary, will be

considered red (as they are all in the anticone of the published k + 1
blocks, which are blue). On average, there are at most 2Dλ such

blocks, so that the adversary has managed to replace k + 2Dλ blue

blocks with k + 1 blue blocks.
This implies that the highest factor by which the adversary can

reduce the growth of the honest blue set is
k

k+2Dλ = 1 − 2Dλ
k+2Dλ .

Let δ0 be the probability that a particular honest block has an

honest anticone larger than k . It follows that the expected value

ofwH (t) −wH (s) is at least (1 − α)(1 − δ0)
(
1 − 2Dλ

k+2Dλ

)
(t − s)λ >

(1 − α)(1 − δ)(t − s)λ, where the last inequality holds by equation 2

in the definition of k . □

A.4 Freeloading and Bounded Advantage
In this section we prove Lemma 10, by a reduction to the analysis

carried in [18]. The main challenge in this reduction is that the

attacker may use the work done by the honest network to boost

the score of their competing chain, by including honest blocks in

the blue set of the chain tip. We call this phenomenon freeloading,
more formally:

Definition 11. We say that C ∈ A is freeloading off B ∈ H if
B ∈ BlueSet(C), and C ′ <⋆ C implies B < BlueSet(C ′).

It turns out that the advantage an attacker can gain by

freeloading is bound by a constant depending only on system

parameters.

Lemma 12 (The Freeloader Bound). If C is freeloading off B then
score (C) ≤ score (B) + 4k .

Proof. First note that if C ⇒ B then score (C) ≤ score (B) + k ,
as GHOSTDAG does not add more than k blue blocks to C’s blue

set over that of its selected parent B. We subsequently treat the case

where C ̸⇒ B.
Let D <⋆ C be maximal such that D < B (this set is not empty

as it contains the genesis block).Then score (B) > score (D). We

show below that score (C) − score (D) ≤ 3k + 1 and conclude that

score (C) ≤ score (B) + 3k .
Note the following observations:

• score (C) − score (D) ≤ |BlueSet(C) \ past (D) |,
• BlueSet(C) \ past (D) ⊂ D1 ∪ D2 ∪ D3 ∪ D4 where: D1 =

past (C)∩ f uture (B),D2 = past (B)∩ f uture (D), andD3 =

past (C) ∩ anticone (B).
• SelectedChain(C) ∩ f uture (D) , ∅: the contrary implies

that C → D. However, that B < C implies that there is some

C → B′ such that B ≤ B′. But score (B′) ≥ score (B) >
score (D), which implies C ̸⇒ D, contradicting D <⋆ C .

Now, let E1, E2 be the maximal and minimal elements of

SelectedChain(C) ∩ f uture (D) respectively. If it does not hold that
C ⇒ E1 then there must be a block between them, contradicting

the maximality of E1. Similarly, E2 ⇒ D.
If D1 intersects past (E1) then B < E1, contradicting the

minimality ofC . Assume D1 ∈ D1 ∩ f uture (E1), then score (E1) <
score (D1) and since D1 < C we get that C ̸⇒ E1, which is a

contradiction.

Similarly, if D2 intersects f uture (E2) then the maximality of

D is contradicted, and if D2 intersects past (E2) then E2 ⇒ D is

contradicted.

Hence D1 ⊂ anticone (E1), D2 ⊂ anticone (E2) and D3 ⊂

anticone (B) where it holds that E1, E2,B ∈ BlueSet(c). Therefore
|Di ∩ BlueSet(C)| ≤ k for i = 1, 2, 3, and since BlueSet(C) ∩
(past (B)∪ {B}) ⊂ D1∪D2∪D3∪{B} it follows that |BlueSet(C)\
past (D) | ≤ 3k + 1. Hence score (C) − score (D) ≤ 3k + 1, whereby
score (C) ≤ score (B) + 3k .

□

Lemma10 The advantageadv(t) is upper bounded by a stochastic
process which admits a stationary distribution with an exponentially
decaying tail.

Proof. The work in [18] contains an analysis of the

premining process, i.e., the maximal advantage of the

attacker over an honest block, in a block race; formally:

adv ′(t) := maxC ∈[0,t] { f uture (C) ∩ A − f uture (C) ∩ H} (the
notation adv ′(t) does not appear therein). In contrast, we are

interested in the process adv(t) = wA(t)−wH (t), which is similarly

bounded: adv(t) = score (C) − score (V) where C is the selected tip

of the attacker and V is the virtual block of the honest node. Let D
satisfy that D ≤⋆ C and D <⋆ V (such an element must exist, e.g.

the genesis element). Then

adv(t) = |BlueSet(C)| − |BlueSet(V)|

= |BlueSet(C) \ past (D) | − |BlueSet(V) \ past (D) |

≤ max

C ′

{
|BlueSet(C) \ past

(
C ′

)
| − |BlueSet(V) \ past

(
C ′

)
|
}

The analysis of the last term is similar to the analysis of adv ′(t)
with two deviations: First, the growth rate of the honest network’s

blue score is not (1− α) rather (1− α)(1− δ) as proven in Lemma 9.

This has no qualitative effect on the analysis, it merely implies

PHANTOM and GHOSTDAG

A Scalable Generalization of Nakamoto Consensus
May 25, 2021 , ,

that the stationary distribution is governed by an exponent with

base
α

(1−α)(1−δ) rather than
α
(1−α) . Secondly, the analysis therein

assumes that no freeloading occurs. Fortunately, the Freeloader

Bound guarantees that if the selected tip at time t was freeloading,
adv(t) is bounded by a constant 3k . Therefore, by assuming the

attacker always manages to saturate this constant, so that their

advantage never goes below 3k , we can shift the process adv ′(t)
by 3k and analyze it as a block race, utilizing the result from [18].

□

A.5 The Markovian Process
In this section we prove the existence of the Markovian process

described in Lemma 8. In order to do so, it is illuminating to first

consider how one might prove the liveness property of GHOSTDAG

in the non-adversarial setting. In this setting, it is easiest to

demonstrate liveness by the emergence of so called hourglass blocks.

Definition 13. A block B discovered in time t is called an hourglass

block if it is the only block discovered between t − 2D and t + 2D.

Lemma 14. In the non-adversarial setting where all miners are
honest, if an honest hourglass block was created at time t , then the
ordering of blocks created before time t will remain unchanged after
t .

Proof. Let B be the hourglass block created at time t . If B′ was
created before t , then by hypothesis it was created before t − 2D, so
by the definition of D it follows that B′ ∈ past (B) (as all miners are

assumed to be honest). Similarly, if B′′ was created after t it was
created after t + 2D and is therefore in f uture (B). It follows that
B’s anticone is empty, or equivalently that B <⋆ B′′ for any B′′

created after B. Hence, the ordering over all blocks in created before
t is precisely the ordering induced by B, which is deterministic and

does not change. □

Corollary 15. In the non-adversarial setting where all miners are
honest, the probability that the ordering between two blocks created
before time t will change at time t + r decays exponentially with r .

Proof. Let B,C be two blocks created before time t . At any point
in time after t , the probability of the event Et where the next block
will be an hourglass block is some positive constant C depending

only on the system parameters; moreoever, the events Et and Es
are independent as long as |s − t | > 2D. As r grows, |[t, t + r]|
approaches r · λ exponentially fast. In particular, as r grows, with
high probability (i.e., apart from a term in O(e−F ·r)) there’s a set
of blocks S of size at least r · f such that any two blocks in the set

were created at least 2D seconds apart (F is some positive integer,

0 < f < 1 is some positive constant). Since the events where blocks

in S are hourglass blocks are mutually independent, we get that

the probability that none of them is an hourglass block is at most

(1 − c)f ·r . □

In the adversarial setting, hourglass events are not enough to

secure the ordering. If the honest network posts an hourglass block

B, the adversary could "undo" it by posting a block in the anticone

of B. Honest blocks created after B might include this block in

their blue set, thus making the ordering of blocks in the past of B
uncertain again. Overcoming this requires a more specific event: we

require that the honest network created a chain of several blocks

while the adversary has produced none
14
. We call such an event a

burst, and the blocks in the chain the burst blocks. We want to assure

that the probability that the honest network is never convinced

by a block whose selected chain does not include any of the burst

blocks is bounded from below by some positive constant depending

only on system parameters. In the following lemma, we prove that

the amount of burst blocks required to achieve this depends only

on system parameters and on adv(t) where t is the time the burst

started.

Lemma 16. For any Z , there exists a constant time length s
depending only on Z and system parameters, such that for any t
there exists an event Dt ,Z which, if adv(t) ≤ Z , implies that there
exists a block B created before t + s such that for the attacker to
create a blockC which satisfies that B ≮⋆ C and adv(C) ≥ −2k they
must win a block race starting with advantage −1. Furthermore, the
probability of Dt ,Z is bounded from below by a constant depending
only on Z and system parameters.

Proof. The event Dt ,Z is the event that no blocks were created

during the first 2D seconds, after which the honest network created

Z ′ + 3k + 2 blocks arranged in a chain, while the attacker created

none, after which no blocks were created for 2D seconds, where

Z ′ = maxZ ,k + 1. Assume furthermore that the entire event lasted

at most s = (2Z ′ + 3k + 2)/αλ + 4D seconds (any s > 4D would

work, but this choice of s is reasonable as the probability for such

an event lasting longer decreases exponentially with Z). Finally, let
B the 3k + 2 from last block created in the event. We immediately

note that the independence of Dt ,Z and Dt+s ,Z is true by design.

We call this event a burst and the blocks created during the event
as burst blocks.

LetC0 be an attacker block created after t + s such that B ≮⋆ C0

and the selected parent of C0 was created before t + s . Let C =
max(SelectedChain(C0) ∩ A), then adv(C) ≤ Z and in particular

score (B) > score (C).
Let B′ be a burst block created after B and assume that C ∈

SelectedChain(B′), this implies that B <⋆ B′ since if C was

discovered after B was created then any burst block would choose

the previous burst block (which has score at least score (B)) over C
as a selected parent.

This implies that all burst blocks created after B are in the

anticone of C0. Let B
′
be the latest burst block. It follows that

score (C0) ≤ score (B) + k so score (B′) ≥ score (B) + 2k + 1 ≥

score (C0) + k + 1. In particular, adv(C0) ≤ −(2k − 1).
Let E be a block created after t + s which freeloads off D ∈

f uture (c0), but such that no block in SelectedChain(E) freeloaded
off a block in f utureC0.

Let E ′ be an element of past (D)∩A of maximal score (this set is

not empty as it contains the genesis block). If score (E)−score (E ′) >
k then there are more than k blocks in BlueSet(E) \past (D), which
contradicts that D ∈ BlueSet(C). Hence score (E) − score (E ′) < k .

14
Note that this is not a necessary condition for the network to converge, and hence

the contansts which follow from the following analysis that are far from tight.

, ,

Note that score (E ′) > score (E) − k > score (D) − k . So

adv(E ′) ≥ score
(
E ′
)
− (score (D) + k)

≥ score
(
E ′
)
− score (E) − k

≥ −2k

Since adv(C) ≤ −(2k − 1) and no block below E freeloaded, this

implies that the attacker has won a block race with starting with

advantage −1.

□

We now prove Proposition 8, thereby concluding the proof of

Theorem 7.

Proposition 8 Assume that B convinced the network at time t ,
then advB (t) is bound from above by a Markovian process on Z which
goes to −∞ exponentially fast.

Proof. Let Bt be the event that both Dt ,Z and adv(t) ≤ Z hold.

Lemma 10 implies that the probability of adv(t) ≤ Z is bound by a

constant depending only on system parameters, while Lemma 16

states that the probability of Dt ,Z depends only on Z . It is evident
from the construction ofDt ,Z that it depends only on blocks created

after t whileadv(t) ≤ Z depends only on block created after t , hence
these events are independent, so the probability of their intersection

is also bound by a constant.

In order to construct M we construct another process M ′ on
Z× {0, 1} where the {0, 1} part keeps track on whether the attacker

is in the condition described in Lemma 16. This means that as

advb < −k , the attacker is in a block race.M is then defined as the

projection ofM ′ on Z.
From Lemma 9 it follows that the honest chain grows at a rate of

(1−α)(1−δ)while the attacker chain grows at rate α . Let α ′ = α
1−δ .

This renormalizes things such that if the attacker does not freeload

the advantage is modeled as a walk on Z which transitions right

with probability α ′.
We define transition probabilities of the state (n, i):

• If n > Z then the process transitions to (n + 1, i) with
probability α ′ or to (n − 1, i) with probability 1 − α ′

• If −2k ≤ n < 3k then the attacker may freeload, we

assume that it always manages to do so and always gains

the maximal advantage of 3k , so (n, i) transitions to (3k, 1)
with probability 1

• If 3k ≤ n < Z then let p the probability of Bt , the process
transitions to (n + 1, i) with probability α ′p, to (n − 1, i) with
probability (1 − α ′)p, or to (−k − 1, 0) with probability p
• If n < −2k and i = 1 we also assume that the attacker

manages to steal a block to gain the highest possible

advantage, so the process always transitions to (3k, 1)
• Finally, if n < −2k and i = 0 then the attacker is not able

to freeload as long as n stays below −2k , so the process

transitions to (n + 1, 0) with probability α ′ or to (n − 1, 0)
with probability 1 − α ′.

Note that the state (−(2k + 1), 0) transitions to (−2k, 0) with
probability α ′ from which it transitions to (3k, 1) with probability

1.

It is true by design that this process bounds the attacker

advantage from above in the case where they insists not to include B
in their selected chain (since all deviations from any actual process

which is induced by any attacker strategy are positive), and thatM
goes to −∞ exponentially fast.

□

	Abstract
	1 Introduction
	2 The PHANTOM protocol
	2.1 Preliminaries
	2.2 The DAG mining protocol
	2.3 The DAG ordering protocol
	2.4 The GHOSTDAG protocol
	2.5 Collapse to Bitcoin when k =0

	3 Formal Model and Statement
	3.1 Network
	3.2 Mining framework
	3.3 DAG client protocol
	3.4 Convergence of the order
	3.5 Main result

	4 Scalability and network delays
	4.1 The propagation delay parameter Dmax
	4.2 The anticone size parameter k
	4.3 Trade-offs

	5 Confirmation times
	6 Implementation: the Kaspa Network
	7 Related Work
	8 Discussion
	References
	A GHOSTDAG Scalability Proof
	A.1 Assumptions and notations
	A.2 Proof Structure
	A.3 Blue set growth
	A.4 Freeloading and Bounded Advantage
	A.5 The Markovian Process

