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Abstract. Physical attacks are a known threat to secure embedded
systems. Notable among these is laser fault injection, which is probably
the most powerful fault injection technique. Indeed, powerful injection
techniques like laser fault injection provide a high spatial accuracy, which
enables an attacker to induce bit level faults. However, experience gained
from attacking 8-bit targets might not be relevant on more advanced
micro-architectures and these attacks become increasingly challenging
on 32-bit microcontrollers. In this article, we show that the flash mem-
ory area of a 32-bit microcontroller is sensitive to laser fault injection.
These faults occur during the instruction fetch process, hence the stored
value remains unaltered. After a thorough characterisation of the induced
faults and the associated fault model, we provide detailed examples of
bit-level corruptions of instruction and demonstrate practical applica-
tions in compromising the security of real-life codes. Based on these
experimental results, we formulate a hypothesis about the underlying
micro-architectural features that could explain the observed fault model.

Keywords: Fault attack, laser injection, flash memory

1 Introduction

Physical attacks pose considerable security threats to embedded systems.
Provided physical access to a device, an attacker can exploit hardware-
? Part of this work is funded by French ANR program (DS0901/2015) with the project
PROSECCO (ANR-15-CE39-0008)
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based vulnerabilities to bypass existing security measures. Among these
techniques, fault injection consists in disturbing the operation of a device
to retrieve secret information or be granted unauthorised privileges. Laser
fault injection features a high spatial accuracy, which allows an attacker
to induce single bit-flips in static memory cells of 8-bit [13] and 32-bit
microcontrollers [32]. However, this technique is expensive and difficult
to apply due to numerous precise parameters to tune, which might result
in endless explorations of the parameters space. While increasing chip
integration enables to design complex 32-bit architectures, only few works
investigate laser injection on these architectures [31, 16, 32, 15]. Besides,
none of them addresses the underlying fault mechanism, which makes it
difficult to explain the observed fault models in a consistent framework.

In this article, we highlight the flash memory as an area of interest
for laser fault injection on a 32-bit microcontroller. We observe that
individual bits of the fetched instruction can be set. The stored value
remains untouched, only the read value is altered. For example, the fields
of the fetched instruction can be altered, but also the opcode, potentially
changing the instruction. Such modifications cause severe security concerns,
since an attacker can then tamper with the instructions on the fly, before
they are decoded and executed.

The contributions of this article are the following. First, we highlight
the sensitivity of flash memory to the single-bit bit-set fault model. We
then detail the influence of each parameter of the laser on the injected fault.
We apply this fault model to real-life codes and show how it undermines
their security. Finally, we discuss a physical explanation for the observed
faults, which is consistent with the micro-architecture of a NOR flash
memory.

The outline of the article is as follows. In Section 2, we analyse previous
work on laser fault injection, pointing out the current scarcity of results and
understanding of fault injection on 32-bit microcontrollers. In Section 3, we
detail our experimental setup. In Section 4, we describe the obtained fault
model and how it is affected by the parameters of our experimental setup.
In Section 5, we highlight how the previous fault model lowers the security
of PIN verification and AES-128 algorithms by demonstrating two attacks
that we performed on 32-bit implementations. In Section 6, we discuss a
hypothesis on the physical phenomenon accounting for the observed fault
model, as well as the limitations of our setup. Finally, Section 7 concludes
the article.
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2 Previous work

Fault attacks require to define an abstract model of the erroneous behaviour
of a device [5]. The complexity of characterisation of a fault model lies in
the interrelated factors which influence the response of a device to fault
injection, namely its micro-architecure, technology node, and sensitivity to
the fault injection technique [2]. Therefore, a comprehensive understanding
of the fault model is hard to acquire. Our approach is to analyse the fault
model according to the degree of knowledge it requires about the target
implementation. We thus propose four levels of abstraction, in Figure 1,
to depict the current understanding of fault injection on microcontrollers.
The algorithmic level provides a description of the fault effects on the
outputs of an algorithm, regardless of its implementation. The execution
level details the faults effects on the components of the software data
model. The implementation level explains how the observed behaviour is
related to the hardware implementation on the target device. The physical
level focuses on the physical phenomenon of the fault injection.

Algorithmic level

Execution level

Implementation level

Physical level

Fig. 1: Abstraction levels to describe a fault model.

Substantial work has been done to understand fault injection on 8-bit
microcontrollers in the context of smart-card security. Most of the publi-
cations focus on fault description at the algorithmic level to demonstrate
practical attacks on cryptographic algorithms [8, 17, 25, 33]. In some
cases, observations of low-level execution faults are provided, highlighting
instructions or registers corruption [11, 1, 6]. Balasch et al. demonstrated
that a thorough characterisation of the response of a device to fault in-
jection enables one to get a better understanding of the effects of the
fault on the underlying hardware implementation [1]. At the same time,
several authors observed that timing constraints violation could explain
the observed fault models at the physical level [26, 19]. While none of



4 Brice Colombier, Alexandre Menu et al.

these works addressed all four levels of abstraction given in Figure 1, they
reflect a global understanding of fault injection on 8-bit microcontrollers.

Current work on 32-bit architectures follows a similar timeline. Most of
the publications focus so far on empirical observations at the algorithmic [7]
and execution level [31, 30]. However, the observed fault models lack a con-
sistent framework. Several difficulties can be underlined when attempting
to understand the effect of fault injection on 32-bit architectures.

First, advanced technology nodes enable designers to improve the
performance of a chip with architectural features like pipeline and cache
mechanisms. However, they greatly increase the complexity of black-box
fault effects analysis [20, 22] as already observed on 8-bit architectures [1].
Second, fault injection techniques leveraging timing constraints violation
fail to catch local features of 32-bit micro-architectures. Indeed, the at-
tempts to characterise the effects of clock glitches on 32-bit architectures
got very similar results to those obtained with 8-bit architectures [3, 19],
while different fault models were observed with optical injection depending
on the injection locality [15]. Third, substantial work has been done to
understand fault effects on 32-bit microcontroller at the execution and
implementation level using local electromagnetic fault injection [20, 22].
However, chip sensitivity to the underlying physical phenomenon is not
understood yet and lacks of a consistent description [21].

Laser fault injection takes advantage of related works on simulation of
ionising radiation in semiconductors devices [29]. Provided an access to the
die, an attacker can induce electron-hole dissociation on the path of a laser
beam. As a consequence, a photoelectric current is generated in the reverse
biased junctions of the illuminated transistors. This effect was investigated
to describe the bit-flip fault model in static memory cells [24, 14] with
attacks on AES encryption [13] and secure program register [32]. Both
physical understanding and spatial accuracy of laser fault injection make
this technique well suited to gain insight into the effects of fault injection
on a 32-bit architecture. Previous work on flash memory vulnerabilities
pointed out the memory control logic as a sensitive area to laser fault
injection [27, 28] although the authors do not explain the underlying fault
mechanism.

In this article, we precisely characterise the effect of laser injection
in the flash memory area and observe, on the implementation level, that
single bit-set in data fetched from the flash memory can be performed. We
then give several examples of instructions corruption, at the execution level.
We demonstrate the validity of the fault model at the algorithmic level on
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implementations of two security algorithms in Section 5 and propose an
explanation of the fault mechanism at the physical level in Section 6.

3 Methods and experimental setup

3.1 Target board and microcontroller

The microcontroller we used for our experiments embeds an ARM Cortex-
M3 core with 128 kB of flash memory and is manufactured at the 90 nm
technology node (see Figure 2a). It runs at 7.4MHz, corresponding to a
135 ns clock period. This frequency is fixed by the ChipWhisperer platform
[9].

The chip is mounted on a ChipWhisperer target board and is soldered
below and facing up. An opening was cut on the PCB board, just under the
chip, to give access to the back-side. We designed a custom target board
suitable for back-side laser injection thanks to the open-source hardware
information provided for the ChipWhisperer platform1. To perform laser
fault injection, the back of the chip must be decapsulated to show the
silicon substrate. This is performed by chemical processing before the chip
is mounted on the board. The decapsulation should uncover a sufficient
injection area with little damage on the packaging to sustain mounting
constraints. A picture of the custom board is shown in Figure 2b. This
target board is mounted on the ChipWhisperer motherboard, which is
then placed on the laser injection bench. The laser setup is described in
the next section.

3.2 Laser characteristics and parameters

The laser source uses an acousto-optic technology to generate an infrared
laser beam at a wavelength of 1064 nm. An infrared laser is a necessity to
perform fault injection through the back-side since the silicon substrate is
opaque to visible light. An infrared laser can go through it and impact the
active regions of the transistors.

The laser source can shoot laser pulses as short as 50 ns with a peak
power of 3W. The laser pulse is directed to the focusing system by an
optical fiber. The focusing system allows to a obtain a laser spot of diameter
5µm. We manually adjust its focus with a confocal infrared camera. The
laser shot is triggered by an external input, generated by the target device.
1 https://github.com/newaetech/chipwhisperer/tree/develop/hardware/
victims/cw308_ufo_target

https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw308_ufo_target
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw308_ufo_target
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(a) Infrared picture of the backside of
the target microcontroller. The flash
memory is framed in red.

(b) Picture of the custom target board. The
decapsulated chip mounted below with the
silicon substrate visible is circled in red.

Fig. 2: Target microcontroller on the custom board.

There is a constant delay between the rising edge of the trigger and the
actual arrival of the laser beam on the die.

There are five injection parameters that must be tuned:

– power: the peak power of the laser pulse,
– duration: the duration of the laser pulse,
– delay: the delay between the arrival of the trigger on the laser source

and the actual shot,
– x-position: the x-position on the target board,
– y-position: the y-position on the target board.

3.3 Characterisation codes

Leveraging simple test codes, one can characterise the target unexpected
behaviours and the fault model dependency on experimental conditions.
As opposed to [7], we state that the conclusions drawn from test codes
about the underlying fault mechanisms can be extended to any codes, as
observed in [1]. Attack scenarios on software implementation of security
algorithms were remarkably consistent with our characterisation results.
Codes given in Listings 1 and 2 were used to characterise the effect of fault
injection in the flash memory area. Their respective usage is described
below. The code was compiled into the Thumb instruction set. Therefore,
instructions can either be 16 or 32-bit wide and are sometimes unaligned.



7

Data stored in flash memory is said to be aligned if it is stored at an
address which is a multiple of 32 bits.

Bit-level characterisation of fault location The first code highlights
modifications in data fetched from flash memory. The target instruction is
on line 4 of Listing 1.

Listing 1 Bit-level characterisation of fault location.
1 test_data:
2 .word 0x00000000
3 NOP
4 LDR R0, test_data
5 NOP
6 # Reading back R0

This LDR instruction fetches the 32-bit word 0x00000000 stored at
the test_data label in the flash memory and stores it in register R0. For
instance, a fault is detected on the bit of index 0 if the actual value stored
in register R0 is 0x00000001 after a laser injection was performed. The test
word 0x00000000 was used to highlight bit-sets, since a previous test with
the word 0xFFFFFFFF validated that we were not able to induce bit-resets.
The advantage of faulting raw data instead of an instruction is that it allows
to observe bit-sets on a whole 32-bit word, whereas a 32-bit instruction
always contains several 1s, for which the bit-set is not observable. The LDR
instruction executes in two clock cycles. In the first clock cycle, the offset
of the address at which the data is stored is computed. In the second clock
cycle, the data is actually read and stored in R0. The second clock cycle is
the one we target. Dummy instructions (NOP) are inserted before and after
to isolate and fault the target instruction only.

Characterisation of fault sensitivity over time The second charac-
terisation code aims at highlighting the most fault-sensitive moments in
the execution of a sequence of instructions. For this, after finding out the
location where a given bit is faulty thanks to the code given in Listing 1,
we swept over the injection delay with a 10 ns step to target consecutive
instructions shown in Listing 2, from line 3 to 9. Under normal conditions,
after executing the code shown in Listing 2, the output consists in several
32-bit 0x0000FFFF values stored in registers R0, R1, R4, R5, R6, R8, and R9.
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Listing 2 Characterisation of sensitivity over time.
1 # Initialising registers R0, R1, R4, R5, R6,
2 # R8 and R9 to 0xFFFFFFFF
3 MOVW R0, 0x0000
4 MOVW R1, 0x0000
5 MOVW R4, 0x0000
6 MOVW R5, 0x0000
7 MOVW R6, 0x0000
8 MOVW R8, 0x0000
9 MOVW R9, 0x0000

10 # Reading back the registers

The results obtained with these codes are given in the next section,
where we present the influence of the laser parameters on the fault injection
process.

4 Observable fault model

4.1 Parameters and types of faults

Bit-level characterisation of fault location We observed that moving
along the y-axis (longest side) in the flash memory area (see Figure 2a)
allows to precisely target the bits of the fetched data one after the other.
Conversely, moving along the x-axis (shortest side) does not change the
affected bit. Figure 3a shows a mapping of test_data faulty bits with a
x-step of 100 µm and a y-step of 5µm for an aligned word. The laser power
is set to 1.1W with a pulse duration of 135 ns. It clearly shows that the
affected bit is directly related to the y-position (see color code on the
right-hand side of Figure 3).. Figure 3b reports which bit is faulty at a
given y-coordinate as a function of the delay between the trigger and the
laser shot. At an optimal delay, around 1850 ns here, all the bits of the
fetched word can be set depending on the y-coordinate of the laser spot
over the flash memory area.

Figure 4 is the same as Figure 3 but for an unaligned word. In this sit-
uation, the upper and lower 16-bit halves of the accessed data are swapped
(see Figure 4a). This behaviour is better understood by analysing the in-
jection timing: the sixteen least significant bits are faulty one clock period
(135 ns) before the sixteen most significant bits, as shown in Figure 4b.
This observation reflects the organisation of the binary code and supports
the assumption that the sequential access to the flash memory is affected
during the fetch operation.
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Fig. 3: Influence of the x, y and delay parameters on the fault injection on
aligned data. Black dots show locations where the chip stopped responding.
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(b) Timing of the optimal delay to set the bits
in the the fetched data.

Fig. 4: Influence of the x, y and delay parameters on the fault injection
on unaligned data. Black dots show locations where the chip stopped
responding.
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When performing the fault injection, an attacker does not know if the
target instruction is aligned or not. Therefore, according to Figures 3 and
4, if n denotes the target bit in a given instruction, the laser spot must be
positioned to fault either the bit n if the instruction is aligned, or the bit
n+ 16 mod 32 if it is unaligned.

These results demonstrate that predictable and repeatable faults on
words read from the flash memory can be achieved by targeting a fixed
location on the flash memory area while a fetch operation occurs. However,
targeting the same instruction with the same spot location might induce
an entirely different behaviour if the instruction memory alignment is
different.

After we found a position at which a bit can be set, we explored the
power and duration parameters. The results are presented in Figure 5, for
a laser power ranging from 0.5 to 1.4W and a pulse duration from 65 to
270 ns. From these results, it appears that increasing the power and the
duration of the laser pulse increases the success rate of the fault injection.
One very interesting setting is 0.5W of power and 200 ns of duration.
Indeed, it allows to reach 100% of fault occurrence for a range of almost
50 ns, while performing only monobit faults. Performing a fault on two
adjacent bits with 100% probability is then possible by increasing the
power to 1.1W. These results show that in order to obtain monobit faults,
careful tuning of the laser pulse power and duration is required.

Characterisation of fault sensitivity over time After running the
code shown in Listing 2 at a position where a specific bit can be set, it
appeared that some moments in time are more prone to fault injection
than others. Figure 6 shows how the probability of occurrence of a fault
changes with the injection delay.

We observe on Figure 6 that the separation between two peaks of fault
sensitivity is always a multiple of the clock period, which support the
assumption that the fault injection is synchronous with the chip internal
activity. Besides, we observe on the left-hand side of Figure 6 that the
interval between two consecutive faults is not constant. As this feature
has not been documented yet, we assume that the fetch timing depends
on the pipeline activity. However, for every instruction, there is a delay
parameter that allows to fault it with 100% probability.

These characterisation results show that individual instructions can
be targeted. Provided the right injection parameters, single bit-set can be
achieved on all the bits of an instruction or word fetched from the flash
memory.
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Fig. 5: Occurrence and types of faults for two laser injection parameters:
power and duration.
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Fig. 6: Periodicity of the fault occurrences for a 0.8W laser pulse of 135 ns.

4.2 Modification of a MOVW instruction

As an illustrative example of the possibilities offered by the fault model,
we performed fault injection a MOVW instruction. The purpose of this 32-bit
instruction is to load a 16-bit value into the lower half of a 32-bit register.
The opcode part, the destination register part (denoted as Rd) and the
n-bit data part (denoted as immn or i) of the instruction are given in the
upper part of Figure 7. An example of MOVW instruction is also given where
0x0000 is stored in R0. This information is given in the ARM Architecture
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Reference Manual2. We illustrate the impact of the fault model with three
instruction modifications we performed on the target microcontroller.

bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic MOVW 1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
MOVW, R0, 0 1 1 1 1 0 i 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data corruption ø

MOVW, R0, 4 1 1 1 1 0 i 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Destination register corruption ø

MOVW, R1, 0 1 1 1 1 0 i 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Opcode corruption ø

MOVT, R0, 0 1 1 1 1 0 i 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 7: Examples of achievable corruptions on a MOVW instruction. The
arrow indicates which bit is set by laser injection.

By performing a bit-set on the bit of index 2 of the instruction, the
data to store is altered. Setting this bit leads to store 0x0004 instead of
0x0000 into R0.

By performing a bit-set on the bit of index 8 of the instruction, the
destination register is altered. Setting this bit leads to store 0x0000 into
R1 instead of R0.

Finally, by performing a bit-set on the bit of index 23 of the instruction,
the opcode is altered. This changes the instruction from MOVW to MOVT.
Setting this bit leads to store 0x0000 into the upper part of R0 instead
and resetting the lower part.

These are simple examples, aimed at illustrating the capabilities of
the method. Depending on the instructions found in the assembly code,
advanced manipulations are possible. Examples of using this fault model
on real-life security codes are given in the next section.

5 Applications to real-life codes

In the following experiments, based on our characterisation results, we
set the laser power to 0.8W and duration to 135 ns. We achieve perfect
repeatability at the correct injection delay.
2 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.
architecture.reference/index.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
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5.1 PIN verification algorithm

In order to apply the fault injection technique described above to a real
security test-case, we targeted a constant-time 4-digit PIN verification
algorithm with hardened booleans [12]. Its description is given in Algo-
rithm 1.

Algorithm 1 Constant-time 4-digit VerifyPIN with hardened booleans.
1: trials = 3
2: reference_PIN[4] = {1, 2, 3, 4}
3: procedure VerifyPIN(user_PIN[4])
4: authenticated = FALSE
5: diff = FALSE
6: if trials > 0 then
7: for i ← 0 to 3 do
8: if user_PIN[i] != reference_PIN[i] then
9: diff = TRUE
10: if diff == TRUE then
11: trials = trials - 1
12: else
13: authenticated = TRUE
14: return authenticated

This PIN verification algorithm is protected against simple power
analysis [18] by a constant-time implementation. Therefore, an attacker
cannot determine the correct digits by simply observing the execution
time of the algorithm. This is achieved by systematically comparing all the
digits of the user and reference PINs (see for loop on line 7 of Algorithm 1).
Thus a perturbation attack is required to break such an implementation.

A first approach to perform a successful authentication using a fault
attack without providing the correct user PIN could be to change the
initialisation value of the authenticated variable (see initialisation on line
4 of Algorithm 1). By setting it to TRUE instead of FALSE, the authenti-
cation is successful even if the user PIN is wrong. However, the target
implementation that we used employs hardened booleans. This common
technique consists in storing booleans in bytes and encoding TRUE as 0x55
and FALSE as 0xAA for instance. In this case, two bit-sets and two bit-resets
are needed to turn TRUE into FALSE, making the attack very challenging
and impractical in our fault injection setup since we can only perform
bit-sets.

The approach we explored is then to corrupt the trials counter (see
line 6 of Algorithm 1). Indeed, if we can bypass this comparison, then
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an exhaustive search over all the possible PINs becomes feasible. The if
instruction is compiled into the assembly code shown in Figure 8. The CMP
instruction compares the trials variable, stored in R3, with 0. Then the
BLE instruction branches to address if the result of the comparison is “less
or equal”.

C code Assembly code

if (trials > 0) CMP R3, 0
BLE address

Fig. 8: C and assembly code for an if branch.

We chose to alter the register part of the CMP instruction to compare
register R7 instead of register R3, as shown in Figure 9. The ARM con-
vention is to store the frame pointer in register R7, that is the address of
the memory space allocated for the subroutine local variables. Thus the
result of the comparison is always positive and the branch is never taken.
Even if the trials counter reaches zero, the user and reference PINs are still
compared. Therefore, an attacker can iterate over all the possible 4-digit
PINs until authentication succeeds.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

Fig. 9: Fault on the register part of the CMP instruction to fault the com-
parison. The arrow indicates which bit is set by laser injection.

5.2 AES encryption

The second security use-case is the AES-128 encryption algorithm [10]. The
algorithm consists in ten rounds, each round including the AddRoundKey,
SubBytes, ShiftRows and MixColumns transformations, except for the last
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round which does not include the MixColumns transformation. Another
AddRoundKey is finally performed, which is the operation we targeted.

Algorithm 2 describes the AddRoundKey operation. It operates on a
4x4 state matrix [10]. Going through all the sixteen possible entries, the
AddRoundKey operation consists in XORing the state matrix entry Si,j and
a tenth round-key byte K10

i,j , where i denotes the column and j denotes
the row of the state matrix.

Algorithm 2 Add_round_key function.
1: procedure Add_round_key
2: for i ← 0 to 3 do
3: for j ← 0 to 3 do
4: Si,j = Si,j ⊕K10

i,j

As shown in Algorithm 2, the AddRoundKey operation consists in two
nested for loops. The C and assembly codes for this construction are shown
on Figure 10.

C code Assembly code

for (int i=0; i<4; i++)
{

for (int j=0; j<4; j++)
{

...
}

}

MOV R0, 0
addr_i:
MOV R1, 0
addr_j:
...
ADD R1, 1
CMP R1, 3
BLE addr_j
ADD R0, 1
CMP R0, 3
BLE addr_i

Fig. 10: C and assembly code for two nested for loops.

In order to fault the final AddRoundKey operation, we chose to alter the
control flow and prematurely exit the for loops. By performing a fault on
the ADD instruction, we can modify the data part and add 5 instead of 1 to
the loop variable, as shown in Figure 11. This causes the for loop to end
prematurely, since the exit condition is satisfied after the first iteration.
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Below, the faulty bytes of the ciphertext are given by the expression
Ci,j ⊕K10

i,j where Ci,j denote the correct byte of the ciphertext found on
the i-th column of the j-th row of the state matrix after completion of a
fault-free encryption.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

Fig. 11: Fault on the data part of the ADD instruction to prematurely escape
a for loop. The arrow indicates which bit is set by laser injection.

By faulting the inner for loop on its first execution, in the first column
of the state matrix, the three last bytes of the first row are faulty. The
resulting ciphertext C̃ inner

i,j is given in Equation (1).

C̃ inner
i,j =

{
Ci,j ⊕K10

i,j if i = 0, j ∈ [1..3]

Ci,j otherwise
(1)

By faulting the outer for loop, only the bytes of the first column of
the state matrix are XORed with the associated tenth round-key bytes.
The last three columns are faulty. The resulting ciphertext C̃outer

i is given
in Equation (2).

C̃outer
i,j =

{
Ci,j ⊕K10

i,j if i ∈ [1..3], j ∈ [0..3]

Ci,j otherwise
(2)

Holding these two faulty ciphertexts, the attacker can recover the last
fifteen bytes of the tenth round key by XORing the fifteen faulty bytes
with the bytes of the correct ciphertext as shown in Equation (3).

K10
i,j =

{
C̃ inner
i,j ⊕ Ci,j if i = 0, j ∈ [1..3]

C̃outer
i,j ⊕ Ci,j if i ∈ [1..3], j ∈ [0..3]

(3)

The first byte of the tenth round key K10
0,0 must then be brute-forced,

which is done in 27 attempts on average. The whole AES key can then be
recovered by reversing the key schedule. To conclude, altering the control-
flow of AES encryption and obtaining two faulty ciphertexts allows an
attacker to fully recover the AES key with an average complexity of 27.
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6 Discussion

6.1 Possible explanation for the observed fault model

The architecture of the flash memory in the microcontroller we targeted is
a NOR flash memory (see Figure 12). In NOR flash memory, floating-gate
transistors are connected in parallel between a bit-line and the ground.
Previous work have highlighted that the sensitive areas in CMOS technol-
ogy are the reverse biased PN junctions [23]. From this information we can
propose the following explanation for the observed fault model described
in Section 4.

D

CBLi

Iph

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 1)

Laser spot

Fig. 12: Schematic of a bit-line in a NOR flash memory. The red elements
indicate the effect of the laser shot.

We assume that a logic 1 is stored as a low voltage on the bit-line. When
a bit is read from flash memory, the associated bit-line is pre-charged to
Vdd. If the floating gate is charged, then the threshold voltage is high. If the
floating gate is not charged, then the threshold voltage is low. By setting
an intermediate voltage Vread on a word-line, low-threshold transistors
pull the bit-line to ground while high-threshold transistors do not.

When a laser spot illuminates the drain of a blocked transistor, a
photocurrent is induced between its drain and source (see red elements
in Figure 12). If a low-voltage transistor is activated by the word-line, it
pulls the bit-line to ground and a logic 1 is read. However if a high-voltage
transistor is activated by the word-line, a photocurrent can be induced
between its drain and source by the laser injection. As a consequence, its
bit-line is pulled down to ground and a logic 1 is read. This explains the
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asymmetry of the fault model, consisting only of bit-sets. We expect other
targets embedding NOR flash memory to exhibit a similar asymetric fault
model.

This physical mechanism can be applied to any floating-gate transistor
of the flash memory. Assuming that bit-lines are horizontal and word-
lines are vertical, it explains why we can sweep over the bits of a fetched
instruction as we move the laser spot along the y-axis, affecting the bit-lines
one after the other. However, moving along the x-axis affects transistors
connected to the same bit-line, setting the same bit. This explains why
moving along the y-axis allows to target specific bits, independently of the
x-coordinate as shown in Figures 3a and 4a.

Finally, since the photocurrent spatial distribution depends on the
injection power, it explains why two adjacent bits are faulty only with
sufficient power, as shown in Figure 5. If the photocurrent distribution
is large enought, transistors connected to different adjacent bit-lines are
affected and adjacent bits are set.

6.2 Limitations

Mono-spot laser The fact that the laser we use has only one spot limits
the number of bits that can be simultaneously set in the instruction. We
observed either a single bit-set or two adjacent bit-sets. A multi-spot laser
setup is thus useful to set multiple non-adjacent bits and extend the range
of reachable modified instructions.

Bit-set only The observed fault model only consists of bit-sets. We did
not observe any laser-induced bit-reset in this region of the circuit. Even
though this limits the range of reachable modified instructions, Section 5
shows that this fault model still has numerous applications.

Control flow corruption mostly As demonstrated by two examples in
Section 5, faulting the control flow of a program is feasible. However, given
our fault model, faulting the data is often difficult while targeting the flash
memory. Indeed, data is not hard-coded in the instructions but instead
stored in RAM and fetched when needed. For example, it is impossible to
perform safe-error attacks on AES encryption [4] since the AES round-key
bytes are not hard-coded in the instructions.

Still, altering the control flow is an effective way to lower the security
of algorithms though. In future works, some arithmetic operations could be
modified to actually alter the data. However, this is very algorithm-specific
and must be investigated for each case.
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6.3 Reproducibility with a new target code and an identical
microcontroller

Performing extensive characterisation and exploration of laser parameters
to perform a successful fault injection is a time-consuming process and
takes months. However, given the knowledge acquired and detailed above,
reproducing these results on a new target code and an identical microcon-
troller would be much faster. First, it requires to decapsulate the chip and
mount it on a suitable board for back-side laser injection. Then, the code
shown in Listing 1 with a laser power of 0.5W and duration of 200 ns can
be used to find the y-coordinate at which each individual bit is set. An
access to the assembly code of the target application is needed to identify
the target instruction. After that, the ARM Architecture Reference Manual
is used to identify a valid faulty instruction. Finally, the delay injection
parameter must be tuned.

7 Conclusion

This article presented a new laser fault injection attack on the flash memory
of a 32-bit microcontroller. Provided the right injection parameters, an
attacker can set individual bits of the words fetched from the flash memory
in a very predictable manner. Based on our characterisation results, we
provided practical examples of fault injection affecting common security
algorithms. Finally, we discussed how the hardware features of a NOR
flash memory can explain the observed fault model. Future works on the
topic will focus on examining state-of-the-art software countermeasures
such as control flow integrity that may be relevant against the attacks
that we demonstrated on implementations of a PIN verification and AES
algorithms.
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