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Abstract. We consider the issue of securing dark pools/markets in the financial services sector. These markets
currently are executed via trusted third parties, leading to potential fraud being able to be conducted by the mar-
ket operators. We present a potential solution to this problem by using Multi-Party Computation to enable a trusted
third party to be emulated in software. Our experiments show that whilst the standard market clearing mechanism of
Continuous Double Auction in lit markets is not currently viable when executed using MPC, a popular mechanism
for evaluating dark markets, namely the volume matching methodology, is viable. We present experimental valida-
tion of this conclusion by presenting the expected throughputs for such markets in two popular MPC paradigms;
namely the two party dishonest majority setting and the honest majority three party setting.

1 Introduction

“The art of trading lies in knowing when and how to expose trading interest. Exposure decisions are the most
important decisions large traders make. Traders who never expose never trade. Traders who over-expose
generate high transaction costs” [12].

Successful trading in the financial markets requires balancing the conflicting objectives of finding a counterparty with
whom to trade (every seller needs a buyer, and vice versa), while attempting not to disclose one’s trading interest.
Finding a counterparty is most easily solved by publicly announcing an intention — an order — to trade. However, if
the order is large, other traders in the market are likely to react to this information by moving the price in the adverse
direction. This market reaction to the discovery of a large order is known as price impact, or market impact, and the
costs to a trader can be severe: far outweighing commission fees and other trading charges. It has been suggested that
market impact increases roughly as the square root of order size [9], although estimates are notoriously difficult and
no consensus exists (for a review, see [4]; for technical discussion, see [3, Chapters 11 and 12]). Nevertheless, it is
universally accepted that publicly exposing one’s intention to trade — particularly when trading in large volume — is
costly.

To reduce market impact, one approach is to disguise large orders by salami-slicing them into multiple smaller
orders to be submitted at irregular intervals. However, as execution time inevitably increases, this strategy bears the
risk of the market moving away; while traders on the other side of this game of hide and seek may determine that
further order flow is forthcoming. An alternative approach — one traditionally employed — is to pass the order to a
trusted broker (or other intermediary) who will attempt to find a natural counterparty within their network of customers
and connections. If the order information remains secret within the network, there is no market impact. However, there
is incentive for the broker to cheat — using this insider information for their own gains by front running customers, or
by selling the information to a third party. Although often difficult to prove, such (illegal) activity is not uncommon.
For instance, in 2005, twenty specialists on the New York Stock Exchange (NYSE) were charged with committing
thousands of illicit front running trades between 1999 and 2003, causing customer losses in the millions of dollars [31].

To counter the reliance on trusting human intermediaries, so called dark pool trading venues have emerged —
alternative electronic trading systems that automatically match orders in private with no human observers. Unlike the
publicly visible orders entered onto the public limit order book (PLOB) of a major “lit” exchange — e.g., the London
Stock Exchange (LSE) or NASDAQ — orders entering a dark pool are invisible. Orders remain in the dark pool until a
match occurs, and only afterwards are the details of the trade published. As trading intention remains secret, even large
orders can execute with little or no market impact. The attraction of dark pools is clear, and the demand from traders is



strong. In the first quarter of 2018, approximately 11% of stock trading in the US executed on such alternative trading
systems (ATS) [23].

However, where there is trust, there is the possibility of abuse. While dark pools offer trading in secrecy away from
prying eyes, the operators of dark pools — with full access to system data — are trusted not to spy on, or abuse, the
information inside. For some, the temptation has proven too great. For example: in 2011, Pipeline paid a $1 million
penalty and settled to charges of conflicts of interest and misleading customers [27]; in 2014, Liquidnet paid a $2
million penalty and settled to charges of improperly using subscribers’ confidential trading information in marketing
its services [28]; in 2015, ITG (the owner of Posit) paid an $18 million penalty for operating a secret trading desk
and misusing the confidential trading information of dark pool subscribers [29]; also in 2015, UBS paid a $12 million
penalty for failing to properly disclose to all dark pool subscribers an order type that was marketed almost exclusively
to market makers and high frequency trading firms, which allowed those participants to place sub-penny-priced orders
that then received priority over other orders [30].

The only way to guarantee privacy is to ensure that nobody — not even the system operator — can gain access to
the information in the system. One mechanism to achieve such privacy is to apply a multi-party computation (MPC)
technique to the underlying algorithm. In such a scenario internal algorithm data is held in secret-shared form, and is
processed by a set of servers. If a given ratio (depending on the precise MPC system) of the servers remains honest
then the internal algorithm variables do not leak, and thus privacy is preserved. All orders can be entered into such
a system using a protocol to convert an external user’s order into a secret shared form. Then MPC can be used to
perform computation (order matching) on the secret shared data, such that no order information is ever in the clear. As
an additional advantage if a financial regulator — e.g., the SEC in the US or FCA in the UK — is one of the servers
in the MPC computation, not only is privacy guaranteed, but the regulator can guarantee that a specific algorithm was
used to perform the matching. This aligns well with MiFID II regulatory compliance, introduced for European markets
in Jan 2018 to ensure stricter controls on dark pools.
Our Contribution: Previous work has demonstrated the utility of MPC for secure auctions, with particular success
and application in one-time clearing auctions [18] in the famous case of Danish Sugar Beet. Other proof of concept
work has been performed, which is detailed in the next section, however, all of this prior work has resulted in matching
mechanisms which take many seconds to evaluate.

In this work, we introduce a proof-of-concept fully encrypted (MPC) trading venue using the three main matching
algorithms used in a dark markets: (i) continuous double auction (CDA) using full limit order book (LOB); (ii) periodic
interval crossing (or periodic auction); and (iii) scheduled volume match (or scheduled cross). All our experiments
were conducted using the SCALE-MAMBA MPC system [1].

We find (unsurprisingly given the complexity of the matching algorithm) that whilst CDA is the natural auction
methodology in lit markets, when performed in a privacy preserving manner the performance is particularly disap-
pointing. Nevertheless, we are able to process orders in the sub-second, resulting in market throughputs of between
roughly 10 and 50 orders per second (depending on the size of the hidden order book). In real world markets, hidden
LOBs and CDA matching are more commonly used in dark pools where the venue operator (often a bank) is an active
participant, trading on principle (i.e., for themselves) and internally matching client order-flows (e.g., Goldman Sachs’
Sigma X2 platform).3 In Europe, dark pools where the operator is trading on its own account are often classified and
regulated under MiFID II, as Systematic Internalisers.

Periodic auction mechanisms are algorithmically simpler for MPC than a CDA and have two phases. First, during
the open auction period, orders are collected and sorted, similar to the limit order book of a CDA, but without exe-
cution. Then, on auction close, a price discovery phase calculates the clearing price that maximises volume traded.
All trades execute at this clearing price. We see that the main cost in evaluating a periodic auction procedure in this
context ends up being running the algorithm to determine the final clearing price. Depending on how many orders
were satisfied this can take up to a second. But if the number of orders satisfied are always in the range of a handful,
then the periodic auction becomes feasible to implement using MPC.

Periodic auctions are classified by regulators as “semi-transparent” and so do not fall under MiFID II dark pool
compliance. However, we focus on the non-transparent “semi” and therefore do consider these as dark pool venues (as

3 https://www.goldmansachs.com/what-we-do/securities/gset/equities/liquidity-access/
sigma-x2-us-faq.pdf
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the regulators may also do in due course). Real world periodic auction venues include ITG’s Posit Auction and LSE’s
Turquoise Lit Auction.4

Finally, we examine scheduled volume matching, the simplest of the three clearing algorithms in which volume
is matched but price is determined by reference to some external lit market. For such markets we are able to obtain
throughputs of around 800 orders per second. Thus, while such throughput will not be suitable for markets with high
frequency trading, for markets where the priority is large volume execution rather than immediacy, such throughput
may be sufficient. Scheduled matching has been used by dark pools since their inception (Instinet and Posit, circa
1987) and is still used today by venues such as LSE’s Turquoise and ITG’s Posit Match.
Paper Overview: We first describe, in Section 2, the problem we are trying to address, and existing problems with
performing computations in a non-privacy preserving manner. We also review prior work of applying MPC to financial
auctions. In Section 3 we briefly recap on the notation and issues from the MPC literature we require, and we overview
the salient properties of the MPC system we will be using. Then, in Section 4, we examine the three auction mech-
anisms in detail, and describe how to implement them in a privacy preserving manner, and give performance results.
Finally, Section 5 concludes that MPC may be ready for real-world dark-pool implementation.

2 Background

Here we outline the required background in financial markets and prior work in applying MPC to this domain.

2.1 Information leakage, insider trading, and front running

Insider trading is the illegal practice of trading to one’s own advantage through having access to confidential infor-
mation. A classic example is a director in a public limited company, upon receiving internal news of unexpected poor
quarterly results during a board room meeting—and knowing company share price will fall once these results become
public—short-selling shares in their own company ahead of the report’s announcement (a legal requirement for public
companies). Once share prices have fallen, the director is able to buy back shares (at a lower price) to cover the short
Position and make a profit. This is illegal; as is selling (or giving) the confidential information to a third party.

Front running is a specific example of insider trading such that an intermediary (e.g., a market maker, specialist,
broker, or trading venue operator) acts on advance confidential trading information for one’s own gain. For example, let
us assume that broker, B, is instructed by client, C, to purchase 20,000 shares in XYZ. The broker can see the current
order book is showing the following offers to sell XYZ: 5,000@$49; 15,000@$50; 10,000@$51. If acting honestly, B
will execute C’s order by purchasing 5,000 shares at $49 and 15,000 shares at $50, for a total cost to C of $995,000.
However, since B knows that C’s buy order will move the market (i.e., the large buy order will have a positive price
impact),B decides to act on the inside information of C’s intention to trade by front running the purchase. To this end,
on their own account,B buys 5,000 shares at $49 and simultaneously posts an offer to sell 5,000@$50. The order book
for XYZ offers is now: 20,000@$50; 10,000@$51. Broker B then executes C’s request to purchase 20,000 shares,
for a total cost of 50 × 20, 000 = $1 million to the client. Broker B has immediately sold their shares (to the client;
and at the direct expense of the client) for a risk-free profit of (50 − 49) × 5000 = $5, 000. This practice is illegal.
However, it is not always so direct (B could quite easily have sold the advance information of C’s intention to buy to
a third party), and therefore not always easy to detect.

To avoid these malicious and predatory practices, traders—particularly large institutional investors that trade in
large volumes, such as mutual funds—go to great lengths to avoid information leakage. Having a trusted broker, or
trusted exchange venue, is of primary concern. To address these concerns, alternative “dark pool” trading venues—
designed to match orders automatically, in secret, and with no human observer—emerged, and subsequently flourished.

2.2 Trading in the Dark

Dark pools are trading systems that do not publicly display orders. The first dark pool crossing networks appeared
in the 1980s (Instinet, in 1986, with one end-of-day cross at the securities’ closing price; soon followed by ITG’s

4 For a full list of European dark pools, see Redburn Execution’s List of Approved Trading Venues [21].
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Posit, in 1987, with multiple intraday crosses using the NBBO midpoint as crossing price reference) [11]. Catering for
the relatively niche market of large volume traders prepared to forego immediate execution to avoid significant price
impact, the market share of trading in dark pools was initially small. However, over the last decade, largely driven
by regulation changes (RegNMS, USA, 2005; MiFID, EU, 2007) and the rise of high-frequency trading (HFT), the
number of dark pool venues and the volume they trade has ballooned.5 In the US, around 40 dark pool venues now
operate with approximately 15-18% market share of securities trading (a quadrupling since 2005). Similarly, in the
EU, the volume traded on the fifteen major dark pools accounts for over 8% of total value traded in equities (a rise
from less than 1% in 2009) [20].

While there is considerable variation in the exact mechanisms used, dark pool matching can be roughly categorised
into two types: scheduled, where crosses occur at fixed times (e.g., the original Instinet and Posit networks); and
continuous, where crosses occur immediately. Over time, as technologies have improved and communication latencies
have fallen, the majority of dark pools have moved from scheduled to continuous crossing. The European Central Bank
(ECB) reports that all dark pools in Europe are now continuous [20]. However, options for non-continuous crossing
alongside options for continuous crossing are offered by some venues, such as LSE’s Turquoise and ITG’s Posit.
Turquoise offers the option of randomised period crossing (where matching is at random intervals between 10-45
seconds, depending upon liquidity)6, while the option Posit Match matches orders during a 30-second interval several
times a day at pre-determined times [20, p.39].

Dark pools commonly derive execution prices using a “primary” lit venue as reference (e.g., in the US, the midpoint
of the NBBO). Executing all trades at a single midpoint reference (e.g., Posit Match and the original crossing networks)
provides no price discovery (i.e., the dark pool does not form a price from internal order flow). However, some dark
pools (e.g., Goldman Sachs’ Sigma X2) provide limited price discovery by maintaining a continuous non-displayed
limit order book, where execution prices are bounded between the National Best Bid and Offer (or BBO of some other
primary exchange such as the LSE if the dark pool is located in London) [33].

2.3 Out of the dark and into the semi-transparent

As the dark pool trading ecology has evolved, it has become increasingly varied and esoteric. A plethora of matching
rules, order types, fee structures, operators, and participants now exist [20] [21]. Where there was once a handful of
agent-broker networks supplying an exchange venue for large-order customers seeking refuge from market impact,
there is now a large and diverse community of providers and participants, including HFT firms looking for short-term
profits and broker-dealers trading proprietary flow and acting as market makers.

The complex inter-connected network of dark and lit venues, combined with the inherently secretive nature of dark
pools and financial trading in general, has provided an opportunity for dark pool operators to cheat. In some cases,
this is illegal practice amounting to insider trading and front running (e.g., see SEC litigations against Pipeline [27],
Liquidnet [28], ITG [29], and UBS [30]). However, there are also more subtle forms of “structural insider trading”
which are (currently) non-illegal but problematic [32]. Structural insider trading practices enable information leakage
and include, for instance, HFTs “algo-sniffing” dark pools. “A particular fear. . . is that an algorithm that can detect
the order in a dark pool, at least probabilistically, can position itself to profit when the purchase or sales in lit markets
begin.” [16, p.45]

In response, regulators have attempted to fight back by requiring greater trading transparency. In Europe, MiFID
II came into force on 3rd January 2018. One of the requirements of MiFID II is the “double volume cap” (DVC),
such that in a given share, dark pool trading volume is now limited to 4% at any one venue, or 8% across all dark
venues [10].

Interestingly, markets have quickly adapted to the DVC by moving volume away from dark pools to newly-popular
periodic auction venues [10]. Unlike continuous central limit order books (CLOBs), where trades are executed instantly
as soon as there is a match, in a periodic auction, matching only occurs at the end of a call period. The length of

5 Here, we are considering dark pool liquidity only. Special dark order types that enable volume to be hidden on a lit exchange,
e.g., an Iceberg Order, are not included.

6 Turqoise Plato Uncross: https://www.lseg.com/sites/default/files/content/documents/
TURQUOISE_UNCROSS_FACTSHEET_2016_AW.pdf
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periodic auctions varies by operator, but many are very short. For instance, Turqoise Lit Auctions and Posit Auctions
have (randomised) auction periods less than 100 milliseconds.

Periodic auctions offer some of the protections traders look for in dark pool venues, with orders during the call
period “hidden”. However, periodic auctions are not classified by regulators as dark pools. The UK’s Financial Conduct
Authority (FCA) are unequivocal: “Periodic auctions are not a form of dark trading [because p]ublic information is
provided about buying and selling interest during the auction call periods according to MiFID II rules. But, while
CLOB trading requires detailed disclosure of buying and selling interest at every price level, periodic auction operators
are required only to disclose indicative uncrossing price and volume for the auction” [10].

Given the recent rise in popularity of periodic auctions, in this paper we include a secure implementation of this
semi-transparent auction type alongside the traditional dark pool mechanisms: scheduled crossing (matching volume
at a given point in time using reference price) and continuous double auction (continuous match with hidden LOB).

2.4 Secure auctions: related work

The problem of avoiding information leakage in financial markets has motivated several previous studies investigating
the potential of homomorphic encryption and multi-party computation (MPC) to achieve secure auction protocols.
Here, we briefly summarise this work.

In 2007, Thrope and Parkes introduced a secure protocol for a continuous double auction (CDA) mechanism with
limit order and market order types [25]. Before order O(p, q, d) is entered, the trader encrypts order price, p, quantity,
q, and direction, d (bid/buy or ask/sell), using the market operator’s public key.7 The encrypted order, E(p, q, d), is
then sent to the exchange, whereby the market operator privately decrypts E to obtain O. The order O is entered into
a limit order book (LOB) and matching is performed in the clear. Post-execution, trades are published in encrypted
form, enabling delayed secrecy-preserving post-trade proof checking of the correctness of the market operation. An
empirical evaluation of the proposed protocol running on low-end contemporary commodity hardware suggested an
implementation of the system would have operational costs of approximately 5 cents (US) to place and verify an order.
Later extensions by the authors and their colleagues included a combinatorial auction mechanism (trading baskets
of stocks) [24] and the ability to enter more sophisticated conditional rule-based order types [26]. However, the
underlying encryption protocol remained unchanged: traders are required to post orders encrypted using the operator’s
public key, and the operator matches orders in the clear. Therefore, while the post-trade audit trail is secure, the real-
time market information is not. In each case, the proposed protocols require trusting the market operator; thus enabling
the possibility of information leakage, or front-running traders’ order flow.

Bogetoft and colleagues’ seminal work in the area of secure auctions was introduced and developed over several
years: from protocol design in 2006 [2], to first real-world implementation in 2008 [18], and finally commercialisa-
tion [19]. Avoiding the pitfalls of trusting a single market operator, Bogetoft et al.’s approach is to replace a single
auctioneer (market provider) by a set of n Trusted Third Parties (TTPs), where it is assumed that at most some number
t—the threshold trust—of TTPs are corrupt. Multi-party computation (MPC) is used to emulate the auctioneer, ensur-
ing that access to order information is not available in the clear to any one party. The protocols can tolerate any set of
less than n/2 TTPs sharing information, where typical values of (n, t) are (3, 1) and (5, 2).

Bogetoft et al. implement a one-shot double auction mechanism (essentially a periodic auction that is run only
once) where bid and ask orders are first received during an open auction period [2]. After auction deadline, the market
executes all trades at the same market clearing price, pc, calculated as the price that minimises excess demand and
supply. At price p, if aggregate demand, ΣDp, is greater than aggregate supply, ΣSp, then excess demand EDp =
ΣDp−ΣSp > 0 and excess supplyESp = 0. IfΣDp−ΣSp < 0 then we have excess supplyESp = ΣSp−ΣDp > 0
and EDp = 0.

In the first real-world application [18], the authors develop a system used by Danish farmers to trade contracts for
sugar beet production on a nation-wide market. The system implements an electronic double auction, where the role
of the auctioneer is played by three parties—a (3, 1) TTP model—(i) Danisco, the only sugar beets processor on the
Danish market; (ii) DKS, the sugar beet growers’ association; and (iii) SIMAP, the research project team. During the
auction period, each farmer was able to send encrypted orders to the three parties, who then compute on the data in
protected form. Therefore, no single party ever has access to any order in the clear. In total, 1229 farmers submitted

7 For market order types, value p is not needed.
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orders. The auction computation was performed on 14 Jan 2008, and approximately 25,000 tons of production rights
changed ownership. Timings for the live auction computation were not presented, but on contemporary commodity
hardware, tests showed computations for 1000 traders took around 30 minutes; for 3000 traders around 75 minutes.
The authors have since commercialised their system through a private company named Partisia [19]. Partisia continues
to offer a double auction mechanism with single clearing price using MPC. The one-shot double auction mechanism is
particularly suited to a one-off high stake auction with sealed bids and long auction durations. According to Partisia’s
website, their platform has been tailored for the Norwegian Spectrum Auction to trade spectrum rights for a total of
NOK 877.983.276 (approximately USD $100 million) over the course of 7 days and 83 bidding rounds in December
2015.8

Using MPC for periodic auctions is further developed by Jutla in 2015 [13]. Jutla argues that while MPC technol-
ogy’s high computation costs make it unsuitable to replace the continuous double auction (CDA)—the predominant
mechanism used in modern electronic financial markets—MPC technology is (as of 2015) capable of running re-
peated periodic auctions for financial markets, using a 30 minutes opening auction, followed by a succession of 15
minute auctions, with 5 minute gaps in-between for processing and information digestion. These timings follow the
open-auction period (30 minutes) of specialists on the New York Stock Exchange (NYSE). In Jutla’s architecture, the
market protocol is a secure five party-computation (5-PC), run by a small number of brokers, say 4, and one regulating
authority such as the securities and exchange commission (SEC). To ensure regulatory oversight, the SEC (or any other
party) can audit saved computations and check if they were performed according to the protocol. During the auction
period, traders can enter limit and market orders. At the end of each auction round, the market is cleared (at a single
price) and price and volume information is revealed. Uncleared orders remain in the market for the following auction
period. Economic modelling of the protocol suggests behaviour (price discovery, information risk, and research ad-
vantage) is comparable, or favourable, to a CDA and Walrasian equilibrium. However, the protocol is not implemented
or empirically tested in this work, and to date the work has not been published.9

Recently, Massacci et al. [17] demonstrated a proof-of-concept implementation of a secure futures market using
distributed ledger technology, where traders hide behind a Tor network to communicate anonymously. Designed to
replicate the functionality of the Chicago Mercantile Exchange (CME), the system uses a CDA mechanism for order
matching. The focus of this work is on enabling anonymity of who is executing a trade as opposed to securing what
and how much is being traded as in our work. The methodology uses MPC for a small subset of the operations, so
as to enable privacy of who is trading. A proof of concept implementation is demonstrated, containing a population
of 10 traders and an order book with five levels. Results show that individual operations—e.g., post order, cancel
order, etc.—can be performed in around 24s.10 Whilst addressing part of the security problem the methodology still
requires a trusted third party with access to secret inputs of all participating traders, therefore enabling the potential
for information leakage and front-running by the “trusted” party.

In summary, previous work has split focus between CDA and periodic auctions. Computationally more burden-
some, work in CDA markets is less mature: with matching in the clear [24–26], slow operation times (e.g., 24s for
post-order operations in a market containing only 10 traders), and the use of a trusted third party with access to private
inventory information [17]. Fully secure CDA using MPC has not yet been implemented and stress tested for perfor-
mance. In comparison, secure clearing price one shot double auctions (i.e., a periodic auction run once, over a long
time period) have been implemented [2, 18] and commercialised [19].

3 MPC Background

Our MPC experiments are based on the SCALE-MAMBA system [1]. This is a secret sharing based MPC system in
which an internal data item x is held in secret shared form, a process which we shall denote by 〈x〉. All the data items
need to be represented in a finite field Fp, thus x ∈ Fp. Calculations are performed by expressing the computation in
terms of adding, multiplication and opening values in Fp.

The SCALE-MAMBA system implements an actively-secure-with-abort MPC protocol in the pre-processing
model. This means that the protocol is guaranteed to provide privacy, and if a set of adversarial parties deviate from

8 For details, see: https://partisia.com/spectrum-auctions/
9 Personal communication with the author, Oct 2018.

10 For comparison, CME Globex report an average median latency for order entry of 200 microseconds during 2017 [7, p.2].
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the protocol then the honest parties will abort the protocol with overwhelming probability. The probability of aborting
in the case of malicious behaviour by a party is given by 1 − 1/p, and hence we select log2 p = 128 to make this
overwhelmingly likely.

In addition the algorithms are executed in two phases. In the first offline phase function independent data is pro-
duced (for example Beaver triples), which are then consumed in a function specific online phase. This maps well to
the situation we are dealing with, as the offline data could be produced overnight, and then one only needs to execute
the online phase during the day when the specific market is open for trading.

The ability to perform pre-processing enables special data types to be created. The most standard of these are
secret shared Beaver triples; which are a triple of shared values (〈a〉, 〈b〉, 〈c〉) where a and b are uniformly random in
Fp and c = a · b. Such triples enable a fast online multiplication procedure. However, SCALE-MAMBA makes use
of extensive pre-processing of shared random bits; namely sharings 〈b〉 where b ∈ {0, 1} is outside the control of any
subset of parties. Such shared random bits are used to enable efficient integer operations (see below), which are crucial
to our application.

SCALE-MAMBA provides various underlying secret sharing schemes to use within this methodology. The main
one is that of full threshold, in which if we have n MPC engines then security is gauranteed unless all n are corrupt.
In this case the system implements the SPDZ protocol and its derivatives [8], which utilizes Somewhat Homomorphic
Encryption to implement the offline phase. In this case we consider the case of having only two servers.

The other secret sharing scheme we consider is that of Shamir sharing with three players. Here the SCALE sys-
tem implements the methodoloy from [14], this latter methodology results in a faster online phase then for example
using the methodology in [6] which provides a shorter overall run time (at the expense of more expensive online
computation).

As a basic set up, we assume the n MPC servers are executing the dark market operation. Entities which wish
to place orders are connected to these n MPC servers using secure connections. These secure connections enable the
external traders to place orders into the market in such a way that the servers do not learn the input. Such a protocol is
easy to produce, as follows. The servers take a shared random value 〈r〉 and open it towards the inputing trader (so the
trader learns r). The trader then inputs their value as x + r, which is essentially a one-time pad encryption of x. The
MPC servers can then compute a sharing of x from the equation 〈x〉 = (x+ r)− 〈r〉.

3.1 Arithmetic on Integers

As explained above, the MPC engine provides the ability to perform arithmetic with integers modulo a prime p.
However, in our algorithms we want to do arithmetic on integers. To do this we encode an integer in the range
[−2k−1, . . . , 2k−1] as its representative modulo p. In our algorithms we ensure that there is no wrap around of the
integers modulo 2k−1, which is easy as we are basically performing a number of conditional summations, and the
conditionals themselves.

To perform conditional operations, such as b← x < y, we follow the method of [5]. At its heart, this requires we
take a shared value 〈x〉 with x ∈ [−2k−1, . . . , 2k−1], mask it with a value 〈r〉 by performing 〈x + r〉 ← 〈x〉 + 〈r〉,
and then opening 〈x〉 so that everyone obtains z = x + r. The problem is that this reveals information about x if r is
not large enough. In particular the statistical distance of the value z from the uniform distribution is 2−sec if we select
r from the range [−2sec+k−1, . . . , 2sec+k−1]. That is we need to select r from a range which is 2sec times larger than
the range of x. This parameter sec is called the statistical security parameter for arithmetic. In our work we select
sec = 40 and k = 64. To ensure valid arithmetic we need to select p such that k + sec < log2 p. Which, given we
select log2 p = 128, we are well within range.

The methodology used in [5] is relatively efficient in SCALE-MAMBA due to the pre-production of shared random
bits in the offline phase. The protocols in [5] are described in the context that such shared bits are produced in the
online phase, whereas pre-processing them produces a much more efficient online phase. In Table 1 we outline the
costs in terms of pre-processing and online rounds of communication needed by the four main operations which require
interaction and pre-processing; namely opening, multiplication, comparison and equality testing.
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Table 1. Costs of operations

Operation Open 〈a〉 · 〈b〉 〈a〉 < 〈b〉
〈a〉 < b

〈a〉 = 〈b〉
〈a〉 = b

Triples 0 1 120 63
Bits 0 0 105 104

Rounds of
Communica-

tion

1 1 7 7

4 Algorithms

In this section we detail the three algorithms we will be comparing. The first is the standard Continuous Double Auction
(CDA) method, using the full limit order book. This method matches orders in real time as the bid/offer comes in. Each
order is in the form of a volume/price pair. The second is the Periodic Auction, which allows users to enter bid/offers
in a given period, and then at the end of the period it determines the matched orders, and the clearing price for all
orders executed. Again, each order is in the form of a volume/price pair. Finally, we implement our Scheduled Cross
methodology which simply determines, based on the input volumes, which orders are matched. In this method the
price is not entered, with the final transaction price being determined by reference to an external market value.

In all cases, we assume in our algorithms that we are currently dealing with N sell orders (or offers), and M buy
orders (or bids). These are given by volume values si for i = 1, . . . , N and bi for i = 1, . . . ,M , if we require price
information we use the values qi for sell orders and pi for buy orders. For convenience we assume that si, bi, pi, qi ∈ Z
and are in the range [0, . . . , 263 − 1].

As described above, we ran our experiments in two configurations of the SCALE-MAMBA system. In the first
configuration we used three servers and a dishonest majority protocol based on Shamir secret sharing, over the ring
defined by a prime of 128 bits. In the second configuration we used a two server full threshold implementation, with a
prime p of 128 bits.

For each algorithm we recorded a number of factors which affect the run-time; such as the number of multipli-
cation triples ‘m’ and shared bits ‘b’ needed to be produced by the offline phase, as well as the number of rounds of
communication ‘r’ needed for the online phase. We also timed the respective times for the online and offline phases.

When reading the algorithms the reader should bear in mind that secure additions comes for free, but the main cost
will be the secure multiplications and secure comparisons. A secure comparison results in a shared value of one (for
true) and a shared value of zero (for false). The actual logical value is kept secret shared, and hence unknown to the
parties.

In all algorithms we are interested in two metrics: the latency of each operation — how long it takes to process
a single operation; and the throughput — the number of trades per second that can be accomplished by the given
method.

4.1 CDA Method

At the heart of a CDA is the limit order book (LOB). The LOB contains a sorted list of bids (buy orders) and a sorted
list of offers (sell orders), where bids are ordered by price descending and offers are ordered by price ascending (for
two orders with equal price, the order with the earlier timestamp comes first). All orders contain a price and a volume
to trade. At the “top” of the LOB, the highest priced bid and lowest priced offer are referred to as the best bid and offer
(BBO). The price difference between the best bed and best offer is called the “spread”. When a new order enters the
market, if it “crosses the spread” (i.e., if an incoming bid price is equal to or greater than best offer; or incoming offer
price is less than or equal to best bid) then there is a “match” and an execution (transaction) will occur, at the price of
the resting order (i.e., the best bid, or best offer). Incoming orders will continue to transact with matching orders in
the LOB until no volume remains (i.e., the incoming order is fulfilled), or no matches are possible. Orders that do not
immediately execute (i.e., do not cross the spread) will enter the LOB (in price-ordered position). The CDA is used
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for all major lit exchanges and also for some dark pool venues, such Goldman Sachs’ Sigma X2. Real markets often
include more exotic order types than the simple “limit” orders that we use in this analysis, but we do not believe that
these will significantly affect the analysis and so are ignored. Prior work on secure CDA implementations is scarce,
and to our knowledge a secure CDA implementation using MPC has not previously been presented or tested. In [25],
a “secure” CDA protocol is introduced, but the operator can see the information in the CDA, so this defeats the object
for our purpose. In [17], a “secure” CDA is implemented using distributed ledger technology. However, this method is
designed to keep who is trading a secret, not what is being traded. Again, this is not sufficient for our purpose.

In a CDA, each seller (resp. buyer) has a name, an amount, and a price, each of which is meant to be kept secret
during the auction. Thus, we assume there is a state of a set of buy B = [(〈namesi 〉, 〈bi〉, 〈qi〉)]Mi=1 and sell S =
[(〈namebi 〉, 〈si〉, 〈pi〉)]Ni=1 orders. The buy orders are at any one time ordered such that qi ≥ qi+1 (with ties being
sorted by the time they were submitted), whereas sell orders are ordered such that pi ≤ pi+1. The state is also such
that p1 > q1, otherwise a trade would have happened. In this initial state we have N =M = 0, and thus the algorithm
should take new orders in and maintain this sorted state list.

We assume the fact an order is buy or sell can leak during the auction, just not the price or the volume. We present
an algorithm for coping with a new buy order in Figure 3, which uses two sub-procedures, shown in Figure 1 and
Figure 2. An analogous task happens for sell orders. The price paid is the price of the matching resting order in the
order book (the sell list, S), in this case the sell order’s price.

Process Sell List for CDA

Given a new buy order (〈nameb0〉, 〈b0〉, 〈q0〉) we process the sell list, and check if any items sell. If so we remove these, update
the list, and also update the current buy order. This clearly leaks how many orders on the sell list are fulfilled.

(1) Repeat
(I) 〈z2〉 ← 〈b0〉 > 0.

(II) 〈f〉 ← 〈q0〉 ≥ 〈p1〉.
(III) 〈f〉 ← 〈f〉 · 〈z2〉.
(IV) Open 〈f〉.
(V) If f = 1 then

(A) 〈z1〉 ← 〈b0〉 ≥ 〈s1〉.
(B) Open 〈z1〉.
(C) 〈t〉 ← z1 · (〈s1〉 − 〈b0〉) + 〈b0〉.
(D) Print Sell and open (〈names1〉, 〈t〉, 〈p1〉).

[i.e. Party names1 on the sell list has sold t items at price p1 ]

(E) 〈s1〉 ← 〈s1〉 − t.
(F) If z1 = 1 then

(i) Delete item one from the sell list, and relabel two as one, three as two, and so on.
(G) 〈b0〉 ← 〈b0〉 − t.

(VI) Until f = 0 or N 6= 0.

Figure 1. Process Sell List for CDA

Note that the algorithm runs in two phases. In the first phase, the new buy order is processed by matching it against
any offer on the sell list for which the price of the buy order is greater than the corresponding sell order. The first phase
leaks the number of sell orders which have been satisfied (indeed, that is inherent in the auction as parties will always
learn after the event which orders have been completed) and the run time of the first phase of the algorithm depends
on the number of satisfied sell orders.

In the second phase, any remaining quantity is added into the current buy list, using an insertion sort. At this point,
if the quantity remaining in the buy order is zero, we set the price to also be zero. Thus, in the latter case we end up
inserting at the end of the buy list, B.
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Insert into Buy List

Given a new buy order (〈nameb0〉, 〈b0〉, 〈q0〉) this inserts it into the sorted list of M existing buy orders, producing a new sorted
list of M + 1 buy orders. An identical algorithm can used to do the same for the sell orders, bar changing the inequalities in
lines (1) and (I).
To do this we insert a dummy element at the end of the buy list of the form (〈0〉, 〈0〉, 〈0〉), i.e. a buy order of price zero. Note
if b0 = 0 then this procedure just inserts at the end, so we do not even reveal if, when we get here, we have b0 = 0 or not.

(1) 〈f0〉 ← 〈q0〉 < 〈q1〉.
(2) For i = 1, . . . ,M + 1 do

(I) 〈fi〉 ← 〈q0〉 ≤ 〈qi〉.
(II) 〈f ′i〉 ← (1− 〈fi〉) · 〈fi−1〉.

(III) 〈f ′′i 〉 ← (1− 〈fi〉) · (1− 〈f ′i〉).
(IV) 〈namebi

′〉 ← 〈fi〉 · 〈namebi 〉+ 〈f ′i〉 · 〈nameb0〉+ 〈f ′′i 〉 · 〈namebi−1〉.
(V) 〈b′i〉 ← 〈fi〉 · 〈bi〉+ 〈f ′i〉 · 〈b0〉+ 〈f ′′i 〉 · 〈bi−1〉.

(VI) 〈q′i〉 ← 〈fi〉 · 〈qi〉+ 〈f ′i〉 · 〈q0〉+ 〈f ′′i 〉 · 〈qi−1〉.
(3) Output [(〈namebi

′〉, 〈b′i〉, 〈q′i〉)]M+1
i=1 .

Figure 2. Insert into Buy List

Algorithm for CDA

Suppose we have state S and B as above, also suppose a new buy order (〈nameb0〉, 〈b0〉, 〈q0〉) comes in; a similar operation
will happen when a new sell order comes in.

(1) Call the algorithm from Figure 1.
(2) 〈e〉 ← 〈b0〉 = 0.
(3) 〈q0〉 ← 〈q0〉 · (1− 〈e〉).

[Set the buy price to zero if no items are left in this order]

(4) We now need to insert (〈b0〉, 〈q0〉) into the buy list without revealing where it goes, which is done by calling the algorithm
from Figure 2.

Figure 3. Algorithm for CDA
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To understand the costs of these three algorithms in terms of pre-processed data required and rounds of communi-
cation in the online phase, we present Table 2. In this table we let s denote the number of opened sell orders, which is
the number of executions of the loop in Figure 1.

Table 2. Costs of the Components of the CDA Algorithm

Figure 1 Figure 2 Figure 3 Total
Multiplications 11 · (M + 1) 1 N 11 ·M +N + 12

Comparisons M + 2 0 3 ·N M + 3 ·N + 2

Equality tests 0 1 0 1
Rounds of

communication
10 8 9 · (s < N) + 18 · s 18 + 9 · (s < N) + 18 · s

Experimental Results Since the run time of the first phase depends on the number of executed sell orders (and to some
extent on the total number of sell orders N ), given a single incoming buy order, and the run time of the second phase
depends on the number of buy orders M on the book, we set up our experiments as follows: For various values of N
and M we generated an existing buy and sell order book, consisting of two secret shared sorted lists of (namebi , bi, qi)
(resp. (namesi , si, pi)) values such that bi, si ∈ {1, . . . , 100} and the difference between successive prices in each list
differ by at most one. Then, for each (N,M) pair, we ran four tests. In each test, we selected a new buy order which
we knew would result in opening exactly j sell orders, for j ∈ {0, 1, 2, 3}.

Our results are given in Tables 3 and 4, respectively, for the case of honest majority three parties (using Shamir
sharing) and the case of two parties using full threshold sharing. We measure online throughput, in terms of number
of transactions per second, which can be evaluated using this method, and the latency (in seconds) for each order to
be processed. As explained above, the online execution time for the CDA algorithm depends only on the number of
opened sells s (assuming an incoming buy order is being processed), as well as the size of the order book (N,M).
The offline time depends soley on the size of the order book (N,M). In both cases the throughput for the CDA
algorithm is one over the latency, as we only process one transaction per execution. Whilst the offline throughputs are
less interesting, as one can run the offline processing “overnight”, the throughputs for the online processing are not
very promising. Thus, while the CDA method is the algorithm of choice in lit markets, it is not well suited to the case
of evaluation in an MPC environment for a Dark Market.

Table 3. Online Latency and Throughput for CDA Algorithm. We assume an order books of size 10 < N,M < 50.

Number of Opened Rounds of Two Party Case Three Party Case
Sell Orders Communication Latency Throughput Latency Throughput

0 27 0.004 - 0.012 83 - 250 0.007 - 0.023 43 - 142
1 45 0.005 - 0.013 76 - 200 0.008 - 0.025 40 - 125
2 63 0.006 - 0.014 71 - 166 0.010 - 0.027 37 - 100
3 81 0.007 - 0.015 66 - 142 0.012 - 0.029 34 - 83

4.2 Periodic Auction Method

Periodic auctions have two distinct phases: (i) during the open auction period, limit orders are submitted and stored
in price ordered lists (bids and offers); (ii) at auction close, “clearing” is performed to find a single price that will
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Table 4. Offline Latency and Throughput for CDA Algorithm.

Two Party Case Three Party Case
N M Latency Throughput Latency Throughput
10 10 4.879 .20 0.095 10.5
10 20 6.099 .16 0.129 7.7
20 10 8.243 .12 0.138 7.2
20 20 9.464 .10 0.164 6.1
20 40 11.906 .08 0.212 4.7
40 20 16.193 .06 0.282 3.5
50 50 23.220 .04 0.376 2.6

maximise the volume traded. Orders able to execute at this clearing price are cleared (i.e., transact). Unexecuted orders
remain. A new open auction period then begins and the cycle repeats. Prior work for clearing price double auctions
(essentially a periodic auction that is run only once) using MPC has successfully demonstrated implementation [2]
and real-world application for sugar beet contracts [18]. However, in this work, time is a weak constraint, with auction
periods of the order of a day. Testing showed computations for 1000 orders took around 30 minutes (i.e., a throughput
of 0.55 orders per second). In contrast, real-world auction periods for financial markets are very short (e.g., Turquoise
Lit Auctions and Posit Auctions have auction periods lasting 100 ms), so practical MPC implementation of a periodic
auction requires high sub-second throughput. As far as we are aware, no prior work has evaluated MPC for periodic
auctions at the speeds (throughput) we consider here.

In this method we have three distinct phases. A bid input phase, a bid completion phase, and a price discovery
phase. The bid input phase is executed as a bid is entered during the period under consideration. This is essentially the
insertion sort performed at the end of the earlier CDA algorithm, i.e. the algorithm in Figure 2. The second phase of
the period auction is to complete the actual orders. This is done by (essentially) calling the algorithm in Figure 1, there
are however some modifications, which we outline in Figure 4.

Periodic Auction Bid Completion Phase

On input of sorted lists of buy and sell orders, [(〈namebi 〉, 〈bi〉, 〈qi〉)]Mi=1 and [(〈namesi 〉, 〈si〉, 〈pi〉)]Ni=1, this algorithm outputs
the identities of the matched orders, but not the prices. The output is a list of completed orders on the buy and sell side, SC

and BC .

(1) SC = BC = ∅.
(2) 〈b〉 ← 1.
(3) While N 6= 0 and M 6= 0 do

(I) 〈f〉 ← 〈b〉 · (〈q1〉 ≥ 〈p1〉).
(II) Open 〈f〉

(III) If f = 0 then exit.
(IV) Execute the algorithm in Figure 1, except do not reveal the sell price in Step (D). Instead add (names1, t, 〈p1〉) into

SC . Open 〈name1〉b and add (nameb1, t, 〈q1〉) into SB .
(V) 〈b〉 ← (〈b1〉 = 0).

(VI) Delete item one from the buy list, and relabel two as one, three as two, and so on.
(4) Output SC and BC .

Figure 4. Periodic Auction Bid Completion Phase

The final stage of the periodic auction is to determine the actual price which all trades should execute at. To do
this for each secret shared price 〈pi〉, 〈qi〉 on the lists SC and BC we work out the minumum of the volume of bids
with a larger price, and volume of sells with a lower price. Then we take the possible final prices to be the set of prices
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which maximise this volume. If there is one such price, then that is the price. But there could be multiple prices here,
and at this point we reveal all such prices which maximise this volume metric. From here we can work out the final
price easily. Note, that in the case of multiple prices we do reveal some information (that the final price is a mixture of
possible prices), but this is relatively minor leakage. See Figure 5 for the algorithm.

Periodic Auction Price Calculation

Given the sets BC = {(namebi , bi, 〈qi〉)}M
′

i=1 and SC = {(namesi , si, 〈pi〉)}N
′

i=1 output by the algorithm Figure 4, this
algorithm determines the final price.

(1) X ← ∅.
(2) For each 〈p〉 = 〈qi〉 from BC (and 〈p〉 = 〈pi〉 from SC ) execute

(I) 〈V1〉 ←
∑M′

j=1 bj · (〈qj〉 ≥ 〈p〉).
(II) 〈V2〉 ←

∑N′

j=1 sj · (〈pj〉 ≤ 〈p〉).
(III) 〈f〉 ← 〈V1〉 ≥ 〈V2〉
(IV) 〈g〉 ← 〈V1〉 ≤ 〈V2〉
(V) 〈V 〉 ← 〈g〉 · 〈V1〉+ (1− 〈g〉) · 〈V2〉.

(VI) a = 1.
(VII) If X 6= ∅

(A) Pick an element (〈v〉, 〈p′〉, 〈f ′〉, 〈g′〉) from X .
(B) 〈b1〉 ← 〈v〉 < 〈V 〉.
(C) 〈b2〉 ← 〈v〉 > 〈V 〉.
(D) Open 〈b1〉 and 〈b2〉.
(E) If b2 = 1 then a = 0.
(F) If b1 = 1 then X ← ∅.

(VIII) If a = 1 then X ← X ∪ {(〈V 〉, 〈p〉, 〈f〉, 〈g〉)}.
(3) Open all the prices in X , if they are all equal output this price and stop.
(4) Let 〈fx〉, 〈gx〉 denote the f and g components over all x ∈ X
(5) 〈a〉 ←

∏
x∈X〈fx〉.

(6) 〈b〉 ←
∏

x∈X〈gx〉.
(7) Open 〈a〉 and 〈b〉.
(8) If a = 1 then the price is the maximal price in X .

[Because all volumes of bid prices are greater than or equal to all volumes of sell prices]

(9) Else if b = 1 then the price is the minimal price in X .
[Because all volumes of bid prices are less than or equal to all volumes of sell prices]

(10) Else the price is the mid range of the prices in X .

Figure 5. Periodic Auction Price Calculation

Experimental Results As explained above the periodic auction consists of three distinct phases, which we time
separately. The first phase, which is the algorithm in Figure 2 needs to be executed as each order comes in. In Table 5
we present the online execution time of this phase of the algorithm in the case of processing a buy order, for various
values of M . Obviously as each order comes in the value of M increases by one. We see that, roughly, the online time
increases linearly as a function of the size of the order book (which is to be expected). Thus, in a real market, this
first phase will need to complete as soon as the order book reaches a size that the current incoming orders cannot be
processed as they arrive. Once the throughput of incoming orders is greater than one over the online latency needed
to deal with the incoming orders, the algorithm will be unable to cope. Thus, this cross over point will determine the
length of the period in the periodic auction.

We now turn to the two phases which happen at the end of the period, namely the execution of the bid completion
phase from Figure 4 and the price calculation from Figure 5. The main cost in the evaluation of Figure 4 is the
evaluation of line 3-IV. The rest of the calculation just depends on a little book keeping consisting of two comparisons
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Table 5. Insert into Buy List (Figure 2) Results

N Rounds Pre-Processed Two Party Case Three Party Case
Data (m,b) Offline

Time
Online
Time

Offline
Time

Online
Time

10 10 (1561,1260) 1.454 0.002 0.060 0.005
20 10 (2871,2310) 2.675 0.004 0.073 0.010
50 10 (6801,5460) 6.338 0.010 0.135 0.021

100 10 (13351,10710) 12.443 0.022 0.238 0.042
200 10 (26451,21210) 24.652 0.054 0.437 0.090

and one multiplication per iteration of the loop (3). The number of iterations of the loop (3) depending on precisely
what quantities are matched in the main step of line 3-IV (i.e. essentially how many sell items are opened). The
experimental results for this step are presented in Tables 6 and 7. The online run times in Table 6 do not depend
significantly on N , thus we only give the range of values for the time for values of N in the range 10 to 500. The
offline runtimes depend more on the value of N .

Table 6. Online Latency for Step 3-IV of Figure 4

Number of Two Party
Case

Three Party
Case

Opened
Sells

Rounds Latency Latency

0 9 0.001 -
0.001

0.001 -
0.001

1 27 0.002 -
0.002

0.003 -
0.003

2 45 0.003 -
0.004

0.004 -
0.005

3 63 0.004 -
0.005

0.006 -
0.008

Table 7. Offline Latency for Step 3-IV of Figure 4

Pre-Processed Two Party Case Three Party Case
N Data (m,b) Latency Latency
10 (3610,3150) 3.364 0.073
20 (7220,6300) 6.729 0.137
50 (18050, 15750) 16.822 0.288
100 (36100,31500) 33.645 0.492
200 (72200,63000) 67.290 0.997
500 (180500,157500) 168.226 2.449

Finally we turn to the execution times for the price completion phase, which we present in Table 8. Here we are
only interested in small values of N ′ and M ′, as this algorithm is only executed for the orders which were actually
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completed, and not for the entire order book. We see that if the size of N ′ and M ′ are always low, then the latency for
this part of the auction can be quite low. But as N ′ and M ′ grows the latency can become quite high.

Table 8. Periodic Auction Price Calculation (Figure 5) Results

N’ M’ Rounds Pre-Processed Two Party Case Three Party Case
Data (m,b) Offline

Time
Online
Time

Offline
Time

Online
Time

1 1 42 (1206,1050) 1.123 0.005 0.048 0.005
1 2 65 (2290,1995) 2.134 0.005 0.061 0.009
2 2 92 (3614,3150) 3.368 0.009 0.072 0.014
2 4 138 (6982,6090) 6.507 0.018 0.116 0.027
5 5 242 (16598,14490) 15.469 0.042 0.263 0.058
5 10 357 (34018,29715) 31.704 0.060 0.683 0.120

10 10 492 (57438,50190) 53.532 0.107 0.804 0.192
10 20 722 (122278,106890) 113.963 0.217 1.817 0.394
20 20 992 (211118,184590) 196.761 0.362 3.086 0.672

While processing the incoming orders can be plausibly performed in real time for markets with relatively low
numbers of orders, and the final fulfillment mechanism can be implemented very efficiently, the problem comes in
determining the final clearing price. The standard methodology for price determination produces an algorithm with a
relatively high latency for even small numbers of fulfilled bids. Thus, the use of the periodic auction may be limited in
its applicability. This leads us to consider the more naı̈ve volume matching methodology, which we turn to in the next
section.

4.3 Volume Matching Method

Volume match (a scheduled cross at some fixed time point, where buy and sell orders are matched only on volume,
with no price information considered) is the simplest matching algorithm we consider. As far as we are aware, there
is no prior work attempting a “secure” implementation of volume match. This is perhaps because the algorithm is
too simple to be of interest from the theoretical perspective of auction mechanism design, since there is no price
discovery process. However, despite (and, perhaps, because of) its simplicity, volume match (or scheduled cross) has
been used consistently in real-world dark markets for more than thirty years: from the original Posit and Instinet
platforms, where crosses occurred once, or several times, per day; to current incarnations such as Posit Match and
LSE’s Turquoise, where crosses occur at intervals between 10 and 45 seconds. Therefore, despite the lack of prior
work in this area, we believe a secure MPC implementation of a volume match algorithm has potential for significant
real-world impact.

As explained in the introduction, our final method we use is a volume matching algorithm. This allows us to
dispense with the complex decision making related to prices of bids and offers in the previous two methods. In these
dark market auctions the price of all completed trades does not depend on any input price by the bidders, but is simply
taken from an external source; usually the price on an associated lit market.

Again, we take as input the set of orders, but this time we are only interested in the specific volume to be bought or
sold, and each party only enters their respective volume for this period of trading. At the end of the computation, we
want all buy and sell orders that can be matched to be opened. Matching is done on a first-come-first-served basis. If
a party’s order is output as zero, or less than the order’s original volume, then this is the amount which gets satisfied.

The algorithm is presented in Figure 6. One can immediately see it is much simpler, and the number of operations
are a deterministic function ofN andM (unlike prior methods). Indeed, the algorithm requires 2 · (N+M)+1 secure
comparisons, 2 · (N +M) + 1 secure multiplications, plus some secure additions.
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Algorithm for Clearing a Dark Market

On input of 〈s1〉, . . . , 〈sN 〉 and 〈b1〉, . . . , 〈bM 〉 the algorithm computes (we assume N and M are known)

1. 〈S〉 ←
∑N

i=1〈si〉.
2. 〈B〉 ←

∑M
j=1〈bj〉.

3. 〈f〉 ← [S] > [B].
4. 〈T 〉 ← 〈f〉 · (〈B〉 − 〈S〉) + 〈S〉.

[Note 〈T〉 holds the total volume which will be bought/sold in this execution].

5. 〈L〉 ← 〈T 〉.
6. For i from 1 to N do

(a) 〈z1〉 ← 〈L〉 ≤ 0.
(b) 〈z2〉 ← 〈L〉 < 〈si〉.
(c) 〈si〉 ← ((〈L〉 − 〈si〉) · 〈z2〉+ 〈si〉) · (1− 〈z1〉).
(d) 〈L〉 ← 〈L〉 − 〈si〉.

7. 〈L〉 ← 〈T 〉.
8. For j from 1 to M do

(a) 〈z1〉 ← 〈L〉 ≤ 0.
(b) 〈z2〉 ← 〈L〉 < 〈bj〉.
(c) 〈bj〉 ← ((〈L〉 − 〈bj〉) · 〈z2〉+ 〈bj〉) · (1− 〈z1〉).
(d) 〈L〉 ← 〈L〉 − 〈bj〉.

9. Open 〈si〉 and 〈bj〉 for all i and j.

Figure 6. Algorithm for Clearing a Dark Market

As an example, consider the values s1 = 3, s2 = 4, s3 = 5 and b1 = 5, b2 = 2, b3 = 11, b4 = 1. Then, we see the
following trace will be executed, resulting in sellers 1 to 3 selling all their items, while only buyers 1 and 2 manage to
get exactly what they want. Buyer 3 has to make do with only obtaining five units and buyer 4 receives none.

– S = 3 + 4 + 5 = 12
– B = 5 + 2 + 11 + 1 = 19
– f = 0
– T = S = 12
– L = 12, i = 1, z1 = 0, z2 = 0, s1 = 3
– L = 9, i = 2, z1 = 0, z2 = 0, s2 = 4
– L = 5, i = 3, z1 = 0, z2 = 0, s3 = 5
– L = 12, j = 1, z1 = 0, z2 = 0, b1 = 5
– L = 7, j = 2, z1 = 0, z2 = 0, b2 = 2
– L = 5, j = 3, z1 = 0, z2 = 0, b3 = 5
– L = 0, j = 4, z1 = 1, z2 = 1, b4 = 0

Experimental Results Again we performed experiments for different values of N and M , with random buy and sell
bids in the range [1, . . . , 100]. Our results are given in Table 9 for our two cases. The algorithm is relatively simple to
analyse and it is clear that the number of multiplications and comparisons in one execution is given by 2 ·(N+M)+1,
and the number of rounds of communication is given by 9 · (max(M,N)+1). The online latency of this methodology
is basically given by the online phase time to, whilst the throughput in terms of number of bids processed per second
is given by (N +M)/to. As we can see from the table, the throughput remains fairly constant, with any variation due
to our experimental setup. Importantly, the online throughput we are able to achieve are close to what one would need
in a real market.

5 Conclusion

We have presented the first full MPC proof-of-concept implementation and analysis of three common auction types
used for dark pool financial trading venues. For each of the three algorithms presented, the two-party case has higher
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Table 9. Volume Matching Run Times

N M Rounds Pre-Processed Two Party Case Three Party Case
Data (m,b) Offline

Time
Online
Time

Online
Throughput

Offline
Time

Online
Time

Online
Throughput

10 10 99 (4961,4305) 4.623 0.010 2000 0.100 0.018 1111
10 20 189 (7381,6405) 6.879 0.015 2000 0.159 0.029 1034
20 20 189 (9801,8505) 9.134 0.020 2000 0.193 0.037 1081
20 40 369 (14641,12705) 13.645 0.041 1463 0.245 0.057 1052
50 50 459 (24321,21105) 22.667 0.045 2222 0.484 0.090 1111
50 100 909 (36421,31605) 33.944 0.087 1724 0.690 0.146 1027

100 100 909 (48521,42105) 45.221 0.099 2020 0.906 0.182 1098
100 200 1809 (72721,63105) 67.775 0.158 1898 1.233 0.287 1045
200 200 1809 (96921,84105) 90.330 0.239 1673 1.766 0.360 1111
200 400 3609 (145321,126105) 135.439 0.344 1744 2.508 0.583 1029
500 500 4509 (242121,210105) 225.656 0.500 2000 4.136 0.900 1111

online throughput than the three-party case; but lower offline throughput. However, given that most primary markets
open approximately eight hours per day, five days a week, and dark markets tend to follow similar opening hours, a
real-world implementation would have plenty of time to perform these offline computations. Indeed, offline compu-
tations can also be performed in parallel. Therefore, the offline times presented are not a limiting factor in algorithm
performance.

The two-party case is fully secure as long as at least one party is trustworthy. Therefore, we suggest a practical
implementation of the two-party algorithms presented would have the venue operator as party one, and the regulator
as party two (i.e., the FCA in UK, ESMA in EU, or SEC in USA). Thus, as the operator is unable to view order data
in the clear, the algorithms guarantee no information misuse (such as that previously perpetrated by Pipeline [27],
Liquidnet [28], and ITG [29]). In addition, as the regulator is also involved in the computation, this architecture ensures
that a venue operator cannot illicitly vary the rules of the published trading mechanism (e.g., by using undisclosed order
types that favour certain traders, such as perpetrated by UBS [30]).

To avoid abusive practices, regulation has attempted to encourage dark pool venues to concentrate on natural
liquidity flow (volume investors looking to trade large positions with minimum market impact); and it appears that
there has been some success. In Feb 2017, mean trade size and number of trades on European dark pools ranged from
Liquidnet’s large volume, negotiated matching platform (50 trades/hour; mean size C900,000) to UBS’s mid-point
matching MTF (16,000 trades/hour; mean size C8,000) [15]. Following the introduction of MiFID II in Jan 2018, the
average trade size on European dark markets almost doubled in the first six months [22]. As trade size is negatively
correlated with order flow, this suggests the throughput (orders per unit time) of dark venues has fallen.

Considering this, when viewed from a practical perspective, the maximum throughput of the three MPC algorithms
presented in this paper are promising: the CDA can execute approximately 10-50 orders per second (depending on
order book depth); the periodic auction, running every second, can clear approximately 20 orders on either side; while
the scheduled cross volume match can execute 800 orders per second. For a real-world dark pool with relatively large
minimum order size, these results suggest that MPC is ready for a practical implementation in financial markets,
particularly if a simple matching mechanism is used (e.g., the volume match algorithm). Large investors are often
prepared to sacrifice timeliness for privacy. Therefore, the privacy-preserving security guarantee an MPC dark pool
provides may tempt enough users for it to be viable; even if executions times are longer than rival venues.
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