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Abstract. Linear transformations are often applied to the table-based
cryptographic implementation including white-box cryptography in or-
der to prevent key-dependent intermediate values from being analyzed.
However, it has been shown that there still exists a correlation before and
after the linear transformations, and thus a linear transformation is not
enough to prevent key leakage from being analyzed. In this paper, we fo-
cus on the problem of linear transformations including the characteristics
of block invertible binary matrices and the distribution of intermediate
values. Our experimental results and proof show that the balanced dis-
tribution of the key-dependent intermediate value is the main cause of
key leakage.
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1 Introduction

From a secret key point of view, a block cipher can be seen as a secret bijection
between a plaintext set and a ciphertext set. One of the easy ways to imple-
ment this bijection is a lookup table of mapping a plaintext to its corresponding
ciphertext. Since implementing a block cipher as one lookup table is imprac-
tical because of its huge size, it is usually implemented as a series of lookup
tables. This table-based implementation is also used in white-box cryptography.
The important point over here is that white-box cryptography generates key-
instantiated lookup tables and protects each table with linear and non-linear
transformations in order to prevent a key leakage from lookup values.

There are various techniques to extract the key hidden in white-box crypto-
graphic implementations of standard block ciphers such as DES and AES. First,
a number of practical cryptanalysis techniques [13, 38, 4, 20, 25–27] have been
introduced to extract the secret key from the white-box DES (WB-DES) and
AES (WB-AES) and their variants [7, 40, 16, 19, 21]. Second, Differential Fault
Analysis (DFA) [32] on white-box cryptography was also demonstrated, where
an attacker is able to inject a fault at a desired location in memory. Here, those
white-box attacks rely on an in-depth understanding of a target implementation
so that an attacker is able to gain read/write access to precise internal states
during the execution. Thus commercial white-box cryptography [3, 11, 14, 37]
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focuses on making a barrier to the full control of an attacker and is often com-
bined with additional protection techniques including obfuscation, enveloping,
hardware ID binding, and anti-debug protections.

In contrast to above white-box attacks, gray-box attacks using non-invasive
information such as power consumption of a target device can be mounted. Dif-
ferential Power Analysis (DPA) [18], one of the most well-known techniques to
reveal the secret key imbedded in IC cards, is based on the fact that power con-
sumption of a device is proportional or inversely proportional to the Hamming
weight (HW) of data it processes. In detail, a power analysis attacker collects
a number of power traces with random plaintexts and finds a correct key that
computes hypothetical values most highly correlated to the collected traces at
a particular point. We focus on the fact that white-box cryptography can be
easily broken by power analysis [5, 33] without detailed knowledge of the tar-
get implementation. This means linear and non-linear transformations applied
to lookup tables have no effect on hiding key-sensitive intermediate values. In
case of linear transformations, it was recently reported in [2, 31] that if the in-
vertible matrix used for the linear transformation has at least one row of HW 1
then power analysis will succeed with overwhelming probability. Otherwise, the
correct key is indistinguishable from the wrong key hypothesis correlation and
power analysis fails with high probability.

In this study, our analysis explains that the key leakage from the linear
transformation is likely to happen even if there is no such row of HW 1 in the
matrix. We also show that there will be no such matrix containing any row of
HW 1 if a block invertible binary matrix with 4×4 submatrices of full rank is
chosen for carrying maximum information and maximizing information diffusion
as recommended in [9]. In addition, a large invertible matrix can be efficiently
generated using the technique introduced in [39]. More precisely, we find out
that the key leakage after linear transformations is largely due to the balanced
distribution of intermediate values, and we offer a demonstration and a simple
proof using the Walsh transforms. To enhance our finding, we try to insert a
random byte in the intermediate value before linear transformations making an
unbalanced distribution and show a reduced correlation to the key.

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts including power analysis and the key leakage issue in the linear trans-
formation based on the Walsh transforms. In Section 3, we provide our analysis
of the main reason why the key are still revealed in the presence of linear trans-
formation. Section 4 concludes this paper.

2 Background

In this section, we introduce the basic concept of power analysis and and demon-
strate the key leakage after the linear transformation using the Walsh transforms.
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2.1 Power Analysis

An explanation of successful power analysis on the white-box cryptographic im-
plementation could be that attacker’s correct hypothetical value will correlate
to the target lookup value. Here, DPA or Correlation Power Analysis (CPA) [6]
can be used as power analysis techniques. Note that Differential Computation
Analysis [5] improves the efficiency of DPA and CPA attacks since there is no
measurement noise in the software execution traces, unlike the power consump-
tion traces.

After collecting the traces with random plaintexts, DPA and CPA perform
statistical analysis in different ways. DPA uses the selection function D to split
the collected traces into two sets based on the attacker’s hypothetical values. If
the attacker’s hypothetical key is correct (and therefore the hypothetical value
is correct), then the trace separation by D is also accurate and there will be a
peak in the differential trace.

In contrast, CPA uses a leakage model including the HW and the Hamming
distance instead of the selection function D. When attacking a white-box im-
plementation, the bit (mono-bit) model is appropriate because HW-based CPA
attacks are unlikely to be successful due to the disturbed HW by linear and non-
linear transformations. Given N power traces V1..N [1..κ] containing κ samples
each, CPA will estimate the power consumption at each point of each trace using
attacker’s hypothetical intermediate value. For K different key candidates, let
En,k∗ (1≤n≤N , 0≤k∗< K) denote the power estimate in the nth trace with the
hypothetical key k∗. To measure a correlation between hypothetical power con-
sumption and measured power traces, the estimator r is defined as follows [22]:

rk∗,j =

∑N
n=1(En,k∗ − E∗k ) · (Vn[j]− V [j])√∑N

n=1(En,k∗ − E∗k )2 ·
∑N
n=1(Vn[j]− V [j])2

,

where E∗k and V [j] are sample means of E∗k and V [j], respectively. If there exists a
correlation, a noticeable peak will be found in the correlation plot for the correct
key.

Power analysis countermeasures can be categorized into masking and hiding,
where masking breaks the correlation between power signals and the processed
data while hiding reduces the signal to noise ratio. Maksing [1, 10, 12, 23, 28,
35] randomizes every key-dependent intermediate value by precomputing a new
masked lookup table for each execution of encryption. To protect against higher-
order DPA attacks [15, 24, 36], where an attacker exploits the joint key leakage
from several intermediate values, higher-order DPA countermeasures have been
studied [34, 30, 17, 8, 29]. One of the most used hiding techniques, on the other
hand, is introducing random delay. When the target cryptographic operation
occurs uniformly distributed across n time instants due to random delay, the
number of power traces for a successful DPA grows in n2 only if DPA is per-
formed straightforwardly. Here we can see these countermeasures are strongly
dependent on expensive run-time random source, and also result in slow execu-
tion of cryptographic algorithm.
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2.2 Detecting Key Leakage by the Walsh Transforms

Give a table-based implementation of a block cipher which is protected by linear
and nonlinear transformations (often we use the term encoding), we can quantify
a correlation using the Walsh transforms. To understand how the Walsh trans-
form can be used to quantify a correlation between the input and output of a
target lookup table, we use the following definitions from [33].

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ m, it is called a balanced mth order
correlation immune function or an m-resilient function.

Then we know that Wf (ω) quantifies the imbalances in the encoding, and the
large absolute value of Wf (ω) means the strong correlation between f(x) and
x ·ω. Using this property, we calculate the correlation between the table lookup
values and hypothetical values.

Let’s demonstrate the key leakage from the encoded lookup table generated
by the composition of S-box and AddRoundKey in the first round of AES with
a 128-bit key. We denote the initial round key by k0i,j , where i, j ∈ [0, 3], and

decompose the Mixcolumn operation with a column vector [x0 x1 x2 x3]T of the
state matrix as follows:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3


= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02


= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3,

where MCi is the ith column vector of the MixColumns matrix, and yi(xi) =
xi ·MCi. Now we can define

x = S(p⊕ k00,j)
y0(x) =

[
2 · x x x 3 · x

]T
where p ∈ GF(28) means a subbyte of the plaintext in the first row the state
matrix, S represents SubBytes. Let f(x) denote the lookup values of y(x) pro-
tected by linear and non-linear transformations. We have 32 Boolean functions
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fi∈{1,...,32}(x): {0, 1}8 → {0, 1}. To recover the target subkey k00,2 = 0x88, we
calculate the Walsh transforms Wfi and sum all the imbalances for each key
candidate and ω such that HW(ω) = 1 as follows:

∆f
k∈{0,1}8 =

∑
ω=1,2,4,...,128

∑
i=1,...,32

|Wfi(ω)|.

The reason why we only select ω of HW(ω) = 1 is that the HW-based key
leakage model is not effective to detect the correlation before and after the
transformation.

The Walsh transforms and their sum of all imbalances are given in Fig. 1.
As we can see in Fig. 1a, the Walsh transforms with ω = 4 of the correct key
(0x88) produce 0 except two points; the Wf14 and Wf16 of the correct key are
-128, and their absolute value (128) is the most highest value. In contrast, the
maximum and the average values of |Wfi(ω)| of wrong key candidates are 56 and
about 13.13 (the standard deviation is about 9.35), respectively. This gives us
that f14(·) and f16(·) cause key leakages and thus power analysis using the 3rd

bit (when the LSB is the 1st bit) of attacker’s hypothetical SubBytes outputs

is able to recover this subkey. ∆f
k=0x88 is 256 (= |−128| + |−128| ) which is

obviously distinguishable from that of other key candidates as shown in Fig. 1b
(∆f

k 6=0x88 are about 2900-3700). This simply shows us how to use the sum of all
imbalances for recovering the correct key. Hereafter, we will utilize the Walsh
transforms for various purposes including the calculation of correlation and our
proof regarding the cause of key leakage.

3 Analysis of Linear Transformations

As mentioned, previous studies [2, 31] on linear transformations pointed out that
the existence of rows of HW 1 in the invertible matrix decides the key leakage. In
this section, we analyze that the main cause of key leakage lies in the distribution
of the intermediate values rather than the property of the matrix.

3.1 Key Leakage Statistics after Linear Transformations

To show an experimental result of the key leakage from the linear transformation
we define:

xi = S(p⊕ k0i,2)
f(xi) = M · yi(xi)i∈{0,1,2,3},

where M is a 32×32 binary invertible matrix, and k00,2 = 0x88, k01,2 = 0x99,
k02,2 = 0xAA and k03,2 = 0xBB. Here, we choose M as a block invertible square
matrix for the following reasons, as already explained. First, it is recommended
by the author of [9] to choose a non-singular matrix with 4×4 submatrices of full
rank, ensuring that the encoded components will carry maximum information
and maximizing information diffusion. Second, a large block invertible matrix
can be efficiently generated by using the technique explained in [39]. In the case
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(a) Walsh transforms for fi∈{1,··· ,32}(·) with ω = 4 for all key
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(b) Sum of all imbalances for all key candidates.

Fig. 1: Key leakage detection using the Walsh transforms.

of block invertible matrices, there will be no such row of HW 1. However, our
experimental results for the sum of imbalance depicted in Fig. 2 show that there
still exists a problematic probability of key leakage from linear transformations.
Unlike in the case of Fig. 1b of a key leakage from the linear and nonlinear
transformations, note that this shows the key leakage from linear transformations
without nonlinear transformations. We can see that linear transformations with
M can hide three subkeys 0x88, 0xAA, and 0xBB (the Walsh transforms score
0), but expose one subkey 0x99 from y1(x) (the Walsh transforms score 256
in Fig. 2b). This gives us that linear transformations produce well-balanced
outputs with an overwhelming probability, but this is not always guarantee a
reliable protection on secret keys.

Table 1 and Fig. 3 show our experimental results of linear transformations
on yi∈{0,1,2,3}(x) using 1,000 randomly generated block invertible matrices. For
HW(ω) = 1, Wfi(ω) = 0 with approximately 99.7% and Wfi(ω) = 256 with
0.3%; the average of |Wfi(ω)| is approximately 0.7 (We will proof later there is
no other Wfi(ω) values). The crucial observation here is that power analysis can
conduct a number of tests to find the correlation between fi∈[1,32] and each bit of
the hypothetical value such as the SubBytes output. For there are 8 values of ω
∈ GF(28) such that HW(ω) = 1 and y0 - y3 are 32 bits in length, 1,024 Wfi will
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(d) On M · y3(x)

Fig. 2: Sum of the imbalance of Wfi(ω) for all subkey candidates on each
yi∈{0,1,2,3}(x) with only linear transformations.

be tested to see if there exists a key leakage regarding the four subkeys from the
linear transformation using a given matrixM . Consequently, there probably exist
about 3 peaks of the correct subkey distinguishable from wrong key candidates,
and the 3 peaks can reveal 1 to 3 subkeys. According to our experiments, each
of y0, y1, y2, and y3 shows around 1/2 probability of ∆f

kc = 0, and only about
5% of matrices do not leak any subkeys after linear transformations, where kc
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Table 1: Experimental results of linear transformations with 1,000 randomly
generated block invertible matrices. kc: correct key.

Vectors to be transformed

Number of y0 y1 y2 y3

Wfi(ω) = 0 255,206 255,205 255,309 255,203

Wfi(ω) = 256 794 795 691 797

∆f
kc = 0 475 489 520 464

∆f
kc = 256 333 307 316 343

∆f
kc = 512 132 144 122 146

∆f
kc > 512 60 60 42 47

means the correct key. In most cases, 1 to 3 out of four subkeys are shown to be
exposed.
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Fig. 3: The number of block invertible matrices (y-axis) vs. the number of key
leakages among yi∈{0,1,2,3} for each block invertible matrix (x-axis).

From now on, we are going to analyze this problematic characteristic of the
linear transformations producing Wfi scores of 0 or 256. The first thing we want
to investigate is whether the block invertible matrix is responsible for this matter.

3.2 Analysis of Block Invertible Square Matrix

In [9], the authors choose M as a non-singular matrix with submatrices of full
rank with a reference to [39] for maximizing information diffusion. To begin with,
we briefly review the definition of a block invertible square matrix.

Definition 3. If all the blocks Bi,j in a block matrix n
mM [pB] are invertible,

matrix M is called an (m, n, p) block invertible matrix. Furthermore, if m = n,
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and M is invertible then M is called an (m, p) block invertible square matrix,
where n

mM [pB] denotes an n ×m matrix M with nm/p2 blocks (submatrices),
and Bi,j denotes the block in row i and column j of blocks [39].

Generating (n, 2) block invertible square matrices begins with a (2, 2) block
invertible square matrix and extends by (4, 2), (6, 2), . . ., and repeats it (n−2)/2
times. The important point over here is that every 2×2 submatrix in a (n, 2)
block invertible square matrix should be invertible by the definition and all 2×2
invertible matrices in GF(2) are as follows:∣∣∣∣1 0

0 1

∣∣∣∣ ∣∣∣∣1 1
1 0

∣∣∣∣ ∣∣∣∣0 1
1 1

∣∣∣∣ ∣∣∣∣0 1
1 0

∣∣∣∣ ∣∣∣∣1 1
0 1

∣∣∣∣ ∣∣∣∣1 0
1 1

∣∣∣∣
At a glance, the number of 1s in the 4 out of 6 matrices is greater than 0s. By
the principle of constructing a block invertible square matrix, the HW of each
row and column in an (n, 2) block invertible matrix will be greater than n/2.
For example, let’s assume that a (4, 2) matrix is initialized with∣∣∣∣1 0

0 1

∣∣∣∣ ,
then its resulting matrix will be ∣∣∣∣∣∣∣∣

1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0

∣∣∣∣∣∣∣∣ .
In the case of an initialization with ∣∣∣∣0 1

1 0

∣∣∣∣ ,
we will have ∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0
0 1 1 0
1 0 1 1

∣∣∣∣∣∣∣∣ .
During the generation of a (32, 2) matrix through this process, 1s appear more
frequently. We have performed the following experiment to check if this over-
weight HW of the block invertible matrix is the main reason for key leakage.
We randomly generated a balanced non-invertible (singular) 32×32 matrix M b,
such that f(x) = M b · yi∈{0,1,2,3}(x), where M b has the HW of 16 for each row
and column, and used it to compute the sum of imbalances. As shown in Fig. 4,
there still exist key leakages from y1 and y2 with ∆f

kc = 256. For this reason,
we can conclude that the matrix HW itself is not the cause of key leakages from
linear transformations.
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Fig. 4: Sum of the imbalance for all key candidates on each yi∈{0,1,2,3}(x) multi-

plied with a balanced matrix M b.

3.3 Analysis of Key-dependent Intermediate Values

The next key-leakage point to be analyzed is y. From Definition 1 and 2, we
know that a balanced correlation immune function is strongly dependent on the
distribution of fi(x)⊕ x · ω . Since a matrix characteristic is not responsible for
the key leakage as we analyzed previously, the distribution of y is convinced
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to mainly decide the distribution of fi(x)⊕ x · ω. Here recall that given a key-
dependent value x ∈ GF(28) and 1,000 randomly generated block invertible
matrices M , Wfi(ω) = 0 with approximately 99.7% while only 0.3% of Wfi(ω)
= 256, where HW(ω) = 1. The following proof explains the reason behind.

Lemma 1. Assume that a 256×8 binary matrix H is defined as

H =

 h1,1 h1,2 . . .
...

. . .

h256,1 h256,8


where ith row vector hi,∗ = 〈hi,1, hi,2, . . . , hi,8〉 is an element of GF (28) and
hi,∗ 6= hj,∗ for all i 6= j. Then the HW of XORs of arbitrary chosen column
vectors from H is 0 or 128. In other words, HW (h∗,j1 ⊕ h∗,j2 ⊕ · · · ⊕ h∗,jn) =
0 or 128, where n is a random positive integer and ji ∈ {1, 2, . . . , 8}.

Proof : Let J be a set of randomly chosen indices from {1, 2, . . . , 8}. Note
that for any duplicated indices α and α′ in J , i.e. α = α′, removing the dupli-
cated indices from J makes no change to the result HW.

⊕j∈Jh∗,j =
(
⊕j∈J−{α,α′} h∗,j

)
⊕ h∗,α ⊕ h∗,α′

=
(
⊕j∈J−{α,α′} h∗,j

)
⊕ 0 = ⊕j∈J−{α,α′}h∗,j .

Therefore without loss of generality we can assume that J contains no duplicated
indices and moreover

∣∣J ∣∣ = n ≤ 8.
Now we can define following partitions of indices:

Ib1,b2,...,bn = {` ∈ I|h`,ji = bi for all ji ∈ J },

where I = {1, 2, . . . , 256}, and bi ∈ {0, 1}. Here all Ib1,b2,...,bn are disjoint to the
others and ∪Ib1,b2,...,bn = I. To complete the proof, we need that for any choice
of bi’s,

∣∣Ib1,b2,...,bn ∣∣ = 256/2n = 28−n. This can be shown easily as followings.

Suppose that
∣∣Ib1,b2,...,bn∣∣ = t > 28−n. It means that there are t row vectors in H

satisfying the condition ji-th bit of the vector equals to bi. In other words, n bits
are determined by choice of bi’s and only 8−n bits are remained free. From the
condition of t is larger than 28−n and the pigeon hole principle in mathematics,
there must exist at least two indices ` and `′ in Ib1,b2,...,bn , where all bits of
h`,∗ are completely same to the bits of h`′,∗. It contradicts to the assumption
hi,∗ 6= hj,∗ for any i 6= j.

From the definition of HW, we can deduce HW (⊕j∈Jh∗,j) is summation of∣∣Ib1,b2,...,bn ∣∣ where ⊕i=1,...,nbi = 1.

HW (⊕j∈Jh∗,j) = Σ⊕i=1,...,nbi=1

∣∣Ib1,b2,...,bn ∣∣
= Σ⊕i=1,...,nbi=128−n = Σ2n−128−n
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= 2n−1 · 28−n = 27 = 128.

Note that if J is empty after de-duplication then the final HW becomes 0. It
concludes the proof of lemma.

Note thatWfi(w) is defined as
∑
x∈GF (28)(−1)fi(x)⊕w·x =

∑
x∈{0,1}8(−1)Mi,∗·y(x)⊕w·x,

where Mi,∗ is ith row of the matrix M and y(x) is one of y0(x) - y3(x) depend-
ing on the target subkey. For convenience, let y(x) = y0(x), a 32 × 1 matrix
[2 · x x x 3 · x]T . If we define Y(x) as a 32× 256 matrix [2 ·H H H 3 ·H]T ,
where the H is the matrix defined at the lemma 1, it is easy to show that each
column vector of 2 ·H or 3 ·H can be defined with XORs of some column vec-
tors of H based on the property of GF (28). Then the above equation can be
re-written as ∑

j={1,2,...256}

(−1)Bj(Mi,∗·Y(x)⊕(w·HT )),

whereBj(v) means the jth bit of the vector v. Since the exponents of the equation
can have only two values 0 or 1, the summation over {1, 2, . . . , 256} can be re-
written with the number of exponents which are 1.

Wfi(w) = 256− (2×HW (Mi,∗ ·Y(x)⊕ (w ·HT )))

Note that all row vectors of the matrix Y(x) is represented by XORing of
column vectors of H. Therefore Mi,∗ ·Y(x)⊕ (w ·HT ) can be also represented
by XORing of column vectors of H. From the lemma 1, it deduces that the HW
of Mi,∗ ·Y(x) ⊕ (w ·HT ) is 0 or 128. Finally, Wfi(w) = 256 − (2 ×HW (Mi,∗ ·
Y(x)⊕(w·HT ))) becomes 256 or 0. What is remarkable point over here is that the
probability of Wfi(w) = 256 is very small but not zero. Specifically, it happens
when all column indices of H are canceled each other when the summation is
computed with the randomly chosen matrix M .

As mentioned already, our experiment showed that Wfi(w) = 256 with 0.3%
in the calculation with the correct key, while the wrong key candidates produced
|Wfi(ω)| = 56 at maximum and 13.13 in average. For this reason, 1,024 tests of
Wfi(w) given a matrix M are likely to cause key leakages with overwhelming
probability. Based on these findings, we perform the following experiments to
check if the unbalanced distribution of the intermediate values can reduce the
correlation in the linear transformation.

3.4 Inserting A Random Byte in the Intermediate Values

Our analysis in the previous section shows that a balanced distribution of the
intermediate values is the main reason behind the key leakage. To see what
happen if there exists unbalanced distribution of intermediate values, we insert
random bytes in the intermediate values before linear transformations. We begin
with an analysis of the inserting position and the required number of random
bytes to be inserted.
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First, we will insert a random byte at a particular position in the 4-byte
intermediate value yi∈{0,1,2,3}(x) and then perform a linear transformation with
a 40×40 block invertible matrix M∗ to check if any key leakage occurs. Among
the five inserting positions ρ1 - ρ5 of y0, for example,[

ρ1 2 · x ρ2 x ρ3 x ρ4 3 · x ρ5
]T

we select ρi, where i ∈ [1, 5], and then insert different γ ∈R GF(28) at ρi for
each x ∈ GF(28). Let y∗0(x) denote y0(x) after the random byte insertion, and
f∗(x) denote M∗ · y∗0(x). Then we can define the Walsh transforms with respect
to f∗:

Wf∗i
(ω) = Σx∈{0,1}8(−1)f

∗
i (x)⊕x·ω

for 40 Boolean functions

f∗i∈{1,...,40}(x) : {0, 1}8 → {0, 1}.

With 1,000 randomly generated M∗, we computed Wf∗i
(ω). As a result, Table 2

gives us that the correct subkey results in Wf∗i
(ω) = 0 with approximately 5%

and the average |Wf∗i
(ω)| is about 12.7. Recall that, without the random byte

insertion, Wfi(ω) = 0 with approximately 99.7% and the average of |Wfi(ω)| is
approximately 0.7.

To see the effect of the random byte insertion, we conducted an additional
experiment as follows.

1. Let yγ(x) = [γ1 γ2 γ3 γ4 γ5]T for each x ∈ GF(28). In other words, replace
all the key-dependent intermediate values with random bytes.

2. fγ(x) = M∗ · yγ(x) .
3. Repeat step (1) - (2) with 1,000 random M∗ matrices, and accumulate the

number of occurrences of each value of Wfγi
(ω).

4. Compute % of Wfγi
(ω) = 0 and the average |Wfγi

(ω)|.
5. Compute the cosine similarity between the distributions of Wfγi

(ω) and
Wf∗i

(ω) for each ρi.

As a result, we have Wfγi
(ω) = 0 with approximately 5%, the average |Wfγi

(ω)|
is approximately 12.74, and the cosine similarity between their distributions
is always larger than 0.999. The cosine similarity larger than 0.99 means they
show very similar distribution. We note that the cosine similarity between the
distributions of Wfγi

(ω) and Wfi(ω) is about 0.25.
In order to visualize this effect of inserting a random byte, we select ρ5 and

calcalculate the sum of the imbalances of Wf∗i
(ω) for each key candidate with ω

such that HW(ω) = 1 as follows:

∆f∗

k∈{0,1}8 =
∑

ω=1,2,...,128

∑
i=1,...,40

|Wf∗i
(ω)|,

Fig. 5 shows ∆f∗

k∈{0,1}8 and we can see that the correct subkeys 0x88 - 0xBB

are no longer distinguishable from other candidates. In addition, it is noticeable
that inserting more than one random byte in the intermediate values does not
increase the imbalance; they show a similar level of the imbalance of the one-byte
insertion.
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ρ1 ρ2 ρ3 ρ4 ρ5

% of Wf∗i
(ω) = 0

5.05
(0.03)

5.06
(0.07)

4.93
(0.05)

5.0
(0.05)

5.04
(0.04)

Average of |Wf∗i
(ω)| 12.73

(0.02)
12.75
(0.01)

12.76
(0.01)

12.73
(0.01)

12.76
(0.01)

Similarity with Wf
γ
i

> 0.999

Table 2: Wf∗i
after inserting a random byte at each inserting position (the stan-

dard deviation in parenthesis), and the cosine similarity of the distributions
between Wf∗i

and Wfγi
.

4 Conclusion

In this paper, we first pointed out that there is no such row of HW 1 if we
choose a block invertible matrix with 4×4 submatrices of full rank for maximizing
information diffusion. In addition, the key leakage is likely to happen from the
linear transformation regardless of the HW of block invertible matrices. Our
analysis explained that the balanced distribution of intermediate values cause the
key leakage. To demonstrate this, the experimental results showed that insertion
of a random byte prior to linear transformation could reduce the probability of
key leakage.
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