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Abstract. Linear transformations are often applied to the table-based
cryptographic implementation including white-box cryptography in or-
der to prevent key-dependent intermediate values from being analyzed.
However, it has been shown that there still exists a correlation before
and after the linear transformations, and thus this is not enough to pro-
tect the key against gray-box attacks such as power analysis. So far, the
Hamming weight of rows in the invertible matrix has been considered
the main cause of the key leakage from the linear transformation. In this
study, we present an in-depth analysis of the distribution of intermedi-
ate values and the characteristics of block invertible binary matrices. Our
mathematical analysis and experimental results show that the balanced
distribution of the key-dependent intermediate value is the main cause
of the key leakage.

Keywords: White-box cryptography, linear transformation, power analysis, key
leakage.

1 Introduction

From a secret key point of view, a block cipher can be seen as a secret bijection
between a plaintext set and a ciphertext set. One of the easy ways to imple-
ment this bijection is a lookup table mapping a plaintext to its corresponding
ciphertext. Since implementing a block cipher as one lookup table is impractical
because of its huge size, it is usually implemented as a series of lookup tables
like in the case of white-box cryptography. The important point here is that
white-box cryptography generates key-instantiated lookup tables and protects
each table with linear and nonlinear transformations in order to prevent a key
leakage from lookup values.

There are various techniques to extract the key hidden in white-box crypto-
graphic implementations of standard block ciphers such as DES and AES. First,
a number of practical cryptanalysis techniques [4, 13, 21, 26–28, 39] on the white-
box DES (WB-DES) and AES (WB-AES) and their variants [7, 17, 20, 22, 41]
have been introduced. Second, Differential Fault Analysis (DFA) [33] on white-
box cryptography was also demonstrated, where an attacker is able to inject a
fault at a desired location in memory. Here, those white-box attacks rely on an
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in-depth understanding of a target implementation so that an attacker is able to
access precise internal states during the execution. Thus commercial white-box
cryptography [3, 11, 15, 38] focuses on making a barrier to the full control of an
attacker and is often combined with additional protection techniques including
obfuscation, enveloping, hardware ID binding, and anti-debug protections.

In contrast to above white-box attacks, gray-box attacks using non-invasive
information such as power consumption of a target device can be mounted. Dif-
ferential Power Analysis (DPA) [19], one of the most well-known techniques to
reveal the secret key imbedded in IC cards, is based on the fact that power con-
sumption of a device is proportional or inversely proportional to the Hamming
weight (HW) of data it processes. In detail, a power analysis attacker collects
a number of power traces with random plaintexts and finds a correct key that
computes hypothetical values most highly correlated to the collected traces at a
particular point. Here, we focus on the fact that white-box cryptography can be
easily broken by power analysis [5, 34] without having to perform cryptanalysis.
This means that linear and nonlinear transformations applied to lookup tables
have no effect on hiding key-sensitive intermediate values. In case of linear trans-
formations, it was recently reported in [2, 32] that if the invertible matrix used
for the linear transformation has rows of HW 1, then power analysis will succeed
with overwhelming probability. Otherwise, the correct key is expected to be in-
distinguishable from the wrong key hypothesis correlation and power analysis
fails with high probability.

Here, we note that it is recommended in white-box cryptography to choose
a block invertible binary matrix with submatrices of full rank for carrying max-
imum information and maximizing information diffusion [9]. According to the
conclusion in [2, 32], linear transformations using block invertible binary matri-
ces are unlikely to leak the key because there will be no such matrix containing
any row of HW 1 by the definition of a block invertible matrix. In this paper,
we demonstrate that the key leakage from the linear transformation still takes
place even in the case of block invertible matrices. Importantly, we find out that
the key leakage after linear transformations is largely due to the balanced distri-
bution of intermediate values, and we offer a simple proof and demonstrations
using the Walsh transforms. To enhance our finding, we insert a random byte
in the intermediate value before linear transformations making an unbalanced
distribution and show a reduced correlation to the key.

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts including power analysis and revisits the key leakage issue in white-box
cryptography with the Walsh transforms. In Section 3, we provide our analy-
sis of the main reason why the key is still revealed in the presence of linear
transformations. Section 4 concludes this paper.
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2 Background

In this section, we introduce the basic concept of power analysis and we use the
Walsh transforms for demonstrating the key leakage in the presence of linear
and nonlinear transformations.

2.1 Power Analysis

An explanation of successful power analysis on the white-box cryptographic im-
plementation could be that attacker’s correct hypothetical value will correlate
to the target lookup value. Here, DPA or Correlation Power Analysis (CPA) [6]
can be used as power analysis techniques. Note that Differential Computation
Analysis [5] improves the efficiency of DPA and CPA attacks since there is no
measurement noise in the software execution traces, unlike the power consump-
tion traces.

After collecting the traces with random plaintexts, DPA and CPA perform
statistical analysis in different ways. DPA uses the selection function D to split
the collected traces into sets based on the attacker’s hypothetical values. If the
attacker’s hypothetical key is correct (and therefore the hypothetical value is
correct), then the trace separation by D is also accurate and there will be a
peak in the differential trace.

In contrast, CPA uses a leakage model including the HW and the Hamming
distance instead of the selection function D. When attacking a white-box im-
plementation, the bit (mono-bit) model is appropriate because HW-based CPA
attacks are unlikely to be successful due to the disturbed HW by linear and non-
linear transformations. Given N power traces V1..N [1..κ] containing κ samples
each, CPA will estimate the power consumption at each point of each trace using
attacker’s hypothetical intermediate value. For K different key candidates, let
En,k∗ (1 ≤ n ≤ N , 0 ≤ k∗ < K) denote the power estimate in the nth trace with
the hypothetical key k∗. To measure a correlation between hypothetical power
consumption and measured power traces, the estimator r at the sample point j
is defined as follows [23]:

rk∗,j =

∑N
n=1(En,k∗ − Ek∗) · (Vn[j]− V [j])√∑N

n=1(En,k∗ − Ek∗)2 ·
∑N
n=1(Vn[j]− V [j])2

,

where Ek∗ and V [j] are sample means of Ek∗ and V [j], respectively. If there
exists a correlation, a noticeable peak will be found in the correlation plot for
the correct key.

Power analysis countermeasures can be categorized into masking and hiding,
where masking breaks the correlation between power signals and the processed
data while hiding reduces the signal to noise ratio. Maksing [1, 10, 12, 24, 29, 36]
randomizes every key-dependent intermediate value by precomputing a new
masked lookup table for each execution of encryption. To protect against higher-
order DPA attacks [16, 25, 37], where an attacker exploits the joint key leakage
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from several intermediate values, higher-order DPA countermeasures have been
studied [8, 18, 30, 31, 35]. One of the most used hiding techniques, on the other
hand, is to induce random delay. When the target cryptographic operation occurs
uniformly distributed across n time instants due to random delay, the number
of power traces for a successful DPA grows in n2 only if DPA is performed
straightforwardly [14]. Here, we can see these countermeasures are strongly de-
pendent on expensive run-time random source, and also result in slow execution
of cryptographic algorithm.

2.2 Detecting Key Leakage by the Walsh Transforms

Given a table-based implementation of a block cipher which is protected by
linear and nonlinear transformations (often we use the term encoding), we can
detect the key leakage using the Walsh transforms. To understand how the Walsh
transform can be used to quantify a correlation we use the following definitions
from [34].

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ d, it is called a balanced dth order
correlation immune function or an d-resilient function.

By Definition 1 and 2, Wf (ω) quantifies the imbalances in the encoding, and the
large absolute value of Wf (ω) means the strong correlation between f(x) and
x · ω. By utilizing this property, we calculate the correlation between the table
lookup values f(x) and hypothetical values x · ω, where ω plays a role in bit
selection for x in mono-bit power analysis.

Let’s demonstrate the key leakage in the WB-AES implementation with a
128-bit key [9]. To do so, we assume that an attacker’s hypothetical value is the
SubBytes output in the first round and the target lookup table is generated by
the composition of SubBytes, AddRoundKey and MixColumns. We denote the
initial round key by k (= k0k1 . . . k15), and decompose the Mixcolumns operation



5

with a column vector [x0 x1 x2 x3]T of the state matrix as follows:
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3


= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02


= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3,

where MCi is the ith column vector of the MixColumns matrix, and yi(xi) =
xi ·MCi. Now we let

x = S(p⊕ k0)

y0(x) =
[
2 · x x x 3 · x

]T
where p ∈ GF(28) means the first subbyte of the plaintext, and S represents
SubBytes. Let f(x) denote the lookup values of y(x) encoded by linear and non-
linear transformations. We also denote 32 Boolean functions by fi∈{1,...,32}(x):
{0, 1}8 → {0, 1}. To recover the target subkey k0 = 0x88, we calculate the Walsh
transforms Wfi and sum all the imbalances for each key candidate and ω such
that HW(ω) = 1 as follows:

∆f
k∈{0,1}8 =

∑
ω=1,2,4,...,128

∑
i=1,...,32

|Wfi(ω)|.

The reason why we only select ω of HW(ω) = 1 is that the HW-based key
leakage model is not effective to detect the correlation before and after the both
transformations.

The Walsh transforms and their sum of all imbalances are plotted in Fig. 1.
As we can see in Fig. 1a, the Walsh transforms with ω = 4 of the correct key
(0x88) produce 0 except two points; the Wf14 and Wf16 of the correct key are
-128, and their absolute value (128) is the most highest value. In contrast, the
maximum and the average values of |Wfi(ω)| of wrong key candidates are 56 and
about 13.13 (the standard deviation is about 9.35), respectively. This gives us
that f14(·) and f16(·) cause key leakages and thus power analysis using the 3rd

bit (the LSB is the 1st bit) of attacker’s hypothetical SubBytes output can be
successful. Hereafter, we will utilize the Walsh transforms for various purposes
including the calculation of correlation and our proof regarding the cause of key
leakage.

3 Analysis of Linear Transformations

As mentioned, previous studies [2, 32] on linear transformations point out that
rows of HW 1 in the invertible matrix cause the key leakage. In addition, it is
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Fig. 1: Key leakage detection using the Walsh transforms.

reportedly possible to recover the key in the presence of a matrix without identity
row by calculating all of the 28 linear combinations of the bits in the target
intermediate value [2]. However, we note that a 32×32 linear transformation is
applied to the SubBytes output multiplied with MCi in the typical WB-AES
implementation [9], instead of applying an 8×8 linear transformation to the
SubBytes output (an 8×8 linear transformation is usually applied to the round
output). In this case, it becomes very complex, unlike their analysis, to carry
out an attack on all possible combinations. In the following, we present our
mathematical analysis and experimental results showing that the main cause of
the key leakage lies in the distribution of the intermediate values rather than
some characteristic of the matrix.

3.1 Analysis of Key-dependent Intermediate Values

The following proof explains why the distribution of key-dependent intermediate
values leads to Wfi(ω) = 256 after the linear transformation. By Definition 1,
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this is the maximum value that Wfi(ω) can have for x ∈ GF (28) and thus
certainly causes the key leakage.

Lemma 1. Assume that a 256×8 binary matrix H is defined as

H =

 h1,1 h1,2 . . .
...

. . .

h256,1 h256,8

 ,
where the ith row vector hi,∗ = 〈hi,1, hi,2, . . . , hi,8〉 is an element of GF (28) and
hi,∗ 6= hj,∗ for all i 6= j. Then the HW of XORs of arbitrary chosen column
vectors from H is 0 or 128. In other words, HW (h∗,j1 ⊕ h∗,j2 ⊕ · · · ⊕ h∗,jn) =
0 or 128, where n is a random positive integer and ji ∈ {1, 2, . . . , 8}.

Proof : Let J be a set of randomly chosen indices from {1, 2, . . . , 8}. Note that
for any duplicated indices α and α′ in J , i.e. α = α′, removing the duplicated
indices from J makes no change to the result HW.

⊕j∈Jh∗,j =
(
⊕j∈J−{α,α′} h∗,j

)
⊕ h∗,α ⊕ h∗,α′

=
(
⊕j∈J−{α,α′} h∗,j

)
⊕ 0 = ⊕j∈J−{α,α′}h∗,j .

Therefore without loss of generality we can assume that J contains no duplicated
indices and moreover

∣∣J ∣∣ = n ≤ 8.
Now we can define following partitions of indices:

Ib1,b2,...,bn = {` ∈ I|h`,ji = bi for all ji ∈ J },

where I = {1, 2, . . . , 256}, and bi ∈ {0, 1}. Here all Ib1,b2,...,bn are disjoint to the
others and ∪Ib1,b2,...,bn = I. To complete the proof, we need that for any choice
of bi’s,

∣∣Ib1,b2,...,bn ∣∣ = 256/2n = 28−n. This can be shown easily as followings.

Suppose that
∣∣Ib1,b2,...,bn∣∣ = t > 28−n. It means that there are t row vectors in H

satisfying the condition ji
th bit of the vector equals to bi. In other words, n bits

are determined by choice of bi’s and only 8−n bits are remained free. From the
condition of t is larger than 28−n and the pigeon hole principle in mathematics,
there must exist at least two indices ` and `′ in Ib1,b2,...,bn , where all bits of
h`,∗ are completely same to the bits of h`′,∗. It contradicts to the assumption
hi,∗ 6= hj,∗ for any i 6= j.

From the definition of HW, we can deduce HW (⊕j∈Jh∗,j) is summation of∣∣Ib1,b2,...,bn ∣∣ where ⊕i=1,...,nbi = 1.

HW (⊕j∈Jh∗,j) = Σ⊕i=1,...,nbi=1

∣∣Ib1,b2,...,bn ∣∣
= Σ⊕i=1,...,nbi=128−n = Σ2n−128−n

= 2n−1 · 28−n = 27 = 128.



8

Note that if J is empty after de-duplication then the final HW becomes 0. It
concludes the proof of lemma.

Note thatWfi(ω) is defined as
∑
x∈GF (28)(−1)fi(x)⊕x·ω =

∑
x∈{0,1}8(−1)Mi,∗·y(x)⊕x·ω,

where Mi,∗ is the ith row of the matrix M and y(x) is one of y0(x) - y3(x) de-
pending on the target subkey. For convenience, let y(x) = y0(x), a 32×1 matrix
[2·x x x 3·x]T . If we define Y(x) as a 32×256 matrix [2·H H H 3·H]T , where
the H is the matrix defined in the Lemma 1, it is easy to show that each column
vector of 2 ·H or 3 ·H can be defined with XORs of some column vectors of H
based on the property of GF (28). Then the above equation can be re-written as∑

j={1,2,...256}

(−1)Bj(Mi,∗·Y(x)⊕(w·HT )),

whereBj(v) means the jth bit of the vector v. Since the exponents of the equation
can have only two values 0 or 1, the summation over {1, 2, . . . , 256} can be re-
written with the number of exponents which are 1.

Wfi(w) = 256− (2×HW (Mi,∗ ·Y(x)⊕ (w ·HT )))

Note that all row vectors of the matrix Y(x) is represented by XORing of
column vectors of H. Therefore Mi,∗ ·Y(x)⊕ (w ·HT ) can be also represented
by XORing of column vectors of H. From the Lemma 1, it deduces that the HW
of Mi,∗ ·Y(x) ⊕ (w ·HT ) is 0 or 128. Finally, Wfi(w) = 256 − (2 ×HW (Mi,∗ ·
Y(x) ⊕ (w · HT ))) becomes 256 or 0. What is remarkable point over here is
that the probability of Wfi(w) = 256 is very small but not zero. Specifically, it
happens when all column indices of H are canceled each other when the summa-
tion is computed with the randomly chosen matrix M . Whenever this happens,
there will definitely be the key leakage because fi(x) is most correlated with x·ω.

To demonstrate the experimental results for the lemma above, let denote

x = S(p⊕ ki)
f i(x) = M · yi(x)i∈{0,1,2,3},

where p ∈ GF(28), M is a (32, 2) block invertible square binary matrix which is
defined in [40] as follows.

Definition 3. If all the blocks Bi,j in a block matrix n
mM [pB] are invertible,

matrix M is called an (m, n, p) block invertible matrix. Furthermore, if m = n,
and M is invertible then M is called an (m, p) block invertible square matrix,
where n

mM [pB] denotes an n ×m matrix M with nm/p2 blocks (submatrices),
and Bi,j denotes the block in row i and column j of blocks.

Importantly, it is recommended by the author of [9] to choose a non-singular
matrix with submatrices of full rank for the following reasons. First, this ensures



9

that the encoded components will carry maximum information and maximizing
information diffusion. Second, a large block invertible matrix can be efficiently
generated by using the technique explained in [40]. Here we note that block
invertible matrices have no row of HW 1. Thus, the frequent key leakage from the
linear transformations using block invertible matrices will be counter examples
of [2, 32].

Note that f i linearly transforms the SubBytes output x multiplied with MCi,
where x is connected to ki. For f ij given to an attacker, 0 ≤ i ≤ 3 and 1 ≤ j ≤ 32,
mono-bit power analysis based on the SubBytes output in the first round can be
simulated by the Walsh transforms. By computing 1,024 (= 4 × 32 × 8) Walsh
transforms with f i(·) we can observe how the key leakage appears with respect
to the four subkeys in the linear transformations by M . In this experiment, we
used k0 = 0x88, k1 = 0x99, k2 = 0xAA and k3 = 0xBB.

The crucial observation over the Walsh transforms plotted in Fig. 2 is that
there still exists a problematic probability of key leakage from linear transfor-
mations using the block invertible matrix. Unlike in the case of Fig. 1b of a key
leakage from the linear and nonlinear transformations, note that this shows the
key leakage from linear transformations without nonlinear transformations. For
simplicity, we abuse the notation by skipping the superscript of f i by letting
f = f i and use the subscript to f indicating its Boolean functions. We can see
that linear transformations with M hide three subkeys k0, k2 and k3 (the Walsh
transforms score 0), but expose k1(0x99) from y1(x) (the Walsh transforms score
256 in Fig. 2b). This gives us that linear transformations produce well-balanced
outputs with an overwhelming probability, but this is not always guarantee a
reliable protection on secret keys.

We repeated the above experiment using 1,000 randomly generated (32, 2)
matrices. For HW(ω) = 1, the correct key gives us that Wfi(ω) = 0 with ap-
proximately 99.7% and Wfi(ω) = 256 with 0.3%; the average of |Wfi(ω)| is
approximately 0.7 as shown in Table 1. Although this probability of Wfi(ω) =
256 is small, 1,024 Walsh transforms probably produce three peaks of the correct
key distinguishable from wrong key candidates, and the three peaks can reveal
at most three subkeys. Fig. 3 depicts our experimental result that 1 to 3 out of
four subkeys are exposed in most cases. Only 51 of 1,000 matrices did not leak
any of the four subkeys. Consequently, this demonstrates Lemma 1 and explains
why a linear transformation cannot guarantee the protection of key in white-box
cryptography.

To be linearly transformed
y0 y1 y2 y3

Number of
Wf i(ω) = 0 255,206 255,205 255,309 255,203
Wf i(ω) = 256 794 795 691 797

Table 1: Statistic of Wf i scores calculated with 1,000 randomly generated (32,
2) matrices.
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Fig. 2: Sum of the imbalance of Wfi(ω) for all subkey candidates on linearly
transformed yi∈{0,1,2,3}(x).

3.2 Analysis of Block Invertible Square Matrix

To enhance our analysis on the cause of the key leakage, we perform additional
experiments to check if the HW of (32, 2) matrices causes the key leakage.
Generating (n, 2) block invertible square matrices begins with a (2, 2) block
invertible square matrix and extends by (4, 2), (6, 2), . . ., and repeats it (n−2)/2
times [40]. Note that every 2×2 submatrix in a (n, 2) block invertible square
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matrix should be invertible by the definition and all 2×2 invertible matrices in
GF(2) are as follows:∣∣∣∣1 0

0 1

∣∣∣∣ ∣∣∣∣1 1
1 0

∣∣∣∣ ∣∣∣∣0 1
1 1

∣∣∣∣ ∣∣∣∣0 1
1 0

∣∣∣∣ ∣∣∣∣1 1
0 1

∣∣∣∣ ∣∣∣∣1 0
1 1

∣∣∣∣
At a glance, the number of 1s in the 4 out of 6 matrices is greater than 0s. By
the principle of constructing a block invertible square matrix, the HW of each
row and column in an (n, 2) block invertible matrix will be greater than n/2.
For example, let’s assume that a (4, 2) matrix is initialized with∣∣∣∣1 0

0 1

∣∣∣∣ ,
then its resulting matrix will be ∣∣∣∣∣∣∣∣

1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0

∣∣∣∣∣∣∣∣
if the technique in [40] is used. Another case of an initialization with∣∣∣∣0 1

1 0

∣∣∣∣
will produce ∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0
0 1 1 0
1 0 1 1

∣∣∣∣∣∣∣∣ .
When generating a (32, 2) matrix through this process, 1s appear more fre-
quently. To do so, we performed the following experiment to test whether or
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not this overweight HW of the block invertible matrix is one of the reasons for
key leakage. We randomly generated a balanced non-invertible (singular) 32×32
matrix M b, such that f(x) = M b · yi∈{0,1,2,3}(x), where M b has the HW of 16
for each row and column, and used it to compute the sum of imbalances. As
shown in Fig. 4, there still exist key leakages from y1 and y2 with the Walsh
transform score 256. This shows us that the heavy HW of matrices is not the
cause of the key leakage from linear transformations.

3.3 Effect of Unbalanced Intermediate Values

So far, we have analyzed the balanced distribution of the key-dependent inter-
mediate values as the main cause of the key leakage. In the connection with this,
we demonstrate the effect of unbalanced distribution of intermediate values by
inserting random bytes in the intermediate values before linear transformations.

Let’s begin with an analysis of the inserting position.We insert a random
byte at a particular position in the four-byte intermediate value yi∈{0,1,2,3}(x)
and then perform a linear transformation with a (40, 2) block invertible matrix
M∗ to check if any key leakage occurs. Among the five inserting positions ρ1 -
ρ5 of y0, for example, [

ρ1 2 · x ρ2 x ρ3 x ρ4 3 · x ρ5
]T

we select ρi, where i ∈ [1, 5], and then insert different γ ∈R GF(28) at ρi for
each x ∈ GF(28). Let y∗0(x) denote y0(x) after the random byte insertion, and
let f∗(x) = M∗ · y∗0(x). Then we can define the Walsh transforms with respect
to f∗:

Wf∗i
(ω) = Σx∈{0,1}8(−1)f

∗
i (x)⊕x·ω

for 40 Boolean functions

f∗i∈{1,...,40}(x) : {0, 1}8 → {0, 1}.

With 1,000 randomly generated M∗, we computed Wf∗i
(ω). As a result, Table 2

gives us that the correct key results in Wf∗i
(ω) = 0 with approximately 5% (The

max and average |Wf∗i
(ω)| are about 72 and 12.7, respectively). Recall that,

without the random byte insertion, Wfi(ω) = 0 with approximately 99.7% and
the average of |Wfi(ω)| is approximately 0.7. This implies that the encoding im-
balance increases in the linear transformation with an unbalanced intermediate
value by inserting a random byte.

For comparison, we conducted an additional experiment as follows.

1. Let yγ(x) = [γ1 γ2 γ3 γ4 γ5]T for each x ∈ GF(28). In other words, these
are five-byte random vectors.

2. fγ(x) = M∗ · yγ(x) .
3. Repeat step (1) - (2) with 1,000 random M∗ matrices, and accumulate the

number of occurrences of each value of Wfγi
(ω).

4. Compute % of Wfγi
(ω) = 0 and the average |Wfγi

(ω)|.
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Fig. 4: Sum of the imbalance for all key candidates on each yi∈{0,1,2,3}(x) multi-

plied with a balanced matrix M b.

5. Compute the cosine similarity between the distributions of Wfγi
(ω) and

Wf∗i
(ω) for each ρi.

As a result, we have Wfγi
(ω) = 0 with approximately 5% (The max and average

|Wfγi
(ω)| are about 76 and 12.74, respectively) and the cosine similarity between

their distributions is always larger than 0.999. The cosine similarity larger than
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0.99 means they show very similar distribution. We note that the cosine similarity
between the distributions of Wfγi

(ω) and Wfi(ω) is about 0.25.

ρ1 ρ2 ρ3 ρ4 ρ5

% of Wf∗i
(ω) = 0

5.05
(0.03)

5.06
(0.07)

4.93
(0.05)

5.0
(0.05)

5.04
(0.04)

Average |Wf∗i
(ω)| 12.73

(0.02)
12.75
(0.01)

12.76
(0.01)

12.73
(0.01)

12.76
(0.01)

Similarity with Wf
γ
i

> 0.999

Table 2: Wf∗i
after inserting a random byte at each inserting position (the stan-

dard deviation in parenthesis), and the cosine similarity of the distributions
between Wf∗i

and Wfγi
.

In order to visualize this effect of inserting a random byte, we select ρ5 and
calcalculate the sum of the imbalances of Wf∗i

(ω) for each key candidate with ω
such that HW(ω) = 1 as follows:

∆f∗

k∈{0,1}8 =
∑

ω=1,2,...,128

∑
i=1,...,40

|Wf∗i
(ω)|.

Fig. 5 shows ∆f∗

k∈{0,1}8 and we can see that the correct subkeys 0x88 - 0xBB

are no longer distinguishable from other candidates. In addition, it is noticeable
that inserting more than one random byte in the intermediate values does not
increase the imbalance; they show a similar level of the imbalance with the one-
byte insertion.

4 Conclusion

Previous studies have shown that rows of HW 1 in the matrix are the main cause
of the key leakage from the linear transformation. Also, it has been suggested
to recover the key in the presence of such a matrix without identity row by
calculating all possible linear combinations of the bits in the target intermediate
value. In this paper, we pointed out that there is no such row of HW 1 if we
choose a block invertible matrix with submatrices of full rank for maximizing
information diffusion. Nevertheless, the key leakage is likely to happen from
the linear transformation regardless of the HW of block invertible matrices. In
addition, we pointed out that a typical WB-AES implementation uses a 32×32
linear transformation on the SubBytes output multiplied with the decomposed
MixColumns rather than an 8×8 linear transformation on the SubBytes output.
Thus, it is complicated for an attacker to analyze all possible linear combinations.
Our analysis explained that the balanced distribution of intermediate values
causes the key leakage. In the connection with this, it was demonstrated that
the unbalanced distribution of the intermediate values can be effective to reduce
the probability of key leakage.
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Fig. 5: Sum of the imbalance of Wf∗i
(ω) for all key candidates. Red arrow: the

correct key.
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